Sample records for accurate soil water

  1. An overview of soil water sensors for salinity & irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  2. Cumulative soil water evaporation as a function of depth and time

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land-atmosphere interface. The objective of this study is to mea...

  3. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Haverd, Vanessa

    2018-01-01

    The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.

  4. Lower limits of crop water use in three soil textural classes

    USDA-ARS?s Scientific Manuscript database

    Accurate knowledge of the amount of soil water available for crop use allows better management of limited water supplies. Using neutron scattering, we determined the mean lower limit of field soil water use (LL*F, m**3 m**-3) to a depth of 2.2 m at harvest (three seasons each) of short-season maize...

  5. Relation between L-band soil emittance and soil water content

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Van Bavel, C. H. M.; Newton, R. W.

    1986-01-01

    An experimental relation between soil emittance (E) at L-band and soil surface moisture content (M) is compared with a theoretical one. The latter depends on the soil dielectric constant, which is a function of both soil moisture content and of soil texture. It appears that a difference of 10 percent in the surface clay content causes a change in the estimate of M on the order of 0.02 cu m/cu m. This is based on calculations with a model that simulates the flow of water and energy, in combination with a radiative transfer model. It is concluded that an experimental determination of the E-M relation for each soil type is not required, and that a rough estimate of the soil texture will lead to a sufficiently accurate estimate of soil moisture from a general, theoretical relationship obtained by numerical simulation.

  6. Heat pulse probe measurements of soil water evaporation in a corn field

    USDA-ARS?s Scientific Manuscript database

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  7. Stochastic soil water balance under seasonal climates

    PubMed Central

    Feng, Xue; Porporato, Amilcare; Rodriguez-Iturbe, Ignacio

    2015-01-01

    The analysis of soil water partitioning in seasonally dry climates necessarily requires careful consideration of the periodic climatic forcing at the intra-annual timescale in addition to daily scale variabilities. Here, we introduce three new extensions to a stochastic soil moisture model which yields seasonal evolution of soil moisture and relevant hydrological fluxes. These approximations allow seasonal climatic forcings (e.g. rainfall and potential evapotranspiration) to be fully resolved, extending the analysis of soil water partitioning to account explicitly for the seasonal amplitude and the phase difference between the climatic forcings. The results provide accurate descriptions of probabilistic soil moisture dynamics under seasonal climates without requiring extensive numerical simulations. We also find that the transfer of soil moisture between the wet to the dry season is responsible for hysteresis in the hydrological response, showing asymmetrical trajectories in the mean soil moisture and in the transient Budyko's curves during the ‘dry-down‘ versus the ‘rewetting‘ phases of the year. Furthermore, in some dry climates where rainfall and potential evapotranspiration are in-phase, annual evapotranspiration can be shown to increase because of inter-seasonal soil moisture transfer, highlighting the importance of soil water storage in the seasonal context. PMID:25663808

  8. Soil water sensors for irrigation management-What works, what doesn't, and why

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  9. Modeling of Water Flow Processes in the Soil-Plant-Atmosphere System: The Soil-Tree-Atmosphere Continuum Model

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Vrugt, J. A.

    2015-12-01

    Trees and forests play a key role in controlling the water and energy balance at the land-air surface. This study reports on the calibration of an integrated soil-tree-atmosphere continuum (STAC) model using Bayesian inference with the DREAM algorithm and temporal observations of soil moisture content, matric head, sap flux, and leaf water potential from the King's River Experimental Watershed (KREW) in the southern Sierra Nevada mountain range in California. Water flow through the coupled system is described using the Richards' equation with both the soil and tree modeled as a porous medium with nonlinear soil and tree water relationships. Most of the model parameters appear to be reasonably well defined by calibration against the observed data. The posterior mean simulation reproduces the observed soil and tree data quite accurately, but a systematic mismatch is observed between early afternoon measured and simulated sap fluxes. We will show how this points to a structural error in the STAC-model and suggest and test an alternative hypothesis for root water uptake that alleviates this problem.

  10. Design and field tests of an access-tube soil water sensor

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...

  11. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  12. A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations

    NASA Astrophysics Data System (ADS)

    Deng, Zijuan; Guan, Huade; Hutson, John; Forster, Michael A.; Wang, Yunquan; Simmons, Craig T.

    2017-06-01

    A novel simple soil-plant-atmospheric continuum model that emphasizes the vegetation's role in controlling water transfer (v-SPAC) has been developed in this study. The v-SPAC model aims to incorporate both plant and soil hydrological measurements into plant water transfer modeling. The model is different from previous SPAC models in which v-SPAC uses (1) a dynamic plant resistance system in the form of a vulnerability curve that can be easily obtained from sap flow and stem xylem water potential time series and (2) a plant capacitance parameter to buffer the effects of transpiration on root water uptake. The unique representation of root resistance and capacitance allows the model to embrace SPAC hydraulic pathway from bulk soil, to soil-root interface, to root xylem, and finally to stem xylem where the xylem water potential is measured. The v-SPAC model was tested on a native tree species in Australia, Eucalyptus crenulata saplings, with controlled drought treatment. To further validate the robustness of the v-SPAC model, it was compared against a soil-focused SPAC model, LEACHM. The v-SPAC model simulation results closely matched the observed sap flow and stem water potential time series, as well as the soil moisture variation of the experiment. The v-SPAC model was found to be more accurate in predicting measured data than the LEACHM model, underscoring the importance of incorporating root resistance into SPAC models and the benefit of integrating plant measurements to constrain SPAC modeling.

  13. Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention

    NASA Astrophysics Data System (ADS)

    Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.

    2013-12-01

    Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally

  14. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    NASA Astrophysics Data System (ADS)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  15. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  16. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  17. Lower Limits of Water Use By Cotton, Maize, and Grain Sorghum in Three Great Plains Soils

    USDA-ARS?s Scientific Manuscript database

    Accurate knowledge of the amount of soil water available for crop use helps agricultural producers select cropping and irrigation management strategies that maximize crop yields. Using neutron attenuation, we measured the lower limits of soil water content (LL, in m**3 m**-3) at harvest (three seas...

  18. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  19. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  20. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  1. Difficulties in the evaluation and measuring of soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  2. Short, multi-needle FDR sensor suitable for measuring soil water content

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR) is a well-established electromagnetic technique used to measure soil water content. TDR sensors have been combined with heat pulse sensors to produce thermo-TDR sensors. Thermo-TDR sensors are restricted to having relatively short needles in order to accurately measur...

  3. Water content determination of soil surface in an intensive apple orchard

    NASA Astrophysics Data System (ADS)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  4. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  5. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  6. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling

    USDA-ARS?s Scientific Manuscript database

    Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...

  7. An efficient soil water balance model based on hybrid numerical and statistical methods

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  8. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  9. Estimating soil water content from ground penetrating radar coarse root reflections

    NASA Astrophysics Data System (ADS)

    Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.

    2016-12-01

    Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at

  10. Soil specific re-calibration of water content sensors for a field-scale sensor network

    NASA Astrophysics Data System (ADS)

    Gasch, Caley K.; Brown, David J.; Anderson, Todd; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    Obtaining accurate soil moisture data from a sensor network requires sensor calibration. Soil moisture sensors are factory calibrated, but multiple site specific factors may contribute to sensor inaccuracies. Thus, sensors should be calibrated for the specific soil type and conditions in which they will be installed. Lab calibration of a large number of sensors prior to installation in a heterogeneous setting may not be feasible, and it may not reflect the actual performance of the installed sensor. We investigated a multi-step approach to retroactively re-calibrate sensor water content data from the dielectric permittivity readings obtained by sensors in the field. We used water content data collected since 2009 from a sensor network installed at 42 locations and 5 depths (210 sensors total) within the 37-ha Cook Agronomy Farm with highly variable soils located in the Palouse region of the Northwest United States. First, volumetric water content was calculated from sensor dielectric readings using three equations: (1) a factory calibration using the Topp equation; (2) a custom calibration obtained empirically from an instrumented soil in the field; and (3) a hybrid equation that combines the Topp and custom equations. Second, we used soil physical properties (particle size and bulk density) and pedotransfer functions to estimate water content at saturation, field capacity, and wilting point for each installation location and depth. We also extracted the same reference points from the sensor readings, when available. Using these reference points, we re-scaled the sensor readings, such that water content was restricted to the range of values that we would expect given the physical properties of the soil. The re-calibration accuracy was assessed with volumetric water content measurements obtained from field-sampled cores taken on multiple dates. In general, the re-calibration was most accurate when all three reference points (saturation, field capacity, and wilting

  11. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva

    2015-04-01

    Water repellency is a natural soil property with implications on infiltration, erosion and plant growth. It depends on soil texture, type and amount of organic matter, fungi, microorganisms, and vegetation cover (Doerr et al., 2000). Human activities as agriculture can have implications on soil water repellency (SWR) due tillage and addition of organic compounds and fertilizers (Blanco-Canqui and Lal, 2009; Gonzalez-Penaloza et al., 2012). It is also assumed that SWR has a high small-scale variability (Doerr et al., 2000). The aim of this work is to study the spatial probability of SWR in an abandoned field testing several geostatistical methods, Organic Kriging (OK), Simple Kriging (SK), Indicator Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). The study area it is located near Vilnius urban area at (54 49' N, 25 22', 104 masl) in Lithuania (Pereira and Oliva, 2013). It was designed a experimental plot with 21 m2 (07x03 m). Inside this area it was measured SWR was measured every 50 cm using the water drop penetration time (WDPT) (Wessel, 1998). A total of 105 points were measured. The probability of SWR was classified in 0 (No probability) to 1 (High probability). The methods accuracy was assessed with the cross validation method. The best interpolation method was the one with the lowest Root Mean Square Error (RMSE). The results showed that the most accurate probability method was SK (RMSE=0.436), followed by DK (RMSE=0.437), IK (RMSE=0.448), PK (RMSE=0.452) and OK (RMSE=0.537). Significant differences were identified among probability tests (Kruskal-Wallis test =199.7597 p<0.001). On average the probability of SWR was high with the OK (0.58±0.08) followed by PK (0.49±0.18), SK (0.32±0.16), DK (0.32±0.15) and IK (0.31±0.16). The most accurate probability methods predicted a lower probability of SWR in the studied plot. The spatial distribution of SWR was different according to the tested technique. Simple Kriging, DK, IK and PK methods

  12. Measured and simulated soil water evaporation from four Great Plains soils

    USDA-ARS?s Scientific Manuscript database

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  13. Effect of soil and cover conditions on soil-water relationships

    Treesearch

    George R., Jr. Trimble; Charles E. Hale; H. Spencer Potter

    1951-01-01

    People who make flood-control surveys for the U.S. Department of Agriculture are concerned with the physical condition of the soils in the watersheds. The condition of the soil determines how fast water moves into and through the soil, and how much water is held in storage. The condition of the soil has a great influence on stream flow, erosion, floods and water supply...

  14. Modeling the Dynamics of Soil Structure and Water in Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.

    2017-12-01

    The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based

  15. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    NASA Astrophysics Data System (ADS)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed

  16. Soil and Water: Some Teaching Suggestions.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1987-01-01

    Outlines six soil and water investigations that students can pursue outdoors, in nature centers, or in classrooms: soil characteristics; relationship between soil ph and plant life; what aggregates tell us; differences in soil structure; differences in rate of water absorption by soil; and soil exploration with a Berlesi funnel. (NEC)

  17. Effects of soil water availability on water fluxes in winter wheat

    NASA Astrophysics Data System (ADS)

    Cai, G.; Vanderborght, J.; Langensiepen, M.; Vereecken, H.

    2014-12-01

    Quantifying soil water availability in water-limited ecosystems on plant water use continues to be a practical problem in agronomy. Transpiration which represents plant water demand is closely in relation to root water uptake in the root zone and sap flow in plant stems. However, few studies have been concentrated on influences of soil moisture on root water uptake and sap flow in crops. This study was undertaken to investigate (i) whether root water uptake and sap flow correlate with the transpiration estimated by the Penman-Monteith model for winter wheat(Triticum aestivum), and (ii) for which soil water potentials in the root zone, the root water uptake and sap flow rates in crop stems would be reduced. Therefore, we measured sap flow velocities by an improved heat-balance approach (Langensiepen et al., 2014), calculated crop transpiration by Penman-Monteith model, and simulated root water uptake by HYDRUS-1D on an hourly scale for different soil water status in winter wheat. In order to assess the effects of soil water potential on root water uptake and sap flow, an average soil water potential was calculated by weighting the soil water potential at a certain depth with the root length density. The temporal evolution of root length density was measured using horizontal rhizotubes that were installed at different depths.The results showed that root water uptake and sap flow matched well with the computed transpiration by Penman-Monteith model in winter wheat when the soil water potential was not limiting root water uptake. However, low soil water content restrained root water uptake, especially when soil water potential was lower than -90 kPa in the top soil. Sap flow in wheat was not affected by the observed soil water conditions, suggesting that stomatal conductance was not sensitive to soil water potentials. The effect of drought stress on root water uptake and sap flow in winter wheat was only investigated in a short time (after anthesis). Further research

  18. Estimating Recharge From Soil Water Tension Data

    NASA Astrophysics Data System (ADS)

    Sisson, J. B.; Gee, G. W.

    2001-12-01

    Effectively managing an aquifer requires accurate estimates of the ambient flux as well as the travel time of annual pulses to pass through the vadose zone. When soil water potential and/or water content data are available together with unsaturated hydraulic properties the ambient flux can be estimated using Darcy's Law. A field site, the Buried Waste Test Facility, located at Hanford WA was instrumented with advanced tensiometers to a depth of 20 ft bls and data obtained over a 2 year period. The unsaturated hydraulic properties were available at the closed bottom lysimeter from previous studies. The ambient flux was estimated from the rate of pumpage from the lysimeter to be 55 mm/y. Data from the tensiometers indicated a unit gradient in total water potential at depths greater than 4 m. Thus, the ambient flux was numerically equal to the unsaturated hydraulic conductivity. The data also clearly show the passage of wetting fronts beyond 2.3 m and with some imagination to depths beyond 4.3 m. Using the tensiometer data together with previously estimated hydraulic properties resulted in estimates of ambient flux that ranged from about 10 to 120 mm/y. These estimates were found to depend on the length of the period, for which soil water potentials were averaged, and on how the hydraulic conductivity was averaged.

  19. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition

    USGS Publications Warehouse

    Belnap, Jayne; Wilcox, Bradford P.; Van Scoyoc, Matthew V.; Phillips, Susan L.

    2013-01-01

    Biological soil crusts are a key component of many dryland ecosystems. Following disturbance, biological soil crusts will recover in stages. Recently, a simple classification of these stages has been developed, largely on the basis of external features of the crusts, which reflects their level of development (LOD). The classification system has six LOD classes, from low (1) to high (6). To determine whether the LOD of a crust is related to its ecohydrological function, we used rainfall simulation to evaluate differences in infiltration, runoff, and erosion among crusts in the various LODs, across a range of soil depths and with different wetting pre-treatments. We found large differences between the lowest and highest LODs, with runoff and erosion being greatest from the lowest LOD. Under dry antecedent conditions, about 50% of the water applied ran off the lowest LOD plots, whereas less than 10% ran off the plots of the two highest LODs. Similarly, sediment loss was 400 g m-2 from the lowest LOD and almost zero from the higher LODs. We scaled up the results from these simulations using the Rangeland Hydrology and Erosion Model. Modelling results indicate that erosion increases dramatically as slope length and gradient increase, especially beyond the threshold values of 10 m for slope length and 10% for slope gradient. Our findings confirm that the LOD classification is a quick, easy, nondestructive, and accurate index of hydrological condition and should be incorporated in field and modelling assessments of ecosystem health.

  20. Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Mapfumo, Emmanuel; Chanasyk, David S.; Willms, Walter D.

    2004-10-01

    Grazing is common in the foothills fescue grasslands and may influence the seasonal soil-water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil-water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub-station in the foothills of south-western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996-97. The watersheds were subjected to no grazing (control), heavy grazing (2.4 animal unit months (AUM) per hectare) or very heavy grazing (4.8 AUM ha-1). Soil-water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil-water data and resulted in Nash-Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0.77 and 0.85, respectively. Model graphical and statistical evaluation was conducted using the soil-water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0.70, r2 of 0.72 and a root mean square error (RMSE) of 18.01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil-water simulation were in the following order; available water capacity > bulk density > runoff curve

  1. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  2. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  3. Quasi 3D modelling of water flow in the sandy soil

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks in a two-layered soil. Results demonstrated the large spatial variability of Ks (CV = 86.21%). A significant negative correlation was found between ln Ks and ECa (r = 0.83; P≤0.01). This site-specific relation between ln Ks and ECa was used to predict Ks for the whole field after validation using an independent dataset of measured Ks. Result showed that this approach can accurately determine the field scale irrigation requirements, taking into account variations in boundary conditions and spatial variations of model parameters across the field. We found that uniform distribution of water using standard gun sprinkler irrigation is not an efficient approach since at locations with shallow groundwater, the amount of water applied will be excessive as compared to the crop requirements, while in locations with a deeper groundwater table, the crop irrigation requirements will not be met during crop water stress. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to ~25% irrigation water as compared to the current irrigation regime. This resulted in a yield increase of ~7%, simulated by the crop growth model.

  4. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  5. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    PubMed

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Improvement in estimation of soil water deficit by integrating airborne imagery data into a soil water balance modelents into a soil water

    USDA-ARS?s Scientific Manuscript database

    In this paper, an approach that integrates airborne imagery data as inputs was used to improve the estimation of soil water deficit (SWD) for maize and sunflower grown under full and deficit irrigation treatments. The proposed model was applied to optimize the maximum total available soil water (TAW...

  7. Hysteresis and uncertainty in soil water-retention curve parameters

    USGS Publications Warehouse

    Likos, William J.; Lu, Ning; Godt, Jonathan W.

    2014-01-01

    Accurate estimates of soil hydraulic parameters representing wetting and drying paths are required for predicting hydraulic and mechanical responses in a large number of applications. A comprehensive suite of laboratory experiments was conducted to measure hysteretic soil-water characteristic curves (SWCCs) representing a wide range of soil types. Results were used to quantitatively assess differences and uncertainty in three simplifications frequently adopted to estimate wetting-path SWCC parameters from more easily measured drying curves. They are the following: (1) αw=2αd, (2) nw=nd, and (3) θws=θds, where α, n, and θs are fitting parameters entering van Genuchten’s commonly adopted SWCC model, and the superscripts w and d indicate wetting and drying paths, respectively. The average ratio αw/αd for the data set was 2.24±1.25. Nominally cohesive soils had a lower αw/αd ratio (1.73±0.94) than nominally cohesionless soils (3.14±1.27). The average nw/nd ratio was 1.01±0.11 with no significant dependency on soil type, thus confirming the nw=nd simplification for a wider range of soil types than previously available. Water content at zero suction during wetting (θws) was consistently less than during drying (θds) owing to air entrapment. The θws/θds ratio averaged 0.85±0.10 and was comparable for nominally cohesive (0.87±0.11) and cohesionless (0.81±0.08) soils. Regression statistics are provided to quantitatively account for uncertainty in estimating hysteretic retention curves. Practical consequences are demonstrated for two case studies.

  8. Modeling the Soil Water and Energy Balance of a Mixed Grass Rangeland and Evaluating a Soil Water Based Drought Index in Wyoming

    NASA Astrophysics Data System (ADS)

    Engda, T. A.; Kelleners, T. J.; Paige, G. B.

    2013-12-01

    Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.

  9. The impact of water vapor diodes on soil water redistribution

    NASA Astrophysics Data System (ADS)

    Wang, Zhuangji; Ankeny, Mark; Horton, Robert

    2017-09-01

    Diurnal soil temperature fluctuations are the prime cause for subsurface water vapor fluxes. In arid and semi-arid areas, water vapor flux is the dominant means of soil water redistribution. The directions of water vapor flux shift from upward to downward diurnally following the variations of the soil thermal gradient. A water vapor diode (WVD), acting as a check valve, allows water vapor flux in one direction but heat flux in both directions. By installing a subsurface WVD, it is possible to impose direction-controlled vapor fluxes, and WVDs can be used to accumulate or remove water in particular soil layers. The egg carton shape, with pores situated at selected peaks and valleys, is a possible design for WVDs. In this study, we provide the concept and the properties of the ideal WVDs, and we discuss four WVD configurations to control soil water redistribution. Numerical simulation is used to evaluate the impacts of the ideal WVDs. The results indicate that WVDs can increase local water contents by at least 0.1 m3m-3 in a silt loam. For a fixed initial water and thermal condition, the effect of WVDs is related to the deployment depth and distance between two consecutive WVDs. WVDs can be used to manipulate soil water redistribution and accumulate water at specific depths to support plant growth. The numerical simulation results indicate the potential effectiveness of the ideal WVDs, and field tests should be performed to determine their function under specific soil conditions.

  10. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    NASA Astrophysics Data System (ADS)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the

  11. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  12. Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  13. Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor

    PubMed Central

    He, Yong; Nie, Pengcheng; Dong, Tao; Qu, Fangfang; Lin, Lei

    2017-01-01

    Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen detection by near infrared sensor, the soil samples were dealt with different drying times and the corresponding water content was measured. The drying time was set from 1 h to 8 h, and every 1 h 90 samples (each nitrogen concentration of 10 samples) were detected. The spectral information of samples was obtained by near infrared sensor, meanwhile, the soil water content was calculated every 1 h. The prediction model of soil nitrogen content was established by two linear modeling methods, including partial least squares (PLS) and uninformative variable elimination (UVE). The experiment shows that the soil has the highest detection accuracy when the drying time is 3 h and the corresponding soil water content is 1.03%. The correlation coefficients of the calibration set are 0.9721 and 0.9656, and the correlation coefficients of the prediction set are 0.9712 and 0.9682, respectively. The prediction accuracy of both models is high, while the prediction effect of PLS model is better and more stable. The results indicate that the soil water content at 1.03% has the minimum influence on the detection of soil nitrogen content using a near infrared sensor while the detection accuracy is the highest and the time cost is the lowest, which is of great significance to develop a portable apparatus detecting nitrogen in the field accurately and rapidly. PMID:28880202

  14. Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor.

    PubMed

    He, Yong; Xiao, Shupei; Nie, Pengcheng; Dong, Tao; Qu, Fangfang; Lin, Lei

    2017-09-07

    Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen detection by near infrared sensor, the soil samples were dealt with different drying times and the corresponding water content was measured. The drying time was set from 1 h to 8 h, and every 1 h 90 samples (each nitrogen concentration of 10 samples) were detected. The spectral information of samples was obtained by near infrared sensor, meanwhile, the soil water content was calculated every 1 h. The prediction model of soil nitrogen content was established by two linear modeling methods, including partial least squares (PLS) and uninformative variable elimination (UVE). The experiment shows that the soil has the highest detection accuracy when the drying time is 3 h and the corresponding soil water content is 1.03%. The correlation coefficients of the calibration set are 0.9721 and 0.9656, and the correlation coefficients of the prediction set are 0.9712 and 0.9682, respectively. The prediction accuracy of both models is high, while the prediction effect of PLS model is better and more stable. The results indicate that the soil water content at 1.03% has the minimum influence on the detection of soil nitrogen content using a near infrared sensor while the detection accuracy is the highest and the time cost is the lowest, which is of great significance to develop a portable apparatus detecting nitrogen in the field accurately and rapidly.

  15. Soil water retention of a bare soil with changing bulk densities

    USDA-ARS?s Scientific Manuscript database

    Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...

  16. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  17. Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput

    DOE PAGES

    Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...

    2016-10-20

    Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.

  18. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  19. Three Principles of Water Flow in Soils

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, H.

    2016-12-01

    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  20. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses

  1. A complex permittivity model for field estimation of soil water contents using time domain reflectometry

    USDA-ARS?s Scientific Manuscript database

    Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...

  2. Stochastic estimation of plant-available soil water under fluctuating water table depths

    NASA Astrophysics Data System (ADS)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  3. The soil water regime of stony soils in a mountain catchment

    NASA Astrophysics Data System (ADS)

    Hlaváčiková, Hana; Danko, Michal; Holko, Ladislav; Hlavčo, Jozef; Novák, Viliam

    2016-04-01

    Investigation of processes related to runoff generation is an important topic in catchment hydrology. Observations are usually carried out in small catchments or on hillslopes. Many of such catchments are located in mountain or forested areas. From many studies it is evident that soil conditions and soil characteristics are one of the crucial factors in runoff generation. Mountainous or forest soils have usually high rock fragments content. Nevertheless, the influence of soil stoniness on water flow was not sufficiently studied up to now at catchment and hillslope scales due to flow formation complexity or problems with stony soil properties measurement (installing measuring devices, interpretation of measured data). Results of this work can be divided in two groups: (1) hydrophysical properties of stony soils measurements, and (2) water flow dynamic modelling in stony soils. Properties of stony soils were measured in the Jalovecky creek catchment, the Western Tatra Mts., Slovakia. Altitude of particular study sites varies from 780 to1500 m a.s.l. We measured and analyzed the stoniness of reference soil profiles, as well as retention properties of stony soils (fine soil fraction and rock fragments separately) and hydraulic conductivities of surface and subsurface soil layers. The methodology for determination of the effective hydrophysical properties of a stony soil (later used in modelling) was proposed using results from measurements, calculation, and numerical Darcy experiments. Modelling results show that the presence of rock fragments with low water retention in a stony soil with moderate or high stoniness can cause the soil water storage decrease by 16-31% in compared to the soil without rock fragments. In addition, decreased stony soil retention capacity resulted in faster outflow increase at the bottom of the soil profile during non-ponding infiltration. Furthermore, the presence of rock fragments can increase maximum outflow value. It is not possible to

  4. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  5. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China.

    PubMed

    Fu, Qiang; Hou, Renjie; Li, Tianxiao; Jiang, Ruiqi; Yan, Peiru; Ma, Ziao; Zhou, Zhaoqiang

    2018-01-22

    In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.

  6. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS

  7. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  8. Soils and water [Chapter 18

    Treesearch

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  9. Using soil water sensors to improve irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  10. An assessment of the BEST procedure to estimate the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Castellini, Mirko; Di Prima, Simone; Iovino, Massimo

    2017-04-01

    The Beerkan Estimation of Soil Transfer parameters (BEST) procedure represents a very attractive method to accurately and quickly obtain a complete hydraulic characterization of the soil (Lassabatère et al., 2006). However, further investigations are needed to check the prediction reliability of soil water retention curve (Castellini et al., 2016). Four soils with different physical properties (texture, bulk density, porosity and stoniness) were considered in this investigation. Sites of measurement were located at Palermo University (PAL site) and Villabate (VIL site) in Sicily, Arborea (ARB site) in Sardinia and in Foggia (FOG site), Apulia. For a given site, BEST procedure was applied and the water retention curve was estimated using the available BEST-algorithms (i.e., slope, intercept and steady), and the reference values of the infiltration constants (β=0.6 and γ=0.75) were considered. The water retention curves estimated by BEST were then compared with those obtained in laboratory by the evaporation method (Wind, 1968). About ten experiments were carried out with both methods. A sensitivity analysis of the constants β and γ within their feasible range of variability (0.1<β<1.9 and of 0.61<γ< 0.79) was also carried out for each soil in order to establish: i) the impact of infiltration constants in the three BEST-algorithms on saturated hydraulic conductivity, Ks, soil sorptivity, S and on the retention curve scale parameter, hg; ii) the effectiveness of the three BEST-algorithms in the estimate of the soil water retention curve. Main results of sensitivity analysis showed that S tended to increase for increasing β values and decreasing values of γ for all the BEST-algorithms and soils. On the other hand, Ks tended to decrease for increasing β and γ values. Our results also reveal that: i) BEST-intercept and BEST-steady algorithms yield lower S and higher Ks values than BEST-slope; ii) these algorithms yield also more variable values. For the latter

  11. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  12. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  13. Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey

    2017-04-01

    Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.

  14. Hyperspectral remote sensing of postfire soil properties

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  15. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  16. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  17. Soil water repellency: the knowledge base, advances and challenges

    NASA Astrophysics Data System (ADS)

    Doerr, S. H.

    2012-04-01

    The topic of soil water repellency (SWR or soil hydrophobicity) has moved from being perhaps a little known curiosity a few decades ago to a well established sub-discipline of soil physics and soil hydrology. In terms of the number of journal publications, SWR is comparable with other physical soil properties or processes such as crusting, aggregation or preferential flow. SWR refers to a condition when soil does not wet readily when in contact with water. This may be evident at the soil surface, when SWR leads to prolonged ponding on soils despite the presence of sufficient pore openings, or in the soil matrix, as manifest by enhanced uneven wetting and preferential flow that is not caused by structural in homogeneity. Amongst major milestones advancing the knowledge base of SWR have been the recognition that: (1) many, if not most, soils can exhibit SWR when the soil moisture content falls below a critical threshold, (2) it can be induced (and destroyed) during vegetation fires, but many soils exhibit SWR irrespective of burning, (3) it can be caused, in principle, by a large variety of naturally-abundant chemical compounds, (4) it is typically highly variable in space, time and its degree (severity and persistence), and (5) its impacts on, for example, soil hydrology, erosion and plant growth have the potential to be very substantial, but also that impacts are often minor for naturally vegetated and undisturbed soils. Amongst the key challenges that remain are: (a) predicting accurately the conditions when soils prone to SWR actually develop this property, (b) unravelling, for fire effected environments, to what degree any presence of absence of SWR is due to fire and post-fire recovery, (c) the exact nature and origin the material causing SWR at the molecular level in different environments, (d) understanding the implications of the spatial and temporal variability at different scales, (e) the capability to model and predict under which environmental conditions

  18. Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation

    NASA Astrophysics Data System (ADS)

    Ahn, Sujung; Im, Sangjun

    2010-05-01

    Fire-induced soil water repellency can vary with burning conditions, and may lead to significant changes in soil hydraulic properties. However, isolation of the effects of soil water repellency from other factors is difficult, particularly under field conditions. This study was conducted to (i) investigate the effects of burning using different plant leaf materials and (ii) of different burning conditions on the formation of soil water repellency, and (iii) isolate the effects of the resulting soil water repellency on soil evaporation from other factors. Burning treatments were performed on the surface of homogeneous fully wettable sand soil contained in a steel frame (60 x 60 cm; 40 cm depth). As controls a sample without a heat treatment, and a heated sample without fuel, were also used. Ignition and heat treatments were carried out with a gas torch. For comparing the effects of different burning conditions, fuel types included oven-dried pine needles (fresh needles of Pinus densiflora), pine needle litter (litter on a coniferous forest floor, P. densiflora + P. rigida), and broad-leaf litter (Quercus mongolica + Q. aliena + Prunus serrulata var. spontanea + other species); fuel loads were 200 g, 300 g, and 500 g; and heating duration was 40 s, 90 s and 180 s. The heating duration was adjusted to control the temperature, based on previous experiments. The temperature was measured continuously at 3-second intervals and logged with two thermometers. After burning, undisturbed soil columns were sampled for subsequent experiments. Water Drop Penetration Time (WDPT) test was performed at every 1 mm depth of the soil columns to measure the severity of soil water repellency and its vertical extent. Soil water repellency was detected following all treatments. As the duration of heating increased, the thickness of the water repellent layer increased, whilst the severity of soil water repellency decreased. As regards fuel amount, the most severe soil water repellency was

  19. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  20. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  2. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    PubMed

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  3. Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions

    NASA Astrophysics Data System (ADS)

    Nolz, R.; Kammerer, G.

    2017-06-01

    Monitoring water status near the soil surface is a prerequisite for studying hydrological processes at the soil-atmosphere boundary and an option for calibrating remotely sensed water content data, for instance. As the water status of the uppermost soil layer is highly variable in space and time, adequate sensors are required to enable accurate measurements. Therefore, a sensor setup was tested and evaluated in the laboratory and in the field for such a purpose. The arrangement included Hydra Probe and MPS-2 sensors to measure water content and matric potential, respectively. Performance of the MPS-2 was validated in the laboratory by comparing sensor readings with the water potential of a soil, drained to equilibrium for certain pressure steps inside a pressure plate apparatus. Afterwards, six Hydra Probes and twelve MPS-2 sensors were installed in bare soil at a small field plot of about 9 m2. The measurements represented soil water status to a depth of 6 cm from surface. Core samples were repeatedly excavated around the measurement spots. Their water content was determined and the samples were further utilized to analyze water retention characteristics. The tested setup properly reflected changes of near-surface soil water status due to rainfall and evaporation. However, some shortcomings weakened the potential of the chosen arrangement. Site-specific calibration of the Hydra Probes - implemented by relating sensor readings to the water content values of the core samples - confirmed the applicability of the recommended standard calibration parameters for the respective soil texture. The derived user calibration enabled a measurement accuracy of 0.02 cm3·cm-3. Further improvement was restrained by the spatial variability of soil moisture. In this context, spots that were permanently drier or wetter than the others were discovered by means of a temporal stability approach. Performance of MPS-2 sensors was more critical with respect to the objectives. Sensor

  4. Loss of propiconazole and its four stereoisomers from the water phase of two soil-water slurries as measured by capillary electrophoresis.

    PubMed

    Garrison, Arthur W; Avants, Jimmy K; Miller, Rebecca D

    2011-08-01

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t(1/2) was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC), the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  5. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    NASA Astrophysics Data System (ADS)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  6. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    NASA Astrophysics Data System (ADS)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    In the Netherlands, regional water authorities are responsible for management and maintenance of regional water bodies. Due to socio-economic developments (e.g. agricultural intensification and on-going urbanisation) and an increase in climate variability, the pressure on these water bodies is growing. Optimization of water availability by taking into account the needs of different users, both in wet and dry periods, is crucial for sustainable developments. To support timely and well-directed operational water management, accurate information on the current state of the system as well as reliable models to evaluate water management optimization measures are essential. Previous studies showed that the use of remote sensing data (for example soil moisture data) in water management offers many opportunities (e.g. Wanders et al. (2014)). However, these data are not yet used in operational applications at a large scale. The Sentinel-1 satellites programme offers high spatiotemporal resolution soil moisture data (1 image per 6 days with a spatial resolution of 10 by 10 m) that are freely available. In this study, these data will be used to improve the Netherlands Hydrological Instrument (NHI). The NHI consists of coupled models for the unsaturated zone (MetaSWAP), groundwater (iMODFLOW) and surface water (Mozart and DM). The NHI is used for scenario analyses and operational water management in the Netherlands (De Lange et al., 2014). Due to the lack of soil moisture data, the unsaturated zone model is not yet thoroughly validated and its output is not used by regional water authorities for decision-making. Therefore, the newly acquired remotely sensed soil moisture data will be used to improve the skill of the MetaSWAP-model and the NHI as whole. The research will focus among other things on the calibration of soil parameters by comparing model output (MetaSWAP) with the remotely sensed soil moisture data. Eventually, we want to apply data-assimilation to improve

  7. Water distribution at the root-soil interface: is there more water next to roots?

    NASA Astrophysics Data System (ADS)

    Carminati, A.; Moradi, A.; Oswald, S.; Vetterlein, D.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Plants are big water movers and have a significant impact on soil water dynamics as well as on the global water cycle. Despite the relevance of root water uptake in terrestrial ecology, the movement of water from soil to roots still presents important open questions, e.g the following two. Which are the properties of the soil near the roots? And what effect do these properties have on soil plant water relations? Most models are based on brute-force spatial averaging of soil properties and assume that the bulk soil has the same properties as the rhizosphere. However, there is evidence in the literature that the rhizosphere has specific properties that may affect water and nutrient uptake (Young 1995, Gregory 2007). In order to investigate the rhizosphere hydraulic properties and their effect on soil plant water relations, we used neutron radiography and neutron tomography to image the water content distribution in soils during plant transpiration. Rectangular (quasi-2D) and cylindrical containers were filled with sandy soil and planted with lupins (Lupinus albus). Three weeks after planting, the samples were equilibrated at water potentials of -10 and 30 hPa and have been imaged for 5 days at intervals of 6 hours. At day 5 the samples were irrigated again via capillary rise and the water distribution was monitored for 4 more days. During the first day of the drying period, regions of water depletion formed around the central part of the tap root where first order laterals were present. As the soil dried up, the picture changed: instead of less water around the roots, as commonly supposed by models, we observed that more water was present around the lateral roots. Interestingly, these regions during drying were retaining high water content, but after irrigation remained markedly drier than the bulk soil. Our hypothesis is that high water content near roots during drying and lower water content during rewetting are explained by the presence of bio-polymers exuded by

  8. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  9. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  10. [Model simulation of the transportation, transformation and accumulation of synthetic musks in soils input through recycle water irrigation].

    PubMed

    Wang, Mei-E; Chen, Wei-Ping; Jiao, Wen-Tao

    2012-12-01

    Environmental pollution of synthetic musks HHCB and AHTN, one type of PPCPs, have been attracted great attentions in latest years. One of the main input pathways of HHCB/AHTN to soils is reclaimed water irrigation. In this study, we monitored HHCB and AHTN in soils irrigated by reclaimed water and irrigation water and modeled the transportation and accumulation of HHCB and AHTN in soils using HYDRUS-1D. Results showed that concentrations of HHCB and AHTN in soils irrigated by recycling water were 5 times higher than tape water irrigation soils although both of the concentrations are trace. The temporal increase of accumulation was exponential when lgK(oc) value was 3.44, while linear when lgK(oc) were 4.12 and 4.86. Changes of half life of HHCB/AHTN did not affect their accumulation in surface soils. The downward transportation of HHCB and AHTN under recycling water irrigation was very slow. After 40 years of irrigation, it could only 53 cm at most favored conditionals. The downward movement was greatly impacted by the lgK(oc) values. The dissipation of those two synthetic musks through biological degradation and plant uptake were tiny. The highest dissipation rate through biological degradation and plant uptake was only 7.69% of the total input by reclaimed water irrigation after 40 years. The dissipation rate was increased with the decrease of lgK(oc) values and irrigation time. Results of this work may offer base for accurate assessing the ecological risks of HHCB and AHTN in soils caused by reclaimed water irrigation.

  11. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  12. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  13. Characteristics of water infiltration in layered water repellent soils

    USDA-ARS?s Scientific Manuscript database

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  14. Temperature dependence of soil water potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.M.O.; Yong, R.N.; Cheung, S.C.H.

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed withinmore » the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.« less

  15. Extrapolative capability of two models that estimating soil water retention curve between saturation and oven dryness.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Sun, Shiyou

    2014-01-01

    Accurate estimation of soil water retention curve (SWRC) at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994) estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004) produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006) model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range.

  16. Predicting and mapping soil available water capacity in Korea.

    PubMed

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  17. Response of three soil water sensors to variable solution electrical conductivity in different soils

    USDA-ARS?s Scientific Manuscript database

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  18. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might

  19. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  20. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not

  1. Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content

    NASA Astrophysics Data System (ADS)

    Avery, William Alexander; Finkenbiner, Catherine; Franz, Trenton E.; Wang, Tiejun; Nguy-Robertson, Anthony L.; Suyker, Andrew; Arkebauer, Timothy; Muñoz-Arriola, Francisco

    2016-09-01

    The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and predict the Earth's terrestrial energy, water, and nutrient cycles. One promising technique to help meet this demand is fixed and roving cosmic-ray neutron probes (CRNPs). However, the relationship between observed low-energy neutrons and SWC is affected by local soil and vegetation calibration parameters. This effect may be accounted for by a calibration equation based on local soil type and the amount of vegetation. However, determining the calibration parameters for this equation is labor- and time-intensive, thus limiting the full potential of the roving CRNP in large surveys and long transects, or its use in novel environments. In this work, our objective is to develop and test the accuracy of globally available datasets (clay weight percent, soil bulk density, and soil organic carbon) to support the operability of the roving CRNP. Here, we develop a 1 km product of soil lattice water over the continental United States (CONUS) using a database of in situ calibration samples and globally available soil taxonomy and soil texture data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in situ samples of clay percent (RMSE = 5.45 wt %, R2 = 0.68), soil bulk density (RMSE = 0.173 g cm-3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt %, R2 = 0.175). Next, we conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error propagation analysis (maximum RMSE ˜ 0.035 cm3 cm-3 at a SWC = 0.40 cm3 cm-3). In terms of vegetation, fast-growing crops (i.e., maize and soybeans), grasslands, and forests contribute to the CRNP signal primarily through the water within their biomass and this signal must be accounted for accurate estimation of SWC. We estimated the biomass water signal by using a vegetation index derived from

  2. Soil Water Sensing-Focus on Variable Rate Irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  3. Soil Water and Temperature System (SWATS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less

  4. In-situ field capacity and soil water retention measurements in two contrasting soil textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  5. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  6. Conservation and maintenance of soil and water resources

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Titus S. Seilheimer; Dale D. Gormanson; Charles H. (Hobie) Perry; Peter V. Caldwell; Ge. Sun

    2016-01-01

    Forest ecosystem productivity and functioning depend on soil and water resources. But the reverse is also true—forest and land-use management activities can significantly alter forest soils, water quality, and associated aquatic habitats (Ice and Stednick 2004, Reid 1993, Wigmosta and Burges 2001). Soil and water resources are protected through the allocation of land...

  7. Mitigation of water repellency in burned soils applying hydrophillic polymers

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial

  8. Monitoring of soil moisture using operational microwave satellites

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely knowledge of the water availability in the soil column is essential for water recourse management and agricultural decision making. Soil water information is a crucial model input as well as it is an important source of information for the proper understanding and interpretation ...

  9. A minimalist probabilistic description of root zone soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    2001-01-01

    The probabilistic response of depth‐integrated soil water to given climatic forcing can be described readily using an existing supply‐demand‐storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.

  10. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  11. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  12. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Zhaosheng; Harden, Jennifer W.; Winston, G.C.; O'Donnell, Jonathan A.; Neff, Jason C.; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, C.I.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2–4 °C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.

  13. Soil water repellency under stones, forest residue mulch and bare soil following wildfire.

    NASA Astrophysics Data System (ADS)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.

    2017-04-01

    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  14. Stable Isotope Analysis of Water Indicates that Mixing Occurs between Mobile and Tightly-Bound Soil Water

    NASA Astrophysics Data System (ADS)

    Vargas, A. I.; Schaffer, B.; Yuhong, L.; Sternberg, L. O.

    2016-12-01

    Stable oxygen (δ18O) and hydrogen (δ2H) isotope composition of precipitation, soil and plants have been studied over the years to understand the mechanism of soil water movement and the depth of plant water uptake in the soil water profile. Recent studies have suggested that in soil during the wet season, tightly bound water does not mix with mobile water but is retained in the soil until the dry season when it is taken up by plants via the force of transpiration. To test this, we sampled δ18O and δ2H in plant stems as a proxy for wet season mobile water and dry season bound water in two types of soils to determine if mixing occurs between mobile and tightly bound soil water. Plastic pots were filled with clay or very gravelly loam soil and a Persea americana tree was planted in each pot. Soil in each pot was first saturated with tap water to fully label the bound water with the isotopic identity of tap water and then fully saturated with either tap water (T) or isotopically-enriched pool water (P) and covered with white polyethylene to prevent evaporation. After saturating the soil, δ18O and δ2H of water draining from each pot were similar to those of water added to each pot for both the T and P treatments. For each treatment, δ18O and δ2H in plant stems were sampled 2-3 days after soil was initially saturated (simulated wet season; soil tension < 0.10 kPa) representing the mobile water and again 7-9 days after soil was saturated representing the bound water (simulated dry season; soil tension > 80.0 kPa). During the "dry season", there was a significant difference between T and P treatments for δ18O and δ2H in plant stems, indicating that bound water accessed by plants in the P treatment did not retain the tap water label and mixing occurred between mobile and bound water in the soil. Comparing P-T in the wet season with P-T in the dry season indicated that as much as 95% of water freely exchanged between the mobile and bound components of the soil

  15. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Lateral groundwater flow can cause a large rise in water table at toeslope and depressional landscape positions. As plants transpire, water can move up into the root zone from the water table and wet soil below the root zone. Roots can utilize water in the capillary fringe. The purpose of this study was to interface automated measurements of soil water content and water table depth for determining the importance of drainage and upward movement. In 2006 soil water and water table depth were monitored at three positions: shoulder, backslope, and toeslope. Neutron access tubes were manually monitored to 2.3 m depth, and automated soil moisture was measured using CS616 probes installed at 0.3, 0.5, 0.7, and 0.9 m depth. Water table depths were monitored manually and automated, but the automated measurements failed during the season at two sites. In 2007, similar measurements were made at one toeslope position, but the CS616 probes were installed at nine depths and better quality automated well depth equipment was used. The 2006 data revealed little landscape position effect on daytime soil water loss on a wetter date; however, on a dry day just before a rain, daytime water loss was greatest for the toeslope positon and least for the shoulder position. After a period of intense rain, a rapid and significant water table rise occurred at the toeslope position but little water table rise occurred at the other landscape positions. The rapid toeslope water table rise was likely caused by lateral groundwater flow whereas minor water table rise at the other positions was likely due to preferential flow since the soil had not wet up below 0.6 m. Use of automated equipment has improved

  16. Isolation of Acinetobacter from Soil and Water

    PubMed Central

    Baumann, Paul

    1968-01-01

    An enrichment culture procedure for isolating members of the genus Acinetobacter from soil and water is described. It involves the use of vigorously aerated mineral media at relative low pH, supplemented with acetate or other suitable carbon source and nitrate as nitrogen source. With this method, virtually all samples of soil and water yielded representatives of this genus. Semiquantitative comparisons of the numbers of Acinetobacter and of all bacteria capable of aerobic growth in a complex medium revealed that Acinetobacter constituted no less than 0.001% of the total heterotrophic aerobic population in soil and water and was one of the predominant organisms in some water samples. PMID:4874313

  17. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of

  18. Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest

    NASA Astrophysics Data System (ADS)

    Belk, Elizabeth L.; Markewitz, Daniel; Rasmussen, Todd C.; Carvalho, Eduardo J. Maklouf; Nepstad, Daniel C.; Davidson, Eric A.

    2007-08-01

    Access to water reserves in deep soil during drought periods determines whether or not the tropical moist forests of Amazonia will be buffered from the deleterious effects of water deficits. Changing climatic conditions are predicted to increase periods of drought in Amazonian forests and may lead to increased tree mortality, changes in forest composition, or greater susceptibility to fire. A throughfall reduction experiment has been established in the Tapajós National Forest of east-central Amazonia (Brazil) to test the potential effects of severe water stress during prolonged droughts. Using time domain reflectometry observations of water contents from this experiment, we have developed a dynamic, one-dimensional, vertical flow model to enhance our understanding of hydrologic processes within these tall-stature forests on well-drained, upland, deep Oxisols and to simulate changes in the distribution of soil water. Simulations using 960 days of data accurately captured mild soil water depletion near the surface after the first treatment year and decreasing soil moisture at depth during the second treatment year. The model is sensitive to the water retention and unsaturated flow equation parameters, specifically the van Genuchten parameters θs, θr, and n, but less sensitive to Ks and α. The low root-mean-square error between observed and predicted volumetric soil water content suggests that this vertical flow model captures the most important hydrologic processes in the upper landscape position of this study site. The model indicates that present rates of evapotranspiration within the exclusion plot have been sustained at the expense of soil water storage.

  19. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    PubMed

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Retention equations of nonionic organic chemicals in soil column chromatography with methanol-water eluents.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng

    2002-01-01

    Research efforts dealing with chemical transportation in soils are needed to prevent damage to ground water. Methanol-containing solvents can increase the translocation of nonionic organic chemicals (NOCs). In this study, a general log-linear retention equation, log k' = log k'w - Sphi (Eq. [1]), was developed to describe the mobilities of NOCs in soil column chromatography (SCC). The term phi denotes the volume fraction of methanol in eluent, k' is the capacity factor of a solute at a certain phi value, and log k'w and -S are the intercept and slope of the log k' vs. phi plot. Two reference soils (GSE 17204 and GSE 17205) were used as packing materials, and were eluted by isocratic methanol-water mixtures. A model of linear solvation energy relationships (LSER) was applied to analyze the k' from molecular interactions. The most important factor determining the transportation was found to be the solute hydrophobic partition in soils, and the second-most important factor was the solute hydrogen-bond basicity (hydrogen-bond accepting ability), while the less important factor was the solute dipolarity-polarizability. The solute hydrogen-bond acidity (hydrogen-bond donating ability) was statistically unimportant and deletable. From the LSER model, one could also obtain Eq. [1]. The experimental k' data of 121 NOCs can be accurately explained by Eq. [1]. The equation is promising to estimate the solute mobility in pure water by extrapolating from lower-capacity factors obtained in methanol-water mixed eluents.

  1. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'?

    NASA Astrophysics Data System (ADS)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan

    2017-04-01

    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  2. Modifying soil water status and improving stand establishment in a water repellent soil using surfactant coated seed.

    NASA Astrophysics Data System (ADS)

    Kostka, Stanley; Lampe, Mark; van Mondfrans, Jan; Madsen, Matthew; McMillan, Mica

    2015-04-01

    Surfactant seed coating (SSC) is a technology being developed cooperatively by scientists at the USDA, Agricultural Research Service and Aquatrols to improve stand establishment in water repellent soils, particularly under arid conditions. Early SSC studies have demonstrated that surfactant coatings can dramatically increase soil water content, turfgrass density, cover, and biomass for Kentucky bluegrass, tall fescue and perennial ryegrass sown in water repellent soils under greenhouse conditions. However, in these studies, surfactant loads were excessive (≥ 40 wt% of seed mass). The objective of the current study was to ascertain if a lower surfactant treatment level (10 wt%) would improve emergence and stand establishment in a severely water repellent sandy soil under field conditions. Research was conducted on a golf course near Utrecht, NL. At the time of planting water drop penetration time (WDPT) of the soil was approximately 300 s, indicating severe water repellency. Chewings fescue (Festuca rubra subsp. commutata) seed was treated with ASET-4001 surfactant at a loading rate of 10 wt% using two different proprietary coating procedures (US Patent Application 20100267554). The two different ASET-4001 coatings were compared against untreated seed in a randomized complete block design with four replicates. In order to maximize abiotic stresses, the only applied water came from rainfall. Assessments of stand establishment were made every 7-14 days for three months using a subjective visual assessment of percent grass cover and sward quality based on a 1-10 scale (where 10 is best). At six months post-sowing, 20 mm x 300 mm soil cores were randomly removed from each plot and soil wetting front depth measured. Improved emergence of the surfactant coated seeds over the untreated seeds began to appear 7 days after sowing. However, there were no differences between the two SSC treatments. Establishment was influenced by weather conditions. From mid-June to early

  3. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  4. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    NASA Astrophysics Data System (ADS)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in

  5. Soil water sensor response to bulk electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  6. Influence of soil-water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil.

    PubMed

    Venkata Mohan, S; Ramakrishna, M; Shailaja, S; Sarma, P N

    2007-09-01

    The influence of soil-water ratio was studied on the performance of the slurry phase bioreactor operated in sequencing batch mode (anoxic-aerobic-anoxic microenvironments) during the bioremediation of soil contaminated with pendimethalin. The performance of the reactors was evaluated at different soil-water ratios (1:5-1:25; at soil loading rate (60 kg of soil/cum-day to 12 kg of soil/cum-day)) keeping the loading rate of pendimethalin constant (133.2 g/kg of soil-day) in six reactors and variable (66.6 g/kg of soil-day to 166.6 g/kg of soil-day) in other four reactors. At 1:20 soil-water ratio, the slurry phase system showed enhanced degradation of substrate (629 microg pendimethalin/g soil). The removal efficiency of pendimethalin in the reactors was dependent on the mass-transfer rates of the substrate from the soil to the aqueous phase. Soil-water ratio and substrate loading rates showed significant influence on the substrate portioning, substrate degradation efficiency and substrate desorption rate.

  7. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  8. Understanding Dynamic Soil Water Repellency and its Hydrological Implications

    NASA Astrophysics Data System (ADS)

    Beatty, S. M.; Smith, J. E.

    2009-05-01

    The adverse effects of water repellent soils on vadose zone hydrology are being increasingly identified worldwide in both rural and urban landscapes. Among the affected landscapes are agricultural fields, forests, effluent application sites, golf greens, wetlands, and wildfire sites. In spite of cross-discipline research efforts put forth in recent years, understanding of fundamental parameters controlling soil water behaviour in these systems is lacking. This is due, in part, to inherent complexities of water repellent soil systems and logistical shortcomings of methods commonly used by researchers in-situ and in the lab. As a result, modeling flow in these systems has further proven to be a difficult task. The objectives of our study were 1) to systematically measure and quantify water infiltration and distribution in dynamic water repellent systems and 2) to identify fundamental hydraulic behaviours that lead to the expression of changes in soil water repellency. To achieve this, we combined techniques to elucidate soil- water interactions at a post-wildfire site. Field tests and subsequent lab work reveal essential hydrological information on fire-affected water repellent soils at variable scales and under different burn conditions. Through the use of traditional and newer techniques, our work shows unique and previously unreported behaviour of soil water in these systems. We also address limitations of current field methods used to study repellency and associated infiltration behaviours.

  9. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Soil-water dynamics and unsaturated storage during snowmelt following wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Hinckley, E.S.; Martin, Deborah

    2012-01-01

    Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.

  11. Soil management and green water in sloping rainfed vineyards

    NASA Astrophysics Data System (ADS)

    José Marqués Pérez, María; Ruíz-Colmenero, Marta; García-Díaz, Andrés; Bienes Allas, Ramón

    2017-04-01

    Improved crop production in areas with restricted water availability is of particular interest. Farmers need to maximize the water use efficiency when the possibilities of further extension of irrigation are limited and water is becoming scarce and expensive. Water in rainfed crops depends on rainfall depth and soil characteristics such as texture and structure, water holding capacity, previous moisture, infiltration, soil surface conditions, steepness and slope length. Land management practices can be used to maximise water availability. In previous studies the unwillingness of farmers to change their practices towards more sustainable use was mainly due to the worry about water competition. This work is aimed at understanding the influence of management practices in the water partitioning of this land use. This study was conducted in a sloping vineyard in the centre of Spain. A rain gauge recorded rainfall depth and intensity in the area. Three different soil management practices were considered: 1) traditional tillage, 2) permanent cover and 3) mowed cover of cereals, both sown in the strips between vines. Two moisture sensors were buried at 10 and 35 cm depths. Three replicates per management practice were performed. It is expected that the lack of tillage increase the potential for litter to protect the soil surface against raindrop impact and to contribute to increasing soil organic carbon, and the corresponding increase in infiltration and water holding capacity. The analysis of two years of daily records of rainfall, runoff and soil moisture are intended to establish any influence of management practices on the partitioning of water. Particularly, the so-called "green water" was estimated, i.e. the fraction of rainfall that infiltrates into the soil and will be further available to plants. Soil characteristics such as texture, structure, moisture, infiltration were established. In addition simulated rainfalls carried out in summer and winter over bounded

  12. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes.

    PubMed

    Steinberg, S L; Henninger, D L

    1997-12-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  13. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  14. COSMOS soil water sensing affected by crop biomass and water status

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...

  15. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    PubMed

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  16. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  17. Soil water sensors:Problems, advances and potential for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  18. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau

    PubMed Central

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-01-01

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem. PMID:28401921

  19. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-04-01

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem.

  20. Event- and site-specific soil wetting and seasonal change in amount of soil water

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have examined ways to characterize the central tendency of soil water within a field or watershed. Extreme changes in water content reveal more about water movement within the area. The purpose of this study was to determine if extreme soil water changes varied among sites, and to s...

  1. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  2. A device for measuring soil frost

    Treesearch

    James H. Patric; Burley D. Fridley

    1969-01-01

    A water-filled plastic tube buried vertically in the soil in a copper casing permitted repeated observation of frost depth without damaging the sampling site. The device is simple and inexpensive and provides data on soil freezing at least as accurate as direct observation by digging through frozen soil.

  3. Soil and Water Indicators of the Sustainable Rangelands Roundtable

    Treesearch

    M.G. Sherm Karl; D.A. Pyke; P.T. Tueller; G.E. Schuman; R.W. Shafer; S.J. Borchard; D.T. Booth; W.G. Ypsilantis; R.H. Jr. Barrett

    2006-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion, a category of conditions or processes that can be assessed nationally to determine if the current level of rangeland management will ensure sustainability. Within the soil/water criterion, 10 indicators, 5 soil-based and 5 water-...

  4. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    PubMed

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  5. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    NASA Astrophysics Data System (ADS)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  6. Profiling soil water content sensor

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  7. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  8. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  9. Photosynthesis and Transpiration of Monterey Pine Seedlings as a Function of Soil Water Suction and Soil Temperature

    PubMed Central

    Babalola, O.; Boersma, L.; Youngberg, C. T.

    1968-01-01

    Rates of photosynthesis, respiration, and transpiration of Monterey pine (Pinus radiata D. Don) were measured under controlled conditions of soil water suction and soil temperature. Air temperature, relative humidity, light intensity, and air movement were maintained constant. Rates of net photosynthesis, respiration, and transpiration decreased with increasing soil water suction. The decrease in the rates of net photosynthesis and transpiration as a function of the soil temperature at low soil water suctions may be attributed to changes in the viscosity of water. At soil water suctions larger than 0.70 bars rates of transpiration and net photosynthesis may be affected in the same proportion by changes in stomatal apertures. Images PMID:16656800

  10. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Effects of land use changes on soil water conservation in Hainan Island, China].

    PubMed

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  12. A new electromagnetic induction sensor using Vector Network Analyzer technology for accurate characterisation of soil electrical properties

    NASA Astrophysics Data System (ADS)

    André, F.; Lambot, S.; Moghadas, D.; Vereecken, H.

    2009-04-01

    Electromagnetic induction (EMI) has been widely used since the 70s to retrieve soil physico-chemical properties through the measurement of soil electrical conductivity. Soil electrical conductivity integrates several factors, mainly soil water content, salinity, clay content and temperature, and to a lesser extent, mineralogy, porosity, structure, cation exchange capacity, organic matter and bulk density. EMI has been shown to be useful for a wide range of environmental applications. EMI is non invasive and individual measurements are almost instantaneous, which permits to characterise large areas with fine spatial and/or temporal resolutions. Nevertheless, current EMI systems present some limitations. First, EMI usually operates at a single or at a limited number of fixed frequencies, which limits the information that can be retrieved from the subsurface. In addition, the calibration of existing commercial sensors is generally rather empirical and not accurate, which reduces the reliability of the data. Finally, the data processing techniques that are used to retrieve the soil electrical properties from EMI data often rely on strong simplifying assumptions with respect to wave propagation through the antenna-air-soil system. Performing EMI measurements with Vector Network Analyzer (VNA) technology would overcome a part of these limitations, allowing to work simultaneously at a wide range of frequencies and to readily perform robust calibrations, which are defined as an international standard. On that basis, we have developed a new algorithm for off-ground, zero-offset, frequency domain EMI based on full-waveform inverse modelling. The EMI forward model is based on a linear system of complex transfer functions for describing the loop antenna and its interactions with soil and an exact solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The approach has been validated in laboratory conditions for measurements at different

  13. Isolation of Chromobacterium spp. from foods, soil, and water.

    PubMed Central

    Koburger, J A; May, S O

    1982-01-01

    Chromobacterium violaceum, a soil and water inhabitant, has been implicated in human disease with a high mortality rate, particularly in the southeastern United States. The psychrotrophic Chromobacterium lividum has been isolated from foods, water, and soil, but is not considered pathogenic. To determine the distribution of Chromobacterium spp. in soil, water, and foods in the Gainesville area, we evaluated Bennett, Ryalls and Moss, and Aeromonas membrane agars for their ability to recover these organisms from various samples when incubated at 25 or 35 degrees C. Bennett agar was best for the isolation of both species when incubated at 25 degrees C; however, at 35 degrees C, Aeromonas membrane agar gave the highest recoveries of C. violaceum. C. violaceum was recovered only from soil and water, whereas C. lividum was frequently recovered from foods as well as soil and water. PMID:7159087

  14. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    PubMed

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  15. Soil water retention and maximum capillary drive from saturation to oven dryness

    USGS Publications Warehouse

    Morel-Seytoux, Hubert J.; Nimmo, John R.

    1999-01-01

    This paper provides an alternative method to describe the water retention curve over a range of water contents from saturation to oven dryness. It makes two modifications to the standard Brooks and Corey [1964] (B-C) description, one at each end of the suction range. One expression proposed by Rossi and Nimmo [1994] is used in the high-suction range to a zero residual water content. (This Rossi-Nimmo modification to the Brooks-Corey model provides a more realistic description of the retention curve at low water contents.) Near zero suction the second modification eliminates the region where there is a change in suction with no change in water content. Tests on seven soil data sets, using three distinct analytical expressions for the high-, medium-, and low-suction ranges, show that the experimental water retention curves are well fitted by this composite procedure. The high-suction range of saturation contributes little to the maximum capillary drive, defined with a good approximation for a soil water and air system as HcM = ∫0∞ Krwdhc , where krw is relative permeability (or conductivity) to water and hc is capillary suction, a positive quantity in unsaturated soils. As a result, the modification suggested to describe the high-suction range does not significantly affect the equivalence between Brooks-Corey (B-C) and van Genuchten [1980] parameters presented earlier. However, the shape of the retention curve near “natural saturation” has a significant impact on the value of the capillary drive. The estimate using the Brooks-Corey power law, extended to zero suction, will exceed that obtained with the new procedure by 25 to 30%. It is not possible to tell which procedure is appropriate. Tests on another data set, for which relative conductivity data are available, support the view of the authors that measurements of a retention curve coupled with a speculative curve of relative permeability as from a capillary model are not sufficient to

  16. Percolation behavior of tritiated water into a soil packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T.; Katayama, K.; Uehara, K.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particlemore » densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)« less

  17. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  18. Relationship between root water uptake and soil respiration: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  19. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    PubMed

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (P<0.01) while it only had a significant effect on S W and S E for the artificial soil (P<0.01). (3) The artificial soil had a greater WRI and β than the natural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. WATER TRANSFER FROM SOIL TO THE ATMOSPHERE AS RELATED TO SOIL PROPERTIES, PLANT CHARACTERISTICS AND WEATHER.

    DTIC Science & Technology

    soil psychrometer and the porous plate apparatus. Only a negligible quantity of soil water is displaced. Such data are used to study interactions of...through three irrigation cycles in a soil column 130 cm deep; soil water potential was measured with tensiometers and a thermocouple psychrometer ; plant

  1. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  2. Effect of treated wastewater application on soil water repellency of sandy soil with olive trees and grass cover

    NASA Astrophysics Data System (ADS)

    Diamantis, V.; Ziogas, A.; Giougis, J.; Pliakas, F.; Diamantis, I.

    2009-04-01

    Soil water repellency has received significant attention due to water scarcity and increasing demand of irrigation water worldwide. The objective of this study was to examine the effects of treated wastewater application on soil water repellency of a repellent sandy soil with olive trees and grass cover. Secondary effluent from a municipal wastewater treatment plant was applied directly on the field on a 4×2 m plot. Freshwater and a mixture of freshwater:wastewater (1:1) were used in subsequent plots for comparison. A total of 62 water applications were performed between March 2006 and July 2008. The soil receiving the mixture of freshwater:wastewater exhibited the highest wettability. The soil water repellency after the first year of wastewater application decreased in the respective plot compared with the soil under natural conditions. The higher values of the WDPT were determined on the freshwater irrigated plot. The field-moist samples on all plots revealed high wettability because the moisture content of the soil was maintained above the critical soil water content. The results of this study reveal that short-term application of treated municipal wastewater does not induce soil water repellency.

  3. CO2 efflux from soils with seasonal water repellency

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  4. Throughfall Reduction x Fertilization: Monitoring and Modeling the Effect on Deep Soil Water Usage in a Loblolly Pine Plantations of the Southeast US

    NASA Astrophysics Data System (ADS)

    Qi, J.; Markewitz, D.; Radcliffe, D. E.

    2016-12-01

    Forests in the southeastern U.S. are predicted to experience a moderate decrease in water availability that will result in soil water deficiency during the growing season. The potential impact of drier climate on the productivity of managed loblolly pine plantations in the Southeast US is uncertain. Access to water reserves in deep soil during drought periods helps the forest buffer the effects of water deficits. To better understand the potential impact of drought on deep soil hydrology, we studied the combined effects of throughfall reduction and soil fertility on soil hydrology to the depth of 3 m in a 10-year-old loblolly pine plantation by applying a throughfall reduction treatment (ambient versus 30% throughfall reduction) and a fertilization treatment (no fertilization versus fertilization). Fertilization lowered soil moisture for all depths and differences were significant at 30-60 cm and 300 cm. Throughfall reduction also lowered soil moisture for all depths and differences were significant in the surface soils (0-30 cm) and deep soils (below 2m). Fertilization significantly decreased 10-90 cm soil water when combined with throughfall reduction treatment. HYDRUS 1-D model was used to simulate changes in the vertical distribution of soil water and to enhance our understanding of hydrologic processes. The model was accurately calibrated using 914 days of data under ambient rainfall (R2=0.84 and RMSE = 0.04). Using data under throughfall reduction treatment, the model validation showed R2=0.67 and RMSE = 0.04, suggesting that this model captures the hydrological processes of this study site. The difference in the rates of simulated cumulative actual evapotranspiration between ambient and throughfall reduction were only 10%; however, water yield as lower boundary flux decreased 64%. These empirical and simulated results suggested that when evapotranspiration exceeded precipitation, the soil water in the upper 90 cm did not satisfy the demand for AET, soil

  5. Modeling the Impact of Soil Conditions on Global Water Balance

    NASA Astrophysics Data System (ADS)

    Wang, P. L.; Feddema, J. J.

    2016-12-01

    The amount of water the soil can hold for plant use, defined as soil water-holding capacity (WHC), has a large influence on the water cycle and climatic variables. Although soil properties vary widely worldwide, many climate modeling applications assume WHC to be spatially invariant. This study explores how a more realistic soil WHC estimate affects the global water balance relative to commonly assumed soil properties. We use a modified Thornthwaite water balance model combined with a newly developed soil WHC and soil thickness data at a 30 arc second resolution. The soil WHC data was obtained by integrating WHCs to a depth of 2 m and modified by the soil thickness data on a grid-by-grid basis, and then resampling to the 0.5 degree climatology data. We observed that down scaling soils data before modifying soil depths greatly increases global soil WHCs. This new dataset is compared to WHC information with a fixed 2-m soil depth, and a constant 150-mm soil WHC. Results indicate higher soil WHC results in increased soil moisture, decreased moisture surplus and deficits, and increased actual evapotranspiration (AE), and vice-versa. However, due to high variability in soil characteristics across climate gradients, this generalization does not hold true for regionally averaged outcomes. Compared to using a constant 150-mm WHC, more realistic soil WHC increases global averaged AE 1%, and decreases deficit 2% and surplus 3%. Most change is observed in areas with pronounced wet and dry seasons; using a constant 2-m soil depth doubles the differences. Regionally, Europe was most affected: AE increases 4%, and the deficit and surplus decrease 20% and 12%. Australia shows that regionally averaged results are not equivocal for moisture surplus and deficit; deficit decreases 0.4%, while surplus decreases 9%. This research highlights the importance of soil condition for climate modeling and how a better representation of soil moisture conditions affects global water balance

  6. Modeling Water Redistribution in a Near-Surface Arid Soil

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ghezzehei, T. A.; Berli, M.; Dijkema, J.; Koonce, J.

    2017-12-01

    Desert soils cover about one third of the Earth's land surface and play an important role in the ecology and hydrology of arid environments. Despite their large extend, relatively little is known about their near-surface (top centimeters to meter) water dynamics. Recent studies by Koonce (2016) and Dijkema et al. (2017) shed light on the water dynamics of near-surface arid soil but also revealed some of the challenges to simulate the water redistribution in arid soils. The goal of this study was to improve water redistribution simulations in near-surface arid soils by employing more advanced hydraulic conductivity functions. Expanding on the work by Dijkema et al. (2017), we used a HYDRUS-1D model with different hydraulic conductivity functions to simulate water redistribution within the soil as a function of precipitation, evaporation and drainage. Model calculations were compared with measured data from the SEPHAS weighing lysimeters in Boulder City, NV. Preliminary results indicate that water redistribution simulations of near-surface arid soils can be improved by using hydraulic conductivity functions that can capture capillary, film and vapor flow, like for example the Peter-Durner-Iden (PDI) model.

  7. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  8. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    PubMed

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evaluation of various soil water samplers for virological sampling.

    PubMed Central

    Wang, D S; Lance, J C; Gerba, C P

    1980-01-01

    Two commercially available soil water samplers and a ceramic sampler constructed in our laboratories were evaluated for their ability to recover viruses from both tap water and secondary sewage effluent. The ceramic sampler consistently gave the best recoveries of viruses from water samples. Soil columns containing ceramic samplers at various depths provide a simple method for studying virus transport through sewage-contaminated soils. Images PMID:6247976

  10. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  11. Robust spatialization of soil water content at the scale of an agricultural field using geophysical and geostatistical methods

    NASA Astrophysics Data System (ADS)

    Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi

    2017-04-01

    Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization

  12. Hydrologic behavior of model slopes with synthetic water repellent soils

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  13. Water repellent soils: a state-of-the-art

    Treesearch

    Leonard F. DeBano

    1981-01-01

    Water repellency in soils was first described by Schreiner and Shorey (1910), who found that some soils in California could not be wetted and thereby were not suitable for agriculture. Waxy organic substances were responsible for the water repellency. Other studies in the early 1900's on the fairy ring phenomenon suggested that water repellency could be caused by...

  14. Model development for prediction of soil water dynamics in plant production.

    PubMed

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng

    2015-09-01

    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  15. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  16. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  17. Occurrence of soil water repellency in arid and humid climates

    NASA Astrophysics Data System (ADS)

    Jaramillo, D. F.; Dekker, L. W.; Ritsema, C. J.; Hendrickx, J. M. H.

    2000-05-01

    Soil water repellency generally tends to increase during dry weather while it decreases or completely vanishes after heavy precipitation or during extended periods with high soil water contents. These observations lead to the hypothesis that soil water repellency is common in dry climates and rare in humid climates. The study objective is to test this hypothesis by examining the occurrence of soil water repellency in an arid and humid climate. The main conclusion of this study is that the effect of climate on soil water repellency is very limited. Field observations in the arid Middle Rio Grande Basin in New Mexico (USA) and the humid Piedras Blancas Watershed in Colombia show that the main impact of climate seems to be in which manner it affects the production of organic matter. An extremely dry climate will result in low organic matter production rates and, therefore, less potential for the development of soil water repellency. On the other hand, a very humid climate is favorable for organic matter production and, therefore, for the development of water repellency.

  18. Effect of plantation establishment on soil and soil water in southwestern Wisconsin.

    Treesearch

    Richard S. Sartz

    1976-01-01

    Changes in litter weight, soil bulk density, soil nitrogen and organic carbon contents, soil water depletion, and snowpack accumulation were evaluated over 14 years of plantation growth on three different sites. The species studied were white and red pines, white spruce, and European larch, along with unplanted controls.

  19. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Nitrate isotopes illuminate the black box of paddy soil biogeochemistry: water and carbon management control nitrogen sources and sinks

    NASA Astrophysics Data System (ADS)

    Wells, N. S.; Clough, T. J.; Johnson-Beebout, S. E.; Buresh, R. J.

    2010-12-01

    Accurate prediction of the available nitrogen (N) pool in submerged paddy soils is needed in order to produce rice, one of the world’s most essential crops, in an economically and environmentally sustainable manner. By applying emerging nitrate dual-isotope (δ15N- δ18O- NO3-) techniques to paddy systems, we were able to obtain a unique process-level quantification of the synergistic impacts of carbon (C) and water management on N availability. Soil and water samples were collected from fallow experimental plots, with or without organic C amendments, that were maintained under 1 of 3 different hydrologic regimens: continuously submerged, water excluded, or alternate wetting and drying. In continuously submerged soils the δ15N-NO3- : δ18O-NO3- signal of denitrification was not present, indicating that there was no N attenuation. Biological nitrogen fixation (BNF) was the dominant factor in defining the available N pool under these conditions, with δ15N-NO3- approaching atmospheric levels as size of the pool increased. Using an isotope-based pool-mixing model, it was calculated that 10±2 µg N g-1 soil were contributed by BNF during the fallow. A lack of BNF combined with removal via denitrification (δ15N-NO3- : δ18O-NO3- = 1) caused relatively lower available N levels in dried and alternate wetting-drying soils during this period. Magnitude and net impact of denitrification was defined by the extent of drying and C availability, with rice straw C additions driving tighter coupling of nitrification and denitrification (δ15N:δ18O <1). However, despite high rates of attenuation during wetting events, soils that had been completely dried and received straw amendments ultimately retained a significantly larger available N pool due to enhanced input from soil organic matter. These findings underline the necessity of, and validate a new means for, accurate quantification micro-scale biogeochemical interactions for developing farm-scale management practices that

  1. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  2. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  3. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  4. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  5. [Soil infiltration of snowmelt water in the southern Gurbantunggut Desert, Xinjiang, China].

    PubMed

    Hu, Shun-jun; Chen, Yong-bao; Zhu, Hai

    2015-04-01

    Soil infiltration of snow-melt water is an important income item of water balance in arid desert. The soil water content in west slope, east slope and interdune of sand dune in the southern Gurbantunggut Desert was monitored before snowfall and after snow melting during the winters of 2012-2013 and 2013-2014. According to the principle of water balance, soil infiltration of snow-melt in the west slope, east slope, interdune and landscape scale was calculated, and compared with the results measured by cylinder method. The results showed that the soil moisture recharge from unfrozen layer of unsaturated soil to surface frozen soil was negligible because the soil moisture content before snowfall was lower, soil infiltration of snow-melt water was the main source of soil water of shallow soil, phreatic water did not evaporate during freezing period, and did not get recharge after the snow melting. Snowmelt water in the west slope, east slope, interdune and landscape scale were 20-43, 27-43, 32-45, 26-45 mm, respectively.

  6. Effect of top soil wettability on water evaporation and plant growth.

    PubMed

    Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S

    2015-07-01

    In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Criterion I: Soil and water conservation on rangelands [Chapter 2

    Treesearch

    Michael G. (Sherm) Karl; Paul T. Tueller; Gerald E. Schuman; Mark R. Vinson; James L. Fogg; Ronald W. Shafer; David A. Pyke; D. Terrance Booth; Steven J. Borchard; William G. Ypsilantis; Richard H. Barrett

    2010-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion of rangeland sustainability. Within the soil/water criterion, 10 indicators ­ five soil-based and five water-based - were developed through the expert opinions of rangeland scientists, rangeland management agency personnel, non-...

  8. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    NASA Astrophysics Data System (ADS)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  9. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  10. The role of waste thermal water in the soil degradation

    NASA Astrophysics Data System (ADS)

    Balog, Kitti; Farsang, Andrea

    2010-05-01

    Thermal water exploitation is widespread, because it is considered to a "green" renewable energy source, the transporter of the Earth crust's heat. It is suitable for very diverse purposes: balneology, heating, mineral water, municipal hot water supply, technological water, etc. After usage, large amount of thermal water becomes sewage water with high concentrations of salts, heavy metals, ammonia, nitrate, and high temperature. Besides that, most of these waters have an unfavourable ion composition. Na+ (and in some cases Mg+) is predominant among cations. A common way of treatment is to let off the waste thermal water in unlined ground channels to leak into the soil. This can cause physical and chemical soil degradation. Continouos Na+ supply occurs, that occupies the place of Ca2+ on the ion exchange surfaces. Thus, adverse effects of Na+ can appear, like formation of extreme moisture regime, peptization, liquefaction. Beside Na+, Mg2+ also helps the formation of physical degradation in the soil. High water retain and unfavourable structure evolves. Not only the physical features of the soil are touched, fertility of production sites as well. Namely sorrounding the unlined ground channels, agricultural areas are seated, so it is important to protect productivity of the soil to maintain yield. Because of the seepage of high salt concentration waters, salt accumulation can be observed near to the channel lines. The investigated sample sites are located in the Great Hungarian Plane. We determined the main pollutants of the thermal waters, and the effects to the sorrounding soils. On two selected investigation areas (Cserkeszőlő, Tiszakécske) salt profiles and Na+ adsorption isotherms are presented to characterize soil degradation. Genetic soil types are differ on the investigated areas, so the aspect of impact is different, as well.

  11. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    PubMed

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  12. Upscaled soil-water retention using van Genuchten's function

    USGS Publications Warehouse

    Green, T.R.; Constantz, J.E.; Freyberg, D.L.

    1996-01-01

    Soils are often layered at scales smaller than the block size used in numerical and conceptual models of variably saturated flow. Consequently, the small-scale variability in water content within each block must be homogenized (upscaled). Laboratory results have shown that a linear volume average (LVA) of water content at a uniform suction is a good approximation to measured water contents in heterogeneous cores. Here, we upscale water contents using van Genuchten's function for both the local and upscaled soil-water-retention characteristics. The van Genuchten (vG) function compares favorably with LVA results, laboratory experiments under hydrostatic conditions in 3-cm cores, and numerical simulations of large-scale gravity drainage. Our method yields upscaled vG parameter values by fitting the vG curve to the LVA of water contents at various suction values. In practice, it is more efficient to compute direct averages of the local vG parameter values. Nonlinear power averages quantify a feasible range of values for each upscaled vG shape parameter; upscaled values of N are consistently less than the harmonic means, reflecting broad pore-size distributions of the upscaled soils. The vG function is useful for modeling soil-water retention at large scales, and these results provide guidance for its application.

  13. Evaluation of Porcelain Cup Soil Water Samplers for Bacteriological Sampling1

    PubMed Central

    Dazzo, Frank B.; Rothwell, Donald F.

    1974-01-01

    The validity of obtaining soil water for fecal coliform analyses by porcelain cup soil water samplers was examined. Numbers from samples of manure slurry drawn through porcelain cups were reduced 100- to 10,000,000-fold compared to numbers obtained from the external manure slurry, and 65% of the cups yielded coliform-free samples. Fecal coliforms adsorbed to cups apparently were released, thus influencing the counts of subsequent samples. Fecal coliforms persisted in soil water samplers buried in soil and thus could significantly influence the coliform counts of water samples obtained a month later. These studies indicate that porcelain cup soil water samplers do not yield valid water samples for fecal coliform analyses. Images PMID:16349998

  14. Effects of spatial variability of soil hydraulic properties on water dynamics

    NASA Astrophysics Data System (ADS)

    Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan

    2013-04-01

    Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.

  15. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  16. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  17. Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data

    NASA Astrophysics Data System (ADS)

    Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.

    2017-12-01

    Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.

  18. Approaches and challenges of soil water monitoring in an irrigated vineyard

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  19. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    PubMed

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  20. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-07-01

    Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers

  1. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    NASA Astrophysics Data System (ADS)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  2. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems [Urban ecohydrologic dynamics revealed by in situ monitoring of H and O stable isotopes in soil water

    DOE PAGES

    Oerter, Erik J.; Bowen, Gabriel

    2017-04-12

    The water cycle in urban and hydrologically managed settings is subject to perturbations that are dynamic on small spatial and temporal scales; the effects of which may be especially profound in soils. We deploy a membrane inlet-based laser spectroscopy system in conjunction with soil moisture and temperature sensors to monitor soil water dynamics and H and O stable isotope ratios (δ 2H and δ 18O values) in a seasonally irrigated urban-landscaped garden soil over the course of 9 months between the cessation of irrigation in the autumn and the onset of irrigation through the summer. Here, we find that soilmore » water δ 2H and δ 18O values predominately reflect seasonal precipitation and irrigation inputs. A comparison of total soil water by cryogenic extraction and mobile soil water measured by in situ water vapor probes reveals that initial infiltration events after long periods of soil drying (the autumn season in this case) emplace water into the soil matrix that is not easily replaced by, or mixed with, successive pulses of infiltrating soil water. Tree stem xylem water H and O stable isotope composition did not match that of available water sources. Our findings suggest that partitioning of soil water into mobile and immobile “pools” and resulting ecohydrologic separation may occur in engineered and hydrologically managed soils and not be limited to natural settings. Furthermore, the laser spectroscopy method detailed here has potential to yield insights in a variety of critical zone and vadose zone studies, potential that is heightened by the simplicity and portability of the system.« less

  3. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems [Urban ecohydrologic dynamics revealed by in situ monitoring of H and O stable isotopes in soil water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oerter, Erik J.; Bowen, Gabriel

    The water cycle in urban and hydrologically managed settings is subject to perturbations that are dynamic on small spatial and temporal scales; the effects of which may be especially profound in soils. We deploy a membrane inlet-based laser spectroscopy system in conjunction with soil moisture and temperature sensors to monitor soil water dynamics and H and O stable isotope ratios (δ 2H and δ 18O values) in a seasonally irrigated urban-landscaped garden soil over the course of 9 months between the cessation of irrigation in the autumn and the onset of irrigation through the summer. Here, we find that soilmore » water δ 2H and δ 18O values predominately reflect seasonal precipitation and irrigation inputs. A comparison of total soil water by cryogenic extraction and mobile soil water measured by in situ water vapor probes reveals that initial infiltration events after long periods of soil drying (the autumn season in this case) emplace water into the soil matrix that is not easily replaced by, or mixed with, successive pulses of infiltrating soil water. Tree stem xylem water H and O stable isotope composition did not match that of available water sources. Our findings suggest that partitioning of soil water into mobile and immobile “pools” and resulting ecohydrologic separation may occur in engineered and hydrologically managed soils and not be limited to natural settings. Furthermore, the laser spectroscopy method detailed here has potential to yield insights in a variety of critical zone and vadose zone studies, potential that is heightened by the simplicity and portability of the system.« less

  4. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  5. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  6. Thematic issue on soil water infiltration

    USDA-ARS?s Scientific Manuscript database

    Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...

  7. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    PubMed

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  8. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland

    USGS Publications Warehouse

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.

    2017-01-01

    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  9. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  10. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.

    PubMed

    Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C

    2013-08-01

    To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. © 2013 John Wiley & Sons Ltd.

  11. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth - A vicious circle.

    PubMed

    Colombi, Tino; Torres, Lorena Chagas; Walter, Achim; Keller, Thomas

    2018-06-01

    Water is the most limiting resource for global crop production. The projected increase of dry spells due to climate change will further increase the problem of water limited crop yields. Besides low water abundance and availability, water limitations also occur due to restricted water accessibility. Soil penetration resistance, which is largely influenced by soil moisture, is the major soil property regulating root elongation and water accessibility. Until now the interactions between soil penetration resistance, root system properties, water uptake and crop productivity are rarely investigated. In the current study we quantified how interactive effects between soil penetration resistance, root architecture and water uptake affect water accessibility and crop productivity in the field. Maize was grown on compacted and uncompacted soil that was either tilled or remained untilled after compaction, which resulted in four treatments with different topsoil penetration resistance. Higher topsoil penetration resistance caused root systems to be shallower. This resulted in increased water uptake from the topsoil and hence topsoil drying, which further increased the penetration resistance in the uppermost soil layer. As a consequence of this feedback, root growth into deeper soil layers, where water would have been available, was reduced and plant growth decreased. Our results demonstrate that soil penetration resistance, root architecture and water uptake are closely interrelated and thereby determine the potential of plants to access soil water pools. Hence, these interactions and their feedbacks on water accessibility and crop productivity have to be accounted for when developing strategies to alleviate water limitations in cropping systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Modeling as a tool for management of saline soils and irrigation waters

    USDA-ARS?s Scientific Manuscript database

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  13. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  14. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  15. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.

    2012-12-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  16. Soil water evaporation and crop residues

    USDA-ARS?s Scientific Manuscript database

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  17. Water-quality data of soil water from three watersheds, Shenandoah National Park, Virginia, 1999-2000

    USGS Publications Warehouse

    Rice, Karen C.; Maben, Suzanne W.; Webb, James R.

    2001-01-01

    Data on the chemical composition of soil-water samples were collected quarterly from three watersheds in Shenandoah National Park, Virginia, from September 1999 through July 2000. The soil-water samples were analyzed for specific conductance and concentrations of sodium, potassium, calcium, magnesium, ammonium, chloride, nitrate, sulfate, acid-neutralizing capacity, silica, and total monomeric aluminum. The soil-water data presented in this report can be used to support water-quality modeling of the response of streams to episodic acidification. Laboratory analytical data as well as laboratory quality-assurance information also are presented.

  18. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  19. The Soil Moisture Active/Passive Mission (SMAP)

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  20. Precision agriculture and soil and water management in cranberry production

    USDA-ARS?s Scientific Manuscript database

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  1. A soil water budget model for precipitation-induced shallow landslides

    NASA Astrophysics Data System (ADS)

    Yeh, Hsin-Fu; Lee, Cheng-Haw

    2013-04-01

    Precipitation infiltration influences both the quantity and quality of slope systems. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of effective saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation degree. For storm periods, the Brooks and Corey model estimates both the soil water retention curve (SWRC) and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation (TCA). For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr-Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the effective degree of saturation controlled by rainfall events.

  2. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  3. Modelling the water balance of irrigated fields in tropical floodplain soils using Hydrus-1D

    NASA Astrophysics Data System (ADS)

    Beyene, Abebech; Frankl, Amaury; Verhoest, Niko E. C.; Tilahun, Seifu; Alamirew, Tena; Adgo, Enyew; Nyssen, Jan

    2017-04-01

    Accurate estimation of evaporation, transpiration and deep percolation is crucial in irrigated agriculture and the sustainable management of water resources. Here, the Hydrus-1D process-based numerical model was used to estimate the actual transpiration, soil evaporation and deep percolation from irrigated fields of floodplain soils. Field experiments were conducted from Dec 2015 to May 2016 in a small irrigation scheme (50 ha) called 'Shina' located in the Lake Tana floodplains of Ethiopia. Six experimental plots (three for onion and three for maize) were selected along a topographic transect to account for soil and groundwater variability. Irrigation amount (400 to 550 mm during the growing period) was measured using V-notches installed at each plot boundary and daily groundwater levels were measured manually from piezometers. There was no surface runoff observed in the growing period and rainfall was measured using a manual rain gauge. All daily weather data required for the evapotranspiration calculation using Pen Man Monteith equation were collected from a nearby metrological station. The soil profiles were described for each field to include the vertical soil heterogeneity in the soil water balance simulations. The soil texture, organic matter, bulk density, field capacity, wilting point and saturated moisture content were measured for all the soil horizons. Soil moisture monitoring at 30 and 60 cm depths was performed. The soil hydraulic parameters for each horizon was estimated using KNN pedotransfer functions for tropical soils and were effectively fitted using the RETC program (R2= 0.98±0.011) for initial prediction. A local sensitivity analysis was performed to select and optimize the most important hydraulic parameters for soil water flow in the unsaturated zone. The most sensitive parameters were saturated hydraulic conductivity (Ks), saturated moisture content (θs) and pore size distribution (n). Inverse modelling using Hydrus-1D further optimized

  4. Farm scale application of EMI and FDR sensors to measuring and mapping soil water content

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Provenzano, Giuseppe

    2017-04-01

    Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels

  5. Soil water storage and daily dynamics of typical ecosystems in Heihe Watershed, China

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    Soil water plays a key role in terrestrial ecosystems by controlling exchange processes among soil, vegetation, and atmosphere. The spatiotemporal distribution and dynamics of soil water storage (SWS) may provide information on the exchange of soil moisture among landscapes and between groundwater and surface water. The Heihe River Watershed (HRW) is a typical inland river basin located in the arid region of Northwestern China. Based on the soil water data automatically recorded every 30 min in 18 sites during the Heihe Water Allied Telemetry Experimental Research, the soil water dynamic of six typical ecosystems, i.e., alpine meadow, mountain coniferous forest, mountain steppe, temperate desert, riparian forest, and cropland, were analyzed. The 2m-depth soil water storage of cropland in growing season was highest, followed by riparian forest, alpine meadow, mountain coniferous forest, and mountain steppe, and that of temperate desert was the lowest. For alpine meadow, mountain coniferous forest, and desert ecosystems, the seasonal fluctuation of soil water content was obvious in 0-100cm depth but not in 100-200cm depth. For mountain steppe, cropland, and riparian forest ecosystems, there were obviously seasonal fluctuation in soil water content in all 0-200cm depth. In addition, the frequency distributions of 30-min soil water contents of the six ecosystems were different greatly. Together with rainfall, the soil water content was greatly affected by irrigation and seasonal frozen.

  6. Estimation of the water retention curve from the soil hydraulic conductivity and sorptivity in an upward infiltration process

    NASA Astrophysics Data System (ADS)

    Moret-Fernández, David; Angulo, Marta; Latorre, Borja; González-Cebollada, César; López, María Victoria

    2017-04-01

    Determination of the saturated hydraulic conductivity, Ks, and the α and n parameters of the van Genuchten (1980) water retention curve, θ(h), are fundamental to fully understand and predict soil water distribution. This work presents a new procedure to estimate the soil hydraulic properties from the inverse analysis of a single cumulative upward infiltration curve followed by an overpressure step at the end of the wetting process. Firstly, Ks is calculated by the Darcy's law from the overpressure step. The soil sorptivity (S) is then estimated using the Haverkamp et al., (1994) equation. Next, a relationship between α and n, f(α,n), is calculated from the estimated Sand Ks. The α and n values are finally obtained by the inverse analysis of the experimental data after applying the f(α,n) relationship to the HYDRUS-1D model. The method was validated on theoretical synthetic curves for three different soils (sand, loam and clay), and subsequently tested on experimental sieved soils (sand, loam, clay loam and clay) of known hydraulic properties. A robust relationship was observed between the theoretical α and nvalues (R2 > 0.99) of the different synthetic soils and those estimated from inverse analysis of the upward infiltration curve. Consistent results were also obtained for the experimental soils (R2 > 0.85). These results demonstrated that this technique allowed accurate estimates of the soil hydraulic properties for a wide range of textures, including clay soils.

  7. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    USDA-ARS?s Scientific Manuscript database

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  8. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  9. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could

  10. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  11. Grazing impacts on soil carbon fractions and soil water dynamics in subalpine ecosystems

    NASA Astrophysics Data System (ADS)

    Gill, R. A.

    2005-12-01

    The mountain lands of the intermountain west are vital to the wellbeing of human communities in the adjacent valleys, providing these communities with water, important summer forage for wildlife and domestic livestock, and possibly the sequestration of anthropogenic carbon. In this work, I build on a 90-year old grazing experiment in mountain meadows on the Wasatch Plateau in central Utah. Long-term grazing significantly reduced aboveground net primary production (ANPP) in all years compared with plots within grazing exclosures, even though these plots were not grazed during the study period. Livestock grazing had no impacts on total soil C or particulate organic matter stocks, although grazing did alter soil C chemistry and soil water dynamics. Grazing significantly increased the proportion of total soil C stocks that were potentially mineralizable in the laboratory. Volumetric soil moisture was consistently higher in ungrazed plots than grazed plots. In addition, there was a 0.5-1% increase in ^13C in grazed plots compared to paired ungrazed plots, supporting the conclusion that grazing significantly increases periods of water stress. Because grazing has resulted in an accumulation of easily decomposable organic material, if temperatures warm and summer precipitation increases as is anticipated, these soils may become net sources of carbon to the atmosphere creating a positive feedback between climate change and atmospheric CO2.

  12. Validation of Soil Water Content Estimation Method on Agricultural Regions in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Kim, M.

    2016-12-01

    The continuous water stress caused by decrease of soil water has a direct influence to the crop growth in a upland crop area. The agricultural drought is occured if water requirement is not supplied timely in crop growh process. It is more important to understand the soil characteristics for high accuracy soil moisture estimation because of the soil water contents largely depends on soil properties. The RDA(Rural Development Administration) has provided real-time soil moisture observations corrected for 71 points in the South Korea. In this study, we developed a soil water content estimation method that considered soil hydraulic parameters for the observation points of soil water content in agricultural regions operated by the RDA. SWAP(Soil-Water-Atmosphere-Plant) model was used in the estimation of soil water contents. The soil hydraulic parameters that is the input data of the SWAP model were estimated using the ROSETTA model developed by the U.S. Department of Agriculture(USDA). Meteorological data observed from AWS(Automatic Weather Station) were used including daily maximum temperature(°), daily minimum temperature(°), relative humidity(%), solar radiation, wind speed and precipitation data. We choosed 56 stations there are no missing of meteorological data and have soil physical properties. For the verification of soil water content estimation method, we used Haenam KoFlux observation data that are observed long-term soil water contents over 2009-2015(2014 missing) years. In the case of 2015, there are good reproducibility between observation of soil water contents and results of SWAP model simulation with R2=0.72, RMSE=0.026 and TCC=0.849. In the case of precipitation event, the simulation results were slightly overestimated more than observation. However there are good reproducibility in the case of soil water reduction due to continuous non-precipitation periods. We have simulated the soil water contents of the 56 stations that being operated in the RDA

  13. Degradation of soils as a result of human-induced transformation of their water regime and soil-protective practice

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2009-01-01

    The adverse human-induced changes in the water regime of soils leading to their degradation are considered. Factors of the human activity related to the water industry, agriculture, and silviculture are shown to play the most active role in the soil degradation. Among them are the large-scale hydraulic works on rivers, drainage and irrigation of soils, ameliorative and agricultural impacts, road construction, and uncontrolled impacts of industry and silviculture on the environment. The reasons for each case of soil degradation related to changes in the soil water regime are considered, and preventive measures are proposed. The role of secondary soil degradation processes is shown.

  14. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    USGS Publications Warehouse

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  15. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  16. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  17. Influence of soil porosity on water use in Pinus taeda

    Treesearch

    G. Hacke; J.S. Sperry; B.E. Ewers; D.S. Ellsworth; K.V.R. Schäfer; R. Oren

    2000-01-01

    We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (Ecrit) allowed by the soil-leaf...

  18. Vadose zone monitoring strategies to control water flux dynamics and changes in soil hydraulic properties.

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquin; Candela, Lucila

    2013-04-01

    For monitoring the vadose zone, different strategies can be chosen, depending on the objectives and scale of observation. The effects of non-conventional water use on the vadose zone might produce impacts in porous media which could lead to changes in soil hydraulic properties, among others. Controlling these possible effects requires an accurate monitoring strategy that controls the volumetric water content, θ, and soil pressure, h, along the studied profile. According to the available literature, different monitoring systems have been carried out independently, however less attention has received comparative studies between different techniques. An experimental plot of 9x5 m2 was set with automatic and non-automatic sensors to control θ and h up to 1.5m depth. The non-automatic system consisted of ten Jet Fill tensiometers at 30, 45, 60, 90 and 120 cm (Soil Moisture®) and a polycarbonate access tube of 44 mm (i.d) for soil moisture measurements with a TRIME FM TDR portable probe (IMKO®). Vertical installation was carefully performed; measurements with this system were manual, twice a week for θ and three times per week for h. The automatic system composed of five 5TE sensors (Decagon Devices®) installed at 20, 40, 60, 90 and 120 cm for θ measurements and one MPS1 sensor (Decagon Devices®) at 60 cm depth for h. Installation took place laterally in a 40-50 cm length hole bored in a side of a trench that was excavated. All automatic sensors hourly recorded and stored in a data-logger. Boundary conditions were controlled with a volume-meter and with a meteorological station. ET was modelled with Penman-Monteith equation. Soil characterization include bulk density, gravimetric water content, grain size distribution, saturated hydraulic conductivity and soil water retention curves determined following laboratory standards. Soil mineralogy was determined by X-Ray difractometry. Unsaturated soil hydraulic parameters were model-fitted through SWRC-fit code and

  19. The Effect of Vegetation on Soil Water Infiltration and Retention Capacity by Improving Soil Physiochemical Property in Semi-arid Grassland

    NASA Astrophysics Data System (ADS)

    A, Y.; Wang, G.

    2017-12-01

    Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, p<0.01), which indicated the influence of vegetation on soil water content not only by soil organic matter content

  20. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    NASA Astrophysics Data System (ADS)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  1. A multi-scale ''soil water structure'' model based on the pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.

    2009-02-01

    Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated

  2. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow

    NASA Astrophysics Data System (ADS)

    Kelleners, T.

    2015-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.

  3. New soil water sensors for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  4. Soil properties evolution after irrigation with reclaimed water

    NASA Astrophysics Data System (ADS)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  5. Chemical migration during soil water retention curve evaluation.

    PubMed

    Pires, Luiz F; Villanueva, Felipe C A; Dias, Nivea M P; Bacchi, Osny O Santos; Reichardt, Klaus

    2011-09-01

    Wetting and drying (W-D) cycles can induce important elemental migrations in soils. The main purpose of this work was to study the possible existence of soil chemical elemental migrations in samples submitted to repeated W-D cycles during evaluations of soil water retention curve (SWRC). The experimental measurements were carried out by Atomic Absorption Spectrometry (AAS) for Ca(2+), Mg(2+) and K(+) on samples of three different Brazilian tropical soils (Geric Ferralsol, Eutric Nitosol and Rhodic Ferralsol). Results demonstrate an increase in the electrical conductivity of the water extracted from the samples and significant losses of Ca(2+), Mg(2+) and K(+) during the applications of up to nine W-D cycles. It was also observed differences in SWRC for all soils when samples submitted to the application of several W-D cycles were compared with samples not submitted to it. These differences occurred at the region of both structural and textural pores. A possible explanation for these results could be the soil chemical migration during the sequences of W-D cycles, which can affect the soil structure development.

  6. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Migration through soil of organic solutes in an oil-shale process water

    USGS Publications Warehouse

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  8. Soil and surface layer type affect non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  9. Uncoupling between soil and xylem water isotopic composition: how to discriminate mobile and tightly-bound water?

    NASA Astrophysics Data System (ADS)

    Martín Gómez, Paula; Aguilera, Mònica; Pemán, Jesús; Gil Pelegrín, Eustaquio; Ferrio, Juan Pedro

    2014-05-01

    As a general rule, no isotopic fractionation occurs during water uptake and water transport, thus, xylem water reflects source water. However, this correspondence does not always happen. Isotopic enrichment of xylem water has been found in several cases and has been either associated to 'stem processes' like cuticular evaporation 1 and xylem-phloem communication under water stress 2,3 or to 'soil processes' such as species-specific use of contrasting water sources retained at different water potential forces in soil. In this regard, it has been demonstrated that mobile and tightly-bound water may show different isotopic signature 4,5. However, standard cryogenic distillation does not allow to separate different water pools within soil samples. Here, we carried out a study in a mixed adult forest (Pinus sylvestris, Quercus subpyrenaica and Buxus sempervirens) growing in a relatively deep loamy soil in the Pre-Pyrenees. During one year, we sampled xylem from twigs and soil at different depths (10, 30 and 50 cm). We also sampled xylem from trunk and bigger branches to assess whether xylem water was enriched in the distal parts of the tree. We found average deviations in the isotopic signature from xylem to soil of 4o 2o and 2.4o in δ18O and 18.3o 7.3o and 8.9o in δ2H, for P.sylvestris, Q.subpyrenaica and B.sempervirens respectively. Xylem water was always enriched compared to soil. In contrast, we did not find clear differences in isotopic composition between xylem samples along the tree. Declining the hypothesis that 'stem processes' would cause these uncoupling between soil and xylem isotopic values, we tested the possibility to separate mobile and tightly-bound water by centrifugation. Even though we could separate two water fractions in soils close to saturation, we could not recover a mobile fraction in drier soils. In this regard, we welcome suggestions on alternatives to separate different soil fractions in order to find the correspondence between soil and

  10. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  11. Soil respiration sensitivities to water and temperature in a revegetated desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  12. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  13. Temporal patterns of infiltration into a water repellent soil under field conditions

    NASA Astrophysics Data System (ADS)

    Ward, Phil; Roper, Margaret; Micin, Shayne; Jongepier, Ramona

    2014-05-01

    Water repellency causes substantial economic losses for farmers in southern Australia through impacts on crop growth and weed germination. However, recent research has demonstrated that laboratory measurements of water repellency may not be a reliable indicator of the severity of symptoms experienced in the field. In particular, crop residue retention and minimal soil disturbance led to increased water repellency, but was also associated with higher soil water contents measured at strategic times of the year. Little is known about the temporal patterns of soil water storage close to the soil surface in a water repellent sand. In this research we measured soil water content at a depth of 0.05 m at 15-minute intervals from June 2011 to October 2012, under various treatment combinations of residue retention and soil disturbance. Measurements were made in both 'crop row' and 'crop inter-row' positions. For a rainfall event (9.2 mm) in March 2012, prior to crop seeding, plots previously established with no-till absorbed significantly more water (increase in soil water content of 0.074 v/v) than plots conventionally cultivated (0.038 v/v). In June 2012 (12.6 mm), 4 weeks after crop seeding, tillage was again significant, and there was a significant interaction between tillage and 'row' or 'inter-row' position. These results demonstrate the importance of crop management in modifying the response of water repellent soils to rainfall in the field.

  14. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    NASA Astrophysics Data System (ADS)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  15. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    NASA Astrophysics Data System (ADS)

    Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2011-06-01

    Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).

  16. HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS

    EPA Science Inventory

    The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...

  17. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    PubMed

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Compost improves urban soil and water quality

    USDA-ARS?s Scientific Manuscript database

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  19. Simulating the fate of water in field soil crop environment

    NASA Astrophysics Data System (ADS)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for

  20. [Effects of strip planting and fallow rotation on the soil and water loss and water use efficiency of slope farmland].

    PubMed

    Hou, Xian-Qing; Li, Rong; Han, Qing-Fang; Jia, Zhi-Kuan; Wang, Wei; Yan, Bo; Yang, Bao-Ping

    2012-08-01

    In order to enhance the soil water-retaining capacity of slope farmland and reduce its soil and water loss, a field study was conducted in 2007-2010 to examine the effects of strip planting and fallow rotation on the soil water regime, soil and water loss characteristics, and water use efficiency of a 10 degrees-15 degrees slope farmland in the arid area of southern Ningxia, Northwest China. Compared with the traditional no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer significantly, with an increment of 4.9% -7.0%. Strip planting and fallow rotation pattern could also effectively conserve the soil water in rain season, and obviously improve the soil water regime at crops early growth stages. As compared to no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer by 5.4%-8.5%, decreased the surface runoff by 0.7-3.2 m3 x hm(-2), sediment runoff by 0.2-1.9 t x hm(-2), and soil total N loss by 42.1% -73.3%, while improved the crop water use efficiency by 6.1% -24.9% and the precipitation use efficiency by 6.3% -15.3%.

  1. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  2. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  3. Development of accurate potentials to explore the structure of water on 2D materials

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Singh, Samrendra; Deshmukh, Sanket; Deshmkuh Group Team; Samrendra Group Collaboration

    Water play an important role in many biological and non-biological process. Thus structure of water at various interfaces and under confinement has always been the topic of immense interest. 2-D materials have shown great potential in surface coating applications and nanofluidic devices. However, the exact atomic level understanding of the wettability of single layer of these 2-D materials is still lacking mainly due to lack of experimental techniques and computational methodologies including accurate force-field potentials and algorithms to measure the contact angle of water. In the present study, we have developed a new algorithm to measure the accurate contact angle between water and 2-D materials. The algorithm is based on fitting the best sphere to the shape of the droplet. This novel spherical fitting method accounts for every individual molecule of the droplet, rather than those at the surface only. We employ this method of contact angle measurements to develop the accurate non-bonded potentials between water and 2-D materials including graphene and boron nitride (BN) to reproduce the experimentally observed contact angle of water on these 2-D materials. Different water models such as SPC, SPC/Fw, and TIP3P were used to study the structure of water at the interfaces.

  4. A reservoir for solar-wind-produced water in lunar soils

    NASA Astrophysics Data System (ADS)

    Taylor, L.; Liu, Y.; Zent, A.; Quinn, R.; Ichimura, A.

    2012-09-01

    Discoveries of new sources of WATER on the Moon are becoming more numerous as our research progresses. All these recent discoveries of different forms of H (OH, HOH, and H2O ice) on the Moon, both endogenic and exogenic, have reshaped our view of "water" ON and IN the Moon Despite these discoveries, a potential large reservoir, LUNAR SOIL, has been largely overlooked until recently [1-2]. This was the first report and confirmation of OH in micro-meteoriteformed, impact glass in lunar soils; so-called "agglutinates", with abundances of up to 500 ppmw H2O, presents a medium for the accumulation of H from all the various sources. And the Lunar Soil Characterization Consortium (LSCC) [3-5] has demonstrated that the impact-melt glass portion of the fine-grain sizes of the lunar soil contains upwards of 70-80 % of such water-bearing glass. This could make for lunar soil feedstock with upwards of ~0.1 wt% H2O, in addition to any water produced solarwind hydrogen reduction of ilmenite, etc. Therefore, thermal rendering of the fine-portions of the soil for solar-wind volatiles (e.g., H, He-3, C, N) will encounter additional quantities of water, exceeding those of the absorbed solar-wind.

  5. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  6. Effects of white grubs on soil water infiltration.

    PubMed

    Romero-López, A A; Rodríguez-Palacios, E; Alarcón-Gutiérrez, E; Geissert, D; Barois, I

    2015-04-01

    Water infiltration rates k were measured in mesocosms with soil and "white grubs" of Ancognatha falsa (Arrow) (Coleoptera: Melolonthidae). Three third instars of A. falsa and three adult earthworms Pontoscolex corethrurus were selected, weighted, and introduced into the mesocosms setting three treatments: soil + A. falsa, soil + P. corethrurus, and control (soil without any macroorganism). The experiment had a completely random design with four replicates per treatment (n = 4). The infiltration rates of soil matrix were assessed in each mesocosms with a minidisk tension infiltrometer. Six measurements were made along the experiment. Results showed that larvae of A. falsa promoted a higher water infiltration in the soil, compared to the control. On day 7, k values were similar among treatments, but k values after 28 days and up to 100 days were much higher in the A. falsa treatment (k = 0.00025 cm s(-1)) if compared to control (k = 0.00011 cm s(-1)) and P. corethrurus (k = 0.00008 cm s(-1)) treatments. The k values were significantly higher in the presence of larvae of A. falsa compared to the control and P. corethrurus treatments. The larvae of A. falsa are potential candidates for new assays on soil water infiltration with different tensions to evaluate the role of pores and holes created by the larvae on soils.

  7. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  8. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress

    PubMed Central

    Nelson, Sven K.; Oliver, Melvin J.

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits. PMID

  9. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress.

    PubMed

    Nelson, Sven K; Oliver, Melvin J

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits.

  10. Linkages between forest soils and water quality and quantity

    Treesearch

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  11. Soil water use by Ceanothus velutinus and two grasses.

    Treesearch

    W. Lopushinsky; G.O. Klock

    1990-01-01

    Seasonal trends of soil water content in plots of snowbrush (Ceanothus velutinus Dougl.), orchard grass (Dactylis glomerata L), and pinegrass (Calamagrostis rubes- cens Buckl.) and in bare plots were measured on a burned-over forest watershed in north-central Washington. A comparison of soil water contents at depths of 12, 24,...

  12. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    USDA-ARS?s Scientific Manuscript database

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  13. A review of the methods available for estimating soil moisture and its implications for water resource management

    NASA Astrophysics Data System (ADS)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and

  14. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  15. Root exudate as major player on soil-water retention dynamics

    NASA Astrophysics Data System (ADS)

    Albalasmeh, A. A.; Sweet, J. R.; Gebrenegus, T. B.; Ghezzehei, T. A.

    2012-12-01

    Plant roots and soil microbes release 5-60% of the entirety of photosynthetically fixed carbon in to the soil as exudates to adapt to their surrounding. There is indirect evidence suggesting that these exudates play a major role in altering the of the soil water retention properties. In this study, we used a uniformly sized (40 μm) glass beads and various concentrations (0, 2, 10, 20 and 29 g/L) of polygalacutronic acid (PGA) to mimic sandy soil and the organic exudates from plant roots, respectively. The samples were subjected to periods of drying and subsequent equilibration. At each stage, the water potential was measured using WP4C Dewpoint PotentiaMeter. The effect of root exudates on soil water retention can be attributed t at least two factors. The most widely speculated effect is through enhanced of soil aggregation. This effect is primarily due to capillary adhesion in fine pores within aggregates and is consistent was visual observation of pronounced aggregation in many rhizosphere soils. The second factor is related to osmotic effect of the exudate solution. Our observations show that the capillary effect is mostly to higher water potential regime (> -1 bar suction). Whereas the osmotic effect dominates in <- 1 bar suction. These results will provide direct quantitative evidence of how rhizosphere organic matter helps plant-soil relations.

  16. Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1

    PubMed Central

    Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.

    1972-01-01

    A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922

  17. Near infrared index to assess the effect of soil tillage and fertilizer on soil water content.

    NASA Astrophysics Data System (ADS)

    Soltani, Ines; Fouad, Youssef; Michot, Didier; Breger, Pascale; Dubois, Remy; Pichelin, Pascal; Cudennec, Christophe

    2017-04-01

    Characterization of soil hydraulic properties is important for assessing soil water regime in agricultural fields. In the laboratory, measurements of soil hydrodynamic properties are costly and time consuming. Numerous studies recently demonstrated that reflectance spectroscopy can give a rapid estimation of several soil properties including those related with soil water content. The main objective of this research study was to show that near infrared spectroscopy (NIRS) is a useful tool to study the combined effect of soil tillage and fertilizer input on soil hydrodynamic properties. The study was carried out on soil samples collected from an experimental station located in Brittany, France. In 2000, the field was designed in a split-plot combining three tillage practices and four sources of fertilizers (mineral and organic). Undisturbed soil blocks were sampled in 2012 from three different depths of topsoil (0-7 cm, 7-15 cm and 15-20 cm) at each treatment. From each soil block, four aggregates with 3-4 cm diameter by 5-6 cm height were collected. Soil aggregates were first saturated and were then drained through 10 matric potential, from saturation up to permanent wilting point (pF=4.2), by successively using a suction table and a pressure chamber. Once the desired water pressure head was reached, soil samples were scanned to acquire reflectance spectra between 400-2500 nm using a handheld spectroradiometer equipped with a contact probe. Each spectrum was transformed into continuum removal, and an index based on the full width at half maximum (FWHM) of the absorption feature around 1920 nm was calculated. This index showed a linear relationship (R2>0.9) with volumetric water content. Moreover our results showed that the slope of the line was well correlated with the range of treatment. Overall, our findings indicate that the absorption feature of continuum removal spectra around 1900 nm can be useful to study the effect, particularly, of tillage on hydrodynamic

  18. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  19. Quantifying Water Infiltration through the Preferential Passages in the Forest Soil

    NASA Astrophysics Data System (ADS)

    Qu, Liqin; Chen, Ping; Gan, Ping; Lei, Tingwu

    2017-04-01

    Infiltration of water into soil commonly involves infiltration through the matrix body and preferential passages. Quantifying the contribution of preferential flow is important to evaluate the effects of land use and land cover changes on hillslope hydrology and watershed sedimentation. A new procedure was applied in this study to estimate the water infiltration into the soil through the soil body and macrospores. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station, Gansu Province, China. The experiment implements a double-ring infiltrometer and involves two measuring phases. Firstly, a thin layer sieved soil collected on site was sprinkled on the nylon cloth to shelter the macrospores and to ensure that water infiltrates the soil through the matrix only. The infiltration process was measured, computed, and recorded. Secondly, immediately after the first phase, the nylon cloth and layered soil above the soil surface was removed from the double ring infiltrometer carefully, and the infiltration process was measured for 30 mins in which water infiltration through both soil body impacted by the preferential passages in the soil body. There were three treatments according to the measured infiltration periods in the first phase of 30, 60, 90 mins, respectively, and two replicates for each treatment were conducted. The measured soil infiltration curves in the first phase explained the transient process of soil matrix infiltration well. The measured date were fitted by Kostiako models fitted measured data well with all coefficients of determination greater than 0.9. The constant infiltration rates from the second phase were at least 2 times larger than the estimates from the first phase. In other words, the results indicated that more than 60% of water infiltration was through the preferential passages in the forest soil. The result also shows that durations in the first phase affect the

  20. Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W. (Principal Investigator)

    1981-01-01

    A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.

  1. Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements.

    PubMed

    Wan, Yanan; Camara, Aboubacar Younoussa; Yu, Yao; Wang, Qi; Guo, Tianliang; Zhu, Lina; Li, Huafen

    2018-05-11

    Cadmium (Cd) in rice grains is a potential threat to human health. This study investigated the effects of selenite fertilisation (0 mg kg -1 , 0.5 mg kg -1 , and 1.0 mg kg -1 ) on soil solution Cd dynamics and rice uptake. Rice was grown in two Cd-contaminated soils in Jiangxi and Hunan Provinces under two different sets of conditions: aerobic and flooded. The experiments were conducted in pots. The plants were harvested at the seedling stage and at maturity to determine their Cd levels. Soil solutions were also extracted during the growing season to monitor Cd dynamics. The results showed that in the Jiangxi soil (pH 5.25), Cd concentrations in the soil solutions, seedlings, and mature rice plants were higher under aerobic than under flooded water management conditions. In the Hunan soil (pH 7.26), however, flooding decreased Cd levels in the rice seedlings but not in mature plants. Selenite additions to the Hunan soil decreased Cd concentrations in the soil solutions and in the mature rice plants. These effects were not observed for the solutions or the plants from Jiangxi soil amended with selenite. Relative to the control treatment, 0.5 mg kg -1 selenite decreased the rice grain Cd content by 45.2% and 67.7% under aerobic and flooding conditions, respectively. The results demonstrated that water management regimes affected rice Cd uptake more effectively in Jiangxi than in Hunan soil, whereas selenite addition was more effective in Hunan than in Jiangxi soil. Selenite addition was also more effective at reducing rice grain Cd levels when it was applied under flooding than under aerobic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good

  3. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights

  4. Leachate concentrations from water leach and column leach tests on fly ash-stabilized soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bin-Shafique, S.; Benson, C.H.; Edil, T.B.

    2006-01-15

    Batch water leaching tests (WLTs) and column leaching tests (CLTs) were conducted on coal-combustion fly ashes, soil, and soil-fly ash mixtures to characterize leaching of Cd, Cr, Se, and Ag. The concentrations of these metals were also measured in the field at two sites where soft fine-grained soils were mechanically stabilized with fly ash. Concentrations in leachate from the WLTs on soil-fly ash mixtures are different from those on fly ash alone and cannot be accurately estimated based on linear dilution calculations using concentrations from WLTs on fly ash alone. The concentration varies nonlinearly with fly ash content due tomore » the variation in pH with fly ash content. Leachate concentrations are low when the pH of the leachate or the cation exchange capacity (CEC) of the soil is high. Initial concentrations from CLTs are higher than concentrations from WLTs due to differences in solid-liquid ratio, pH, and solid-liquid contact. However, both exhibit similar trends with fly ash content, leachate pH, and soil properties. Scaling factors can be applied to WLT concentrations (50 for Ag and Cd, 10 for Cr and Se) to estimate initial concentrations for CLTs. Concentrations in leachate collected from the field sites were generally similar or slightly lower than concentrations measured in CLTs on the same materials. Thus, CLTs appear to provide a good indication of conditions that occur in the field provided that the test conditions mimic the field conditions. In addition, initial concentrations in the field can be conservatively estimated from WLT concentrations using the aforementioned scaling factors provided that the pH of the infiltrating water is near neutral.« less

  5. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    PubMed

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  6. Root Water Uptake and Soil Moisture Pattern Dynamics - Capturing Connections, Controls and Causalities

    NASA Astrophysics Data System (ADS)

    Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.

    2015-12-01

    We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.

  7. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus.

    PubMed

    Jalali, Mohsen; Jalali, Mahdi

    2017-03-01

    Accurate estimation of phosphorus (P) leaching is important because excess P may reduce surface and ground water quality. Little attention has been paid to estimate P leaching from soil tests in calcareous soils. The relation between different soil tests P (STP), P sorption index (PSI) and degree of P saturation (DPS) and leaching of P were examined for assessing the risk of P loss from calcareous soils. Columns leaching repacked with native soils were leached with either distilled water or 10 mM CaCl 2 solutions, separately. Four leaching events were performed at four days, and 28.7 mm of distilled water or 10 mM CaCl 2 solutions was applied at each leaching events. Compared with distilled water, CaCl 2 had a small ability to solubilize P from soils. Concentration of P in leachate in both leaching solutions was exceeding 0.1 mg l -1 associated with eutrophication. Cumulative P leached P was ranged from 0.17 to 18.59 mg P kg -1 and 0.21-8.16 mg P kg -1 , when distilled water and 10 mM CaCl 2 solutions were applied, respectively and it was higher in sandy clay loam soils compared with clay soils. Among evaluated environmental soil P tests, P CaCl2-3h (P extracted by 10 mM CaCl 2 for 3 h), P CaCl2-1h (P extracted by 10 mM CaCl 2 for 1 h) were more accurate than other soil P tests for predicting P concentration in the leachates in both leaching solutions and accounting for 83% and 72% of variation of P concentration, respectively. The water extractable P (WEP) (r = 0.771) and Olsen-P (P Ols )(r = 0.739) were significantly related to the leached P concentration using distilled water solution in a split line model, with a change point of 27.4 mg P kg -1 and 61.5 mg P kg -1 , respectively. Various DPS were calculated and related to the leached P concentration. Based on P extracted by Mehlich-3 (P M3 ) and HCl (P HCl ) and PSI, the change point of the relationship between leached P concentration and DPS M3-3 (P M3 (P M3 +PSI)×100) and DPS HCl-2 (P

  8. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)

    NASA Astrophysics Data System (ADS)

    Wang, S. G.; Li, X.; Han, X. J.; Jin, R.

    2010-06-01

    Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  9. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  10. Ground cover influence on evaporation and stable water isotopes in soil water

    NASA Astrophysics Data System (ADS)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  11. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    USGS Publications Warehouse

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  12. Soil Water Balance and Vegetation Dynamics in two Contrasting Water-limited Mediterranean Ecosystems on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.; Corona, R.

    2011-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by

  13. Improved Instrument for Detecting Water and Ice in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  14. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    NASA Astrophysics Data System (ADS)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in

  15. The characteristics of soil and water loss in Pinus Massoniana forest in Quaternary red soil area of south China

    NASA Astrophysics Data System (ADS)

    Song, Yuejun; Huang, Yanhe; Jie, Yang

    2017-08-01

    The soil and water loss in Pinus massoniana forests is an urgent environmental problem in the red soil region of southern China.Using the method of field monitoring, by analogy and statistical analysis, The characteristics of soil and water loss of Pinus massoniana forests in Quaternary red soil region under 30 rainfall were analyzed,the results show that the relationship models of rainfall,runoff and sediment of pure Pinus massoniana plot were slightly different from the naked control plot,were all the univariate quadratic linear regression models.the contribution of runoff and sediment in different rain types were different, and the water and soil loss in Pinus massoniana forest was most prominent under moderate rain.The merging effect of sparse Pinus massoniana forest on raindrop, aggravated the degree of soil and water loss to some extent.

  16. Soil water dynamics during precipitation in genetic horizons of Retisol

    NASA Astrophysics Data System (ADS)

    Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej

    2017-04-01

    Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume

  17. Biochar particle size, shape, and porosity act together to influence soil water properties

    PubMed Central

    Dugan, Brandon; Masiello, Caroline A.; Gonnermann, Helge M.

    2017-01-01

    Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar’s effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar’s intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles’ elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils. PMID:28598988

  18. Biochar particle size, shape, and porosity act together to influence soil water properties.

    PubMed

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Gonnermann, Helge M

    2017-01-01

    Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar's effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar's intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles' elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils.

  19. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (<-0.1 MPa) levels than where microbial respiration ceases (approximately -15 MPa) as shown in the Figure (violet frequency distribution). Also, this threshold point inferred from SWR shows strong texture dependence, in contrast to the respiration curves. Employing theoretical tools from percolation theory, it is demonstrated that hydrological measurements can be spatially downscaled at a micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and

  20. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  1. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  2. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  3. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  4. Analysis of the Development of Available Soil Water Storage in the Nitra River Catchment

    NASA Astrophysics Data System (ADS)

    Tárník, Andrej; Leitmanová, Mária

    2017-10-01

    World is changing dramatically. Every sphere of our life is influenced by global climate changes, including agriculture sector. Rising air temperature and temporal variability of rainfall are crucial outcomes of climate changes for agricultural activities. Main impact of these outcomes on agriculture is the change of soil water amount. Soil water is an exclusive resource of water for plants. Changes of soil water storage are sensed very sensitively by farmers. Development of soil water storage was analysed in this paper. The Nitra River catchment is covered by nets of hydrological and meteorological stations of Department of Biometeorology and Hydrology, Slovak University of Agriculture in Nitra. Quantity of available soil water storage for plants was calculated every month in the years from 2013 to 2016. Calculations were done based on real measurements for soil horizon 0-30 cm. Ratio between a real available soil water storage and a potential available soil water storage was specified. Amount of potential available soil water storage was derived by retention curves of soil samples. Map of risk areas was created in GIS in pursuance of these calculations. We can see the negative trends of available soil water storage in years 2015 and 2016. Main addition of this paper is a selection of areas where soil moisture is a limiting factor of agriculture. In these areas, it is necessary to do the mitigation measures for sustainable development of agricultural activities.

  5. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, M. J.

    2016-12-01

    Earth is unique in the combination of abundant liquid water, plate tectonics and life, providing the broad context within which the critical zone exists, as the surface skin of the land. Global differences in the availability of water provide a major control on the balance of processes operating in the soil, allowing the development of environments as diverse as those dominated by organic soils, by salty deserts or by deeply weathered lateritic profiles. Within the critical zone, despite the importance of water, the complexity of its relationships with the soil material continue to provide many fundamental barriers to our improved understanding, at the scales of pore, hillslope and landscape. Water is also a vital resource for the survival of increasing human populations. Intensive agriculture first developed in semi-arid areas where the availability of solar energy could be combined with irrigation water from more humid areas, minimising the problems of weed control with primitive tillage techniques. Today the challenge to feed the world requires improved, and perhaps novel, ways to optimise the combination of solar energy and water at a sustainable economic and environmental cost.

  6. Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations

    NASA Astrophysics Data System (ADS)

    Czachor, H.; Doerr, S. H.; Lichner, L.

    2010-01-01

    SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.

  7. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    NASA Astrophysics Data System (ADS)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  8. PCR detection of Burkholderia multivorans in water and soil samples.

    PubMed

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  9. Application of minidisk infiltrometer to estimate soil water repellency

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  10. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in... (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for depreciation...

  11. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  12. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  13. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  14. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  15. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion of...

  16. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  17. Differential effects of fine root morphology on water dynamics in the root-soil interface

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  18. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    PubMed

    Ross, Gregory A; Morris, Garrett M; Biggin, Philip C

    2012-01-01

    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  19. An integrated soil-crop system model for water and nitrogen management in North China

    PubMed Central

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  20. Infiltration in soils with a saturated surface

    NASA Astrophysics Data System (ADS)

    Hogarth, W. L.; Lockington, D. A.; Barry, D. A.; Parlange, M. B.; Haverkamp, R.; Parlange, J.-Y.

    2013-05-01

    An earlier infiltration equation relied on curve fitting of infiltration data for the determination of one of the parameters, which limits its usefulness in practice. This handicap is removed here, and the parameter is now evaluated by linking it directly to soil-water properties. The new predictions of infiltration using this evaluation are quite accurate. Positions and shapes of soil-water profiles are also examined in detail and found to be predicted analytically with great precision.

  1. Bench and Riser Soil Water Content on Semiarid Hillslopes with Terracettes

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Corrao, M.; Eitel, J.; Link, T. E.

    2015-12-01

    Microtopographic features known as terracettes are found throughout many semiarid rangelands. These path-like features roughly perpendicular to the slope are frequently traversed by grazing animals on steep hillslopes. The soil properties and hydrologic function, however, are virtually unknown. This research aimed to identify differences in soil properties between terracette bench and riser features, and their influence on soil water content for two terracetted sites and two non-terracetted control sites (grazed and ungrazed) in Eastern Washington State. Measurements of volumetric water content (θ_v), bulk density, soil texture, saturated hydraulic conductivity, pH, and ECa_a were collected along with compaction, vegetative cover and cattle density throughout the 2013 and 2014 field seasons. Results show small but significant volumetric water content differences between terracette benches and risers in the upper 10 cm with benches exhibiting higher mean θ_v than risers throughout the year. Soil bulk density on benches (1600 kg m-3^{-3}) was significantly higher than that of risers (1300 kg m-3^{-3}) with no differences in soil texture. The saturated hydraulic conductivity on benches was roughly half of that for risers. No significant soil differences were noted below 20 cm depth. Terracetted sites showed greater field-averaged θ_v compared to non-terracetted sites suggesting a positive trend with animal stocking rates. Higher water content on terracette benches is attributed to shifts in pore size distribution with compaction, and a reduction in root-water uptake due to plant-root impedance. This increased soil water does not however increase forage production as it is not accessible to plants.

  2. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    PubMed

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  3. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis

    NASA Astrophysics Data System (ADS)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  4. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  5. Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Zeng, S.; LaManna, J.; Bais, H.; Jin, Y.

    2017-12-01

    Enhancement of plant drought stress tolerance by plant growth promoting rhizobacteria (PGPR) has been increasingly documented in the literature. However, most studies to date have focused on PGPR-root/plant interactions; very little is known about PGPR's role in mediating physiochemical and hydrological changes in the rhizospheric soil that may impact plant drought stress tolerance. Our study seeks to advance mechanistic understanding of PGPR- mediated biophysical changes in the rhizospheric soil that may contribute to plant drought stress tolerance in addition to plant responses. In this study, we measured soil water retention characteristics, hydraulic conductivity, and water evaporation in soils with various textures (i.e., pure sand, sandy soil, and loam) as influenced by a PGPR (Bacillus subtilis strain UD1022) using the instrument HYPROP©. All PGPR-treated soils held more water, had reduced conductivity, and reduced evaporation rate compared to their corresponding controls. While changes in evaporation behavior, i.e., the transition from Stage I to Stage II, due to PGPR addition, occurred in all soils, they differed with soil texture: PGPR prolonged Stage I (but at lower evaporation rate than control) in the pure sand while the bacteria shortened Stage I in the other two soils. These results indicate that PGPR affects evaporation by modifying soil capillarity and wettability that control liquid phase continuity and capillary forces that sustain Stage I evaporation. SEM images show that PGPR promoted aggregation in the pure sand due to EPS production and biofilm formation. On the other hand, modification of soil wettability by EPS/biofilm thus water phase continuity and capillary driving forces likely dominated the PGPR effects in the other two soils. These findings improve our understanding of rhizosphere functions and have implications in developing biotechnologies using PGPR to increase soil water retention, which would help sustain agricultural production

  6. Root zone soil water dynamics and its effects on above ground biomass in cellulosic and grain based bioenergy crops of Midwest USA

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A. K.; Hamilton, S. K.; van Dam, R. L.; Diker, K.; Basso, B.; Glbrc-Sustainability Thrust-4. 3 Biogeochemistry

    2010-12-01

    Root-zone soil moisture constitutes an important variable for hydrological and agronomic models. In agriculture, crop yields are directly related to soil moisture, levels that are most important in the root zone area of the soil. One of the most accurate in-situ methods that has established itself as a recognized standard around the world uses Time Domain Reflectometry (TDR) to determine volumetric water content of the soil. We used automated field-to-desk TDR based systems to monitor temporal (1-hr interval) soil moisture variability in 10 different bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s (GLBRC) sustainability research site in south western Michigan, U.S.A. These crops range from high-diversity, low-input grass mixes to low-diversity, high-input crop monocultures. We equipped the 28 x 40 m vegetation plots with 30 cm long TDR probes at seven depths from 10 cm to 1.25 m below surface. The parent material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. Additional equipment permanently installed for each system includes soil moisture access tubes, multi-depth temperature sensors, and multi-electrode resistivity arrays. The access tubes were monitored using a portable TDR system at bi-weekly intervals. 2D dipole-dipole electrical resistivity tomography (ERT) data are collected in 4-week intervals, while a subset of the electrodes is used for bi-hourly monitoring. The continuous scans (1 hr) provided us the real time changes in water content, replenishment and depletion, providing indications of water uptake by plant roots and potential seasonal water limitation of biomass accumulation. The results show significant seasonal variations between the crops and cropping systems. Significant relationships were observed between soil moisture stress, above-ground biomass and rooting characteristics. The overall goal of the study is to quantify the components of

  7. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  8. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  9. Do anaerobic digestates promote dispersion, acidification and water repellency in soils?

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Horn, Rainer

    2014-05-01

    Digestates are used as organic fertilizer on agricultural land due to their high amounts of nutrients (e.g. potassium, sodium). It is commonly expected that the application of sludge derived from anaerobic digestion can influence the soil structure and soil stability. Due to the fact that digestates contain large quantities of monovalent salts and long-chained fatty acids, the consequence of sludge amendment can be soil degradation caused by acidification, dispersion and increased water-repellency. Thus, water infiltration can be impeded which results in a preservation of stable soil aggregates. However, a diminished water infiltration can support water erosion and preferential flow of easy soluble nutrients into the groundwater. Our research was conducted with different digestates derived from maize, wheat and sugar beet to examine occurring processes in soils of two different textures after the application of anaerobic sludges. Particularly, we focused on the wetting properties of the soil. For this purpose, the wetting behavior was investigated by determining the sorptivity-based Repellency Index with moist samples and the contact angle with homogenized, air-dried soil material. Further surveys were carried out to assess the flow behavior of digestates application and the deformation of the particle-to-particle association by microscaled shearing. Additionally, the acidification process in the soil as a result of sludge application was investigated. To account for the dispersive impact of digestates, the turbidity of soil suspensions was ascertained. We summarize from the results that the digestates have a clear impact on the water repellency of the soil. We recognized a shift to more hydrophobic conditions. Partially, the pH remains on a high level due to the alkaline digestate, but several samples show a decline of pH, depending on the soil texture, respectively. However, soil structure was weakened as was shown by an increase of turbidity. As a conclusion, we

  10. Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water.

    PubMed

    Shaner, Dale; Brunk, Galen; Nissen, Scott; Westra, Phil; Chen, Wenlin

    2012-01-01

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Climatic variability of soil water in the American Midwest: Part 2. Spatio-temporal analysis

    NASA Astrophysics Data System (ADS)

    Georgakakos, Konstantine P.; Bae, Deg-Hyo

    1994-11-01

    A study of the model-estimated soil water, aggregated over three large drainage basins of the Midwestern USA, is reported. The basin areas are in the range from 2000 km 2 to 3500 km 2, and allow the study of mesoscale (1000-10000 km 2) soil water features. In each case, a conceptual hydrologic model was used to produce upper and lower soil water estimates that are consistent with the atmospheric forcing of daily precipitation, potential evapotranspiration and air temperature, and with the observed daily streamflow divergence over a 40 year period. It is shown that the water contents of the upper and lower soil reach peaks in different months, with the soil column being most saturated in June, when the area is prone to serious flooding. Temporal and spatial features of the variability of model-estimated soil water content are identified. The autocorrelation function of monthly averaged soil water shows that the upper soil water remains persistent for about a season, whereas the persistence of the lower soil water extends to several seasons. The soil water estimates of the three study basins exhibit strong similarities in annual cycles and interannual variability. It is shown that the frequency of significant positive (wet) soil water anomalies that extend over a 2° × 2° region is lower than that of significant negative (dry) ones of the same extent in this region of the USA.

  12. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  13. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments

    PubMed Central

    Alves, Priscila Divina Diniz; Siqueira, Flávia de Faria; Facchin, Susanne; Horta, Carolina Campolina Rebello; Victória, Júnia Maria Netto; Kalapothakis, Evanguedes

    2014-01-01

    Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports. PMID:24847390

  14. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  15. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  16. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    USDA-ARS?s Scientific Manuscript database

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  17. Temperature Dynamics in Very Shallow Water Bodies: the Role of Heat Fluxes at the Soil-Water Interface

    NASA Astrophysics Data System (ADS)

    Pivato, M.; Carniello, L.; Silvestri, S.; Marani, M.; Gardner, J.

    2016-12-01

    Water temperature represents one of the crucial factors driving the ecological processes in water bodies. Many contributions are available in the literature that describe temperature dynamics in deep basins as lakes or seas. Those basins are typically stratified which makes important to represent the vertical profile of the water temperature. Dealing with shallow water bodies, such as rivers, shallow lakes and lagoons, simplifies the problem because the water temperature can be assumed uniform in the water column. Conversely, the heat exchange at the soil-water interface assumes an important role in the water temperature dynamics. Notwithstanding, very few studies and data about this process are available in the literature. In order to provide more insight on the soil contribution to water temperature dynamics, we performed ad hoc field measurements in the Venice lagoon,. We selected a location on a tidal flat in the northern part of the lagoon, close to the Sant'Erasmo Island, where we measured the temperature within the water column and the first 1.5 m of the soil. Data collection started in July 2015 and is still ongoing. We used the data to characterize the heat flux at the water-soil interface in different periods of the year and to develop a "point" model for describing the evolution of the temperature in the water column. The insight on the process provided by the data and by the point model: i) enabled us to determine the soil thermal properties (diffusivity and heat capacity); ii) confirms the uniform profile of the water temperature in the water column; iii) demonstrates that the heat flux at the soil-water interface is comparable with other fluxes at the air-water interface and iv) highlights the important role exerted by advective water fluxes. The latter will be accounted for developing a module for describing the dynamic of the temperature to be coupled with an already existing 2D hydrodynamic model of the Venice lagoon.

  18. Research progress and harnessing method of soil and water loss in Pisha Sandstone region

    NASA Astrophysics Data System (ADS)

    Xiao, P. Q.; Yang, C. X.; Jing, C. R.

    2018-05-01

    Pisha Sandstone region is the most vulnerable and the most dramatic area of soil erosion, severe soil erosion on the ecological bases of China’s energy security constitutes a serious challenge. Research progress of soil erosion in pisha Sandstone region was reviewed based on the need of soil and water ecological construction in Pisha Sandstone region and harnessing the yellow river including soil erosion mechanism, soil erosion dynamic monitoring and soil erosion simulation assessments. Meanwhile, the latest progress of soil and water conservation measures was analyzed, and the existing problems and future harnessing measures of soil and water loss were discussed. This study is to explore the comprehensive management method and provide scientific theory for constructing soil and water conservation project in Pisha Sandstone region.

  19. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    USGS Publications Warehouse

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  1. Soil water retention within an eroded and restored landscape

    USDA-ARS?s Scientific Manuscript database

    Significant changes in soil properties and productivity have occurred as a result of intensive row crop production. Many of these changes are related to soil loss from water, wind, and tillage erosion. Soil is lost from convex and steeper landscape positions and deposited in concave lower landscape ...

  2. Soil water retention and plant growth response on the soil affected by continuous organic matter and plastic mulch application

    NASA Astrophysics Data System (ADS)

    Rasyid, B.; Oda, M.; Omae, H.

    2018-05-01

    Soil-water and plant growth interaction is a primary key to develop environmental plant production system. The objective of this research is to evaluate change in soil water retention characteristics and plant response as the effect of continuous organic matter and plastic mulch application. The experiment was conducted in the plastic house field with plot size of 5 m (length) x 1 m (width). The field had treatments of plastic mulch type (mesh and poly) and no mulch, nitrogen (0, 10 and 40 kg N ha-1), and 2 ton ha-1 organic matter (incorporated into all plots). Water retention measurement using sand box method for low suction and pressure plate apparatus was applied for high suction. Completely randomized block experimental design and Duncan-MRT were used to analysis the effect of treatment on the parameters. Soil organic carbon and nitrogen increased slightly in both mulch types, but C:N ratio decreased in poly mulch which had the lowest value during two planting season. Various change in soil water retention was shown in different mulch type with mesh mulch had the highest result on lower suction, and control was the lowest water retention on the high suction. Soil water availability was highest in mesh mulch type followed by control and poly mulch type. This study could conclude that continuous incorporation of organic matter and mesh-plastic mulch was useful in achieving environments to improve soil C:N ratio and soil water retention.

  3. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  4. Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.

    PubMed

    Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo

    2015-07-01

    Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  6. Soil water content spatial pattern estimated by thermal inertia from air-borne sensors

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio

    2010-05-01

    Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.

  7. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    NASA Astrophysics Data System (ADS)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  8. Modeling the soil water retention curves of soil-gravel mixtures with regression method on the Loess Plateau of China.

    PubMed

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel

  9. Comparing hydraulic properties of soil-less substrates with natural soils: a more detailed look at hydraulic properties and their impact on plant water availability

    NASA Astrophysics Data System (ADS)

    Crawford, L.; Rivera, L. D.; van Iersel, M.

    2013-12-01

    Moisture release curves are often used when assessing plant-water relationships in soil-less substrates. However, differences between natural soils and soilless substrates make traditional assumptions about plant available water potentially invalid. If soil-less substrates are supposed to be treated like natural soils; why do plants begin wilting at very low water potentials (-10 to -30 kPa) and there is anywhere between 20 to 40 % water left (on a volumetric basis) in the soil (Abad et al., 2005; Arguedas et al., 2006; Ristvey et al, 2008) . We hypothesize that the fault lies in the methods used and the assumption that water potential is the only limiting factor in water availability to plants. Hydraulic properties, including the relationships that exist between plant available water, water content, and hydraulic conductivity of soil-less substrates have traditionally been characterized using instrumentation such as pressure plates, hanging water columns, and tempe cells. These approaches typically take a months and only provide data on select segments of the soil moisture release curve, and in the case of pressure plates and hanging water columns hydraulic conductivity is ignored and not very well understood. Using the Wind/Schindler Evaporation method more detailed measurements of these hydraulic properties can be measured in a less than a week. A more detailed look at the hydraulic properties of soil-less substrates and how they compare with natural soils may give us more insight into soil-plant-water-relations and what limits availability of water to plants. Soil moisture release curves and hydraulic conductivity curves of different soil-less substrates were compared with curves from typical agriculture soils to give insight into how these properties compare. Results of the soil moisture release curves showed that some soil-less substrates had comparable moisture release curves to agricultural soils while others had bi-modal curves indicating gap-gradation in

  10. Incorporating soil variability in continental soil water modelling: a trade-off between data availability and model complexity

    NASA Astrophysics Data System (ADS)

    Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.

    2012-04-01

    Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non

  11. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    PubMed

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  12. Comparison of corn transpiration, eddy covariance, and soil water loss

    USDA-ARS?s Scientific Manuscript database

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  13. Closing the loop of the soil water retention curve

    USGS Publications Warehouse

    Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.

    2015-01-01

    The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.

  14. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    NASA Astrophysics Data System (ADS)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  15. Soil and Water Conservation for a Better America. A Framework Plan.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Through this framework plan, the Soil Conservation Service (SCS) takes a look ahead to its soil and water conservation mission, a look at its direction and thrust in helping create a desirable America in the decades ahead. The plan attempts to define the nature of soil and water conservation efforts, to put them in perspective, and to present a…

  16. Effect of harvesting on forest soil and water in an organic soil watershed

    Treesearch

    J.M. Grace; R.W. Skaggs

    2006-01-01

    Timber harvest operations are necessary and common in forest management to provide profitability and satisfy demands for timber products. Harvesting operations, as with most forest operations, have received much attention in regards to soil and water issues. Harvesting operations have been reported to affect soil physical properties and hydrological characteristics...

  17. Improved soil water deficit estimation through the integration of canopy temperature measurements into a soil water balance model

    USDA-ARS?s Scientific Manuscript database

    Correct prediction of the dynamics of total available water in the root zone (TAWr) is critical for irrigation management as shown in the soil water balance model presented in FAO paper 56 (Allen et al., 1998). In this study, we propose a framework to improve TAWr estimation by incorporating the cro...

  18. Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching.

    PubMed

    Lavigne, M B; Foster, R J; Goodine, G

    2004-04-01

    Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn.

  19. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Treesearch

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  1. [Effects of supplemental irrigation by monitoring soil moisture on the'water-nitrogen utilization of wheat and soil NO3(-)-N leaching].

    PubMed

    Shi, Yu; Yu, Zhen-wen; He, Jian-ning; Zhang, Yong-li

    2016-02-01

    Field experiments were conducted during 2012-2014 wheat growing seasons. With no irrigation in the whole stage (WO) treatment as control, three supplemental irrigation treatments were designed based on average relative soil moisture contents at 0-140-cm layer, at jointing and anthesis stages (65% for treatment W1 ; 70% for treatment W2; 75% for treatment W3; respectively), to examine effects of supplemental irrigation on nitrogen accumulation and translocation, grain yield, water use efficiency, and soil nitrate nitrogen leaching in wheat field., Soil water consumption amount, the percentage of soil water consumption and water irrigation to total water consumption in W2 were higher, and soil water consumption of W2 in 100-140 cm soil layer was also higher. The nitrogen accumulation before anthesis and after anthesis were presented as W2, W3>W1>W0, the nitrogen accumulation in vegetative organs at maturity as W3>W2>Wl>W0, and the nitrogen translocation from vegetative organs to grain and the nitrogen accumulation in grain at maturity as W2> W3>W1>W0. At maturity, soil NO3(-)-N content in 0-60 cm soil layer was presented. as W0>W1>W2>W3, that in 80-140 cm soil layer was significantly higher in W3 than in the other treatments, and no significant difference was found in 140-200 cm soil layer among all treatments. W treatment obtained the highest grain yield, water use efficiency, nitrogen uptake efficiency and partial productivity of applied nitrogen. As far as grain yield, water use efficiency, nitrogen uptake efficiency and soil NO3(1)-N leaching were concerned, the W2 regime was the optimal irrigation treatment in this experiment.

  2. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  3. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  4. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  5. Determination of kinetic isotopic fractionation of water during bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri

    2017-04-01

    A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal

  6. Principles of water capture, evaporation, and soil water retention

    USDA-ARS?s Scientific Manuscript database

    Successful dryland crop production in semiarid environments is dependent upon efficient storage of precipitation and use of stored soil water supplies. The objectives of this presentation are to: 1. Summarize information regarding the effects of time of year; environmental parameters; residue orient...

  7. Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils

    DOE PAGES

    Manzoni, S.; Katul, G.

    2014-09-30

    We report that soil microbial respiration rates decrease with soil drying, ceasing below water potentials around -15 MPa. A proposed mechanism for this pattern is that under dry conditions, microbes are substrate limited because solute diffusivity is halted due to breaking of water film continuity. However, pore connectivity estimated from hydraulic conductivity and solute diffusivity (at Darcy's scale) is typically interrupted at much less negative water potentials than microbial respiration (-0.1 to -1 MPa). It is hypothesized here that the more negative respiration thresholds than at the Darcy's scale emerge because microbial activity is restricted to microscale soil patches thatmore » retain some hydrological connectivity even when it is lost at the macroscale. This hypothesis is explored using results from percolation theory and meta-analyses of respiration-water potential curves and hydrological percolation points. Lastly, when reducing the spatial scale from macroscale to microscale, hydrological and respiration thresholds become consistent, supporting the proposed hypothesis.« less

  8. Crop systems and plant roots can modify the soil water holding capacity

    NASA Astrophysics Data System (ADS)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    At the interface between atmosphere and deep sub-soil, the root zone plays a major role in regulating the flow of water between major compartments: groundwater / surface / atmosphere (drainage, runoff, evapotranspiration). This role of soil as regulator/control of water fluxes, but also as a supporting medium to plant growth, is strongly dependent on the hydric properties of the soil. In turn, the plant roots growing in the soil can change its structure; both in the plow layer and in the deeper horizons and, therefore, could change the soil properties, particularly hydric properties. Such root-related alteration of soil properties can be linked to direct effect of roots such as soil perforation during growth, aggregation of soil particles or indirect effects such as the release of exudates by roots that could modify the properties of water or of soil particles. On an another hand, the rhizosphere, the zone around roots influenced by the activity of root and associated microorganisms, could have a high influence on hydric properties, particularly the water retention. To test if crops and plant roots rhizosphere may have a significant effect on water retention, we conducted various experiment from laboratory to field scales. In the lab, we tested different soil and species for rhizospheric effect on soil water retention. Variation in available water content (AWC) between bulk and rhizospheric soil varied from non-significant to a significant increase (to about 16% increase) depending on plant species and soil type. In the field, the alteration of water retention by root systems was tested in different pedological settings for a Maize crop inoculated or not with the bacteria Azospirillum spp., known to alter root structure, growth and morphology. Again, a range of variation in AWC was evidenced, with significant increase (~30%) in some soil types, but more linked to innoculated/non-innoculated plants rather than to a difference between rhizospheric and bulk soil

  9. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m-3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m-3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  10. Soil Water Content Sensors as a Method of Measuring Ice Depth

    NASA Astrophysics Data System (ADS)

    Whitaker, E.; Reed, D. E.; Desai, A. R.

    2015-12-01

    Lake ice depth provides important information about local and regional climate change, weather patterns, and recreational safety, as well as impacting in situ ecology and carbon cycling. However, it is challenging to measure ice depth continuously from a remote location, as existing methods are too large, expensive, and/or time-intensive. Therefore, we present a novel application that reduces the size and cost issues by using soil water content reflectometer sensors. Analysis of sensors deployed in an environmental chamber using a scale model of a lake demonstrated their value as accurate measures of the change in ice depth over any time period, through measurement of the liquid-to-solid phase change. A robust correlation exists between volumetric water content in time as a function of environmental temperature. This relationship allows us to convert volumetric water content into ice depth. An array of these sensors will be placed in Lake Mendota, Madison, Wisconsin in winter 2015-2016, to create a temporally high-resolution ice depth record, which will be used for ecological or climatological studies while also being transmitted to the public to increase recreational safety.

  11. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  12. Why biochar application did not improve the soil water retention of a sandy soil: An investigation into the underlying mechanisms.

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Meinders, Marcel B. J.; Stoof, Cathelijne; Bezemer, T. Martijn; vande Voorde, Tess F. J.; Mommer, Liesje; Willem van Groenigen, Jan

    2015-04-01

    Biochar application to soil is currently being widely touted as a means to improve soil quality and to enhance the provision of numerous ecosystem services, including water storage, in soils. However, evidence for hydrological effects in the primary literature remain inconclusive with contradictory effects reported. The mechanisms behind such contradictory results are not yet elucidated. As such we aimed to investigate the effects of biochar on soil water retention and infiltration, as well as the underlying mechanisms. To do so we set up two field experiments with biochar produced from herbaceous feedstock through slow pyrolysis at two temperatures (400°C and 600°C). In the first experiment both biochars were applied at a rate of 10 t ha-1 to separate plots in a sandy soil in a North European grassland. In a separate experiment, the biochar produced at 400°C was applied to a different set of plots in the same grassland at rates equivalent to 1, 5, 20 and 50 t ha-1. Soils from these experiments were analysed for soil water retention and infiltration rate as well as aggregate stability and other soil physical parameters. The pore structure of the biochar was fully characterised using X-ray computed micro-tomography (XRT) and hydrophobicity determined using contact angle measurements. There were no significant effects of biochar application on soil water retention, field saturated conductivity or aggregate stability in either experiment. XRT analysis of the biochars confirmed that the biochars were highly porous, with 48% and 57% porosity for the 400°C and 600°C biochars, respectively. More than 99% of internal pores of the biochar particles were connected to the surface, suggesting a potential role for biochars in improving soil water retention. However, the biochars were highly hydrophobic as demonstrated by the high contact angles when water was applied. We suggest that this hydrophobicity greatly diminished water infiltration into the biochar particles

  13. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds

    PubMed Central

    Ma, Xueyan; He, Qijin; Zhou, Guangsheng

    2018-01-01

    The sequence of changes in crop responding to soil water deficit and related critical thresholds are essential for better drought damage classification and drought monitoring indicators. This study was aimed to investigate the critical thresholds of maize growth and physiological characteristics responding to changing soil water and to reveal the sequence of changes in maize responding to soil water deficit both in seedling and jointing stages based on 2-year’s maize field experiment responding to six initial soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits were newly adopted to identify critical thresholds of maize growth and physiological characteristics to a wide range of soil water status. The results showed that in both stages maize growth characteristics related to plant water status [stem moisture content (SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive to soil water deficit, while biomass-related characteristics were less sensitive. Under the concurrent weather conditions and agronomic managements, the critical soil water thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC, LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively, in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It indicated that there is a sequence of changes in maize responding to soil water deficit, i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas exchange > leaf area in both stages. This sequence of changes in maize responding to soil water deficit and related critical thresholds may be better indicators of damage classification and drought monitoring. PMID:29765381

  14. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  15. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  16. Responses of seminal wheat seedling roots to soil water deficits.

    PubMed

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation

    NASA Astrophysics Data System (ADS)

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš

    2017-07-01

    A myriad of signal pre-processing strategies and multivariate calibration techniques has been explored in attempt to improve the spectroscopic prediction of soil organic carbon (SOC) over the last few decades. Therefore, to come up with a novel, more powerful, and accurate predictive approach to beat the rank becomes a challenging task. However, there may be a way, so that combine several individual predictions into a single final one (according to ensemble learning theory). As this approach performs best when combining in nature different predictive algorithms that are calibrated with structurally different predictor variables, we tested predictors of two different kinds: 1) reflectance values (or transforms) at each wavelength and 2) absorption feature parameters. Consequently we applied four different calibration techniques, two per each type of predictors: a) partial least squares regression and support vector machines for type 1, and b) multiple linear regression and random forest for type 2. The weights to be assigned to individual predictions within the ensemble model (constructed as a weighted average) were determined by an automated procedure that ensured the best solution among all possible was selected. The approach was tested at soil samples taken from surface horizon of four sites differing in the prevailing soil units. By employing the ensemble predictive model the prediction accuracy of SOC improved at all four sites. The coefficient of determination in cross-validation (R2cv) increased from 0.849, 0.611, 0.811 and 0.644 (the best individual predictions) to 0.864, 0.650, 0.824 and 0.698 for Site 1, 2, 3 and 4, respectively. Generally, the ensemble model affected the final prediction so that the maximal deviations of predicted vs. observed values of the individual predictions were reduced, and thus the correlation cloud became thinner as desired.

  18. Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain, northeast China.

    PubMed

    Xi, Min; Lu, Xian-Guo; Li, Yue; Kong, Fan-Long

    2007-01-01

    Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soil-water solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R2 = 0.3122 and R2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affected the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.

  19. Electrical Resistance Imaging for Evaluation of Soil-Water Behavior in Desert Ecosystems

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2009-05-01

    As part of an effort to evaluate habitat types in the Mojave National Preserve, we conducted infiltration/redistribution experiments to investigate unsaturated hydraulic properties and soil-water dynamics. Two investigated locations contrasted sharply in degree of pedogenic development: (1) recently deposited sediments in an active wash and (2) a highly developed soil of late Pleistocene age. Water flow through these materials may be strongly influenced by such features as biotic crusts, vesicular horizons, textural variations, calcic horizons, preferential flow paths, and other forms of vertical and lateral spatial variability. In each location we ponded water in a 1-m-diameter infiltration ring for 2.3 h, generating 1.93 m of infiltration in the active wash and 0.52 m in the Pleistocene soil. Combining input flux data with quantitative knowledge of water content and soil water pressure over space and time provides a basis for estimating soil hydraulic properties. TDR probes and tensiometers, placed outside but within a few m of the infiltration pond at depths to 1.5 m, provided subsurface hydraulic data. In addition to probe measurements, we conducted electrical resistance imaging (ERI) measurements during the infiltration period and for six days of redistribution. Electrodes were in two crossed lines at the surface, 24 in each, at 0.5 m spacing. On each line data were collected over an eight- minute period using a hybrid geometry, with 0 to 6 electrodes skipped between those used for the measurement. Relative change in the inverted resistivities relates to relative change in soil water content. Spatially exhaustive and minimally invasive characterization is valuable because of the extreme difficulty of quantifying soil-moisture distribution over a broad heterogeneous area using a set of individual probes. Soil moisture data directly under the ponded area are especially important, and ERI was our only means for such measurements because probe installation would

  20. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  1. TDR water content inverse profiling in layered soils during infiltration and evaporation

    NASA Astrophysics Data System (ADS)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance

  2. Soil Water Characteristics of Cores from Low- and High-Centered Polygons, Barrow, Alaska, 2012

    DOE Data Explorer

    Graham, David; Moon, Ji-Won

    2016-08-22

    This dataset includes soil water characteristic curves for soil and permafrost in two representative frozen cores collected from a high-center polygon (HCP) and a low-center polygon (LCP) from the Barrow Environmental Observatory. Data include soil water content and soil water potential measured using the simple evaporation method for hydrological and biogeochemical simulations and experimental data analysis. Data can be used to generate a soil moisture characteristic curve, which can be fit to a variety of hydrological functions to infer critical parameters for soil physics. Considering the measured the soil water properties, the van Genuchten model predicted well the HCP, in contrast, the Kosugi model well fitted LCP which had more saturated condition.

  3. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  4. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be

  5. Evaluation of Procedures for Isolation of Nontuberculous Mycobacteria from Soil and Water

    PubMed Central

    Kamala, T.; Paramasivan, C. N.; Herbert, Daniel; Venkatesan, P.; Prabhakar, R.

    1994-01-01

    Six methods of decontamination each for the isolation of mycobacteria from soil and water were compared. On the basis of the results obtained, three of the six methods for soil and two of the six methods for water were further evaluated. For both soil and water samples, the method using 3% sodium lauryl sulfate in combination with 1% NaOH yielded more positives than the other methods. PMID:16349208

  6. NASAs Soil Moisture Active Passive (SMAP) Mission and Opportunities For Applications Users

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa; Moran, Susan; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni G.; Doorn, Brad; Entin, Jared K.

    2013-01-01

    Water in the soil, both its amount (soil moisture) and its state (freeze/thaw), plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways from the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.

  7. Organic Matter and Water Addition Enhance Soil Respiration in an Arid Region

    PubMed Central

    Lai, Liming; Wang, Jianjian; Tian, Yuan; Zhao, Xuechun; Jiang, Lianhe; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun

    2013-01-01

    Climate change is generally predicted to increase net primary production, which could lead to additional C input to soil. In arid central Asia, precipitation has increased and is predicted to increase further. To assess the combined effects of these changes on soil CO2 efflux in arid land, a two factorial manipulation experiment in the shrubland of an arid region in northwest China was conducted. The experiment used a nested design with fresh organic matter and water as the two controlled parameters. It was found that both fresh organic matter and water enhanced soil respiration, and there was a synergistic effect of these two treatments on soil respiration increase. Water addition not only enhanced soil C emission, but also regulated soil C sequestration by fresh organic matter addition. The results indicated that the soil CO2 flux of the shrubland is likely to increase with climate change, and precipitation played a dominant role in regulating soil C balance in the shrubland of an arid region. PMID:24204907

  8. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)

    NASA Astrophysics Data System (ADS)

    Wang, S. G.; Li, X.; Han, X. J.; Jin, R.

    2011-05-01

    Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  9. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    PubMed

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  10. Generating a global soil evaporation dataset using SMAP soil moisture data to estimate components of the surface water balance

    NASA Astrophysics Data System (ADS)

    Carbone, E.; Small, E. E.; Badger, A.; Livneh, B.

    2016-12-01

    Evapotranspiration (ET) is fundamental to the water, energy and carbon cycles. However, our ability to measure ET and partition the total flux into transpiration and evaporation from soil is limited. This project aims to generate a global, observationally-based soil evaporation dataset (E-SMAP): using SMAP surface soil moisture data in conjunction with models and auxiliary observations to observe or estimate each component of the surface water balance. E-SMAP will enable a better understanding of water balance processes and contribute to forecasts of water resource availability. Here we focus on the flux between the soil surface and root zone layers (qbot), which dictates the proportion of water that is available for soil evaporation. Any water that moves from the surface layer to the root zone contributes to transpiration or groundwater recharge. The magnitude and direction of qbot are driven by gravity and the gradient in matric potential. We use a highly discretized Richards Equation-type model (e.g. Hydrus 1D software) with meteorological forcing from the North American Land Data Assimilation System (NLDAS) to estimate qbot. We verify the simulations using SMAP L4 surface and root zone soil moisture data. These data are well suited for evaluating qbot because they represent the most advanced estimate of the surface to root zone soil moisture gradient at the global scale. Results are compared with similar calculations using NLDAS and in situ soil moisture data. Preliminary calculations show that the greatest amount of variability between qbot determined from NLDAS, in situ and SMAP occurs directly after precipitation events. At these times, uncertainties in qbot calculations significantly affect E-SMAP estimates.

  11. Soil-water relations of shallow forested soils during flash floods in West Virginia

    Treesearch

    James H. Patric

    1981-01-01

    On May 24, 1978, heavy rain caused flash flooding on densely forested land near Parsons, in Tucker County, West Virginia. Poststorm evidences of soil and water behavior were examined in detail on soils related to the Dekalb and Leetonia series. Other flash floods struck seven forested sections of the state in August. Less detailed observation after these storms...

  12. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types.

    Treesearch

    F.C. Meinzer; J.R. Brooks; S. Bucci; G. Goldstein; F.G. Scholz; J.M. Arren

    2004-01-01

    We used concurrent measurements of soil water content and soil water potential (Ψsoil) to assess the effects of Ψsoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetations and...

  13. Effect of Time-Dependent Sorption on the Dissipation of Water-Extractable Pesticides in Soils.

    PubMed

    Motoki, Yutaka; Iwafune, Takashi; Seike, Nobuyasu; Inao, Keiya; Otani, Takashi

    2016-06-08

    The dissipation behavior of water-extractable pesticides in soils is important when assessing the phytoavailability of pesticides in soils. This process is less understood than pesticide extraction with organic solvents. To elucidate the dissipation behavior of water-extractable pesticides in soils, we conducted an incubation study using 27 pesticides and five Japanese soils. The rate of decrease of the level of pesticides in water extracts was faster in soils than that of total extracts (water extracts and acetone extracts). This suggests that time-dependent sorption contributed to the difference in the dissipation between the pesticides in water and total extracts from soils. Increased apparent sorption coefficients (Kd,app) with time were positively and significantly correlated with Kd,app values of a 0 day incubation [Kd,app(t0)]. This empirical relationship suggests that Kd,app(t0) values can predict the time-dependent increase in Kd,app and the dissipation of water-extractable pesticides in soils.

  14. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    PubMed

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modeling the Soil Water Retention Curves of Soil-Gravel Mixtures with Regression Method on the Loess Plateau of China

    PubMed Central

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel

  16. Moving forward on remote sensing of soil salinity at regional scale

    USDA-ARS?s Scientific Manuscript database

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  17. Improvement of Soil and Water Conservation Outdoor Classrooms and Volunteers in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Lin, Y. H.; Huang, K. F.; Chan, H. C.

    2016-12-01

    In order to improve the knowledge and understanding of soil and water conservation, the Soil and Water Conservation Bureau, Taiwan sets up soil and water conservation outdoor classrooms and assigns volunteers for on-site commentating. There are 19 soil and water conservation outdoor classrooms and 483 volunteers. In order to intergate education resource and improve quality, the examination of outdoor classrooms and training of the volunteers were conducted. The training programs aimed to improve the standard of living, promote a general mood of voluntary service, and encourage the public to cultivate the value of hometown-treasuring and the sentiment of people-helping. The service system of volunteers was also organized through the training programs. The assessments of soil and water conservation outdoor classrooms were conducted through the on-site investigations. The improvement suggestions were then put forward according to the characteristics of the classrooms. The improvement contents were compiled for each outdoor classroom and there are five common suggestions depicted as follows: 1. the expectations of internationalization; 2. the issues of land leases; 3. improvement of traffic flow; 4. the format and information of explanation boards should be unified; and 5. the issues of facility maintaining. Key words: Soil and water conserveation, Volunteer, Outdoor classroom.

  18. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  19. The chemistry of salt-affected soils and waters

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  20. The dielectric properties of soil-water mixtures at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1979-01-01

    Recent measurements on the dielectric constants of soil-water mixtures show the existence of two frequency regions in which the dielectric behavior of these mixtures was quite different. At the frequencies of 1.4 GHz to 5 GHz, there were strong evidences that the variations of the dielectric (epsilon) with water content (W) depended on soil type. While the real part of epsilon for sandy soils rose rapidly with the increase in W, epsilon for the high-clay content soils rose only slowly with W. As a consequence, epsilon was generally higher for the sandy soils than for the high-clay content soils at a given W. On the other hand, most of the measurements at frequencies 1 GHz indicated the increase of epsilon with W independent of soil types. At a given W, epsilon' (sandy soil) approximately equals epsilon (high-clay content soil) within the precision of the measurements. These observational features can be satisfactorily interpreted in terms of a simple dielectric relaxation model, with an appropriate choice of the mean relaxation frequency f(m) and the range of the activation energy (beta). It was found that smaller f(m) and larger beta were required for the high-clay content soils than the sandy soils in order to be consistent with the measured data.

  1. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    PubMed

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  2. Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.

    PubMed

    Gao, Suduan; Trout, Thomas J

    2006-01-01

    High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.

  3. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  4. Effect of Soil Water on Infectivity and Development of Rotylenchulus reniformis on Soybean, Glycine max

    PubMed Central

    Rebois, R. V.

    1973-01-01

    The effect of soil water content on Rotylenchulus reniformis infectivity of 'Lee' soybean roots was investigated in an autoclaved sandy clay loam. Nematodes were introduced into soil masses maintained at constant soil water levels ranging from 3.4 to 19% by weight. Seedling growth and the soil water content-water potential relationships of the soil were determined. Nematode infectivity was greatest when the soil water content was maintained just below field capacity in the 7.2 (-1/3 bar) to 13.0% (-1/7 bar) ranges. Nematode invasion of roots was reduced in the wetter 15.5 (-1/10 bar) to 19.0% (-1 /2 0 bar) soil moisture ranges and in the dryer 3.4 (-15 bar) to 5.8% (-3/4 bar) soil moisture ranges. PMID:19319344

  5. Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested watershed with calcium-poor soils

    USGS Publications Warehouse

    McHale, M.R.; Burns, Douglas A.; Lawrence, G.B.; Murdoch, Peter S.

    2007-01-01

    The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996-1997. The interactions among acidity, nitrate (NO3- ), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3- concentration was about 20 ??mol l-1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 ??mol l -1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4-fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3- concentrations were strongly correlated in B-horizon soil water after the clearcut (r2 = 0.96), especially at NO3- concentrations greater than 100 ??mol l-1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3- which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO 3- concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3- concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3- concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest

  6. Transport of oxaliplatin species in water-saturated natural soil.

    PubMed

    Goykhman, Natalia; Dror, Ishai; Berkowitz, Brian

    2018-06-05

    This study reports the transport characteristics of the organometallic anticancer compound oxaliplatin and its derivatives in natural soil-water environments. Although pharmaceuticals and their derivatives have for many years been detected in water resources, and linked to toxicological impacts on ecological systems, their transport in soil and groundwater is not fully understood. Specifically, studies that describe transport of organometallic pharmaceuticals in porous media are rare, and the transport characteristics of platinum complexes have received little attention. Oxaliplatin transport was studied in sand, as a function of two added natural chelators (citrate and humic acid), and in soil, under four continuously monitored, environmentally-relevant redox conditions: oxic, nitrate reducing, iron reducing and methanogenic. In sand, oxaliplatin species retention was about 7%, and affected only mildly by added citrate, and by humic acid under buffered pH. Transport with unbuffered humic acid was affected significantly by pH variations, and exhibited strong retention at pH < 8. In soil, unexpectedly similar breakthrough patterns of oxaliplatin species were found for all redox conditions, exhibiting linear, reversible retention of 79-87%. The strongest retention was observed under iron reducing conditions, whereas the weakest retention was under oxic conditions. Increased cation activity appears to promote weaker sorption. The results indicate that soil composition is the leading factor affecting oxaliplatin species mobility and fate in the soil-water environment, followed by the weaker factors of redox conditions and cation activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  8. Multiscale Bayesian neural networks for soil water content estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil

  9. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    NASA Astrophysics Data System (ADS)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  10. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  11. Increased ambient air temperature alters the severity of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  12. Modelling soil erosion at European scale: towards harmonization and reproducibility

    NASA Astrophysics Data System (ADS)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  13. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  14. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process

  15. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T

  16. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to

  17. Biodegradation of N-nitrosodimethylamine in soil from a water reclamation facility

    USGS Publications Warehouse

    Bradley, Paul M.; Carr, Steve A.; Baird, Rodger B.; Chapelle, Francis H.

    2005-01-01

    The potential introduction of N-nitrosodimethylamine (NDMA) into groundwater during water reclamation activities poses a significant risk to groundwater drinking supplies. Greater than 54% biodegradation of N-[methyl-14C]NDMA to 14CO2 or to 14CO2 and 14CH4 was observed in soil from a water reclamation facility under oxic or anoxic conditions, respectively. Likewise, biodegradation was significant in microcosms containing soil with no history of NDMA contamination. These results indicate that aerobic and anaerobic biodegradation of NDMA may be an effective component of NDMA attenuation in water reclamation facility soils.

  18. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.

    2011-03-01

    SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support

  19. Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Schramm, Karl-Werner; Kettrup, Antonius

    2002-08-30

    The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (Koc) was developed based on correlations with k in soil/water systems. Strong log Koc versus log k correlations (r>0.96) were found. The estimated Koc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated Koc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications.

  20. Analyzing ecological restoration strategies for water and soil conservation

    PubMed Central

    Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214

  1. Analyzing ecological restoration strategies for water and soil conservation.

    PubMed

    Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.

  2. Effect of Soil Water Potential on Survival of Meloidogyne javanica in Fallow Soil

    PubMed Central

    Towson, A. J.; Apt, W. J.

    1983-01-01

    A natural infestation of Meloidogyne javanica in an aggregated Oxisol declined at an exponential rate when aliquots of the soil were stored for 72 days in polyethylene bags at various soil water potentials (Ψ). Time periods required for reduction in soil infestations by 50% were 2.7, 4.9, 110, 10, and 2.6 days at Ψ of -0.16, -0.30, -1.1, -15, and -92 bars, respectively. In the wetter soils, at Ψ of -0.16, -0.30, and -1.1 bars, the predominant stage recovered was the second-stage larva. In the drier soils, at Ψ of -15 and -92 bars, both eggs and larvae were recovered with neither stage predominating. Incidence of coiled larvae was inversely related to the Ψ value of the soil, a greater incidence occurring in the drier soils. After 15-32 days, percentages of coiled larvae were 13, 27, 55, 65, and 88% in soil at Ψ of -0.17, -0.60, -1.9, -15, and -82 bars, respectively. PMID:19295774

  3. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  4. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  5. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  6. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  7. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  8. How Accurately Do Maize Crop Models Simulate the Interactions of Atmospheric CO2 Concentration Levels With Limited Water Supply on Water Use and Yield?

    NASA Technical Reports Server (NTRS)

    Durand, Jean-Louis; Delusca, Kenel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Weigel, Hans Johachim; Ruane, Alexander Clark; Rosenzweig, Cynthia E.; Jones, Jim; Ahuja, Laj; hide

    2017-01-01

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration [CO2] on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50 percent of models within a range of plus/minus 1 Mg ha(exp. -1) around the mean. The bias of the median of the 21 models was less than 1 Mg ha(exp. -1). However under water deficit in one of the two years, the models captured only 30 percent of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.

  9. Using hyperspectral imagery to predict post-wildfire soil water repellency

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; Bruce E. Frazier; Joan Q. Wu; Denise Y. M. Laes

    2008-01-01

    A principal task of evaluating large wildfires is to assess fire's effect on the soil in order to predict the potential watershed response. Two types of soil water repellency tests, the water drop penetration time (WDPT) test and the mini-disk infiltrometer (MDI) test, were performed after the Hayman Fire in Colorado, in the summer of 2002 to assess the...

  10. Mitigation of soil water repellency improves rootzone water status and yield in precision irrigated apples

    NASA Astrophysics Data System (ADS)

    Kostka, S.; Gadd, N.; Bell, D.

    2009-04-01

    Water repellent soils are documented to impact a range of hydrological properties, yet studies evaluating the consequences of soil water repellency (SWR) and its mitigation on crop yield and quality are conspicuously absent. With global concerns on drought and water availability and the projected impacts of climate change, development of novel strategies to optimize efficient rootzone delivery of water are required. Co-formulations of alkyl polyglycoside (APG) and ethylene oxide-propylene oxide (EO/PO) block copolymer surfactants have been shown to improve wetting synergistically. The objectives of this study were to determine if this surfactant technology: 1) increased soil water content and wetting front depth in mini-sprinkler irrigated, water repellent, Goulburn Valley clay loam soils and 2) assess the consequence of SWR mitigation on yield of Malus domestica Borkh. Three trials were conducted in the apple varieties 'Pink Lady' (2006/07 and 2007/08) and 'Gala' (2007/08) growing on Goulburn Valley clay loam soils in Victoria, AU. The test design was a randomized complete block with treatments replicated 5-6 times. Plot size varied by location. SWR was mitigated by applying surfactant at initial rates of 0, 5, or 10 L ha-1 in the spring, then at 0, 2.5, or 5 L ha-1 monthly for up to four months and compared to an untreated control. Treatments were applied to tree lines using a hand held small plot sprayer (118 liters of spray solution ha-1) followed by irrigation within 1-3 days of treatment applications. At each location, plots were irrigated by mini sprinklers and received the same irrigation volumes and management practices. Soil volumetric water content (VWC) was monitored at depths of 0-10 and 10-20 cm using a Theta probe (Delta-T Devices, Cambridge, UK). At harvest, fruit number and weights were measured and used for crop yield estimations. Data were analyzed using analysis of variance with mean values summarized and separated using Least Significant Test

  11. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical

  12. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of

  13. Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?

    NASA Astrophysics Data System (ADS)

    Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude

    2015-04-01

    Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides

  14. Duripan effect on soil water availability: study case in North-Central Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Soils with duripan and other hardpans are frequently disregarded for agriculture. However, in North-Central Namibia, farmers cultivate a type of sandy soil with a developing duripan at few decimetres of depth. This soil is particularly valuable for Pearl Millet cultivation during years with limited rainfall. Understanding the water dynamic and the role of the duripan in the soil moisture dynamic will improve livelihood and secure food production in North-Central Namibia, in Southern Angola and other areas in the world where similar soils appear. We recorded soil water content during five months at different depth in one of these sandy soil. The comparison of the recorded data with values calculated with models based on e.g. texture indicate that the duripan plays a very important role as water reservoir. Our results demonstrate that soils with duripans should not be disregarded for agricultural development, especially in context with irregular rainfall patterns. Understanding the role of duripans based on this study will thus help to anticipate and alleviate the effect of climate change in northern Namibia and other semi-arid regions, where similar soils occur.

  15. Changes in soil aggregate stability under different irrigation doses of waste water

    NASA Astrophysics Data System (ADS)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  16. Assessing the Importance of Incorporating Spatial and Temporal Variability of Soil and Plant Parameters into Local Water Balance Models for Precision Agriculture: Investigations within a California Vineyard

    NASA Astrophysics Data System (ADS)

    Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.

    2003-12-01

    Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant

  17. Monitoring the Soil Water Availability of Young Urban Trees in Hamburg, Germany

    NASA Astrophysics Data System (ADS)

    Titel, Selina; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    In large cities numerous trees have to be planted each year to replace died off or cut down trees or for greening of constructed roads and newly built quarters. The typical age of planted trees is between five and fifteen years. Often the planting takes place in special planting pits to stimulate the tree growth under the restricted urban conditions. Consequently, trees are surrounded by different soil substrates: the soil from the nursery in the root ball, the special planting pit substrate and the surrounding urban soil which is often anthropogenic influenced. Being relocated in the city, trees have to cope with the warmer urban climate, the soil sealing and compaction and the low water storage capacity of the substrate. All factors together increase the probability of dry phases for roadside trees. The aim of this study is to monitor the soil water availability at sites of planted roadside trees during the first years after planting. Therefore, a measuring design was developed, which works automatically and takes the complex below ground structure of the soil into account. This approach consists of 13 soil water tension sensors inside and outside of each planting pit up to one meter depth connected to a data logger. The monitoring devices will finally be installed at 20 roadside trees (amongst others Quercus cerris, Quercus robur, Acer platanoides 'Fairview') in Hamburg, Germany, to identify phases of drought stress. The young trees were mainly planted in spring 2016. Data of the first year of measurements show, that the water tension varied between the different soil substrates and the depth. In the first year of tree growth in the city, soil in the tree root ball became significantly drier than the surrounding soil material. In late summer 2016 the water tension in the topsoil had the potential to cause drought stress below some trees.

  18. Spatio-temporal Variation in Soil Water in a Semiarid Woodland: Implications for Woody Plant Encroachment

    NASA Astrophysics Data System (ADS)

    Bresehars, D. D.; Myers, O. B.; Barnes, F. J.

    2003-12-01

    Woody plant encroachment in dryland ecosystems is an issue of global concern, yet mechanisms related to encroachment are poorly understood. Mechanisms associated with woody plant encroachment likely relate to soil water dynamics, yet few long-term data sets exist to evaluate soil water heterogeneity. Here we highlight how soil water varies both temporally (wet vs. dry years and snow vs. rain dominated months) and spatially (vertically with depth and horizontally beneath vs. between the canopies of woody plants). We measured soil water content using neutron probe over a 15-year period in a pinyon-juniper woodland at the Mesita del Buey Research Site in northern New Mexico. Our objectives included assessing (1) the temporal variability of soil water, both as a function of depth and as a function of cover (canopy patches beneath trees, intercanopy patches between trees, and edges between the two patch types); and (2) implications for the vertical and horizontal distributions of plant-available water. Our results highlight (1) large temporal variations in soil water availability, driven largely by differences in winter precipitation, and (2) the potential importance of considering horizontal as well as vertical heterogeneity in soil moisture. The spatio-temporal variation in soil water that we quantify highlights the potential complexity of changes in the water budget that could be associated with woody plant encroachment and emphasizes the importance of considering horizontal as well as vertical heterogeneity in soil water in improving our understanding of mechanisms associated with woody plant encroachment.

  19. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  20. Surfactant seed coating - a strategy to improve turfgrass establishment on water repellent soils

    USDA-ARS?s Scientific Manuscript database

    Turfgrass managers can experience poor seeding success when trying to establish golf course greens and sports fields on water repellent soils. Nonionic soil surfactant formulations based on ethylene oxide-propylene oxide (EO/PO) block copolymers are commonly used to treat water repellent soils. Rece...

  1. Surfactant and irrigation effects on wettable soils: Runoff, erosion, and water retention responses

    USDA-ARS?s Scientific Manuscript database

    Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...

  2. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  3. Effects of land use pattern on soil water in revegetation watersheds in semi-arid Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Liding; Wei, Wei

    2017-04-01

    Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.

  4. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  5. Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content.

    PubMed

    van Roon, André; Parsons, John R; Krap, Lenny; Govers, Harrie A J

    2005-09-01

    This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.

  6. Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol)

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Su, Chunming; Zhang, Wei; Hao, Xiuzhen; Cang, Long; Wang, Yujun; Zhou, Dongmei

    2014-11-01

    Soils are major sinks of engineered nanoparticles (ENPs) as results of land applications of sewage sludge, accidental spills, or deliberate applications of ENPs (e.g., nano-pesticides). In this study, the transport behaviors of four widely used ENPs (i.e., titanium dioxide [TiO2], buckminsterfullerene [C60], single-walled carbon nanotube [SWNT], and elemental silver [Ag0]) were investigated in water-saturated columns packed with either a quartz sand, a red soil (Ultisol), or sand/soil mixtures with soil mass fraction (λ) from 0% to 100% at slightly acidic solution pH (4.0-5.0). The mobility of tested ENPs decreased significantly with increasing λ, which was attributed to increased surface area and/or retention sites imparted by iron oxides, clay minerals, and organic matter in the red soil. Breakthrough curves of all ENPs exhibited blocking effects (decreasing deposition rate over time) and were well-described using an unfavorable and favorable, two-site kinetic attachment model accounting for random sequential adsorption on the favorable site. Modeled maximum retention capacity and first-order attachment rate coefficient on the favorable site both increased linearly with increasing λ, suggesting that transport parameters of ENPs in natural soils may be accurately extrapolated from transport parameters in the sand/soil mixtures. In addition, the mobility of three negatively charged ENPs (C60, SWNT, and Ag0 NPs) was reversely correlated with their average hydrodynamic diameters, highlighting that the average hydrodynamic diameter of negatively charged ENPs is the dominant physicochemical characteristics controlling their mobility in the Ultisol.

  7. Laboratory measurements of electrical resistivity versus water content on small soil cores

    NASA Astrophysics Data System (ADS)

    Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.

    2003-04-01

    The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic

  8. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  9. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    NASA Astrophysics Data System (ADS)

    Rusu, T.; Gus, P.; Bogdan, I.; Moraru, P.; Pop, A.; Clapa, D.; Pop, L.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter, gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  10. The impact of land use on water loss and soil desiccation in the soil profile

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Li

    2018-02-01

    Farmlands have gradually been replaced by apple orchards in Shaanxi province, China, and there will be a risk of severe soil-water-storage deficit with the increasing age of the apple trees. To provide a theoretical basis for the sustainable development of agriculture and forestry in the Loess Plateau, soil water content in a 19-year-old apple orchard, a 9-year-old apple orchard, a cornfield and a wheat field in the Changwu Tableland was investigated at different depths from January to October 2014. The results showed that: (1) the soil moisture content is different across the soil profile—for the four plots, the soil moisture of the cornfield is the highest, followed by the 9-year-old apple orchard and the wheat field, and the 19-year-old apple orchard has the lowest soil moisture. (2) There are varying degrees of soil desiccation in the four plots: the most serious degree of desiccation is in the 19-year-old apple orchard, followed by the wheat field and the cornfield, with the least severe desiccation occurring in the 9-year-old apple orchard. Farmland should replace apple orchards for an indefinite period while there is an extremely desiccated soil layer in the apple orchard so as to achieve the purpose of sustainable development. It will be necessary to reduce tree densities, and to carry out other research, if development of the economy and ecology of Changwu is to be sustainable.

  11. Influence of Soil Management on Water Retention from Saturation to Oven Dryness and Dominant Soil Water States in a Vertisol under Crop Rotation

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Karl; Pachepsky, Yakov; Pederera, Aura; Martinez, Gonzalo; Espejo, Antonio Jesus; Giraldez, Juan Vicente

    2014-05-01

    Unique water transfer and retention properties of Vertisols strongly affect their use in rainfed agriculture in water-limited environments. Despite the agricultural importance of the hydraulic properties of those soils, water retention data dryer than the wilting point are generally scarce, mainly as a result of practical constraints of traditional water retention measurement methods. In this work we provide a detailed description of regionalized water retention data from saturation to oven dryness, obtained from 54 minimally disturbed topsoil (0-0.05m) samples collected at a 3.5-ha experimental field in SW Spain where conventional tillage (CT) and direct drilling (DD) is compared in a wheat-sunflower-legume crop rotation on a Vertisol. Water retention was measured from saturation to oven dryness using sand and sand-kaolin boxes, a pressure plate apparatus and a dew point psychrometer, respectively. A common shape of the water retention curve (WRC) was observed in both tillage systems, with a strong discontinuity in its slope near -0.4 MPa and a decreasing spread from the wet to the dry end. A continuous function, consisting of the sum of a double exponential model (Dexter et al, 2008) and the Groenevelt and Grant (2004) model could be fitted successfully to the data. Two inflection points in the WRC were interpreted as boundaries between the structural and the textural pore spaces and between the textural and the intra-clay aggregate pore spaces. Water retention was significantly higher in DD (p<0.05) for pressure heads ranging from -0.006 to -0.32 MPa, and from -1.8 to -3.3 MPa. The magnitude of these differences ranged from 0.006 to 0.015 kg kg-1. The differential water capacity and associated equivalent pore-size distribution showed that these differences could be attributed to a combined effect of tillage and compaction, increasing and decreasing the amount of the largest pores in CT and DD, respectively, but resulting in a proportionally larger pore space

  12. Competition for light and water in a coupled soil-plant system

    DOE PAGES

    Manoli, Gabriele; Huang, Cheng -Wei; Bonetti, Sara; ...

    2017-08-14

    Here, it is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, asmore » well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA

  13. Competition for light and water in a coupled soil-plant system

    NASA Astrophysics Data System (ADS)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  14. Competition for light and water in a coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele; Huang, Cheng -Wei; Bonetti, Sara

    Here, it is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, asmore » well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA

  15. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  16. The effect of water harvesting techniques on runoff, sedimentation, and soil properties.

    PubMed

    Al-Seekh, Saleh H; Mohammad, Ayed G

    2009-07-01

    This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.

  17. The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties

    NASA Astrophysics Data System (ADS)

    Al-Seekh, Saleh H.; Mohammad, Ayed G.

    2009-07-01

    This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.

  18. Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.

    PubMed

    Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I

    2018-04-06

    Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.

  19. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit.

    PubMed

    Simonin, Kevin A; Santiago, Louis S; Dawson, Todd E

    2009-07-01

    Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.

  20. Level of Fluoride in Soil, Grain and Water in Jalgaon District, Maharashtra, India.

    PubMed

    Naik, Rahul Gaybarao; Dodamani, Arun Suresh; Vishwakarma, Prashanth; Jadhav, Harish Chaitram; Khairnar, Mahesh Ravindra; Deshmukh, Manjiri Abhay; Wadgave, Umesh

    2017-02-01

    Fluoride has an influence on both oral as well as systemic health. The major source of fluoride to body is through drinking water as well as through diet. Staple diet mainly depends on local environmental factors, food grains grown locally, its availability etc. Determination of fluoride level in these food grains is important. So, estimation of the amount of fluoride in grains and its relation to the sources of fluoride used for their cultivation viz., soil and water is important. To estimate the relation of fluoride concentration in grains (Jowar) with respect to that of soil and water used for their cultivation. Fifteen samples each of soil, water and grains were collected using standardized method from the same farm fields of randomly selected villages of Jalgaon district. Fluoride ion concentration was determined in laboratory using SPADNS technique. Mean difference in fluoride levels in between the groups were analyzed using ANOVA and Post-Hoc Tukey test. Linear regression method was applied to analyse the association of the fluoride content of grain with water and soil. There was a significant difference in between mean fluoride levels of soil and water (p<0.001) and in between soil and grain (p<0.001); however, difference in between mean fluoride levels of water and grain was found to be non significant (p=0.591). Also fluoride levels in all the three groups showed significant association with each other. Fluoride level of soil, grains and water should be adjusted to an optimum level. Soil has positive correlation with respect to uptake of fluoride by Jowar grains. So, Jowar grains with optimum fluoride content should be made available in the commercial markets so that oral and general health can be benefitted.

  1. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  2. Investigation of indigenous water, salt and soil for solar ponds

    NASA Astrophysics Data System (ADS)

    Marsh, H. E.

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  3. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  4. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Climate, soil water storage, and the average annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability

  6. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  7. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, R.; Bogena, H. R.; Hendricks Franssen, H.; Huisman, J. A.; Qu, W.; Montzka, C.; Korres, W.; Vereecken, H.

    2013-12-01

    The novel cosmic-ray soil moisture probes (CRPs) measure neutron flux density close to the earth surface. High energy cosmic-rays penetrate the Earth's atmosphere from the cosmos and become moderated by terrestrial nuclei. Hydrogen is the most effective neutron moderator out of all chemical elements. Therefore, neutron flux density measured with a CRP at the earth surface correlates inversely with the hydrogen content in the CRP's footprint. A major contributor to the amount of hydrogen in the sensor's footprint is soil water content. The ability to measure changes in soil water content within the CRP footprint at a larger-than-point scale (~30 ha) and at high temporal resolution (hourly) make these sensors an appealing measurement instrument for hydrologic modeling purposes. Recent developments focus on the identification and quantification of major uncertainties inherent in CRP soil moisture measurements. In this study, a cosmic-ray soil moisture network for the Rur catchment in Western Germany is presented. It is proposed to correct the measured neutron flux density for above ground biomass yielding vegetation corrected soil water content from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of indices like NDVI and NDWI using regression equations. The regression equations were obtained with help of literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm3/cm3 that could be corrected for with the vegetation correction. The vegetation correction has particularly

  8. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  9. Initialization of soil-water content in regional-scale atmospheric prediction models

    NASA Technical Reports Server (NTRS)

    Smith, Christopher B.; Lakhtakia, Mercedes; Capehart, William J.; Carlson, Toby N.

    1994-01-01

    The purpose of this study is to demonstrate the feasibility of determining the soil-water content fields required as initial conditions for land surface components within atmospheric prediction models. This is done using a model of the hydrologic balance and conventional meteorological observations, land cover, and soils information. A discussion is presented of the subgrid-scale effects, the integration time, and the choice of vegetation type on the soil-water content patterns. Finally, comparisons are made between two The Pennsylvania State University/National Center for Atmospheric Research mesoscale model simulations, one using climatological fields and the other one using the soil-moisture fields produced by this new method.

  10. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  11. Monitoring water content dynamics of biological soil crusts

    USGS Publications Warehouse

    Young, Michael H.; Fenstermaker, Lynn F.; Belnap, Jayne

    2017-01-01

    Biological soil crusts (hereafter, “biocrusts”) dominate soil surfaces in nearly all dryland environments. To better understand the influence of water content on carbon (C) exchange, we assessed the ability of dual-probe heat-pulse (DPHP) sensors, installed vertically and angled, to measure changes in near-surface water content. Four DPHP sensors were installed in each of two research plots (eight sensors total) that differed by temperature treatment (control and heated). Responses were compared to horizontally installed water content measurements made with three frequency-domain reflectometry (FDR) sensors in each plot at 5-cm depth. The study was conducted near Moab, Utah, from April through September 2009. Results showed significant differences between sensor technologies: peak water content differences from the DPHP sensors were approximately three times higher than those from the FDR sensors; some of the differences can be explained by the targeted monitoring of biocrust material in the shorter DPHP sensor and by potential signal loss from horizontally installed FDR sensors, or by an oversampling of deeper soil. C-exchange estimates using the DPHP sensors showed a net C loss of 69 and 76 g C m−2 in control and heated plots, respectively. The study illustrates the potential for using the more sensitive data from shallow installations for estimating C exchange in biocrusts.

  12. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  13. Ranking agricultural practices on soil water improvements: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Basche, A.; DeLonge, M. S.; Gonzalez, J.

    2016-12-01

    Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta

  14. The geochemical characteristics of soil water and epikarst springs and their response to vegetation-soil degradation in a karst area

    NASA Astrophysics Data System (ADS)

    Xiao, D. A.; Xu, H.

    2012-04-01

    Samples of soil waters and epi-karst springs in four vegetation types were collected at Maolan nature reserve in Libo county, which including protogenetic arbors, secondary arbor-shrub, shrubs and shrub-grass, to analyze their hydro-geochemical properties and the variations of nutrient elements, and further to illustrate the intrinsic correlations of vegetation, soil, environment changes and their geochemical information. The conclusions have been concluded as follows: (1) The pH of soil waters in the study area varies between 5.32 and 7.93, with a mean value of 6.78, and the conductivity changes between 31.82 and 353.65 μS/cm, with a mean value of 126.19 μS/cm. Both descend as the vegetation degrades. The hydro-chemistry of soil waters are Ca- HCO3-, and their ions mainly consist of Ca2+, Mg2+, HCO3-, SO42-. Ca2+, Mg2+, HCO3-are very sensitive to vegetations degradation. Ion contents are high in rain seasons and low in dry ones. (2) The pH of surface karst springs in the study area vary between 6.7 and 8.42, with a mean value of 7.65, and the conductivity between 125.6 and 452 μS/cm, with a mean value of 288.09 μS/cm. The hydro-chemistry of surface karst springs are Ca- HCO3-. HCO3-and SO42-are the main anions while Ca2+and Mg2+as main cations. The chemical properties and geochemical process of surface springs are mainly controlled by the solubility equilibrium of carbonate rocks, thus not sensitive to vegetation degradations. (3) All the calcite saturation indices of soil waters in four vegetation types are below 0, while most indices of surface karst springs are above 0, demonstrating greater denudation of soil waters than surface karst springs. As soil waters flow to surface springs, the partial pressure of CO2decreases, the denudation of water lessens, and saturation index, Ca2+, HCO3-, consequently, pH and conductivity increase. (4) Inorganic nitrogen in soil waters exist mainly as N-NO3- and N-NH4+, accounting ~ 95% of the 3 Ns. As vegetation degrades

  15. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  16. Effect of Water Quality and Temperature on the Efficiency of Two Kinds of Hydrophilic Polymers in Soil.

    PubMed

    Dehkordi, Davoud Khodadadi

    2018-06-01

      In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.

  17. No tillage effect on water retention characteristics of soil aggregates in rainfed semiarid conditions.

    NASA Astrophysics Data System (ADS)

    Blanco-Moure, Nuria; López, M. Victoria; Moret, David

    2010-05-01

    The evaluation of changes in soil moisture retention characteristics associated to alterations in soil structure is of great interest in tillage studies. Most of these studies have evaluated soil properties in samples of total soil but not in individual aggregates. However, soil behavior at a macroscale level depends on the aggregate properties. A better knowledge of aggregate characteristics, as the water retention properties, will help to explain, for example, the response of soil to tillage, compaction and crop growth, and hence, to plan adequate soil management practices. In this study we determine the water retention curve of soil aggregates of different sizes from a soil under two tillage systems (conventional and no tillage). The study was carried out in a silty clay loam soil of semiarid Aragon (NE Spain). Two tillage systems were compared: no tillage (NT) and conventional tillage with mouldboard plough (CT). Water retention curves (WRC) were determined for soil surface aggregates (0-5 cm) of three different sizes (8-4, 4-2 and 2-1 mm in diameter) by using the TDR-pressure cell (Moret et al. 2008. Soil Till. Res, 100, 114-119). The TDR-pressure cell is a non-destructive method which permits determining WRC with the only one and same soil sample. Thus, the pressure cell was filled with aggregates up to 4 cm height, weighted and wetted to saturation from the bottom. Pressure steps were sequentially applied at -0.5, -1.5, -3, -5, -10, -33, -100, -300 kPa, and water content of each aggregate sample was measured gravimetrically and by TDR 24 h after starting each pressure head step. The volume of the sample within the cell was also determined at this moment in order to obtain the bulk density and thus calculate the volumetric water content. A good relationship was obtained between the volumetric water content calculated from the gravimetric water content and the corresponding values measured by TDR (r2=0.907; p≤0.05). Within the same tillage treatment, no

  18. A Comparison of Splash Erosion Behavior between Wettable and Water Repellent 'Soil' Particles

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Hamlett, C. A.; Doerr, S.; Bryant, R.; Shirtcliffe, N.; McHale, G.; Newton, M.

    2011-12-01

    Wildfires remove vegetation and litter cover and expose soil surfaces to particle detachment by rain splash. This can serve as an agent of initial soil modification and erosion in the post-fire period. Splash behavior is mainly determined by the kinetic energy delivered by impacting water drops (erosivity), and the detachability (erodibility) of surface particles, affected by their size, aggregate stability and shear strength. Soil detachability may also be affected by water repellency (hydrophobicity). This soil characteristic is influenced by wildfire and may affect splash behavior by reducing capillary forces between particles. Previous work on splash behavior using cumulative drop impact reported larger ejection droplets and lower and shorter trajectories of ejections for water repellent soil compared with wettable soil (Terry and Shakesby 1993). A water film generated by delayed infiltration on water repellent soil was suggested to account for the difference. This study compares the trajectories of ejected wettable and hydrophobic model soil particles from single water drop impacts in order to isolate the effect of soil particle wettability on splash erosion behavior. Acid-washed (wettable) and hydrophobized (water repellent) glass beads used as model soil particles were held in an array within a squat cylinder of 1.5 cm diameter in the centre of a 20 cm diameter disk covered with a viscous adhesive film. A distilled water drop (20μL) was released 40 cm above the centre of the array and the resultant impact was recorded at 976 frames per second using a high speed video camera. The populations of, and distances travelled by, the particles were measured for three arrays of bead sizes within the range (180-400 μm). Three to five replications were made for each test. The trajectory of each ejected particle was traced on video frames and corrected for the actual distance and direction of travel measured from the adhesive film. The initial velocity and ejecting

  19. 77 FR 35323 - National Environmental Policy Act: Categorical Exclusions for Soil and Water Restoration Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Policy Act: Categorical Exclusions for Soil and Water Restoration Activities AGENCY: Forest Service, USDA... document the potential environmental effects of soil and water restoration projects that are intended to... adding three new categorical exclusions for activities that achieve soil and water restoration objectives...

  20. 78 FR 56153 - National Environmental Policy Act: Categorical Exclusions for Soil and Water Restoration Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Policy Act: Categorical Exclusions for Soil and Water Restoration Activities AGENCY: Forest Service, USDA... more efficiently analyze and document the potential environmental effects of soil and water restoration... achieve soil and water restoration objectives. Category 18 allows the restoration of wetlands, streams...

  1. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    USGS Publications Warehouse

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  2. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  3. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  4. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric

  5. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  6. Olive response to water availability: yield response functions, soil water content indicators and evaluation of adaptability to climate change

    NASA Astrophysics Data System (ADS)

    Riccardi, Maria; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Menenti, Massimo; Monaco, Eugenia; De Lorenzi, Francesca

    2013-04-01

    Climate evolution, with the foreseen increase of temperature and frequency of drought events during the summer, could cause significant changes in the availability of water resources specially in the Mediterranean region. European countries need to encourage sustainable agriculture practices, reducing inputs, especially of water, and minimizing any negative impact on crop quantity and quality. Olive is an important crop in the Mediterranean region that has traditionally been cultivated with no irrigation and is known to attain acceptable production under dry farming. Therefore this crop will not compete for foreseen reduced water resources. However, a good quantitative knowledge must be available about effects of reduced precipitation and water availability on yield. Yield response functions, coupled with indicators of soil water availability, provide a quantitative description of the cultivar- specific behavior in relation to hydrological conditions. Yield response functions of 11 olive cultivars, typical of Mediterranean environment, were determined using experimental data (unpublished or reported in scientific literature). The yield was expressed as relative yield (Yr); the soil water availability was described by means of different indicators: relative soil water deficit (RSWD), relative evapotranspiration (RED) and transpiration deficit (RTD). Crops can respond nonlinearly to changes in their growing conditions and exhibit threshold responses, so for the yield functions of each olive cultivar both linear regression and threshold-slope models were considered to evaluate the best fit. The level of relative yield attained in rain-fed conditions was identified and defined as the acceptable yield level (Yrrainfed). The value of the indicator (RSWD, RED and RTD) corresponding to Yrrainfed was determined for each cultivar and indicated as the critical value of water availability. The error in the determination of the critical value was estimated. By means of a

  7. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    PubMed

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  8. Effect of climatic conditions on the development of soil water repellency in soils treated with the wastewater of the olive oil production

    NASA Astrophysics Data System (ADS)

    Schaumann, Gabriele E.; Peikert, Benjamin; Tamimi, Nesreen; Steinmetz, Zacharias; Fischer, Jonas; Bibus, Daniel; Marei Sawalha, Amer; Dag, Arnon

    2014-05-01

    The disposal of untreated wastewater on soil can induce severe water repellency. The final degree of water repellency may strongly depend on the environmental conditions prevailing during and after disposal. Also unpolluted soil can develop severe water repellency upon exposure to extreme heat or draught events. The induced water repellency can be either persistent or of transient nature. However, the underlying mechanisms are not yet completely understood. The objective of this study was to investigate how climatic conditions determine the development and persistence of water repellency following wastewater disposal. Our hypothesis was that amphiphilic organic wastewater compounds physically sorb onto surfaces, which renders them hydrophobic. Depending on temperature and moisture, those compounds are degraded, chemically incorporated into SOM, or irreversibly sorbed to soil particles during the time after the first waste water-soil contact. According to our hypothesis, biological communities favor degradation and transformation of OM of waste water into SOM under moist soil conditions. This would reduce the initial hydrophobization. In contrast, drying irreversibly renders soil hydrophobic and phytotoxic due to immobilization of OMW OM in the soil. To test these hypotheses, we investigated effects of olive mil wastewater (OMW), the effluent originating from olive oil production, directly applied to soil. In Israel and Palastine, olive oil production generates large amounts of OMW within a short period of time between November and January. As sewage facilities do not accept OMW, it is often disposed onto soil, which leads to severe soil and groundwater pollution. If the above mentioned hypotheses match, pollution and hydrophobization might be minimized if the wastewater is discharged at the right time of the year. In order to test this, we conducted field (2-3 years) and laboratory (60 days) experiments in Israel (Gilat, arid climate) and in the West Bank (Bait

  9. Soil-water interactions: implications for the sustainability of urban areas

    NASA Astrophysics Data System (ADS)

    Ferreira, António J. D.; Ferreira, Carla S. S.; Walsh, Rory P. D.

    2015-04-01

    Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. And yet, mankind can't give up of these structures one step away from collapse. In this paper we visit the ongoing research at the Ribeira dos Covões peri-urban catchment, as the basis to discuss several important processes and relations in the water-soil interface: A] the impact of the build environment and consequently the increase of the impervious area on the generation and magnitude of hydrological processes at different scales, the impact on flash flood risk and the mitigation approaches. B] the pollutant sources transport and fade in urban areas, with particular emphasis in the role of vegetation and soils in the transmission of pollutants from the atmosphere to the soil and to the water processes. C] the use and the environmental services of the urban ecosystems (where the relations of water, soil and vegetation have a dominate role) to promote a better risk and resources governance. D] the special issue of urban agriculture, where all the promises of sustainability and threats to wellbeing interact, and where the soil and water relations in urban areas are more significant and have the widest and deepest implications.

  10. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    NASA Astrophysics Data System (ADS)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  11. Criterion 4: Conservation and maintenance of soil and water resources

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Soils are the fundamental resource enabling land to provide a wide array of benefits. Both humans and wildlife rely on soils for the production of life-sustaining nourishment and shelter. Soil is important to society because it supports plants that supply food, fibers, drugs, and other essentials and because it filters water and recycles wastes.The factors that affect...

  12. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  13. A Manual on Conservation of Soil and Water. Appropriate Technologies for Development. R-38.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    In order to keep the land productive, a good conservation program is imperative. The primary purpose of soil and water conservation is to prevent soil erosion and heal its scars. This handbook explains the causes, processes, and consequences of soil erosion and depletion, and describes major soil- and water-conservation measures. This book was…

  14. Simulation using HYDRUS-2D for Soil Water and Heat Transfer under Drip Irrigation with 95oC Hot Water

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Noborio, K.

    2015-12-01

    In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.

  15. Water content dependence of trapped air in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.

  16. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    NASA Astrophysics Data System (ADS)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  17. CONVERGING PATTERNS OF UPTAKE AND HYDRAULIC REDISTRIBUTION OF SOIL WATER IN CONTRASTING WOODY VEGETATION TYPES

    EPA Science Inventory

    We used concurrent measurements of soil water content and soil water potential (Ysoil) to assess the effects of Ysoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles in six sites characterized by different types and amounts of woo...

  18. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  19. Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found

  20. New procedure for sampling infiltration to assess post-fire soil water repellency

    Treesearch

    P. R. Robichaud; S. A. Lewis; L. E. Ashmun

    2008-01-01

    The Mini-disk Infiltrometer has been adapted for use as a field test of post-fire infiltration and soil water repellency. Although the Water Drop Penetration Time (WDPT) test is the common field test for soil water repellency, the Mini-disk Infiltrometer (MDI) test takes less time, is less subjective, and provides a relative infiltration rate. For each test, the porous...