Sample records for accurate three-dimensional models

  1. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  2. Accurate complex scaling of three dimensional numerical potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan

    2013-05-28

    The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scalingmore » of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.« less

  3. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  4. Three-dimensional modeling of the plasma arc in arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less

  5. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  6. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology.

    PubMed

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  7. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. © 2013 Wiley Periodicals, Inc.

  8. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  9. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  10. Modeling Cometary Coma with a Three Dimensional, Anisotropic Multiple Scattering Distributed Processing Code

    NASA Technical Reports Server (NTRS)

    Luchini, Chris B.

    1997-01-01

    Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.

  11. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  12. Creating three-dimensional tooth models from tomographic images.

    PubMed

    Lima da Silva, Isaac Newton; Barbosa, Gustavo Frainer; Soares, Rodrigo Borowski Grecco; Beltrao, Maria Cecilia Gomes; Spohr, Ana Maria; Mota, Eduardo Golcalves; Oshima, Hugo Mitsuo Silva; Burnett, Luiz Henrique

    2008-01-01

    The use of Finite Element Analysis (FEA) is becoming very frequent in Dentistry. However, most of the three-dimensional models presented by the literature for teeth are limited in terms of geometry. Discrepancy in shape and dimensions can cause wrong results to occur. Sharp cusps and faceted contour can produce stress concentrations, which are incoherent with the reality. The aim of this study was the processing of tomographic images in order to develop an advanced three-dimensional reconstruction of the anatomy of a molar tooth and the integration of the resulting solid with commercially available CAD/CAE software. Computed tomographic images were obtained from 0.5 mm thick slices of mandibular molar and transferred to commercial cad software. Once the point cloud data have been generated, the work on these points started to get to the solid model of the tooth with Pro/Engineer software. The obtained tooth model showed very accurate shape and dimensions, as it was obtained from real tooth data with error of 0.0 to -0.8 mm. The methodology presented was efficient for creating a biomodel of a tooth from tomographic images that realistically represented its anatomy.

  13. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  14. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2001-05-01

    An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.

  15. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  16. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.

  17. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  18. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  19. Bioprinted three dimensional human tissues for toxicology and disease modeling.

    PubMed

    Nguyen, Deborah G; Pentoney, Stephen L

    2017-03-01

    The high rate of attrition among clinical-stage therapies, due largely to an inability to predict human toxicity and/or efficacy, underscores the need for in vitro models that better recapitulate in vivo human biology. In much the same way that additive manufacturing has revolutionized the production of solid objects, three-dimensional (3D) bioprinting is enabling the automated production of more architecturally and functionally accurate in vitro tissue culture models. Here, we provide an overview of the most commonly used bioprinting approaches and how they are being used to generate complex in vitro tissues for use in toxicology and disease modeling research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Three-dimensional modeling of tea-shoots using images and models.

    PubMed

    Wang, Jian; Zeng, Xianyin; Liu, Jianbing

    2011-01-01

    In this paper, a method for three-dimensional modeling of tea-shoots with images and calculation models is introduced. The process is as follows: the tea shoots are photographed with a camera, color space conversion is conducted, using an improved algorithm that is based on color and regional growth to divide the tea shoots in the images, and the edges of the tea shoots extracted with the help of edge detection; after that, using the divided tea-shoot images, the three-dimensional coordinates of the tea shoots are worked out and the feature parameters extracted, matching and calculation conducted according to the model database, and finally the three-dimensional modeling of tea-shoots is completed. According to the experimental results, this method can avoid a lot of calculations and has better visual effects and, moreover, performs better in recovering the three-dimensional information of the tea shoots, thereby providing a new method for monitoring the growth of and non-destructive testing of tea shoots.

  1. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  2. Three-dimensional modelling of trace species in the Arctic lower stratosphere

    NASA Technical Reports Server (NTRS)

    Chipperfield, Martyn; Cariolle, Daniel; Simon, Pascal; Ramaroson, Richard

    1994-01-01

    A three-dimensional radiative-dynamical-chemical model has been developed and used to study some aspects of modeling the polar lower stratosphere. The model includes a comprehensive gas-phase chemistry scheme as well as a treatment of heterogeneous reactions occurring on the surface of polar stratospheric clouds. Tracer transport is treated by an accurate, nondispersive scheme with little diffusion suited to the representation of strong gradients. Results from a model simulation of early February 1990 are presented and used to illustrate the importance of the model transport scheme. The model simulation is also used to examine the potential for Arctic ozone destruction and the relative contributions of the chemical cycles responsible.

  3. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam

  4. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  5. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  6. Construction and validation of a three-dimensional finite element model of degenerative scoliosis.

    PubMed

    Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui

    2015-12-24

    With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in

  7. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  8. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  9. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  10. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  11. [Construction of platform on the three-dimensional finite element model of the dentulous mandibular body of a normal person].

    PubMed

    Gong, Lu-Lu; Zhu, Jing; Ding, Zu-Quan; Li, Guo-Qiang; Wang, Li-Ming; Yan, Bo-Yong

    2008-04-01

    To develop a method to construct a three-dimensional finite element model of the dentulous mandibular body of a normal person. A series of pictures with the interval of 0.1 mm were taken by CT scanning. After extracting the coordinates of key points of some pictures by the procedure, we used a C program to process the useful data, and constructed a platform of the three-dimensional finite element model of the dentulous mandibular body with the Ansys software for finite element analysis. The experimental results showed that the platform of the three-dimensional finite element model of the dentulous mandibular body was more accurate and applicable. The exact three-dimensional shape of model was well constructed, and each part of this model, such as one single tooth, can be deleted, which can be used to emulate various tooth-loss clinical cases. The three-dimensional finite element model is constructed with life-like shapes of dental cusps. Each part of this model can be easily removed. In conclusion, this experiment provides a good platform of biomechanical analysis on various tooth-loss clinical cases.

  12. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  13. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by

  14. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  15. Theory for the three-dimensional Mercedes-Benz model of water.

    PubMed

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A

    2009-11-21

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.

  16. Theory for the three-dimensional Mercedes-Benz model of water

    PubMed Central

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the “right answer,” we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim’s Ornstein–Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation. PMID:19929057

  17. Theory for the three-dimensional Mercedes-Benz model of water

    NASA Astrophysics Data System (ADS)

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.

    2009-11-01

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.

  18. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

  19. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture.

    PubMed

    Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.

  20. Three-dimensional representation of curved nanowires.

    PubMed

    Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S

    2004-12-01

    Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.

  1. Three Dimensional Modeling of Breaking

    DTIC Science & Technology

    2005-09-30

    Three Dimensional Modeling of Breaking Robert A. Dalrymple Dept of Civil Engineering The Johns Hopkins University 3400 North Charles Street...University,Dept of Civil Engineering,3400 North Charles Street,Baltimore,MD,21218 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...R.A. Dalrymple, A.J.C. Crespo, and D. Cerquiero, "Uso de la Tecnica SPH para el Estudio de la Interaccion entre Olas y Estructuras," Ingenieria del

  2. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  3. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  4. Three-dimensional computer model for the atmospheric general circulation experiment

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.

  5. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  6. Preoperative planning and real-time assisted navigation by three-dimensional individual digital model in partial nephrectomy with three-dimensional laparoscopic system.

    PubMed

    Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen

    2015-09-01

    To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical

  7. An Energy Model of Place Cell Network in Three Dimensional Space.

    PubMed

    Wang, Yihong; Xu, Xuying; Wang, Rubin

    2018-01-01

    Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.

  8. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture

    PubMed Central

    Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394

  9. Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Kamnev, I. S.; Seredovich, V. A.

    2017-12-01

    The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.

  10. Percutaneous Transcatheter Mitral Valve Replacement: Patient-specific Three-dimensional Computer-based Heart Model and Prototyping.

    PubMed

    Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo

    2015-12-01

    Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. The accuracy of three-dimensional fused deposition modeling (FDM) compared with three-dimensional CT-Scans on the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle

    NASA Astrophysics Data System (ADS)

    Savitri, I. T.; Badri, C.; Sulistyani, L. D.

    2017-08-01

    Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.

  12. Three dimensional geometric modeling of processing-tomatoes

    USDA-ARS?s Scientific Manuscript database

    Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...

  13. Three-dimensional electrical impedance tomography based on the complete electrode model.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P

    1999-09-01

    In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.

  14. THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL

    EPA Science Inventory

    We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...

  15. Two-Dimensional Versus Three-Dimensional Conceptualization in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reynolds, Michael David

    Numerous science conceptual issues are naturally three-dimensional. Classroom presentations are often two -dimensional or at best multidimensional. Several astronomy topics are of this nature, e. g. mechanics of the phases of the moon. Textbooks present this three-dimensional topic in two-dimensions; such is often the case in the classroom. This study was conducted to examine conceptions exhibited by pairs of like-sex 11th grade standard physics students as they modeled the lunar phases. Student pairs, 13 male and 13 female, were randomly selected and assigned. Pairing comes closer to classroom emulation, minimizes needs for direct probes, and pair discussion is more likely to display variety and depth. Four hypotheses were addressed: (1) Participants who model three-dimensionally will more likely achieve a higher explanation score. (2) Students who experienced more earth or physical science exposure will more likely model three-dimensionally. (3) Pairs that exhibit a strong science or mathematics preference will more likely model three-dimensionally. (4) Males will model in three dimensions more than females. Students provided background information, including science course exposure and subject preference. Each pair laid out a 16-card set representing two complete lunar phase changes. The pair was asked to explain why the phases occur. Materials were provided for use, including disks, spheres, paper and pen, and flashlight. Activities were videotaped for later evaluation. Statistics of choice was a correlation determination between course preference and model type and ANOVA for the other hypotheses. It was determined that pairs who modeled three -dimensionally achieved a higher score on their phases mechanics explanation at p <.05 level. Pairs with earth science or physical science exposure, those who prefer science or mathematics, and male participants were not more likely to model three-dimensionally. Possible reasons for lack of significance was small sample

  16. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  17. Production of Accurate Skeletal Models of Domestic Animals Using Three-Dimensional Scanning and Printing Technology

    ERIC Educational Resources Information Center

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…

  18. Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.

    PubMed

    Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D

    2015-12-01

    A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Verifying Three-Dimensional Skull Model Reconstruction Using Cranial Index of Symmetry

    PubMed Central

    Kung, Woon-Man; Chen, Shuo-Tsung; Lin, Chung-Hsiang; Lu, Yu-Mei; Chen, Tzu-Hsuan; Lin, Muh-Shi

    2013-01-01

    Background Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). Materials and methods From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. Results CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47–99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. Conclusions CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation. PMID:24204566

  20. A three-dimensional model of Tangential YORP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubov, O.; Scheeres, D. J.; Krugly, Yu. N., E-mail: golubov@astron.kharkov.ua

    2014-10-10

    Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroid's rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. To date, TYORP has been studied only in a simplified one-dimensional model, substituting stones with high long walls. This article for the first time considers TYORP in a realistic three-dimensional model, also including shadowing and self-illumination effects viamore » ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only five free parameters and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from the one-dimensional model, but is still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids and also as a basis for more sophisticated models of TYORP.« less

  1. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  2. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  3. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  4. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  5. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.

    PubMed

    Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F

    2016-09-01

    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.

  6. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  7. Accuracy of open-source software segmentation and paper-based printed three-dimensional models.

    PubMed

    Szymor, Piotr; Kozakiewicz, Marcin; Olszewski, Raphael

    2016-02-01

    In this study, we aimed to verify the accuracy of models created with the help of open-source Slicer 3.6.3 software (Surgical Planning Lab, Harvard Medical School, Harvard University, Boston, MA, USA) and the Mcor Matrix 300 paper-based 3D printer. Our study focused on the accuracy of recreating the walls of the right orbit of a cadaveric skull. Cone beam computed tomography (CBCT) of the skull was performed (0.25-mm pixel size, 0.5-mm slice thickness). Acquired DICOM data were imported into Slicer 3.6.3 software, where segmentation was performed. A virtual model was created and saved as an .STL file and imported into Netfabb Studio professional 4.9.5 software. Three different virtual models were created by cutting the original file along three different planes (coronal, sagittal, and axial). All models were printed with a Selective Deposition Lamination Technology Matrix 300 3D printer using 80 gsm A4 paper. The models were printed so that their cutting plane was parallel to the paper sheets creating the model. Each model (coronal, sagittal, and axial) consisted of three separate parts (∼200 sheets of paper each) that were glued together to form a final model. The skull and created models were scanned with a three-dimensional (3D) optical scanner (Breuckmann smart SCAN) and were saved as .STL files. Comparisons of the orbital walls of the skull, the virtual model, and each of the three paper models were carried out with GOM Inspect 7.5SR1 software. Deviations measured between the models analysed were presented in the form of a colour-labelled map and covered with an evenly distributed network of points automatically generated by the software. An average of 804.43 ± 19.39 points for each measurement was created. Differences measured in each point were exported as a .csv file. The results were statistically analysed using Statistica 10, with statistical significance set at p < 0.05. The average number of points created on models for each measurement was 804

  8. Comparison of three-dimensional parameters of Halo CMEs using three cone models

    NASA Astrophysics Data System (ADS)

    Na, H.; Moon, Y.; Jang, S.; Lee, K.

    2012-12-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.

  9. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  10. Three Dimensional Measurements And Display Using A Robot Arm

    NASA Astrophysics Data System (ADS)

    Swift, Thomas E.

    1984-02-01

    The purpose of this paper is to describe a project which makes three dimensional measurements of an object using a robot arm. A program was written to determine the X-Y-Z coordinates of the end point of a Minimover-5 robot arm which was interfaced to a TRS-80 Model III microcomputer. This program was used in conjunction with computer graphics subroutines that draw a projected three dimensional object.. The robot arm was direc-ted to touch points on an object and then lines were drawn on the screen of the microcomputer between consecutive points as they were entered. A representation of the entire object is in this way constructed on the screen. The three dimensional graphics subroutines have the ability to rotate the projected object about any of the three axes, and to scale the object to any size. This project has applications in the computer-aided design and manufacturing fields because it can accurately measure the features of an irregularly shaped object.

  11. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.

    PubMed

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua

    2016-01-01

    Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Three-dimensional accuracy of plastic transfer impression copings for three implant systems.

    PubMed

    Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne

    2014-01-01

    The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.

  13. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  14. A three-dimensional axis for the study of femoral neck orientation

    PubMed Central

    Bonneau, Noémie; Libourel, Paul-Antoine; Simonis, Caroline; Puymerail, Laurent; Baylac, Michel; Tardieu, Christine; Gagey, Olivier

    2012-01-01

    A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation. PMID:22967192

  15. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  16. Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.

    PubMed

    Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke

    2017-11-01

    To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.

  17. A three-dimensional finite element model for biomechanical analysis of the hip.

    PubMed

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  18. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  19. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  20. Three-dimensional ``Mercedes-Benz'' model for water

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  1. Three-dimensional "Mercedes-Benz" model for water.

    PubMed

    Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-07

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  2. Validating two-dimensional leadership models on three-dimensionally structured fish schools

    PubMed Central

    Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa

    2017-01-01

    Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582

  3. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  4. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  5. Variational asymptotic modeling of composite dimensionally reducible structures

    NASA Astrophysics Data System (ADS)

    Yu, Wenbin

    A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and

  6. An algebraic turbulence model for three-dimensional viscous flows

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Giel, P. W.; Boyle, R. J.

    1993-01-01

    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.

  7. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.

    PubMed

    Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-02-01

    Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.

  8. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  9. Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners.

    PubMed

    Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K

    2012-04-01

    (1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.

  10. Three-dimensional cell culture models for investigating human viruses.

    PubMed

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  11. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    PubMed

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  12. Using subject-specific three-dimensional (3D) anthropometry data in digital human modelling: case study in hand motion simulation.

    PubMed

    Tsao, Liuxing; Ma, Liang

    2016-11-01

    Digital human modelling enables ergonomists and designers to consider ergonomic concerns and design alternatives in a timely and cost-efficient manner in the early stages of design. However, the reliability of the simulation could be limited due to the percentile-based approach used in constructing the digital human model. To enhance the accuracy of the size and shape of the models, we proposed a framework to generate digital human models using three-dimensional (3D) anthropometric data. The 3D scan data from specific subjects' hands were segmented based on the estimated centres of rotation. The segments were then driven in forward kinematics to perform several functional postures. The constructed hand models were then verified, thereby validating the feasibility of the framework. The proposed framework helps generate accurate subject-specific digital human models, which can be utilised to guide product design and workspace arrangement. Practitioner Summary: Subject-specific digital human models can be constructed under the proposed framework based on three-dimensional (3D) anthropometry. This approach enables more reliable digital human simulation to guide product design and workspace arrangement.

  13. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  14. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  15. Three dimensional modelling of earthquake rupture cycles on frictional faults

    NASA Astrophysics Data System (ADS)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  16. Low-dimensional, morphologically accurate models of subthreshold membrane potential

    PubMed Central

    Kellems, Anthony R.; Roos, Derrick; Xiao, Nan; Cox, Steven J.

    2009-01-01

    The accurate simulation of a neuron’s ability to integrate distributed synaptic input typically requires the simultaneous solution of tens of thousands of ordinary differential equations. For, in order to understand how a cell distinguishes between input patterns we apparently need a model that is biophysically accurate down to the space scale of a single spine, i.e., 1 μm. We argue here that one can retain this highly detailed input structure while dramatically reducing the overall system dimension if one is content to accurately reproduce the associated membrane potential at a small number of places, e.g., at the site of action potential initiation, under subthreshold stimulation. The latter hypothesis permits us to approximate the active cell model with an associated quasi-active model, which in turn we reduce by both time-domain (Balanced Truncation) and frequency-domain (ℋ2 approximation of the transfer function) methods. We apply and contrast these methods on a suite of typical cells, achieving up to four orders of magnitude in dimension reduction and an associated speed-up in the simulation of dendritic democratization and resonance. We also append a threshold mechanism and indicate that this reduction has the potential to deliver an accurate quasi-integrate and fire model. PMID:19172386

  17. [Research progress of three-dimensional digital model for repair and reconstruction of knee joint].

    PubMed

    Tong, Lu; Li, Yanlin; Hu, Meng

    2013-01-01

    To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

  18. Optimal management of reconfigurable manufacturing system modeling with Petri nets developed three-dimensional - RPD3D

    NASA Astrophysics Data System (ADS)

    Teodor, F.; Marinescu, V.; Epureanu, A.

    2016-11-01

    Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.

  19. Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, M. A.; Marquette, M. L.

    2006-01-01

    The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on

  20. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model

    NASA Astrophysics Data System (ADS)

    Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber

    2016-04-01

    In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.

  1. Estimating habitat volume of living resources using three-dimensional circulation and biogeochemical models

    NASA Astrophysics Data System (ADS)

    Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.

    2018-07-01

    Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.

  2. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-01

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  3. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  4. An introduction to three-dimensional climate modeling

    NASA Technical Reports Server (NTRS)

    Washington, W. M.; Parkinson, C. L.

    1986-01-01

    The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.

  5. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection

  6. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  7. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot

    PubMed Central

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2014-01-01

    Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  8. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  9. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    NASA Astrophysics Data System (ADS)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  10. Assessment of three-dimensional inviscid codes and loss calculations for turbine aerodynamic computations

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1984-01-01

    An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.

  11. Improving Estimates of Regional Infrasound Propagation by Incorporating Three-Dimensional Weather Modeling

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Alter, R. E.; Swearingen, M. E.; Wilson, D. K.

    2017-12-01

    Many larger sources, such as volcanic eruptions and nuclear detonations, produce infrasound (acoustic waves with a frequency lower than humans can hear, namely 0.1-20 Hz) that can propagate over global scales. But many smaller infrastructure sources, such as bridges, dams, and buildings, also produce infrasound, though with a lower amplitude that tends to propagate only over regional scales (up to 150 km). In order to accurately calculate regional-scale infrasound propagation, we have incorporated high-resolution, three-dimensional forecasts from the Weather Research and Forecasting (WRF) meteorological model into a signal propagation modeling system called Environmental Awareness for Sensor and Emitter Employment (EASEE), developed at the US Army Engineer Research and Development Center. To quantify the improvement of infrasound propagation predictions with more realistic weather data, we conducted sensitivity studies with different propagation ranges and horizontal resolutions and compared them to default predictions with no weather model data. We describe the process of incorporating WRF output into EASEE for conducting these acoustic propagation simulations and present the results of the aforementioned sensitivity studies.

  12. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  13. Three-Dimensional Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S.; Wu, H.; Pingerelli, P.; Glickman, B.

    2000-01-01

    In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of mUltiple copies of defined target genes for genotoxic assessment. The Rat 2(lambda) fibroblasts (Stratagene, Inc.) were genetically engineered to contain high-density target genes for mutagenesis. Stable three-dimensional, multicellular spheroids were formed when human mammary epithelial cells and Rat 2(lambda) fibroblasts were cocultured on Cytodex 3 Beads in a rotating wall bioreactor. The utility of this spheroidal model for genotoxic assessment was indicated by a linear dose response curve and by results of gene sequence analysis of mutant clones from 400micron diameter spheroids following low-dose, high-energy, neon radiation exposure

  14. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  15. Thermal Pollution Mathematical Model. Volume 5: User's Manual for Three-Dimensional Rigid-Lid Model. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    A user's manual for a three dimensional, rigid lid model used for hydrothermal predictions of closed basins subjected to a heated discharge together with various other inflows and outflows is presented. The model has the capability to predict (1) wind driven circulation; (2) the circulation caused by inflows and outflows to the domain; and (3) the thermal effects in the domain, and to combine the above processes. The calibration procedure consists of comparing ground truth corrected airborne radiometer data with surface isotherms predicted by the model. The model was verified for accuracy at various sites and results are found to be fairly accurate in all verification runs.

  16. A method of measuring three-dimensional scapular attitudes using the optotrak probing system.

    PubMed

    Hébert, L J; Moffet, H; McFadyen, B J; St-Vincent, G

    2000-01-01

    To develop a method to obtain accurate three-dimensional scapular attitudes and to assess their concurrent validity and reliability. In this methodological study, the three-dimensional scapular attitudes were calculated in degrees, using a rotation matrix (cyclic Cardanic sequence), from spatial coordinates obtained with the probing of three non colinear landmarks first on an anatomical model and second on a healthy subject. Although abnormal movement of the scapula is related to shoulder impingement syndrome, it is not clearly understood whether or not scapular motion impairment is a predisposing factor. Characterization of three-dimensional scapular attitudes in planes and at joint angles for which sub-acromial impingement is more likely to occur is not known. The Optotrak probing system was used. An anatomical model of the scapula was built and allowed us to impose scapular attitudes of known direction and magnitude. A local coordinate reference system was defined with three non colinear anatomical landmarks to assess accuracy and concurrent validity of the probing method with fixed markers. Axial rotation angles were calculated from a rotation matrix using a cyclic Cardanic sequence of rotations. The same three non colinear body landmarks were digitized on one healthy subject and the three dimensional scapular attitudes obtained were compared between sessions in order to assess the reliability. The measure of three dimensional scapular attitudes calculated from data using the Optotrak probing system was accurate with means of the differences between imposed and calculated rotation angles ranging from 1.5 degrees to 4.2 degrees. Greatest variations were observed around the third axis of the Cardanic sequence associated with posterior-anterior transverse rotations. The mean difference between the Optotrak probing system method and fixed markers was 1.73 degrees showing a good concurrent validity. Differences between the two methods were generally very low for one

  17. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  18. Three-dimensional computational aerodynamics in the 1980's

    NASA Technical Reports Server (NTRS)

    Lomax, H.

    1978-01-01

    The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.

  19. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    PubMed

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  20. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less

  1. A Three Dimensional Model of the Feline Hindlimb

    PubMed Central

    Burkholder, Thomas J.; Richard Nichols, T.

    2007-01-01

    This paper describes a three dimensional musculoskeletal model of the feline hindlimb based on digitized musculoskeletal anatomy. The model consists of seven degrees of freedom: three at the hip and two each at the knee and ankle. Lines of action and via points for 32 major muscles of the limb are described. Interspecimen variability of muscle paths was surprisingly low: most via points displayed a scatter of only a few millimeters. Joint axes identified by mechanical techniques as non-coincident and non-orthogonal were further honed to yield moment arms consistent with previous reports. Interspecimen variability in joint axes was greater than that of muscle paths and highlights the importance of joint axes in kinematic models. The contribution of specific muscles to the direction of endpoint force generation is discussed. PMID:15164372

  2. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    DOE PAGES

    Tourret, D.; Karma, A.; Clarke, A. J.; ...

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less

  3. Three-dimensional modeling of flexible pavements : executive summary, August 2001.

    DOT National Transportation Integrated Search

    2001-08-01

    A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...

  4. Three dimensional modeling of flexible pavements : final report, March 2002.

    DOT National Transportation Integrated Search

    2001-08-01

    A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...

  5. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  6. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  7. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  8. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  9. A three-dimensional spin-diffusion model for micromagnetics

    PubMed Central

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  10. Computational technique and performance of Transient Inundation Model for Rivers--2 Dimensional (TRIM2RD) : a depth-averaged two-dimensional flow model

    USGS Publications Warehouse

    Fulford, Janice M.

    2003-01-01

    A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.

  11. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.

    PubMed

    Jones, Daniel B; Sung, Robert; Weinberg, Crispin; Korelitz, Theodore; Andrews, Robert

    2016-04-01

    Three-dimensional (3D) printing has been used in the manufacturing industry for rapid prototyping and product testing. The aim of our study was to assess the feasibility of creating anatomical 3D models from a digital image using 3D printers. Furthermore, we sought face validity of models and explored potential opportunities for using 3D printing to enhance surgical education and clinical practice. Computed tomography and magnetic resonance images were reviewed, converted to computer models, and printed by stereolithography to create near exact replicas of human organs. Medical students and surgeons provided feedback via survey at the 2014 Surgical Education Week conference. There were 51 respondents, and 95.8% wanted these models for their patients. Cost was a concern, but 82.6% found value in these models at a price less than $500. All respondents thought the models would be useful for integration into the medical school curriculum. Three-dimensional printing is a potentially disruptive technology to improve both surgical education and clinical practice. As the technology matures and cost decreases, we envision 3D models being increasingly used in surgery. © The Author(s) 2015.

  12. A THREE-DIMENSIONAL MODEL ASSESSMENT OF THE GLOBAL DISTRIBUTION OF HEXACHLOROBENZENE

    EPA Science Inventory

    The distributions of persistent organic pollutants (POPs) in the global environment have been studied typically with box/fugacity models with simplified treatments of atmospheric transport processes1. Such models are incapable of simulating the complex three-dimensional mechanis...

  13. Development of a Remote Accessibility Assessment System through three-dimensional reconstruction technology.

    PubMed

    Kim, Jong Bae; Brienza, David M

    2006-01-01

    A Remote Accessibility Assessment System (RAAS) that uses three-dimensional (3-D) reconstruction technology is being developed; it enables clinicians to assess the wheelchair accessibility of users' built environments from a remote location. The RAAS uses commercial software to construct 3-D virtualized environments from photographs. We developed custom screening algorithms and instruments for analyzing accessibility. Characteristics of the camera and 3-D reconstruction software chosen for the system significantly affect its overall reliability. In this study, we performed an accuracy assessment to verify that commercial hardware and software can construct accurate 3-D models by analyzing the accuracy of dimensional measurements in a virtual environment and a comparison of dimensional measurements from 3-D models created with four cameras/settings. Based on these two analyses, we were able to specify a consumer-grade digital camera and PhotoModeler (EOS Systems, Inc, Vancouver, Canada) software for this system. Finally, we performed a feasibility analysis of the system in an actual environment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The field test resulted in an accurate accessibility assessment and thus validated our system.

  14. Three-dimensional light-tissue interaction models for bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Côté, D.; Allard, M.; Henkelman, R. M.; Vitkin, I. A.

    2005-09-01

    Many diagnostic and therapeutic approaches in medical physics today take advantage of the unique properties of light and its interaction with tissues. Because light scatters in tissue, our ability to develop these techniques depends critically on our knowledge of the distribution of light in tissue. Solutions to the diffusion equation can provide such information, but often lack the flexibility required for more general problems that involve, for instance, inhomogeneous optical properties, light polarization, arbitrary three-dimensional geometries, or arbitrary scattering. Monte Carlo techniques, which statistically sample the light distribution in tissue, offer a better alternative to analytical models. First, we discuss our implementation of a validated three-dimensional polarization-sensitive Monte Carlo algorithm and demonstrate its generality with respect to the geometry and scattering models it can treat. Second, we apply our model to bioluminescence tomography. After appropriate genetic modifications to cell lines, bioluminescence can be used as an indicator of cell activity, and is often used to study tumour growth and treatment in animal models. However, the amount of light escaping the animal is strongly dependent on the position and size of the tumour. Using forward models and structural data from magnetic resonance imaging, we show how the models can help to determine the location and size of tumour made of bioluminescent cancer cells in the brain of a mouse.

  15. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    NASA Astrophysics Data System (ADS)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  16. A New Classification of Three-Dimensional Printing Technologies: Systematic Review of Three-Dimensional Printing for Patient-Specific Craniomaxillofacial Surgery.

    PubMed

    Jacobs, Carly A; Lin, Alexander Y

    2017-05-01

    Three-dimensional printing technology has been advancing in surgical applications. This systematic review examines its patient-specific applications in craniomaxillofacial surgery. Terms related to "three-dimensional printing" and "surgery" were searched on PubMed on May 4, 2015; 313 unique articles were returned. Inclusion and exclusion criteria concentrated on patient-specific surgical applications, yielding 141 full-text articles, of which 33 craniomaxillofacial articles were analyzed. Thirty-three articles included 315 patients who underwent three-dimensional printing-assisted operations. The most common modeling software was Mimics, the most common printing software was 3D Systems, the average time to create a printed object was 18.9 hours (range, 1.5 to 96 hours), and the average cost of a printed object was $1353.31 (range, $69.75 to $5500). Surgical procedures were divided among 203 craniofacial patients (205 three-dimensional printing objects) and 112 maxillofacial patients (137 objects). Printing technologies could be classified as contour models, guides, splints, and implants. For craniofacial patients, 173 contour models (84 percent), 13 guides (6 percent), two splints (1 percent), and 17 implants (8 percent) were made. For maxillofacial patients, 41 contour models (30 percent), 48 guides (35 percent), 40 splints (29 percent), and eight implants (6 percent) were made. These distributions were significantly different (p < 0.0001). Four studies compared three-dimensional printing techniques to conventional techniques; two of them found that three-dimensional printing produced improved outcomes. Three-dimensional printing technology in craniomaxillofacial surgery can be classified into contour models (type I), guides (type II), splints (type III), and implants (type IV). These four methods vary in their use between craniofacial and maxillofacial surgery, reflecting their different goals. This understanding may help advance and predict three-dimensional

  17. Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage (REVISION)

    PubMed Central

    Haider, Mansoor A.; Guilak, Farshid

    2009-01-01

    Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. PMID:19851478

  18. Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage (REVISION).

    PubMed

    Haider, Mansoor A; Guilak, Farshid

    2007-06-15

    Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain.

  19. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1996-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.

  20. Three dimensional fluid-kinetic model of a magnetically guided plasma jet

    NASA Astrophysics Data System (ADS)

    Ramos, Jesús J.; Merino, Mario; Ahedo, Eduardo

    2018-06-01

    A fluid-kinetic model of the collisionless plasma flow in a convergent-divergent magnetic nozzle is presented. The model combines the leading-order Vlasov equation and the fluid continuity and perpendicular momentum equation for magnetized electrons, and the fluid equations for cold ions, which must be solved iteratively to determine the self-consistent plasma response in a three-dimensional magnetic field. The kinetic electron solution identifies three electron populations and provides the plasma density and pressure tensor. The far downstream asymptotic behavior shows the anisotropic cooling of the electron populations. The fluid equations determine the electric potential and the fluid velocities. In the small ion-sound gyroradius case, the solution is constructed one magnetic line at a time. In the large ion-sound gyroradius case, ion detachment from magnetic lines makes the problem fully three-dimensional.

  1. Three-dimensional face model reproduction method using multiview images

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio

    1991-11-01

    This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.

  2. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  3. Three-dimensional lattice Boltzmann model for compressible flows.

    PubMed

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  4. A three-dimensional neural spheroid model for capillary-like network formation.

    PubMed

    Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane

    2018-04-01

    In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Three dimensional modeling of rigid pavement : executive summary, February 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  6. Three-dimensional modeling of rigid pavement : final report, September 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  7. Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang

    2018-06-01

    Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.

  8. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  9. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  10. Using three-dimensional plant root architecture in models of shallow-slope stability.

    PubMed

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  11. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    PubMed

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  12. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  13. Helicity moduli of three-dimensional dilute XY models

    NASA Astrophysics Data System (ADS)

    Garg, Anupam; Pandit, Rahul; Solla, Sara A.; Ebner, C.

    1984-07-01

    The helicity moduli of various dilute, classical XY models on three-dimensional lattices are studied with a view to understanding some aspects of the superfluidity of 4He in Vycor glass. A spinwave calculation is used to obtain the low-temperature helicity modulus of a regularly-diluted XY model. A similar calculation is performed for the randomly bond-diluted and site-diluted XY models in the limit of low dilution. A Monte Carlo simulation is used to obtain the helicity modulus of the randomly bond-diluted XY model over a wide range of temperature and dilution. It is found that the randomly diluted models do agree and the regularly diluted model does not agree with certain experimentally found features of the variation in superfluid fraction with coverage of 4He in Vycor glass.

  14. [Clinical application of accurate placement of lumbar pedicle screws using three-dimensional printing navigational templates under Quadrant system].

    PubMed

    Chen, Xuanhuang; Yu, Zhengxi; Wu, Changfu; Li, Xing; Chen, Xu; Zhang, Guodong; Zheng, Zugao; Lin, Haibin

    2017-02-01

    To explore the feasibility and the effectiveness of the accurate placement of lumbar pedicle screws using three-dimensional (3D) printing navigational templates in Quadrant minimally invasive system. The L 1-5 spines of 12 adult cadavers were scanned using CT. The 3D models of the lumbar spines were established. The screw trajectory was designed to pass through the central axis of the pedicle by using Mimics software. The navigational template was designed and 3D-printed according to the bony surface where the soft tissues could be removed. The placed screws were scanned using CT to create the 3D model again after operation. The 3D models of the designed trajectory and the placed screws were registered to evaluate the placed screws coincidence rate. Between November 2014 and November 2015, 31 patients with lumbar instability accepted surgery assisted with 3D-printing navigation module under Quadrant minimally invasive system. There were 14 males and 17 females, aged from 42 to 60 years, with an average of 45.2 years. The disease duration was 6-13 months (mean, 8.8 months). Single segment was involved in 15 cases, two segments in 13 cases, and three segments in 3 cases. Preoperative visual analogue scale (VAS) was 7.59±1.04; Oswestry disability index (ODI) was 76.21±5.82; and the Japanese Orthopaedic Association (JOA) score was 9.21±1.64. A total of 120 screws were placed in 12 cadavers specimens. The coincidence rate of placed screw was 100%. A total of 162 screws were implanted in 31 patients. The operation time was 65-147 minutes (mean, 102.23 minutes); the intraoperative blood loss was 50-116 mL (mean, 78.20 mL); and the intraoperative radiation exposure time was 8-54 seconds (mean, 42 seconds). At 3-7 days after operation, CT showed that the coincidence rate of the placed screws was 98.15% (159/162). At 4 weeks after operation, VAS, ODI, and JOA score were 2.24±0.80, 29.17±2.50, and 23.43±1.14 respectively, showing significant differences when compared

  15. A three-dimensional transport model for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.

    1994-01-01

    In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative

  16. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  17. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  18. The influence of patellofemoral joint contact geometry on the modeling of three dimensional patellofemoral joint forces.

    PubMed

    Powers, Christopher M; Chen, Yu-Jen; Scher, Irving; Lee, Thay Q

    2006-01-01

    The purpose of this study was to determine the influence of patellofemoral joint contact geometry on the modeling of three-dimensional patellofemoral joint forces. To achieve this goal, patellofemoral joint reaction forces (PFJRFs) that were measured from an in-vitro cadaveric set-up were compared to PFJRFs estimated from a computer model that did not consider patellofemoral joint contact geometry. Ten cadaver knees were used in this study. Each was mounted on a custom jig that was fixed to an Instron frame. Quadriceps muscle loads were accomplished using a pulley system and weights. The force in the patellar ligament was obtained using a buckle transducer. To quantify the magnitude and direction of the PFJRF, a six-axis load cell was incorporated into the femoral fixation system so that a rigid body assumption could be made. PFJRF data were obtained at 0 degrees , 20 degrees , 40 degrees and 60 degrees of knee flexion. Following in vitro testing, SIMM modeling software was used to develop computational models based on the three-dimensional coordinates (Microscribe digitizer) of individual muscle and patellar ligament force vectors obtained from the cadaver knees. The overall magnitude of the PFJRF estimated from the computer generated models closely matched the direct measurements from the in vitro set-up (Pearson's correlation coefficient, R(2)=0.91, p<0.001). Although the computational model accurately estimated the posteriorly directed forces acting on the joint, some discrepancies were noted in the forces acting in the superior and lateral directions. These differences however, were relatively small when expressed as a total of the overall PFJRF magnitude.

  19. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  20. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  1. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  2. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miesch, Mark S.; Dikpati, Mausumi, E-mail: miesch@ucar.edu

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude)more » and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.« less

  3. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  4. Three-dimensional nano-biointerface as a new platform for guiding cell fate.

    PubMed

    Liu, Xueli; Wang, Shutao

    2014-04-21

    Three-dimensional nano-biointerface has been emerging as an important topic for chemistry, nanotechnology, and life sciences in recent years. Understanding the exchanges of materials, signals, and energy at biological interfaces has inspired and helped the serial design of three-dimensional nano-biointerfaces. The intimate interactions between cells and nanostructures bring many novel properties, making three-dimensional nano-biointerfaces a powerful platform to guide cell fate in a controllable and accurate way. These advantages and capabilities endow three-dimensional nano-biointerfaces with an indispensable role in developing advanced biological science and technology. This tutorial review is mainly focused on the recent progress of three-dimensional nano-biointerfaces and highlights the new explorations and unique phenomena of three-dimensional nano-biointerfaces for cell-related fundamental studies and biomedical applications. Some basic bio-inspired principles for the design and creation of three-dimensional nano-biointerfaces are also delivered in this review. Current and further challenges of three-dimensional nano-biointerfaces are finally addressed and proposed.

  5. Divertor sheath power studies in DIII-D using fixed Langmuir probes and three-dimensional modeling of tile heat flows

    NASA Astrophysics Data System (ADS)

    Donovan, D.; Nygren, R.; Buchenauer, D.; Watkins, J.; Rudakov, D.; Leonard, A.; Wong, C. P. C.; Makowski, M.

    2014-04-01

    Experimental results are presented from the three-Langmuir probe (LP) diagnostic head of the divertor material evaluation system (DiMES) on DIII-D that confirm the size of the projected current collection area of the LPs, which is essential for properly measuring ion saturation current density (Jsat) and the sheath power transmission factor (SPTF). Also using the 3-LP DiMES head, the hypothesis that collisional effects on plasma density occurring in the magnetic sheath of the tile are responsible for a lower than expected SPTF is tested and deemed not to have a significant impact on the SPTF. Three-dimensional thermal modeling of wall tiles is presented that accounts for lateral heat conduction, temperature dependence of tile material properties and radiative heat loss from the tile surface. This modeling was developed to be used in the analysis of temperature profiles of the divertor embedded thermocouple (TC) array to obtain more accurate interpretations of TC temperature profiles to infer divertor surface heat flux than have previously been accomplished using more basic one-dimensional methods.

  6. Three-dimensional temporomandibular joint modeling and animation.

    PubMed

    Cascone, Piero; Rinaldi, Fabrizio; Pagnoni, Mario; Marianetti, Tito Matteo; Tedaldi, Massimiliano

    2008-11-01

    The three-dimensional (3D) temporomandibular joint (TMJ) model derives from a study of the cranium by 3D virtual reality and mandibular function animation. The starting point of the project is high-fidelity digital acquisition of a human dry skull. The cooperation between the maxillofacial surgeon and the cartoonist enables the reconstruction of the fibroconnective components of the TMJ that are the keystone for comprehension of the anatomic and functional features of the mandible. The skeletal model is customized with the apposition of the temporomandibular ligament, the articular disk, the retrodiskal tissue, and the medial and the lateral ligament of the disk. The simulation of TMJ movement is the result of the integration of up-to-date data on the biomechanical restrictions. The 3D TMJ model is an easy-to-use application that may be run on a personal computer for the study of the TMJ and its biomechanics.

  7. The validation study on a three-dimensional burn estimation smart-phone application: accurate, free and fast?

    PubMed

    Cheah, A K W; Kangkorn, T; Tan, E H; Loo, M L; Chong, S J

    2018-01-01

    Accurate total body surface area burned (TBSAB) estimation is a crucial aspect of early burn management. It helps guide resuscitation and is essential in the calculation of fluid requirements. Conventional methods of estimation can often lead to large discrepancies in burn percentage estimation. We aim to compare a new method of TBSAB estimation using a three-dimensional smart-phone application named 3D Burn Resuscitation (3D Burn) against conventional methods of estimation-Rule of Palm, Rule of Nines and the Lund and Browder chart. Three volunteer subjects were moulaged with simulated burn injuries of 25%, 30% and 35% total body surface area (TBSA), respectively. Various healthcare workers were invited to use both the 3D Burn application as well as the conventional methods stated above to estimate the volunteer subjects' burn percentages. Collective relative estimations across the groups showed that when used, the Rule of Palm, Rule of Nines and the Lund and Browder chart all over-estimated burns area by an average of 10.6%, 19.7%, and 8.3% TBSA, respectively, while the 3D Burn application under-estimated burns by an average of 1.9%. There was a statistically significant difference between the 3D Burn application estimations versus all three other modalities ( p  < 0.05). Time of using the application was found to be significantly longer than traditional methods of estimation. The 3D Burn application, although slower, allowed more accurate TBSAB measurements when compared to conventional methods. The validation study has shown that the 3D Burn application is useful in improving the accuracy of TBSAB measurement. Further studies are warranted, and there are plans to repeat the above study in a different centre overseas as part of a multi-centre study, with a view of progressing to a prospective study that compares the accuracy of the 3D Burn application against conventional methods on actual burn patients.

  8. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  9. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  10. Implant-based three-dimensional superimposition of the growing mandible in a rabbit model.

    PubMed

    Parton, Andrew L; Duncan, Warwick J; Oliveira, Marcelo E; Key, Oscar; Farella, Mauro

    2016-10-01

    The reliable assessment of craniofacial morphological changes during growth requires invariant regions for image registration. As these regions have not yet been identified in three dimensions, intra-osseous implants are required as fiducial markers for the reliable assessment of three-dimensional (3D) mandibular growth changes. The objective of this study was to develop an animal model for the assessment of the 3D morphological changes of the mandible during growth, using implants as fiducial markers. Titanium implants were placed in the body of the mandible of six New Zealand White rabbits. Cone beam computed tomography (CBCT) scans were taken 1-week following implant placement and after an additional 8-weeks of growth. Segmentations of CBCT images were exported into custom-made scripts, implant centroids were identified, implant stability during growth calculated, and the segmented mandibles were registered on the implant centroids. The buccal cortical bone of the body of the mandible was stable during growth and suitable for fiducial marker placement. Bilateral implants resulted in more accurate rigid registration of the growing rabbit mandible than only unilateral implants. 3D mandibular growth changes were visualised by means of semi-transparencies. This animal model appears to be feasible for the assessment of the 3D morphological changes occurring during mandibular growth. To the best of our knowledge this is the first time that the implant superimposition method has been combined with 3D imaging to accurately reveal mandibular growth changes. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.

    PubMed

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-02-28

    In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  12. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Saraee, M. B.; Mahmoodi, Z.; Dehghani, S.

    2015-11-01

    This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation.

  13. Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study

    PubMed Central

    Mahmood, Feroze; Kim, Han; Chaudary, Bilal; Bergman, Remco; Matyal, Robina; Gerstle, Jeniffer; Gorman, Joseph H.; Gorman, Robert C.; Khabbaz, Kamal R.

    2013-01-01

    Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was compared with previous descriptions in the literature. Design Prospective. Setting Tertiary care university hospital. Interventions Three-dimensional TEE. Participants Patients undergoing cardiac surgery. Measurements and Main Results Volumetric data sets from 20 patients were acquired by 3D TEE and prospectively analyzed. Comparisons in annular geometry were made between groups based on the presence of TR. The QLab (Philips Medical Systems, Andover, MA) software package was used to calculate tricuspid annular area by both linear elliptical dimensions and planimetry. Further analyses were performed in the 4D Cardio-View (TomTec Corporation GmBH, Munich, Germany) and MATLAB (Natick, MA) software environments to accurately assess annular shape. It was found that patients with greater TR had an eccentrically dilated annulus with a larger annular area. Also, the area as measured by the linear ellipse method was overestimated as compared to the planimetry method. Furthermore, the irregular saddle-shaped geometry of the tricuspid annulus was confirmed through the mathematic model developed by the authors. Conclusions Three-dimensional TEE can be used to measure the tricuspid annular area in a clinically feasible fashion, with an eccentric dilation seen in patients with TR. The tricuspid annulus shape is complex, with annular high and low points, and annular area calculation based on linear measurements significantly overestimates 3D planimetered area. PMID:23725682

  14. Generation of a three-dimensional ultrastructural model of human respiratory cilia.

    PubMed

    Burgoyne, Thomas; Dixon, Mellisa; Luther, Pradeep; Hogg, Claire; Shoemark, Amelia

    2012-12-01

    The ultrastructures of cilia and flagella are highly similar and well conserved through evolution. Consequently, Chlamydomonas is commonly used as a model organism for the study of human respiratory cilia. Since detailed models of Chlamydomonas axonemes were generated using cryoelectron tomography, disparities among some of the ultrastructural features have become apparent when compared with human cilia. Extrapolating information on human disease from the Chlamydomonas model may lead to discrepancies in translational research. This study aimed to establish the first three-dimensional ultrastructural model of human cilia. Tomograms of transverse sections (n = 6) and longitudinal sections (n = 9) of human nasal respiratory cilia were generated from three healthy volunteers. Key features of the cilium were resolved using subatomic averaging, and were measured. For validation of the method, a model of the well characterized structure of Chlamydomonas reinhardtii was simultaneously generated. Data were combined to create a fully quantified three-dimensional reconstruction of human nasal respiratory cilia. We highlight key differences in the axonemal sheath, microtubular doublets, radial spokes, and dynein arms between the two structures. We show a decreased axial periodicity of the radial spokes, inner dynein arms, and central pair protrusions in the human model. We propose that this first human model will provide a basis for research into the function and structure of human respiratory cilia in health and in disease.

  15. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia

    2018-04-01

    We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.

  16. Using Three-dimensional Plant Root Architecture in Models of Shallow-slope Stability

    PubMed Central

    Danjon, Frédéric; Barker, David H.; Drexhage, Michael; Stokes, Alexia

    2008-01-01

    Background The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Methods Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Key Results Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1·0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Conclusions Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses. PMID:17766845

  17. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  18. [Analysis of a three-dimensional finite element model of atlas and axis complex fracture].

    PubMed

    Tang, X M; Liu, C; Huang, K; Zhu, G T; Sun, H L; Dai, J; Tian, J W

    2018-05-22

    Objective: To explored the clinical application of the three-dimensional finite element model of atlantoaxial complex fracture. Methods: A three-dimensional finite element model of cervical spine (FEM/intact) was established by software of Abaqus6.12.On the basis of this model, a three-dimensional finite element model of four types of atlantoaxial complex fracture was established: C(1) fracture (Jefferson)+ C(2) fracture (type Ⅱfracture), Jefferson+ C(2) fracture(type Ⅲfracture), Jefferson+ C(2) fracture(Hangman), Jefferson+ stable C(2) fracture (FEM/fracture). The range of motion under flexion, extension, lateral bending and axial rotation were measured and compared with the model of cervical spine. Results: The three-dimensional finite element model of four types of atlantoaxial complex fracture had the same similarity and profile.The range of motion (ROM) of different segments had different changes.Compared with those in the normal model, the ROM of C(0/1) and C(1/2) in C(1) combined Ⅱ odontoid fracture model in flexion/extension, lateral bending and rotation increased by 57.45%, 29.34%, 48.09% and 95.49%, 88.52%, 36.71%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined Ⅲodontoid fracture model in flexion/extension, lateral bending and rotation increased by 47.01%, 27.30%, 45.31% and 90.38%, 27.30%, 30.0%.The ROM of C(0/1) and C(1/2) in C(1) combined Hangman fracture model in flexion/extension, lateral bending and rotation increased by 32.68%, 79.34%, 77.62% and 60.53%, 81.20%, 21.48%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined axis fracture model in flexion/extension, lateral bending and rotation increased by 15.00%, 29.30%, 8.47% and 37.87%, 75.57%, 8.30%, respectively. Conclusions: The three-dimensional finite element model can be used to simulate the biomechanics of atlantoaxial complex fracture.The ROM of atlantoaxial complex fracture is larger than nomal model, which indicates that surgical treatment should be performed.

  19. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, A.; Avramova, Maria; Ivanov, Kostadin

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less

  20. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that

  1. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  2. Three-dimensional Modeling of Water Quality and Ecology in Narragansett Bay

    EPA Science Inventory

    This report presents the methodology to apply, calibrate, and validate the three-dimensional water quality and ecological model provided with the Environmental Fluid Dynamics Code (EFDC). The required advection and dispersion mechanisms are generated simultaneously by the EFDC h...

  3. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  4. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    NASA Astrophysics Data System (ADS)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  5. Three-dimensional kinetic and fluid dynamic modeling and three iterative algorithms for side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2017-11-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.

  6. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li

    2018-03-01

    In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  7. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  8. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.

    PubMed

    Kiraly, Laszlo

    2018-04-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting.

  9. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery

    PubMed Central

    2018-01-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting. PMID:29770294

  10. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  11. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This

  12. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques

    DOE PAGES

    Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...

    2016-06-24

    A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less

  13. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  14. Modeling and numerical simulations of growth and morphologies of three dimensional aggregated silver films

    NASA Astrophysics Data System (ADS)

    Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.

    2012-11-01

    We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.

  15. Explorable Three-Dimensional Digital Model of the Female Pelvis, Pelvic Contents, and Perineum for Anatomical Education

    ERIC Educational Resources Information Center

    Sergovich, Aimee; Johnson, Marjorie; Wilson, Timothy D.

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using…

  16. A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.

    1986-12-01

    A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.

  17. KRISSY: user's guide to modeling three-dimensional wind flow in complex terrain

    Treesearch

    Michael A. Fosberg; Michael L. Sestak

    1986-01-01

    KRISSY is a computer model for generating three-dimensional wind flows in complex terrain from data that were not or perhaps cannot be collected. The model is written in FORTRAN IV This guide describes data requirements, modeling, and output from an applications viewpoint rather than that of programming or theoretical modeling. KRISSY is designed to minimize...

  18. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.

  19. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  20. Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkan; Zhang, Ye

    2015-03-01

    A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems

  1. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    PubMed Central

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-01-01

    In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517

  2. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  3. Simplified three-dimensional model provides anatomical insights in lizards' caudal autotomy as printed illustration.

    PubMed

    De Amorim, Joana D C G; Travnik, Isadora; De Sousa, Bernadete M

    2015-03-01

    Lizards' caudal autotomy is a complex and vastly employed antipredator mechanism, with thorough anatomic adaptations involved. Due to its diminished size and intricate structures, vertebral anatomy is hard to be clearly conveyed to students and researchers of other areas. Three-dimensional models are prodigious tools in unveiling anatomical nuances. Some of the techniques used to create them can produce irregular and complicated forms, which despite being very accurate, lack didactical uniformity and simplicity. Since both are considered fundamental characteristics for comprehension, a simplified model could be the key to improve learning. The model here presented depicts the caudal osteology of Tropidurus itambere, and was designed to be concise, in order to be easily assimilated, yet complete, not to compromise the informative aspect. The creation process requires only basic skills in manipulating polygons in 3D modeling softwares, in addition to the appropriate knowledge of the structure to be modeled. As reference for the modeling, we used microscopic observation and a photograph database of the caudal structures. This way, no advanced laboratory equipment was needed and all biological materials were preserved for future research. Therefore, we propose a wider usage of simplified 3D models both in the classroom and as illustrations for scientific publications.

  4. Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model

    PubMed Central

    Gurev, V.; Constantino, J.; Rice, J.J.; Trayanova, N.A.

    2010-01-01

    In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions. PMID:20682251

  5. COSMO-PAFOG: Three-dimensional fog forecasting with the high-resolution COSMO-model

    NASA Astrophysics Data System (ADS)

    Hacker, Maike; Bott, Andreas

    2017-04-01

    The presence of fog can have critical impact on shipping, aviation and road traffic increasing the risk of serious accidents. Besides these negative impacts of fog, in arid regions fog is explored as a supplementary source of water for human settlements. Thus the improvement of fog forecasts holds immense operational value. The aim of this study is the development of an efficient three-dimensional numerical fog forecast model based on a mesoscale weather prediction model for the application in the Namib region. The microphysical parametrization of the one-dimensional fog forecast model PAFOG (PArameterized FOG) is implemented in the three-dimensional nonhydrostatic mesoscale weather prediction model COSMO (COnsortium for Small-scale MOdeling) developed and maintained by the German Meteorological Service. Cloud water droplets are introduced in COSMO as prognostic variables, thus allowing a detailed description of droplet sedimentation. Furthermore, a visibility parametrization depending on the liquid water content and the droplet number concentration is implemented. The resulting fog forecast model COSMO-PAFOG is run with kilometer-scale horizontal resolution. In vertical direction, we use logarithmically equidistant layers with 45 of 80 layers in total located below 2000 m. Model results are compared to satellite observations and synoptic observations of the German Meteorological Service for a domain in the west of Germany, before the model is adapted to the geographical and climatological conditions in the Namib desert. COSMO-PAFOG is able to represent the horizontal structure of fog patches reasonably well. Especially small fog patches typical of radiation fog can be simulated in agreement with observations. Ground observations of temperature are also reproduced. Simulations without the PAFOG microphysics yield unrealistically high liquid water contents. This in turn reduces the radiative cooling of the ground, thus inhibiting nocturnal temperature decrease. The

  6. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  7. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  8. Three-dimensional accuracy of different impression techniques for dental implants

    PubMed Central

    Nakhaei, Mohammadreza; Madani, Azam S; Moraditalab, Azizollah; Haghi, Hamidreza Rajati

    2015-01-01

    Background: Accurate impression making is an essential prerequisite for achieving a passive fit between the implant and the superstructure. The aim of this in vitro study was to compare the three-dimensional accuracy of open-tray and three closed-tray impression techniques. Materials and Methods: Three acrylic resin mandibular master models with four parallel implants were used: Biohorizons (BIO), Straumann tissue-level (STL), and Straumann bone-level (SBL). Forty-two putty/wash polyvinyl siloxane impressions of the models were made using open-tray and closed-tray techniques. Closed-tray impressions were made using snap-on (STL model), transfer coping (TC) (BIO model) and TC plus plastic cap (TC-Cap) (SBL model). The impressions were poured with type IV stone, and the positional accuracy of the implant analog heads in each dimension (x, y and z axes), and the linear displacement (ΔR) were evaluated using a coordinate measuring machine. Data were analyzed using ANOVA and post-hoc Tukey tests (α = 0.05). Results: The ΔR values of the snap-on technique were significantly lower than those of TC and TC-Cap techniques (P < 0.001). No significant differences were found between closed and open impression techniques for STL in Δx, Δy, Δz and ΔR values (P = 0.444, P = 0.181, P = 0.835 and P = 0.911, respectively). Conclusion: Considering the limitations of this study, the snap-on implant-level impression technique resulted in more three-dimensional accuracy than TC and TC-Cap, but it was similar to the open-tray technique. PMID:26604956

  9. Multi-GPU three dimensional Stokes solver for simulating glacier flow

    NASA Astrophysics Data System (ADS)

    Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel

    2016-04-01

    Here we present how we have recently developed a three-dimensional Stokes solver on the GPUs and apply it to a glacier flow. We numerically solve the Stokes momentum balance equations together with the incompressibility equation, while also taking into account strong nonlinearities for ice rheology. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme with preconditioning of residuals. Differential equations are discretized on a regular staggered grid. We have ported it to C-CUDA to run it on GPU's in parallel, using MPI. We demonstrate the accuracy and efficiency of our developed model by manufactured analytical solution test for three-dimensional Stokes ice sheet models (Leng et al.,2013) and by comparison with other well-established ice sheet models on diagnostic ISMIP-HOM benchmark experiments (Pattyn et al., 2008). The results show that our developed model is capable to accurately and efficiently solve Stokes system of equations in a variety of different test scenarios, while preserving good parallel efficiency on up to 80 GPU's. For example, in 3D test scenarios with 250000 grid points our solver converges in around 3 minutes for single precision computations and around 10 minutes for double precision computations. We have also optimized the developed code to efficiently run on our newly acquired state-of-the-art GPU cluster octopus. This allows us to solve our problem on more than 20 million grid points, by just increasing the number of GPU used, while keeping the computation time the same. In future work we will apply our solver to real world applications and implement the free surface evolution capabilities. REFERENCES Leng,W.,Ju,L.,Gunzburger,M. & Price,S., 2013. Manufactured solutions and the verification of three-dimensional stokes ice-sheet models. Cryosphere 7,19-29. Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson,G.H., Hindmarsh, R

  10. ALGE3D: A Three-Dimensional Transport Model

    NASA Astrophysics Data System (ADS)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  11. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  12. Social Inferences from Faces: Ambient Images Generate a Three-Dimensional Model

    ERIC Educational Resources Information Center

    Sutherland, Clare A. M.; Oldmeadow, Julian A.; Santos, Isabel M.; Towler, John; Burt, D. Michael; Young, Andrew W.

    2013-01-01

    Three experiments are presented that investigate the two-dimensional valence/trustworthiness by dominance model of social inferences from faces (Oosterhof & Todorov, 2008). Experiment 1 used image averaging and morphing techniques to demonstrate that consistent facial cues subserve a range of social inferences, even in a highly variable sample of…

  13. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  14. [Advances in the research of application of hydrogels in three-dimensional bioprinting].

    PubMed

    Yang, J; Zhao, Y; Li, H H; Zhu, S H

    2016-08-20

    Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.

  15. Three-dimensional MR imaging in the assessment of physeal growth arrest.

    PubMed

    Sailhan, Frédéric; Chotel, Franck; Guibal, Anne-Laure; Gollogly, Sohrab; Adam, Philippe; Bérard, Jérome; Guibaud, Laurent

    2004-09-01

    The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was

  16. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  17. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  18. A dental vision system for accurate 3D tooth modeling.

    PubMed

    Zhang, Li; Alemzadeh, K

    2006-01-01

    This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.

  19. Numerical simulation of the three-dimensional river antidunes

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Inoue, T.; Onda, S.; Yabe, H.

    2017-12-01

    This study presents numerical simulations of the formation and development of the three-dimensional river antidunes. We use a Boussinesq type depth-integrated hydrodynamic model to account for the non-hydrostatic pressure effects on the flow field, dissipative feature of the free surface and the bed shear stress distribution. In addition, a non-equilibrium bedload transport model is incorporated into the model to consider the lag effect of the bedload transport on the bedform dynamics. The model is applied to idealized laboratory-scale conditions, i.e., steady water and sediment supplies, uniform sediment and a straight channel with constant slope and channel width, to understand the model performance and applicability. The results show that the model is able to reproduce an upstream-migrating antidunes and associated free surface dynamics. The model also captures the formation of the two dimensional and the three-dimensional antidunes. The antidunes reproduced by the model are somewhat unstable, i.e., the repeated cycle of dissipation and regeneration of antidunes is observed. In addition, as the calculation progresses, the modelled three-dimensional antidunes generally tend to lose their three-dimensionality, i.e., the reduction of the spanwise wavenumber. In the early stage of the calculation, the antidune mode is dominant, whereas, the free bars also develop when the formative condition of bars is satisfied. The numerical results show the coexisting of free bars and antidunes, which are a common evident in flume experiments and field observations.

  20. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume.

    PubMed

    Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A

    2012-12-01

    In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.

    PubMed

    Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N

    2016-09-01

    Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A finite-volume ELLAM for three-dimensional solute-transport modeling

    USGS Publications Warehouse

    Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.

    2003-01-01

    A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.

  3. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns.

    PubMed

    Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A

    2017-01-01

    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed

  4. A three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1994-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  5. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, Manoel; Diaz, Marcos

    2009-12-15

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less

  6. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  7. A new Lagrangian method for three-dimensional steady supersonic flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.

  8. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    NASA Astrophysics Data System (ADS)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  9. A new general circulation model of Jupiter's atmosphere based on the UKMO Unified Model: Three-dimensional evolution of isolated vortices and zonal jets in mid-latitudes

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y. H.; Skeet, D. R.; Read, P. L.

    2004-04-01

    We have been developing a new three-dimensional general circulation model for the stratosphere and troposphere of Jupiter based on the dynamical core of a portable version of the Unified Model of the UK Meteorological Office. Being one of the leading terrestrial GCMs, employed for operational weather forecasting and climate research, the Unified Model has been thoroughly tested and performance tuned for both vector and parallel computers. It is formulated as a generalized form of the standard primitive equations to handle a thick atmosphere, using a scaled pressure as the vertical coordinate. It is able to accurately simulate the dynamics of a three-dimensional fully compressible atmosphere on the whole or a part of a spherical shell at high spatial resolution in all three directions. Using the current version of the GCM, we examine the characteristics of the Jovian winds in idealized configurations based on the observed vertical structure of temperature. Our initial focus is on the evolution of isolated eddies in the mid-latitudes. Following a brief theoretical investigation of the vertical structure of the atmosphere, limited-area cyclic channel domains are used to numerically investigate the nonlinear evolution of the mid-latitude winds. First, the evolution of deep and shallow cyclones and anticyclones are tested in the atmosphere at rest to identify a preferred horizontal and vertical structure of the vortices. Then, the dependency of the migration characteristics of the vortices are investigated against modelling parameters to find that it is most sensitive to the horizontal diffusion. We also examine the hydrodynamical stability of observed subtropical jets in both northern and southern hemispheres in the three-dimensional nonlinear model as initial value problems. In both cases, it was found that the prominent jets are unstable at various scales and that vorteces of various sizes are generated including those comparable to the White Ovals and the Great Red

  10. Asymmetries and three-dimensional features of vestibular cross-coupled stimuli illuminated through modeling

    PubMed Central

    Holly, Jan E.; Masood, M. Arjumand; Bhandari, Chiran S.

    2017-01-01

    Head movements during sustained rotation can cause angular cross-coupling which leads to tumbling illusions. Even though angular vectors predict equal magnitude illusions for head movements in opposite directions, the magnitudes of the illusions are often surprisingly asymmetric, such as during leftward versus rightward yaw while horizontal in a centrifuge. This paper presents a comprehensive investigation of the angular-linear stimulus combinations from eight different published papers in which asymmetries were found. Interactions between all angular and linear vectors, including gravity, are taken into account to model the three-dimensional consequences of the stimuli. Three main results followed. First, for every pair of head yaw movements, an asymmetry was found in the stimulus itself when considered in a fully three-dimensional manner, and the direction of the asymmetry matched the subjectively reported magnitude asymmetry. Second, for pitch and roll head movements for which motion sickness was measured, the stimulus was found symmetric in every case except one, and motion sickness generally aligned with other factors such as the existence of a head rest. Third, three-dimensional modeling predicted subjective inconsistency in the direction of perceived rotation when linear and angular components were oppositely-directed, and predicted surplus illusory rotation in the direction of head movement. PMID:27814310

  11. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  12. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  13. A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness

    PubMed Central

    Stride, E.; Cheema, U.

    2017-01-01

    The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127

  14. Three-Dimensional Reconstruction and Solar Energy Potential Estimation of Buildings

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, M.; Cheng, L.; Xu, H.; Li, S.; Liu, X.

    2017-12-01

    In the context of the construction of low-carbon cities, green cities and eco-cities, the ability of the airborne and mobile LiDAR should be explored in urban renewable energy research. As the main landscape in urban environment, buildings have large regular envelopes could receive a huge amount of solar radiation. In this study, a relatively complete calculation scheme about building roof and façade solar utilization potential is proposed, using building three-dimensional geometric feature information. For measuring the city-level building solar irradiance, the precise three-dimensional building roof and façade models should be first reconstructed from the airborne and mobile LiDAR, respectively. In order to obtaining the precise geometric structure of building facades from the mobile LiDAR data, a new method for structure detection and the three-dimensional reconstruction of building façades from mobile LiDAR data is proposed. The method consists of three steps: the preprocessing of façade points, the detection of façade structure, the restoration and reconstruction of building façade. As a result, the reconstruction method can effectively deal with missing areas caused by occlusion, viewpoint limitation, and uneven point density, as well as realizing the highly complete 3D reconstruction of a building façade. Furthermore, the window areas can be excluded for more accurate estimation of solar utilization potential. After then, the solar energy utilization potential of global building roofs and facades is estimate by using the solar irradiance model, which combine the analysis of the building shade and sky diffuse, based on the analysis of the geometrical structure of buildings.

  15. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

    PubMed Central

    Gardner, Jameson K.; Herbst-Kralovetz, Melissa M.

    2016-01-01

    The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies. PMID:27834891

  16. [Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].

    PubMed

    Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying

    2014-10-14

    To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.

  17. Three Dimensional Modeling via Photographs for Documentation of a Village Bath

    NASA Astrophysics Data System (ADS)

    Balta, H. B.; Hamamcioglu-Turan, M.; Ocali, O.

    2013-07-01

    The aim of this study is supporting the conceptual discussions of architectural restoration with three dimensional modeling of monuments based on photogrammetric survey. In this study, a 16th century village bath in Ulamış, Seferihisar, and Izmir is modeled for documentation. Ulamış is one of the historical villages within which Turkish population first settled in the region of Seferihisar - Urla. The methodology was tested on an antique monument; a bath with a cubical form. Within the limits of this study, only the exterior of the bath was modeled. The presentation scale for the bath was determined as 1 / 50, considering the necessities of designing structural interventions and architectural ones within the scope of a restoration project. The three dimensional model produced is a realistic document presenting the present situation of the ruin. Traditional plan, elevation and perspective drawings may be produced from the model, in addition to the realistic textured renderings and wireframe representations. The model developed in this study provides opportunity for presenting photorealistic details of historical morphologies in scale. Compared to conventional drawings, the renders based on the 3d models provide an opportunity for conceiving architectural details such as color, material and texture. From these documents, relatively more detailed restitution hypothesis can be developed and intervention decisions can be taken. Finally, the principles derived from the case study can be used for 3d documentation of historical structures with irregular surfaces.

  18. A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects.

    PubMed

    Higgins, Sean W; Spratley, E Meade; Boe, Richard A; Hayes, Curtis W; Jiranek, William A; Wayne, Jennifer S

    2014-11-05

    The inherently complex three-dimensional morphology of both the pelvis and acetabulum create difficulties in accurately determining acetabular orientation. Our objectives were to develop a reliable and accurate methodology for determining three-dimensional acetabular orientation and to utilize it to describe relevant characteristics of a large population of subjects without apparent hip pathology. High-resolution computed tomography studies of 200 patients previously receiving pelvic scans for indications not related to orthopaedic conditions were selected from our institution's database. Three-dimensional models of each osseous pelvis were generated to extract specific anatomical data sets. A novel computational method was developed to determine standard measures of three-dimensional acetabular orientation within an automatically identified anterior pelvic plane reference frame. Automatically selected points on the osseous ridge of the acetabulum were used to generate a best-fit plane for describing acetabular orientation. Our method showed excellent interobserver and intraobserver agreement (an intraclass correlation coefficient [ICC] of >0.999) and achieved high levels of accuracy. A significant difference between males and females in both anteversion (average, 3.5°; 95% confidence interval [CI], 1.9° to 5.1° across all angular definitions; p < 0.0001) and inclination (1.4°; 95% CI, 0.6° to 2.3° for anatomic angular definition; p < 0.002) was observed. Intrapatient asymmetry in anatomic measures showed bilateral differences in anteversion (maximum, 12.1°) and in inclination (maximum, 10.9°). Significant differences in acetabular orientation between the sexes can be detected only with accurate measurements that account for the entire acetabulum. While a wide range of interpatient acetabular orientations was observed, the majority of subjects had acetabula that were relatively symmetrical in both inclination and anteversion. A highly accurate and

  19. Influence of Dzyaloshinskii-Moriya interaction and ballistic spin transport in the two and three-dimensional Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-06-01

    We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.

  20. Three-dimensional visualization of the craniofacial patient: volume segmentation, data integration and animation.

    PubMed

    Enciso, R; Memon, A; Mah, J

    2003-01-01

    The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.

  1. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  2. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  3. Applications of three-dimensional modeling in electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Pellerin, Louise Donna

    Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions

  4. Dielectric Cytometry with Three-Dimensional Cellular Modeling

    PubMed Central

    Katsumoto, Yoichi; Hayashi, Yoshihito; Oshige, Ikuya; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio; Asami, Koji

    2008-01-01

    We have developed what we believe is an efficient method to determine the electric parameters (the specific membrane capacitance Cm and the cytoplasm conductivity κi) of cells from their dielectric dispersion. First, a limited number of dispersion curves are numerically calculated for a three-dimensional cell model by changing Cm and κi, and their amplitudes Δɛ and relaxation times τ are determined by assuming a Cole-Cole function. Second, regression formulas are obtained from the values of Δɛ and τ and then used for the determination of Cm and κi from the experimental Δɛ and τ. This method was applied to the dielectric dispersion measured for rabbit erythrocytes (discocytes and echinocytes) and human erythrocytes (normocytes), and provided reasonable Cm and κi of the erythrocytes and excellent agreement between the theoretical and experimental dispersion curves. PMID:18567636

  5. Dielectric cytometry with three-dimensional cellular modeling.

    PubMed

    Katsumoto, Yoichi; Hayashi, Yoshihito; Oshige, Ikuya; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio; Asami, Koji

    2008-09-15

    We have developed what we believe is an efficient method to determine the electric parameters (the specific membrane capacitance C(m) and the cytoplasm conductivity kappa(i)) of cells from their dielectric dispersion. First, a limited number of dispersion curves are numerically calculated for a three-dimensional cell model by changing C(m) and kappa(i), and their amplitudes Deltaepsilon and relaxation times tau are determined by assuming a Cole-Cole function. Second, regression formulas are obtained from the values of Deltaepsilon and tau and then used for the determination of C(m) and kappa(i) from the experimental Deltaepsilon and tau. This method was applied to the dielectric dispersion measured for rabbit erythrocytes (discocytes and echinocytes) and human erythrocytes (normocytes), and provided reasonable C(m) and kappa(i) of the erythrocytes and excellent agreement between the theoretical and experimental dispersion curves.

  6. Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.

    2018-06-01

    Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.

  7. Vibrational response analysis of tires using a three-dimensional flexible ring-based model

    NASA Astrophysics Data System (ADS)

    Matsubara, Masami; Tajiri, Daiki; Ise, Tomohiko; Kawamura, Shozo

    2017-11-01

    Tire vibration characteristics influence noise, vibration, and harshness. Hence, there have been many investigations of the dynamic responses of tires. In this paper, we present new formulations for the prediction of tire tread vibrations below 150 Hz using a three-dimensional flexible ring-based model. The ring represents the tread including the belt, and the springs represent the tire sidewall stiffness. The equations of motion for lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests. Unlike most studies of flexible ring models, which mainly discussed radial and circumferential vibration, this study presents steady response functions concerning not only radial and circumferential but also lateral vibration using the three-dimensional flexible ring-based model. The results of impact tests described confirm the theoretical findings. The results show reasonable agreement with the predictions.

  8. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  9. Three-dimensional implicit lambda methods

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Dadone, A.

    1983-01-01

    This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.

  10. Three-dimensional interpretation of TEM soundings

    NASA Astrophysics Data System (ADS)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  11. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    DOE PAGES

    Allu, S.; Kalnaus, S.; Simunovic, S.; ...

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

  12. Three-Dimensional Model for Preservation and Restoration of Architectural Heritage

    NASA Technical Reports Server (NTRS)

    Marchis, Elena

    2011-01-01

    Thc aim of the research will be to create a model, three-dimensional mathematical. implementation. consultation and assistance to "large" restoration projects that will assist the structural analysis, allowing easier display of dynamic strain. analysis and lighting noise. It could also be a valuable tool for decision support. therefore. may simulate several possible scenarios for intervention, This model appears therefore an excellent support for recovering. ordering and monitoring information about materials and data (stage of restoration. photographs. sampling points. results of diagnostic tests, etc.) collected dynamically during the "life" of the cultural heritage. allowing to document its complete history

  13. A three-dimensional finite element model of near-field scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin

    2012-10-01

    A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.

  14. MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)

    EPA Science Inventory

    A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...

  15. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  16. Three dimensional radiation fields in free electron lasers using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, L.R.; Gallardo, J.

    1981-10-28

    In a free electron laser a relativistic electron beam is bunched under the action of the ponderomotive potential and is forced to radiate in close phase with the input wave. Until recently, most theories of the FEL have dealt solely with electron beams of infinite transverse dimension radiating only one-dimensional E.M. waves (plane waves). Although these theories describe accurately the dynamics of the electrons during the FEL interaction process, neither the three dimensional nature of the radiated fields nor its non-monochromatic features can be properly studied by them. As a result of this, very important practical issues such as themore » gain per gaussian-spherical optical mode in a free electron laser have not been well addressed, except through a one dimensional field model in which a filling factor describes crudely the coupling of the FEL induced field to the input field.« less

  17. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  18. Clinical use of three-dimensional video measurements of eye movements

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Black, F. O.; Wade, S.; Paloski, W. H. (Principal Investigator)

    1998-01-01

    Noninvasive measurements of three-dimensional eye position can be accurately achieved with video methods. A case study showing the potential clinical benefit of these enhanced measurements is presented along with some thoughts about technological advances, essential for clinical application, that are likely to occur in the next several years.

  19. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  20. Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Nwadike, E. V.; Sinha, S. E.

    1982-01-01

    The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.

  1. Inter-comparison of three-dimensional models of volcanic plumes

    USGS Publications Warehouse

    Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif

    2016-01-01

    We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10

  2. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  3. Inverse energy cascades in three-dimensional turbulence

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed

    1991-01-01

    Fully three-dimensional magnetohydrodynamic (MHD) turbulence at large kinetic and low magnetic Reynolds numbers is considered in the presence of a strong uniform magnetic field. It is shown by numerical simulation of a model of MHD that the energy inverse cascades to longer length scales when the interaction parameter is large. While the steady-state dynamics of the driven problem is three-dimensional in character, the behavior has resemblance to two-dimensional hydrodynamics. These results have implications in turbulence theory, MHD power generator, planetary dynamos, and fusion reactor blanket design.

  4. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    PubMed

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.

  5. A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.

    PubMed

    Charny, C K; Levin, R L

    1991-10-01

    Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.

  6. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  7. A one-dimensional with three-dimensional velocity space hybrid-PIC model of the discharge plasma in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry

    2017-04-01

    According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.

  8. Evaluation of a Three-Dimensional Chemical Transport Model (PMCAMx) in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2007-05-01

    Atmospheric aerosols have adverse effects on human health, contribute to the visibility reduction and influence the energy balance of the planet. A three-dimensional chemical transport model (PMCAMx) (Gaydos et al., 2007) is used to simulate the particular matter (PM) mass composition distribution in the Mexico City Metropolitan Area (MCMA). PMCAMx uses the framework of CAMx (ENVIRON, 2002) modelling the processes of horizontal and vertical advection, horizontal and vertical dispersion, wet and dry deposition, and gas-phase chemistry. In addition to the above, PMCAMx includes three detailed aerosol modules: inorganic aerosol growth (Gaydos et al., 2003; Koo et al., 2003a), aqueous-phase chemistry (Fahey and Pandis, 2001), and secondary organic aerosol formation and growth (Koo et al., 2004). The aerosol thermodynamic model ISORROPIA has been improved as it now simulates explicitly the chemistry of Ca, Mg, and K salts and is linked to PMCAMx. The hybrid approach (Koo et al., 2003b) for modelling aerosol dynamics is applied in order to accurately simulate the inorganic components in coarse mode. This approach assumes that the smallest particles are in equilibrium while the condensation/evaporation equation is solved for the larger ones. The new CMU organic aerosol model, which is based on the splitting of the organic aerosol volatility range in discrete bins, is also used. The model predictions are evaluated against the PM and vapour concentration measurements from the MCMA-2003 Campaign (Molina et al., 2007). References Gaydos, T., Pinder, R., Koo, B., Fahey, Κ., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, in press. ENVIRON (2002). User's guide to the comprehensive air quality model with extensions (CAMx). Version 3.10. Report prepared by ENVIRON International corporation, Novato, CA Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of

  9. Three-dimensional analysis of tubular permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Chai, J.; Wang, J.; Howe, D.

    2006-04-01

    This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.

  10. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  11. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    NASA Astrophysics Data System (ADS)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  12. Transparency-enhancing technology allows three-dimensional assessment of gastrointestinal mucosa: A porcine model.

    PubMed

    Mizutani, Hiroya; Ono, Satoshi; Ushiku, Tetsuo; Kudo, Yotaro; Ikemura, Masako; Kageyama, Natsuko; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Someya, Takao; Fukayama, Masashi; Koike, Kazuhiko; Onodera, Hiroshi

    2018-02-01

    Although high-resolution three-dimensional imaging of endoscopically resected gastrointestinal specimens can help elucidating morphological features of gastrointestinal mucosa or tumor, there are no established methods to achieve this without breaking specimens apart. We evaluated the utility of transparency-enhancing technology for three-dimensional assessment of gastrointestinal mucosa in porcine models. Esophagus, stomach, and colon mucosa samples obtained from a sacrificed swine were formalin-fixed and paraffin-embedded, and subsequently deparaffinized for analysis. The samples were fluorescently stained, optically cleared using transparency-enhancing technology: ilLUmination of Cleared organs to IDentify target molecules method (LUCID), and visualized using laser scanning microscopy. After observation, all specimens were paraffin-embedded again and evaluated by conventional histopathological assessment to measure the impact of transparency-enhancing procedures. As a result, microscopic observation revealed horizontal section views of mucosa at deeper levels and enabled the three-dimensional image reconstruction of glandular and vascular structures. Besides, paraffin-embedded specimens after transparency-enhancing procedures were all assessed appropriately by conventional histopathological staining. These results suggest that transparency-enhancing technology may be feasible for clinical application and enable the three-dimensional structural analysis of endoscopic resected specimen non-destructively. Although there remain many limitations or problems to be solved, this promising technology might represent a novel histopathological method for evaluating gastrointestinal cancers. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  13. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  14. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    PubMed Central

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID

  15. Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.

  16. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  17. Three Dimensional Neuronal Cell Cultures More Accurately Model Voltage Gated Calcium Channel Functionality in Freshly Dissected Nerve Tissue

    PubMed Central

    Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells’ functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns. PMID:23049767

  18. Three-dimensional modeling of the Ca II H and K lines in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Bjørgen, Johan P.; Sukhorukov, Andrii V.; Leenaarts, Jorrit; Carlsson, Mats; de la Cruz Rodríguez, Jaime; Scharmer, Göran B.; Hansteen, Viggo H.

    2018-03-01

    Context. CHROMIS, a new imaging spectrometer at the Swedish 1-m Solar Telescope (SST), can observe the chromosphere in the H and K lines of Ca II at high spatial and spectral resolution. Accurate modeling as well as an understanding of the formation of these lines are needed to interpret the SST/CHROMIS observations. Such modeling is computationally challenging because these lines are influenced by strong departures from local thermodynamic equilibrium, three-dimensional radiative transfer, and partially coherent resonance scattering of photons. Aim. We aim to model the Ca II H and K lines in 3D model atmospheres to understand their formation and to investigate their diagnostic potential for probing the chromosphere. Methods: We model the synthetic spectrum of Ca II using the radiative transfer code Multi3D in three different radiation-magnetohydrodynamic model atmospheres computed with the Bifrost code. We classify synthetic intensity profiles according to their shapes and study how their features are related to the physical properties in the model atmospheres. We investigate whether the synthetic data reproduce the observed spatially-averaged line shapes, center-to-limb variation and compare this data with SST/CHROMIS images. Results: The spatially-averaged synthetic line profiles show too low central emission peaks, and too small separation between the peaks. The trends of the observed center-to-limb variation of the profiles properties are reproduced by the models. The Ca II H and K line profiles provide a temperature diagnostic of the temperature minimum and the temperature at the formation height of the emission peaks. The Doppler shift of the central depression is an excellent probe of the velocity in the upper chromosphere.

  19. Three-dimensional numerical modeling of water quality and sediment-associated processes in natural lakes

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...

  20. Generation of animation sequences of three dimensional models

    NASA Technical Reports Server (NTRS)

    Poi, Sharon (Inventor); Bell, Brad N. (Inventor)

    1990-01-01

    The invention is directed toward a method and apparatus for generating an animated sequence through the movement of three-dimensional graphical models. A plurality of pre-defined graphical models are stored and manipulated in response to interactive commands or by means of a pre-defined command file. The models may be combined as part of a hierarchical structure to represent physical systems without need to create a separate model which represents the combined system. System motion is simulated through the introduction of translation, rotation and scaling parameters upon a model within the system. The motion is then transmitted down through the system hierarchy of models in accordance with hierarchical definitions and joint movement limitations. The present invention also calls for a method of editing hierarchical structure in response to interactive commands or a command file such that a model may be included, deleted, copied or moved within multiple system model hierarchies. The present invention also calls for the definition of multiple viewpoints or cameras which may exist as part of a system hierarchy or as an independent camera. The simulated movement of the models and systems is graphically displayed on a monitor and a frame is recorded by means of a video controller. Multiple movement and hierarchy manipulations are then recorded as a sequence of frames which may be played back as an animation sequence on a video cassette recorder.

  1. Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories.

    PubMed

    Nicholson, Kristen; Church, Chris; Takata, Colton; Niiler, Tim; Chen, Brian Po-Jung; Lennon, Nancy; Sees, Julie P; Henley, John; Miller, Freeman

    2018-05-16

    Many skin-mounted three-dimensional multi-segmented foot models are currently in use for gait analysis. Evidence regarding the repeatability of models, including between trial and between assessors, is mixed, and there are no between model comparisons of kinematic results. This study explores differences in kinematics and repeatability between five three-dimensional multi-segmented foot models. The five models include duPont, Heidelberg, Oxford Child, Leardini, and Utah. Hind foot, forefoot, and hallux angles were calculated with each model for ten individuals. Two physical therapists applied markers three times to each individual to assess within and between therapist variability. Standard deviations were used to evaluate marker placement variability. Locally weighted regression smoothing with alpha-adjusted serial T tests analysis was used to assess kinematic similarities. All five models had similar variability, however, the Leardini model showed high standard deviations in plantarflexion/dorsiflexion angles. P-value curves for the gait cycle were used to assess kinematic similarities. The duPont and Oxford models had the most similar kinematics. All models demonstrated similar marker placement variability. Lower variability was noted in the sagittal and coronal planes compared to rotation in the transverse plane, suggesting a higher minimal detectable change when clinically considering rotation and a need for additional research. Between the five models, the duPont and Oxford shared the most kinematic similarities. While patterns of movement were very similar between all models, offsets were often present and need to be considered when evaluating published data. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  3. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  4. A smoothed two- and three-dimensional interface reconstruction method

    DOE PAGES

    Mosso, Stewart; Garasi, Christopher; Drake, Richard

    2008-04-22

    The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.

  5. On the Development of a Deterministic Three-Dimensional Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John

    2011-01-01

    Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.

  6. Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.

  7. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  8. Three-dimensional cellular automata as a model of a seismic fault

    NASA Astrophysics Data System (ADS)

    Gálvez, G.; Muñoz, A.

    2017-01-01

    The Earth's crust is broken into a series of plates, whose borders are the seismic fault lines and it is where most of the earthquakes occur. This plating system can in principle be described by a set of nonlinear coupled equations describing the motion of the plates, its stresses, strains and other characteristics. Such a system of equations is very difficult to solve, and nonlinear parts leads to a chaotic behavior, which is not predictable. In 1989, Bak and Tang presented an earthquake model based on the sand pile cellular automata. The model though simple, provides similar results to those observed in actual earthquakes. In this work the cellular automata in three dimensions is proposed as a best model to approximate a seismic fault. It is noted that the three-dimensional model reproduces similar properties to those observed in real seismicity, especially, the Gutenberg-Richter law.

  9. Three dimensional modelling for the target asteroid of HAYABUSA

    NASA Astrophysics Data System (ADS)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  10. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.

    PubMed

    Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju

    2015-03-01

    We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  12. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  13. Three-dimensional printed models in congenital heart disease.

    PubMed

    Cantinotti, Massimiliano; Valverde, Israel; Kutty, Shelby

    2017-01-01

    The purpose of this article is to discuss technical considerations and current applications of three-dimensional (3D) printing in congenital heart disease (CHD). CHD represent an attractive field for the application of 3D printed models, with consistent progress made in the past decade. Current 3D models are able to reproduce complex cardiac and extra-cardiac anatomy including small details with very limited range of errors (<1 mm), so this tool could be of value in the planning of surgical or percutaneous treatments for selected cases of CHD. However, the steps involved in the building of 3D models, consisting of image acquisition and selection, segmentation, and printing are highly operator dependent. Current 3D models may be rigid or flexible, but unable to reproduce the physiologic variations during the cardiac cycle. Furthermore, high costs and long average segmentation and printing times (18-24 h) limit a more extensive use. There is a need for better standardization of the procedure employed for collection of the images, the segmentation methods and processes, the phase of cardiac cycle used, and in the materials employed for printing. More studies are necessary to evaluate the diagnostic accuracy and cost-effectiveness of 3D printed models in congenital cardiac care.

  14. Dynamic three-dimensional model of the coronary circulation

    NASA Astrophysics Data System (ADS)

    Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria

    2001-05-01

    A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.

  15. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  16. Comparison of Bolton analysis and Little’s irregularity index on laser scanned three-dimensional digital study models with conventional study models

    NASA Astrophysics Data System (ADS)

    Kurnia, H.; Noerhadi, N. A. I.

    2017-08-01

    Three-dimensional digital study models were introduced following advances in digital technology. This study was carried out to assess the reliability of digital study models scanned by a laser scanning device newly assembled. The aim of this study was to compare the digital study models and conventional models. Twelve sets of dental impressions were taken from patients with mild-to-moderate crowding. The impressions were taken twice, one with alginate and the other with polyvinylsiloxane. The alginate impressions were made into conventional models, and the polyvinylsiloxane impressions were scanned to produce digital models. The mesiodistal tooth width and Little’s irregularity index (LII) were measured manually with digital calipers on the conventional models and digitally on the digital study models. Bolton analysis was performed on each study models. Each method was carried out twice to check for intra-observer variability. The reproducibility (comparison of the methods) was assessed using independent-sample t-tests. The mesiodistal tooth width between conventional and digital models did not significantly differ (p > 0.05). Independent-sample t-tests did not identify statistically significant differences for Bolton analysis and LII (p = 0.603 for Bolton and p = 0894 for LII). The measurements of the digital study models are as accurate as those of the conventional models.

  17. A three-dimensional computerized isometric strength measurement system.

    PubMed

    Black, Nancy L; Das, Biman

    2007-05-01

    The three-dimensional Computerized Isometric Strength Measurement System (CISMS) reliably and accurately measures isometric pull and push strengths in work spaces of paraplegic populations while anticipating comparative studies with other populations. The main elements of the system were: an extendable arm, a vertical supporting track, a rotating platform, a force transducer, stability sensors and a computerized data collection interface. The CISMS with minor modification was successfully used to measure isometric push-up and pull-down strengths of paraplegics and isometric push, pull, push-up and pull-down strength in work spaces for seated and standing able-bodied populations. The instrument has satisfied criteria of versatility, safety and comfort, ease of operation, and durability. Results are accurate within 2N for aligned forces. Costing approximately $1,500 (US) including computer, the system is affordable and accurate for aligned isometric strength measurements.

  18. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

    PubMed

    Cho, Sung-Kun; Lee, Ho-Hoon

    2002-04-01

    In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

  19. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template.

    PubMed

    Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim

    2017-06-01

    The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. A Method of Three-Dimensional Recording of Mandibular Movement Based on Two-Dimensional Image Feature Extraction

    PubMed Central

    Li, Zhongke; Yang, Huifang; Lü, Peijun; Wang, Yong; Sun, Yuchun

    2015-01-01

    Background and Objective To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions. Methods A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject’s upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests. Results The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05) Conclusions Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording

  1. Three-dimensional piezoelectric boundary elements

    NASA Astrophysics Data System (ADS)

    Hill, Lisa Renee

    boundary element method is demonstrated with two problems: a two-dimensional circular void and a three-dimensional spherical cavity, both inside infinite solids. Application of the program to a finite body with a centered, spherical void illustrates the complex nature of the mechanical and electrical coupling. Mode I fracture is also examined, combining the linear boundary element solution with the modified crack closure integral to determine strain energy release rates. Experimental research has shown that the strain, rather than the total, energy release rate is a better predictor of crack growth in piezoelectric materials. Solutions for a two-dimensional slit-like crack and for three-dimensional penny and elliptical cracks are presented. These solutions are developed using the insulated crack face electrical boundary condition. Although this boundary condition is used by most researchers, recent discussion indicates that it may not be an accurate model for the slender crack geometry. The boundary element method is used with the penny crack problem to investigate the effect of different electrical boundary conditions on the strain energy release rate. Use of a conductive crack face boundary condition, rather than an insulated one, acts to increase the strain energy release rate for the penny crack. These conductive strain energies are closer to the values determined using a permeable electrical boundary condition than to the original conductive boundary condition ones. It is shown that conclusions about structural integrity are strongly dependent on the choice of boundary conditions.

  2. Three-Dimensional Printing of a Hemorrhagic Cervical Cancer Model for Postgraduate Gynecological Training

    PubMed Central

    Ryan, Stephen; Doucet, Gregory; Murphy, Deanna; Turner, Jacqueline

    2017-01-01

    Introduction A realistic hemorrhagic cervical cancer model was three-dimensionally (3D) printed and used in a postgraduate medical simulation training session. Materials and methods Computer-assisted design (CAD) software was the platform of choice to create and refine the cervical model. Once the prototype was finalized, another software allowed for the addition of a neoplastic mass, which included openings for bleeding from the neoplasm and cervical os. 3D printing was done using two desktop printers and three different materials. An emergency medicine simulation case was presented to obstetrics and gynecology residents who were at varying stages of their training. The scenario included history taking and physical examination of a standardized patient. This was a hybrid simulation; a synthetic pelvic task trainer that allowed the placement of the cervical model was connected to the standardized patient. The task trainer was placed under a drape and appeared to extend from the standardized patient’s body. At various points in the simulation, the standardized patient controlled the cervical bleeding through a peripheral venous line. Feedback forms were completed, and the models were discussed and evaluated with staff. Results A final cervical model was created and successfully printed. Overall, the models were reported to be similar to a real cervix. The models bled well. Most models were not sutured during the scenarios, but overall, the value of the printed cervical models was reported to be high. Discussion The models were well received, but it was suggested that more colors be integrated into the cervix in order to better emphasize the intended pathology. The model design requires further improvement, such as the addition of a locking mechanism, in order to ensure that the cervix stays inside the task trainer throughout the simulation. Adjustments to the simulated blood product would allow the bleeding to flow more vigorously. Additionally

  3. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  4. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    ERIC Educational Resources Information Center

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  5. Defining Ebstein's malformation using three-dimensional echocardiography.

    PubMed

    Vettukattil, Joseph J; Bharucha, Tara; Anderson, Robert H

    2007-12-01

    Ebstein's malformation is difficult to visualise, for both the echocardiographer and the surgeon. The essence of the problem in Ebstein's malformation is the deviation of the hingepoints of the leaflets towards the junctions of the inlet and apical trabecular parts of the right ventricle. Three-dimensional echocardiography offers new insights into the morphology and function of malformed valves, and allows elucidation of all the features. It allows clear visualisation of the valve leaflets, showing the precise morphology of the valve leaflets, the extent of their formation, the level of their attachment, and their degree of coaptation. Visualisation of the mechanism of regurgitation or stenosis is possible, as is more accurate quantification of the regurgitant jet or jets. Subchordal apparatus may be seen more clearly using three-dimensional echocardiography, and their functional anatomy understood. The multiplanar review modality allows examination of the three-dimensional data set even in patients with sub-optimal echocardiographic imaging. Previously, much of this information could only be well-understood at the time of surgery or post mortem, meaning that the majority of the specimens fully examined were at the poorly functioning end of the spectrum. This information is of use in furthering our understanding of this complex lesion as it functions in vivo, and demonstrating which anatomical pathology is significant in producing functional and physiological consequences. It is also of use for the clinician in selecting which patients are amenable to surgical intervention, for either single or biventricular repair, and for the surgeon in planning how to approach the operation. Correlation between three-dimensional echocardiographic findings and surgical findings has already been established, but the effect of this enhanced anatomical knowledge on surgical planning and surgical outcome requires further investigation.

  6. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    PubMed Central

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774

  7. Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry

    PubMed Central

    Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José

    2018-01-01

    Sensing advances in plant phenotyping are of vital importance in basic and applied plant research. Plant phenotyping enables the modeling of complex shapes, which is useful, for example, in decision-making for agronomic management. In this sense, 3D processing algorithms for plant modeling is expanding rapidly with the emergence of new sensors and techniques designed to morphologically characterize. However, there are still some technical aspects to be improved, such as an accurate reconstruction of end-details. This study adapted low-cost techniques, Structure from Motion (SfM) and MultiView Stereo (MVS), to create 3D models for reconstructing plants of three weed species with contrasting shape and plant structures. Plant reconstruction was developed by applying SfM algorithms to an input set of digital images acquired sequentially following a track that was concentric and equidistant with respect to the plant axis and using three different angles, from a perpendicular to top view, which guaranteed the necessary overlap between images to obtain high precision 3D models. With this information, a dense point cloud was created using MVS, from which a 3D polygon mesh representing every plants’ shape and geometry was generated. These 3D models were validated with ground truth values (e.g., plant height, leaf area (LA) and plant dry biomass) using regression methods. The results showed, in general, a good consistency in the correlation equations between the estimated values in the models and the actual values measured in the weed plants. Indeed, 3D modeling using SfM algorithms proved to be a valuable methodology for weed phenotyping, since it accurately estimated the actual values of plant height and LA. Additionally, image processing using the SfM method was relatively fast. Consequently, our results indicate the potential of this budget system for plant reconstruction at high detail, which may be usable in several scenarios, including outdoor conditions. Future

  8. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  9. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-12-31

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  10. Three-dimensional application of the Johnson-King turbulence model for a boundary-layer direct method

    NASA Technical Reports Server (NTRS)

    Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.

    1989-01-01

    The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.

  11. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  12. Volumetric Analysis of Alveolar Bone Defect Using Three-Dimensional-Printed Models Versus Computer-Aided Engineering.

    PubMed

    Du, Fengzhou; Li, Binghang; Yin, Ningbei; Cao, Yilin; Wang, Yongqian

    2017-03-01

    Knowing the volume of a graft is essential in repairing alveolar bone defects. This study investigates the 2 advanced preoperative volume measurement methods: three-dimensional (3D) printing and computer-aided engineering (CAE). Ten unilateral alveolar cleft patients were enrolled in this study. Their computed tomographic data were sent to 3D printing and CAE software. A simulated graft was used on the 3D-printed model, and the graft volume was measured by water displacement. The volume calculated by CAE software used mirror-reverses technique. The authors compared the actual volumes of the simulated grafts with the CAE software-derived volumes. The average volume of the simulated bone grafts by 3D-printed models was 1.52 mL, higher than the mean volume of 1.47 calculated by CAE software. The difference between the 2 volumes was from -0.18 to 0.42 mL. The paired Student t test showed no statistically significant difference between the volumes derived from the 2 methods. This study demonstrated that the mirror-reversed technique by CAE software is as accurate as the simulated operation on 3D-printed models in unilateral alveolar cleft patients. These findings further validate the use of 3D printing and CAE technique in alveolar defect repairing.

  13. Modeling drying of three-dimensional pulp molded structures. Part I, Experimental program

    Treesearch

    Heike Nyist; John F. Hunt; Margit Tamasy-Bano

    1998-01-01

    Researchers at the USDA Forest Products Laboratory have developed a new three-dimensional structural panel, called FPL Spaceboard. This panel is formed using a U.S. patented three-dimensional mold capable of using a variety of fibrous materials with either the wet- or dry-forming process. Structurally, the panel departs from the traditional two-dimensional panel by...

  14. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    PubMed

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  15. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    PubMed Central

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Lu, Zhaoyang

    2017-01-01

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost. PMID:29035295

  16. Three species one-dimensional kinetic model for weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P.

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting setmore » of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.« less

  17. The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Joslin, R. D.

    1991-04-01

    The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.

  18. Three-dimensional Simulation and Prediction of Solenoid Valve Failure Mechanism Based on Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao

    2018-01-01

    The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.

  19. On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Thess, A.; Zikanov, Oleg

    2004-01-01

    We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.

  20. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer.

    PubMed

    Olszewski, Raphael; Szymor, Piotr; Kozakiewicz, Marcin

    2014-12-01

    Our study aimed to determine the accuracy of a low-cost, paper-based 3D printer by comparing a dry human mandible to its corresponding three-dimensional (3D) model using a 3D measuring arm. One dry human mandible and its corresponding printed model were evaluated. The model was produced using DICOM data from cone beam computed tomography. The data were imported into Maxilim software, wherein automatic segmentation was performed, and the STL file was saved. These data were subsequently analysed, repaired, cut and prepared for printing with netfabb software. These prepared data were used to create a paper-based model of a mandible with an MCor Matrix 300 printer. Seventy-six anatomical landmarks were chosen and measured 20 times on the mandible and the model using a MicroScribe G2X 3D measuring arm. The distances between all the selected landmarks were measured and compared. Only landmarks with a point inaccuracy less than 30% were used in further analyses. The mean absolute difference for the selected 2016 measurements was 0.36 ± 0.29 mm. The mean relative difference was 1.87 ± 3.14%; however, the measurement length significantly influenced the relative difference. The accuracy of the 3D model printed using the paper-based, low-cost 3D Matrix 300 printer was acceptable. The average error was no greater than that measured with other types of 3D printers. The mean relative difference should not be considered the best way to compare studies. The point inaccuracy methodology proposed in this study may be helpful in future studies concerned with evaluating the accuracy of 3D rapid prototyping models. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2014-06-01

    Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.

  2. A Conceptual Three-Dimensional Model for Evaluating Community-Based Substance Abuse Prevention Programs.

    ERIC Educational Resources Information Center

    Albers, Eric C.; Santangelo, Linda K.; McKinlay, George; Cavote, Steve; Rock, Stephen L.; Evans, William

    2002-01-01

    Presents a three-dimensional model for conceptualizing existing prevention programs, defining and measuring effects of prevention programs, and making a connection between those programmatic effects, and the interests of the funder. This paper describes the methodology and its use for promoting the efficiency and effectiveness of substance abuse…

  3. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.

  4. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  5. Analysis of high-rise constructions with the using of three-dimensional models of rods in the finite element program PRINS

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir

    2018-03-01

    The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.

  6. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure functionmore » which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.« less

  7. Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind

    NASA Astrophysics Data System (ADS)

    Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.

    2009-06-01

    The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.

  8. Three-Dimensional Dynamic Bone Histomorphometry

    PubMed Central

    Slyfield, C.R.; Tkachenko, E.V.; Wilson, D.L.; Hernandez, C.J.

    2011-01-01

    Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. While dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique’s two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we use a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We perform this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrate the spatial relationship between resorption cavities and formation events consistent with the hemi-osteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm−2 SHAM v. 3.86 ± 0.35 mm−2 OVX, mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38 ± 0.06% SHAM v. 1.12 ± 0.18% OVX, p < 0.001), but no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. Additionally, we find that established ovariectomy is associated with increased size of bone formation events due to merging of formation events (23,700 ± 6,890 μm2 SHAM v. 33,300 ± 7,950 μm2 OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events. PMID:22028195

  9. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  10. Accurate core position control in polymer optical waveguides using the Mosquito method for three-dimensional optical wiring

    NASA Astrophysics Data System (ADS)

    Date, Kumi; Ishigure, Takaaki

    2017-02-01

    Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.

  11. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less

  12. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  13. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  14. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  15. A Three-Dimensional Atlas of the Honeybee Neck

    PubMed Central

    Berry, Richard P.; Ibbotson, Michael R.

    2010-01-01

    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy. PMID:20520729

  16. Gravitational lensing by a smoothly variable three-dimensional mass distribution

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Paczynski, Bohdan

    1990-01-01

    A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.

  17. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  18. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice

    PubMed Central

    Kayser-Herold, Oliver; Stojanovic, Boban; Nedic, Djordje; Irving, Thomas C.; Geeves, Michael A.

    2016-01-01

    The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to

  19. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijailovich, Srboljub M.; Kayser-Herold, Oliver; Stojanovic, Boban

    2016-11-18

    The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulatemore » state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models

  20. Numerical Investigation of Three-dimensional Instability of Standing Waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  1. Calculation of three-dimensional compressible laminar and turbulent boundary layers. Calculation of three-dimensional compressible boundary layers on arbitrary wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.

    1975-01-01

    A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.

  2. On the use of video projectors for three-dimensional scanning

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo

    2017-08-01

    Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.

  3. Modeling extracellular fields for a three-dimensional network of cells using NEURON.

    PubMed

    Appukuttan, Shailesh; Brain, Keith L; Manchanda, Rohit

    2017-10-01

    Computational modeling of biological cells usually ignores their extracellular fields, assuming them to be inconsequential. Though such an assumption might be justified in certain cases, it is debatable for networks of tightly packed cells, such as in the central nervous system and the syncytial tissues of cardiac and smooth muscle. In the present work, we demonstrate a technique to couple the extracellular fields of individual cells within the NEURON simulation environment. The existing features of the simulator are extended by explicitly defining current balance equations, resulting in the coupling of the extracellular fields of adjacent cells. With this technique, we achieved continuity of extracellular space for a network model, thereby allowing the exploration of extracellular interactions computationally. Using a three-dimensional network model, passive and active electrical properties were evaluated under varying levels of extracellular volumes. Simultaneous intracellular and extracellular recordings for synaptic and action potentials were analyzed, and the potential of ephaptic transmission towards functional coupling of cells was explored. We have implemented a true bi-domain representation of a network of cells, with the extracellular domain being continuous throughout the entire model. This has hitherto not been achieved using NEURON, or other compartmental modeling platforms. We have demonstrated the coupling of the extracellular field of every cell in a three-dimensional model to obtain a continuous uniform extracellular space. This technique provides a framework for the investigation of interactions in tightly packed networks of cells via their extracellular fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  5. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. Modeling self-excited combustion instabilities using a combination of two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Harvazinski, Matthew Evan

    Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is

  7. Three-dimensional numerical modeling of land subsidence in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ye, Shujun; Luo, Yue; Wu, Jichun; Yan, Xuexin; Wang, Hanmei; Jiao, Xun; Teatini, Pietro

    2016-05-01

    Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956-1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990-1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.

  8. Three-dimensional spherical models of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.

    1989-01-01

    Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.

  9. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  10. On three-dimensional misorientation spaces

    PubMed Central

    Bennett, Robbie J.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf

    2017-01-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance. PMID:29118660

  11. On three-dimensional misorientation spaces.

    PubMed

    Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  12. On three-dimensional misorientation spaces

    NASA Astrophysics Data System (ADS)

    Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  13. Three-dimensional friction measurement during hip simulation.

    PubMed

    Sonntag, Robert; Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J Philippe

    2017-01-01

    Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  14. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  15. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  16. Three Dimensional Underwater Sound Propagation Over Sloping Bottoms

    NASA Astrophysics Data System (ADS)

    Glegg, Stewart A. L.; Riley, J. M.

    This article reviews the work which has been carried out over the past few years on three dimensional underwater sound propagation over sloping bottoms. When sound propagates across a slope three dimensional effects can cause shadow zones and mode cut off effects to occur, which could not be predicted by a two dimensional model. For many years the theory for this type of propagation over realistic ocean floors, which can support both compressional and shear waves, eluded workers in this field. Recently the complete solution for the acoustic field in a "wedge domain with penetrable boundaries" has been developed, and this has allowed for complete understanding of three dimensional bottom interacting sound propagation. These theories have been verified by a series of laboratory scale experiments and excellent agreement has been obtained. However only one full scale ocean experiment has been carried out on three dimensional, bottom interacting, acoustic propagation. This showed significant horizontal refraction of sound propagating across a continental slope and further verifies the importance of bottom slopes on underwater sound propagation.

  17. A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yuan, Xianxia; Jiang, Fangming

    2018-05-01

    In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.

  18. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    NASA Astrophysics Data System (ADS)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  19. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; hide

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  20. Three-Dimensional Tissue Assemblies: Novel Models for the Study of Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Nickerson, Cheryl A.; Goodwin, Thomas J.; Terlonge, Jacqueline; Ott, C. Mark; Buchanan, Kent L.; Uicker, William C.; Emami, Kamal; LeBlanc, Carly L.; Ramamurthy, Rajee; Clarke, Mark S.; Vanderburg, Charles R.; Hammond, Timothy; Pierson, Duane L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1α (IL-1α), IL-1β, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor β1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction. PMID:11598087

  1. Quantification of source impact to PM using three-dimensional weighted factor model analysis on multi-site data

    NASA Astrophysics Data System (ADS)

    Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.

    2017-07-01

    Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.

  2. In vitro three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker.

    PubMed

    Shi, Chaoyang; Tercero, Carlos; Ikeda, Seiichi; Ooe, Katsutoshi; Fukuda, Toshio; Komori, Kimihiro; Yamamoto, Kiyohito

    2012-09-01

    It is desirable to reduce aortic stent graft installation time and the amount of contrast media used for this process. Guidance with augmented reality can achieve this by facilitating alignment of the stent graft with the renal and mesenteric arteries. For this purpose, a sensor fusion is proposed between intravascular ultrasound (IVUS) and magnetic trackers to construct three-dimensional virtual reality models of the blood vessels, as well as improvements to the gradient vector flow snake for boundary detection in ultrasound images. In vitro vasculature imaging experiments were done with hybrid probe and silicone models of the vasculature. The dispersion of samples for the magnetic tracker in the hybrid probe increased less than 1 mm when the IVUS was activated. Three-dimensional models of the descending thoracic aorta, with cross-section radius average error of 0.94 mm, were built from the data fusion. The development of this technology will enable reduction in the amount of contrast media required for in vivo and real-time three-dimensional blood vessel imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    NASA Astrophysics Data System (ADS)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  4. Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.

    1994-07-01

    A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.

  5. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    NASA Astrophysics Data System (ADS)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  6. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2005-11-01

    The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.

  7. Integrated three-dimensional shape and reflection properties measurement system.

    PubMed

    Krzesłowski, Jakub; Sitnik, Robert; Maczkowski, Grzegorz

    2011-02-01

    Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface's reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object's intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.

  8. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  9. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  10. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  11. Teaching veterinary obstetrics using three-dimensional animation technology.

    PubMed

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  12. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  13. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  14. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  15. Coupled boundary and finite element analysis of vibration from railway tunnels—a comparison of two- and three-dimensional models

    NASA Astrophysics Data System (ADS)

    Andersen, L.; Jones, C. J. C.

    2006-06-01

    The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas. Such analysis can be carried out using numerical methods but models and therefore computing times can be large. There is a need to be able to apply very fast calculations that can be used in tunnel design and studies of environmental impacts. Taking advantage of the fact that tunnels often have a two-dimensional geometry in the sense that the cross section is constant along the tunnel axis, it is useful to evaluate the potential uses of two-dimensional models before committing to much more costly three-dimensional approaches. The vibration forces in the track due to the passage of a train are by nature three-dimensional and a complete analysis undoubtedly requires a model of three-dimensional wave propagation. The aim of this paper is to investigate the quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of whole body vibration (about 4-80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian tunnelling method (NATM).

  16. Selected contribution: a three-dimensional model for assessment of in vitro toxicity in balaena mysticetus renal tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  17. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  18. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  19. Adaptive wall research with two- and three-dimensional models in low speed and transonic tunnels

    NASA Technical Reports Server (NTRS)

    Lewis, M. C.; Neal, G.; Goodyer, M. J.

    1988-01-01

    This paper summarises recent research at the University of Southampton into adaptive wall technology and outlines the direction of current efforts. The work is aimed at developing techniques for use in test sections where the top and bottom walls may be adjusted in single curvature. Wall streamlining eliminates, as far as experimentally possible, the top and bottom wall interference in low speed and transonic aerofoil testing. A streamlining technique has been developed for low speeds which allows the testing of swept wing panels in low interference environments. At higher speeds, a comparison of several two-dimensional transonic streamlining algorithms has been made and a technique for streamlining with a choked test section has also been developed. Three-dimensional work has mainly concentrated on tests of sidewall mounted half-wings and the development of the software packages required to assess interference and to adjust the flexible walls. It has been demonstrated that two-dimensional wall adaptation can significantly modify the level of wall interference around relatively large three-dimensional models. The residual interferences are small and are probably amenable to standard post-test correction methods. Tests on a calibrated wing-body model are planned in the near future to further validate the proposed streamlining technique.

  20. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  1. Reconstruction of measurable three-dimensional point cloud model based on large-scene archaeological excavation sites

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing

    2017-01-01

    This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.

  2. A three-dimensional refractive index model for simulation of optical wave propagation in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.

    2015-10-01

    Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.

  3. Comparison between iteration schemes for three-dimensional coordinate-transformed saturated-unsaturated flow model

    NASA Astrophysics Data System (ADS)

    An, Hyunuk; Ichikawa, Yutaka; Tachikawa, Yasuto; Shiiba, Michiharu

    2012-11-01

    SummaryThree different iteration methods for a three-dimensional coordinate-transformed saturated-unsaturated flow model are compared in this study. The Picard and Newton iteration methods are the common approaches for solving Richards' equation. The Picard method is simple to implement and cost-efficient (on an individual iteration basis). However it converges slower than the Newton method. On the other hand, although the Newton method converges faster, it is more complex to implement and consumes more CPU resources per iteration than the Picard method. The comparison of the two methods in finite-element model (FEM) for saturated-unsaturated flow has been well evaluated in previous studies. However, two iteration methods might exhibit different behavior in the coordinate-transformed finite-difference model (FDM). In addition, the Newton-Krylov method could be a suitable alternative for the coordinate-transformed FDM because it requires the evaluation of a 19-point stencil matrix. The formation of a 19-point stencil is quite a complex and laborious procedure. Instead, the Newton-Krylov method calculates the matrix-vector product, which can be easily approximated by calculating the differences of the original nonlinear function. In this respect, the Newton-Krylov method might be the most appropriate iteration method for coordinate-transformed FDM. However, this method involves the additional cost of taking an approximation at each Krylov iteration in the Newton-Krylov method. In this paper, we evaluated the efficiency and robustness of three iteration methods—the Picard, Newton, and Newton-Krylov methods—for simulating saturated-unsaturated flow through porous media using a three-dimensional coordinate-transformed FDM.

  4. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  5. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  6. Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    PubMed Central

    Luo, Na; Tan, Liwen; Fang, Binji; Li, Ying; Xie, Bing; Liu, Kaijun; Chu, Chun; Li, Min

    2013-01-01

    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons. PMID:24369489

  7. Three-Dimensional Animation Technology: a New Interactive Model Designed for the Teaching of Cryospheric Science

    NASA Astrophysics Data System (ADS)

    Porter, P. R.; Marunchak, A.

    2011-12-01

    One of the key challenges facing educators in the cryospheric sciences is to explain to students the processes that operate and the landforms that exist in relatively unfamiliar glacial environments. In many cases these environments are also largely inaccessible which can hinder field-based teaching. This is particularly the case for en-glacial and sub-glacial hydrology and the closely related topic of sub-glacial glacier dynamics, yet a full understanding of these subject areas is pivotal to overall student understanding of glaciology. An ability to visualise these unfamiliar and inaccessible environments offers a potentially powerful tool to assist student conceptualisation and comprehension. To address this we have developed a three-dimensional interactive 'virtual glacier' simulation model. Based on standards and technology established by the rapidly evolving video gaming industry, the user is presented with an interactive real-time three-dimensional environment designed to accurately portray multiple aspects of glacial environments. The user can move in all directions in the fore-field area, on the glacier surface and within en-glacial and sub-glacial drainage networks. Descent into the glacier hydrological system is via a moulin, from which the user can explore en-glacial channels linking to this moulin and ultimately descend into the sub-glacial drainage system. Various sub-glacial drainage network morphologies can then be 'explored' to aid conceptualisation and understanding and the user can navigate through drainage networks both up- and down-glacier and ultimately emerge at the portal into the fore-field environment. Interactive icons relating to features of interest are presented to the user throughout the model, prompting multimedia dialogue boxes to open. Dialogue box content (e.g. text, links to online resources, videos, journal papers, etc.) is fully customisable by the educator. This facilitates the use of the model at different academic levels

  8. Three-dimensional friction measurement during hip simulation

    PubMed Central

    Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J. Philippe

    2017-01-01

    Objectives Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. Materials and methods A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). Results A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. Conclusions This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization. PMID:28886102

  9. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  10. Mental models accurately predict emotion transitions.

    PubMed

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  11. Mental models accurately predict emotion transitions

    PubMed Central

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  12. Dimensional reduction for a SIR type model

    NASA Astrophysics Data System (ADS)

    Cahyono, Edi; Soeharyadi, Yudi; Mukhsar

    2018-03-01

    Epidemic phenomena are often modeled in the form of dynamical systems. Such model has also been used to model spread of rumor, spread of extreme ideology, and dissemination of knowledge. Among the simplest is SIR (susceptible, infected and recovered) model, a model that consists of three compartments, and hence three variables. The variables are functions of time which represent the number of subpopulations, namely suspect, infected and recovery. The sum of the three is assumed to be constant. Hence, the model is actually two dimensional which sits in three-dimensional ambient space. This paper deals with the reduction of a SIR type model into two variables in two-dimensional ambient space to understand the geometry and dynamics better. The dynamics is studied, and the phase portrait is presented. The two dimensional model preserves the equilibrium and the stability. The model has been applied for knowledge dissemination, which has been the interest of knowledge management.

  13. A Downloadable Three-Dimensional Virtual Model of the Visible Ear

    PubMed Central

    Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.

    2008-01-01

    Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433

  14. Life-Size Sculptural Heads: A Lesson in Three-Dimensional Design.

    ERIC Educational Resources Information Center

    Gamble, Harriet

    2003-01-01

    Presents a lesson in which students created three-dimensional self-portraits, using papier-mache, clay, and plaster, designed to develop their modeling skills as they learn about art history. Discusses how the students created their sculptures, offering detailed directions on creating the three-dimensional heads. (CMK)

  15. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals.

    PubMed

    Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu

    2017-04-07

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.

  16. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-dimensional Dirac Semimetals

    DOE PAGES

    Fu, Bo; Zhu, Wei; Shi, Qinwei; ...

    2017-04-03

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behaviormore » is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. Furthermore, we show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.« less

  17. The Reconstruction of Three-Dimensional Morphological and Electrical Paraneters from Two-Dimensional Sections of Neurones

    NASA Astrophysics Data System (ADS)

    Brawn, A. D.; Wheal, H. V.

    1986-07-01

    A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.

  18. Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Hathaway, A. W.

    1978-01-01

    Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.

  19. Three-dimensional orientation and location-dependent varying rules of radiographic angles of the acetabular cup.

    PubMed

    Zhao, Jing-Xin; Su, Xiu-Yun; Zhao, Zhe; Xiao, Ruo-Xiu; Zhang, Li-Cheng; Tang, Pei-Fu

    2018-02-17

    The aim of this study is to demonstrate the varying rules of radiographic angles following varying three-dimensional (3D) orientations and locations of cup using an accurate mathematical model. A cone model is established to address the quantitative relationship between the opening circle of cup and its ellipse projection on radiograph. The varying rules of two-dimensional (2D) radiographic anteversion (RA) and inclination (RI) angles can be analyzed. When the centre of cup is located above X-ray source, with proper 3D RI/RA angles, 2D RA angle can be equal to its 3D counterpart, and 2D RI angle is usually greater than its 3D counterpart. Except for the original point on hip-centered anterior-posterior radiograph, there is no area on radiograph where both 2D RA and RI angles are equal to their 3D counterparts simultaneously. This study proposes an innovative model for accurately explaining how 2D RA/RI angles of cup are varying following different 3D RA/RI angles and location of cup. The analysis results provide clinicians an intuitive grasp of knowledge about 2D RA/RI angles greater or smaller than their 3D counterparts post-operatively. The established model may allow determining the effects of pelvic rotations on 2D radiographic angles of cup.

  20. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    PubMed Central

    Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A

    2012-01-01

    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062

  1. Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications

    NASA Astrophysics Data System (ADS)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.

    2017-12-01

    Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .

  2. Three-Dimensional Visualization of Particle Tracks.

    ERIC Educational Resources Information Center

    Julian, Glenn M.

    1993-01-01

    Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)

  3. Accuracy assessment of surgical planning and three-dimensional-printed patient-specific guides for orthopaedic osteotomies.

    PubMed

    Sys, Gwen; Eykens, Hannelore; Lenaerts, Gerlinde; Shumelinsky, Felix; Robbrecht, Cedric; Poffyn, Bart

    2017-06-01

    This study analyses the accuracy of three-dimensional pre-operative planning and patient-specific guides for orthopaedic osteotomies. To this end, patient-specific guides were compared to the classical freehand method in an experimental setup with saw bones in two phases. In the first phase, the effect of guide design and oscillating versus reciprocating saws was analysed. The difference between target and performed cuts was quantified by the average distance deviation and average angular deviations in the sagittal and coronal planes for the different osteotomies. The results indicated that for one model osteotomy, the use of guides resulted in a more accurate cut when compared to the freehand technique. Reciprocating saws and slot guides improved accuracy in all planes, while oscillating saws and open guides lead to larger deviations from the planned cut. In the second phase, the accuracy of transfer of the planning to the surgical field with slot guides and a reciprocating saw was assessed and compared to the classical planning and freehand cutting method. The pre-operative plan was transferred with high accuracy. Three-dimensional-printed patient-specific guides improve the accuracy of osteotomies and bony resections in an experimental setup compared to conventional freehand methods. The improved accuracy is related to (1) a detailed and qualitative pre-operative plan and (2) an accurate transfer of the planning to the operation room with patient-specific guides by an accurate guidance of the surgical tools to perform the desired cuts.

  4. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  5. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-12-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.

  6. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  7. Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas

    USGS Publications Warehouse

    Qi, L.; Carr, T.R.; Goldstein, R.H.

    2007-01-01

    In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (<4 m; <13.1 ft) oolitic deposits within the St. Louis Limestone have produced more than 300 million bbl of oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  8. Three-dimensional wideband electromagnetic modeling on massively parallel computers

    NASA Astrophysics Data System (ADS)

    Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.

    1996-01-01

    A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.

  9. Three-Dimensional Spherical Models of Convection in the Earth's Mantle.

    PubMed

    Bercovici, D; Schubert, G; Glatzmaier, G A

    1989-05-26

    Three-dimensional, spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus, subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs.

  10. Turbulence modeling in three-dimensional stenosed arterial bifurcations.

    PubMed

    Banks, J; Bressloff, N W

    2007-02-01

    Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k-omega model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k-epsilon model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k-epsilon model, whereas the velocity profiles in the transitional k-omega model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k-omega model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity.

  11. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  12. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  13. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    ERIC Educational Resources Information Center

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  14. Asymptotic derivation of nonlocal plate models from three-dimensional stress gradient elasticity

    NASA Astrophysics Data System (ADS)

    Hache, F.; Challamel, N.; Elishakoff, I.

    2018-01-01

    This paper deals with the asymptotic derivation of thin and thick nonlocal plate models at different orders from three-dimensional stress gradient elasticity, through the power series expansions of the displacements in the thickness ratio of the plate. Three nonlocal asymptotic approaches are considered: a partial nonlocality following the thickness of the plate, a partial nonlocality following the two directions of the plates and a full nonlocality (following all the directions). The three asymptotic approaches lead at the zeroth order to a nonlocal Kirchhoff-Love plate model, but differ in the expression of the length scale. The nonlocal asymptotic models coincide at this order with the stress gradient Kirchhoff-Love plate model, only when the nonlocality is following the two directions of the plate and expressed through a nabla operator. This asymptotic model also yields the nonlocal truncated Uflyand-Mindlin plate model at the second order. However, the two other asymptotic models lead to equations that differ from the current existing nonlocal engineering models (stress gradient engineering plate models). The natural frequencies for an all-edges simply supported plate are obtained for each model. It shows that the models provide similar results for low orders of frequencies or small thickness ratio or nonlocal lengths. Moreover, only the asymptotic model with a partial nonlocality following the two directions of the plates is consistent with a stress gradient plate model, whatever the geometry of the plate.

  15. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  16. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  17. A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.

    PubMed

    Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V

    1998-04-01

    Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.

  18. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  19. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    NASA Astrophysics Data System (ADS)

    Lazarowitz, Reuven; Naim, Raphael

    2013-08-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular learning material in an expository mode (which use one- or two-dimensional cell structures as are presented in charts, textbooks and microscopic slides). The sample included 669, 9th-grade students from 25 classes who were taught by 22 Biology teachers. Students were randomly assigned to the three modes of instruction, and two tests in content knowledge in Biology were used. Data were treated with multiple analyses of variance. The results indicate that entry behavior in Biology was equal for all the study groups and types of schools. The "hands-on" learning group who build three-dimensional models through the learning process achieved significantly higher on academic achievements and on the high and low cognitive questions' levels than the other two groups. The study indicates the advantages students may have being actively engaged in the learning process through the "hands-on" mode of instruction/learning.

  20. [Three-dimensional computer aided design for individualized post-and-core restoration].

    PubMed

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  1. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-04-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free-troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. The models consistently underestimated the north-tropics mean gradient of CO2 both in the free-troposphere and marine boundary layer during boreal summer. This result suggests that the north-tropics contrast of annual mean net non-fossil CO2 flux should be greater than 2.7 Pg C yr-1 for 2007.

  2. Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic In Vivo Features of Chronic Wounds

    PubMed Central

    Maione, Anna G.; Brudno, Yevgeny; Stojadinovic, Olivera; Park, Lara K.; Smith, Avi; Tellechea, Ana; Leal, Ermelindo C.; Kearney, Cathal J.; Veves, Aristidis; Tomic-Canic, Marjana; Mooney, David J.

    2015-01-01

    Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell–cell and cell–matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications. PMID:25343343

  3. Three-dimensional laser window formation

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1992-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.

  4. Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery.

    PubMed

    Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi

    2013-01-01

    The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.

  5. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    PubMed

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  6. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  7. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Tristram, K. R. W.; Henning, T.

    2008-04-01

    Context: Tori of Active Galactic Nuclei (AGN) are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the surrounding hot gas as well as by the energetic (UV/optical) radiation from the accretion disk, the dust is often assumed to be distributed in clouds. Aims: A new three-dimensional model of AGN dust tori is extensively investigated. The torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. Methods: Radiative transfer calculations with the help of the three-dimensional Monte Carlo radiative transfer code MC3D are used in order to simulate spectral energy distributions as well as surface brightness distributions at various wavelengths. In a second step, interferometric visibilities for various inclination as well as position angles and baselines are calculated, which can be used to directly compare our models to interferometric observations with the MIDI instrument. Results: We find that the radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 μm-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the dust distribution. With this explanation, failure and success of previous modelling efforts of clumpy tori can be understood. The main reason for this outcome are shadowing effects of clouds within the central region. We underline this result with

  8. Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert

    2014-01-01

    Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

  9. Three-dimensional deformable-model-based localization and recognition of road vehicles.

    PubMed

    Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong

    2012-01-01

    We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.

  10. A computational model for three-dimensional incompressible wall jets with large cross flow

    NASA Technical Reports Server (NTRS)

    Murphy, W. D.; Shankar, V.; Malmuth, N. D.

    1979-01-01

    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.

  11. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  12. The Precise Repositioning Instrument for Genioplasty and a Three-Dimensional Printing Technique for Treatment of Complex Facial Asymmetry.

    PubMed

    Wang, Lin; Tian, Dan; Sun, Xiumei; Xiao, Yanju; Chen, Li; Wu, Guomin

    2017-08-01

    Facial asymmetry is very common in maxillofacial deformities. It is difficult to achieve accurate reconstruction. With the help of 3D printing models and surgical templates, the osteotomy line and the amount of bone grinding can be accurate. Also, by means of the precise repositioning instrument, the repositioning of genioplasty can be accurate and quick. In this study, we present a three-dimensional printing technique and the precise repositioning instrument to guide the osteotomy and repositioning, and illustrate their feasibility and validity. Eight patients with complex facial asymmetries were studied. A precise 3D printing model was obtained. We made the preoperative design and surgical templates according to it. The surgical templates and precise repositioning instrument were used to obtain an accurate osteotomy and repositioning during the operation. Postoperative measurements were made based on computed tomographic data, including chin point deviation as well as the symmetry of the mandible evaluated by 3D curve functions. All patients obtained satisfactory esthetic results, and no recurrences occurred during follow-up. The results showed that we achieved clinically acceptable precision for the mandible and chin. The mean and SD of ICC between R-Post and L-Post were 0.973 ± 0.007. The mean and SD of chin point deviation 6 months after the operation were 0.63 ± 0.19 mm. The results of this study suggest that the three-dimensional printing technique and the precise repositioning instrument could aid in making better operation designs and more accurate manipulation in orthognathic surgery for complex facial asymmetry. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  13. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  14. A Three-Dimensional Multiscale Model for Gas Exchange in Fruit1[C][W][OA

    PubMed Central

    Ho, Quang Tri; Verboven, Pieter; Verlinden, Bert E.; Herremans, Els; Wevers, Martine; Carmeliet, Jan; Nicolaï, Bart M.

    2011-01-01

    Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus × domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure. PMID:21224337

  15. [The three-dimensional simulation of arytenoid cartilage movement].

    PubMed

    Zhang, Jun; Wang, Xuefeng

    2011-08-01

    Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.

  16. A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

    NASA Astrophysics Data System (ADS)

    Basko, Mikhail M.; Tsygvintsev, Ilia P.

    2017-05-01

    The hybrid model of laser energy deposition is a combination of the geometrical-optics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s- and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.

  17. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  18. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    PubMed Central

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  19. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  20. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    NASA Astrophysics Data System (ADS)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  1. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  2. Three-dimensional patterning methods and related devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  3. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint.

    PubMed

    Olszewski, R; Tranduy, K; Reychler, H

    2010-07-01

    The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Loop models, modular invariance, and three-dimensional bosonization

    NASA Astrophysics Data System (ADS)

    Goldman, Hart; Fradkin, Eduardo

    2018-05-01

    We consider a family of quantum loop models in 2+1 spacetime dimensions with marginally long-ranged and statistical interactions mediated by a U (1 ) gauge field, both purely in 2+1 dimensions and on a surface in a (3+1)-dimensional bulk system. In the absence of fractional spin, these theories have been shown to be self-dual under particle-vortex duality and shifts of the statistical angle of the loops by 2 π , which form a subgroup of the modular group, PSL (2 ,Z ) . We show that careful consideration of fractional spin in these theories completely breaks their statistical periodicity and describe how this occurs, resolving a disagreement with the conformal field theories they appear to approach at criticality. We show explicitly that incorporation of fractional spin leads to loop model dualities which parallel the recent web of (2+1)-dimensional field theory dualities, providing a nontrivial check on its validity.

  5. A three-dimensional polyhedral unit model for grain boundary structure in fcc metals

    NASA Astrophysics Data System (ADS)

    Banadaki, Arash Dehghan; Patala, Srikanth

    2017-03-01

    One of the biggest challenges in developing truly bottom-up models for the performance of polycrystalline materials is the lack of robust quantitative structure-property relationships for interfaces. As a first step in analyzing such relationships, we present a polyhedral unit model to classify the geometrical nature of atomic packing along grain boundaries. While the atomic structure in disordered systems has been a topic of interest for many decades, geometrical analyses of grain boundaries has proven to be particularly challenging because of the wide range of structures that are possible depending on the underlying macroscopic crystallographic character. In this article, we propose an algorithm that can partition the atomic structure into a connected array of three-dimensional polyhedra, and thus, present a three-dimensional polyhedral unit model for grain boundaries. A point-pattern matching algorithm is also provided for quantifying the distortions of the observed grain boundary polyhedral units. The polyhedral unit model is robust enough to capture the structure of high-Σ, mixed character interfaces and, hence, provides a geometric tool for comparing grain boundary structures across the five-parameter crystallographic phase-space. Since the obtained polyhedral units circumscribe the voids present in the structure, such a description provides valuable information concerning segregation sites within the grain boundary. We anticipate that this technique will serve as a powerful tool in the analysis of grain boundary structure. The polyhedral unit model is also applicable to a wide array of material systems as the proposed algorithm is not limited by the underlying lattice structure.

  6. A three-dimensional inverse finite element analysis of the heel pad.

    PubMed

    Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet

    2012-03-01

    displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.

  7. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    PubMed

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Perceptual disturbances predicted in zero-g through three-dimensional modeling.

    PubMed

    Holly, Jan E

    2003-01-01

    Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g.

  9. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    ERIC Educational Resources Information Center

    Lazarowitz, Reuven; Naim, Raphael

    2014-01-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…

  10. The Two- and Three-Dimensional Models of the HK-WISC: A Confirmatory Factor Analysis.

    ERIC Educational Resources Information Center

    Chan, David W.; Lin, Wen-Ying

    1996-01-01

    Confirmatory analyses on the Hong Kong Wechsler Intelligence Scale for Children (HK-WISC) provided support for composite score interpretation based on the two- and three-dimensional models across age levels. Test sample was comprised of 1,100 children, ranging in age from 5 to 15 years at all 11 age levels specified by the HK-WISC. (KW)

  11. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models.

    PubMed

    Addetia, Karima; Mor-Avi, Victor; Weinert, Lynn; Salgo, Ivan S; Lang, Roberto M

    2014-01-01

    Differentiating between mitral valve (MV) prolapse (MVP) and MV billowing (MVB) on two-dimensional echocardiography is challenging. The aim of this study was to test the hypothesis that color-coded models of maximal leaflet displacement from the annular plane into the atrium derived from three-dimensional transesophageal echocardiography would allow discrimination between these lesions. Three-dimensional transesophageal echocardiographic imaging of the MV was performed in 50 patients with (n = 38) and without (n = 12) degenerative MV disease. Definitive diagnosis of MVP versus MVB was made using inspection of dynamic three-dimensional renderings and multiple two-dimensional cut planes extracted from three-dimensional data sets. This was used as a reference standard to test an alternative approach, wherein the color-coded parametric models were inspected for integrity of the coaptation line and location of the maximally displaced portion of the leaflet. Diagnostic interpretations of these models by two independent readers were compared with the reference standard. In all cases of MVP, the color-coded models depicted loss of integrity of the coaptation line and maximal leaflet displacement extending to the coaptation line. MVB was depicted by preserved leaflet apposition with maximal displacement away from the coaptation line. Interpretation of the 50 color-coded models by novice readers took 5 to 10 min and resulted in good agreement with the reference technique (κ = 0.81 and κ = 0.73 for the two readers). Three-dimensional color-coded models provide a static display of MV leaflet displacement, allowing differentiation between MVP and MVB, without the need to inspect multiple planes and while taking into account the saddle shape of the mitral annulus. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  12. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM

  13. Tracer transport for realistic aircraft emission scenarios calculated using a three-dimensional model

    NASA Technical Reports Server (NTRS)

    Weaver, Clark J.; Douglass, Anne R.; Rood, Richard B.

    1995-01-01

    A three-dimensional transport model, which uses winds from a stratospheric data assimilation system, is used to study the transport of supersonic aircraft exhaust in the lower stratosphere. A passive tracer is continuously injected into the transport model. The tracer source distribution is based on realistic scenarios for the daily emission rate of reactive nitrogen species for all forecasted flight routes. Winds are from northern hemisphere winter/spring months for 1979 and 1989; there are minimal differences between the tracer integrations for the 2 years. During the integration, peak tracer mixing ratios in the flight corridors are compared with the zonal mean and found to be greater by a factor of 2 or less. This implies that the zonal mean assumption used in two dimensional models is reasonable during winter and spring. There is a preference for pollutant buildup in the heavily traveled North Pacific and North Atlantic flight corridors. Pollutant concentration in the corridors depends on the position of the Aleutian anticyclone and the northern hemisphere polar vortex edge.

  14. Use of three-dimensional finite element models of the lateral ankle ligaments to evaluate three surgical techniques

    PubMed Central

    Wang, Cheng-Wei; Muheremu, Aikeremujiang; Bai, Jing-Ping

    2017-01-01

    Objective To compare three surgical techniques for lateral ankle ligament reconstruction using finite element (FE) models. Methods A three-dimensional FE model of the left foot of a healthy volunteer and lateral collateral ligament injury models were developed. Three tendons [one-half of the autologous peroneus longus tendon (PLT), one-half of the peroneus brevis tendon (PBT), and an allogeneic tendon] were used for lateral collateral ligament reconstruction. The ankle varus stress and anterior drawer tests were performed to compare the three surgical techniques. Results The ankle varus stress test showed that the equivalent stresses of the anterior talofibular ligament (ATFL) (84.00 MPa) and calcaneofibular ligament (CFL) (27.01 MPa) were lower in allogeneic tendon reconstruction than in the other two techniques but similar to those of normal individuals (138.48 and 25.90 MPa, respectively). The anterior drawer test showed that the equivalent stresses of the ATFL and CFL in autologous PLT reconstruction (31.31 and 28.60 MPa, respectively) and PBT reconstruction (31.47 and 29.07 MPa, respectively) were lower than those in allogeneic tendon reconstruction (57.32 and 52.20 MPa, respectively). Conclusions The allogeneic tendon reconstruction outcome was similar to normal individuals. Allogeneic tendon reconstruction may be superior for lateral ankle ligament reconstruction without considering its complications. PMID:29239256

  15. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.

  16. A defocus-information-free autostereoscopic three-dimensional (3D) digital reconstruction method using direct extraction of disparity information (DEDI)

    NASA Astrophysics Data System (ADS)

    Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu

    2016-10-01

    Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.

  17. Three-dimensional analysis of cervical spine segmental motion in rotation.

    PubMed

    Zhao, Xiong; Wu, Zi-Xiang; Han, Bao-Jun; Yan, Ya-Bo; Zhang, Yang; Lei, Wei

    2013-06-20

    The movements of the cervical spine during head rotation are too complicated to measure using conventional radiography or computed tomography (CT) techniques. In this study, we measure three-dimensional segmental motion of cervical spine rotation in vivo using a non-invasive measurement technique. Sixteen healthy volunteers underwent three-dimensional CT of the cervical spine during head rotation. Occiput (Oc) - T1 reconstructions were created of volunteers in each of 3 positions: supine and maximum left and right rotations of the head with respect to the bosom. Segmental motions were calculated using Euler angles and volume merge methods in three major planes. Mean maximum axial rotation of the cervical spine to one side was 1.6° to 38.5° at each level. Coupled lateral bending opposite to lateral bending was observed in the upper cervical levels, while in the subaxial cervical levels, it was observed in the same direction as axial rotation. Coupled extension was observed in the cervical levels of C5-T1, while coupled flexion was observed in the cervical levels of Oc-C5. The three-dimensional cervical segmental motions in rotation were accurately measured with the non-invasive measure. These findings will be helpful as the basis for understanding cervical spine movement in rotation and abnormal conditions. The presented data also provide baseline segmental motions for the design of prostheses for the cervical spine.

  18. Modeling and Validation of the Three Dimensional Deflection of an MRI-Compatible Magnetically-Actuated Steerable Catheter

    PubMed Central

    Liu, Taoming; Poirot, Nate Lombard; Franson, Dominique; Seiberlich, Nicole; Griswold, Mark A.; Çavuşoğlu, M. Cenk

    2016-01-01

    Objective This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the magnetic resonance imaging (MRI) scanner. Methods This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic model of the catheter system is derived. Results The proposed models are validated by comparing the simulation results of the proposed model with the experimental results of a hardware prototype of the catheter design. The maximum tip deflection error is 4.70 mm and the maximum root-mean-square (RMS) error of the shape estimation is 3.48 mm. Conclusion The results demonstrate that the proposed model can successfully estimate the deflection motion of the catheter. Significance The presented three dimensional deflection model of the magnetically controlled catheter design paves the way to efficient control of the robotic catheter for treatment of atrial fibrillation. PMID:26731519

  19. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model.

    PubMed

    Plontke, Stefan K; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N

    2007-01-01

    Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and

  20. Cochlear Pharmacokinetics with Local Inner Ear Drug Delivery Using a Three-Dimensional Finite-Element Computer Model

    PubMed Central

    Plontke, Stefan K.; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N.

    2006-01-01

    Hypothesis: Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Background: Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. Methods: A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. Results: For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. Conclusion: The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more

  1. Two-dimensional numerical simulation of flow around three-stranded rope

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  2. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  3. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  4. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  5. Three-Dimensional Imaging of the Mouse Organ of Corti Cytoarchitecture for Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Puria, Sunil; Hartman, Byron; Kim, Jichul; Oghalai, John S.; Ricci, Anthony J.; Liberman, M. Charles

    2011-11-01

    Cochlear models typically use continuous anatomical descriptions and homogenized parameters based on two-dimensional images for describing the organ of Corti. To produce refined models based more closely on the actual cochlear cytoarchitecture, three-dimensional morphometric parameters of key mechanical structures are required. Towards this goal, we developed and compared three different imaging methods: (1) A fixed cochlear whole-mount preparation using the fluorescent dye Cellmask®, which is a molecule taken up by cell membranes and clearly delineates Deiters' cells, outer hair cells, and the phalangeal process, imaged using confocal microscopy; (2) An in situ fixed preparation with hair cells labeled using anti-prestin and supporting structures labeled using phalloidin, imaged using two-photon microscopy; and (3) A membrane-tomato (mT) mouse with fluorescent proteins expressed in all cell membranes, which enables two-photon imaging of an in situ live preparation with excellent visualization of the organ of Corti. Morphometric parameters including lengths, diameters, and angles, were extracted from 3D cellular surface reconstructions of the resulting images. Preliminary results indicate that the length of the phalangeal processes decreases from the first (inner most) to third (outer most) row of outer hair cells, and that their length also likely varies from base to apex and across species.

  6. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli.

    PubMed

    Mahmood, Feroze; Owais, Khurram; Montealegre-Gallegos, Mario; Matyal, Robina; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal R

    2014-01-01

    The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA) using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL) file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  7. Three-dimensional modeling of n+-nu-n+ and p+-pi-p+ semiconducting devices for analog ULSI microelectronics

    NASA Astrophysics Data System (ADS)

    Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel

    2004-03-01

    Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.

  8. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  9. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  10. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  11. A Three-dimensional Non-spherical Calculation Of The Rotationally Distorted Shape And Internal Structure Of A Model Of Jupiter With A Polytropic Index Of Unity

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.

    2012-10-01

    An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390

  12. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  13. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  14. Three-dimensional concentration mapping of organic blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, John D.; Batenburg, Kees J.; Swain, F. B.

    2013-05-06

    We quantitatively measure the three-dimensional morphology of mixed organic layers using high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM) with electron tomography for the first time. The mixed organic layers used for organic photovoltaic applications have not been previously imaged using STEM tomography as there is insufficient contrast between donor and acceptor components. We generate contrast by substituting fullerenes with endohedral fullerenes that contain a Lu3N cluster within the fullerene cage. The high contrast and signal-to-noise ratio, in combination with use of the discrete algebraic reconstruction technique (DART), allowed us to generate the most detailed and accurate three-dimensional map ofmore » BHJ morphology to date. From the STEM tomography reconstructions we determined that three distinct material phases are present within the BHJs. By observation of the changes to morphology and mixing ratio that occur during thermal and solvent annealing, we are able to determine how mutual solubility and fullerene crystallization affect the formation of morphology and long term stability of the material mixture. This material/technique combination shows itself as a powerful tool for examining morphology in detail and allows for observation of nanoscopic changes in local concentration. This research was supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.« less

  15. Three-Dimensional Multiscale Modeling of Dendritic Spacing Selection During Al-Si Directional Solidification

    NASA Astrophysics Data System (ADS)

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-08-01

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  16. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  17. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  18. Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.

  19. Modellierung dreidimensionaler Strahlungsfelder im frühen Universum %t Modelling three dimensional radiation fields in the early universe

    NASA Astrophysics Data System (ADS)

    Meinköhn, Erik

    2002-11-01

    The present work aims at the modelling of three-dimensional radiation fields in gas clouds from the early universe, in particular as to the influence of varying distributions of density and velocity. In observations of high-redshift gas clouds, the Lyα transition from the first excited energy level to the ground state of the hydrogen atom is usually found to be the only prominent emission lines in the entire spectrum. It is a well-known assumption that high-redshifted hydrogen clouds are the precursors of present-day galaxies. Thus, the investigation of the Lyα line is of paramount importance of the theory of galaxy formation and evolution. The observed Lyα line - or rather, to be precise, its profile - reveals both the complexity of the spatial distribution and of the kinematics of the interstellar gas, and also the nature of the photon source. In this thesis we have developed a code which is capable of solving the three-dimensional frequency-dependent radiative transfer equation for arbitrarily nonrelativistically moving media. The numerical treatment of the associated partial integro-differential equation is an extremely challenging task, since radiation intensity depends on 6 variables, namely 3 space variables, 2 variables describing the direction of photon propagation, and the frequency. With the goal of a quantitative comparison with observational data in mind, the implementation of very efficient methods for a sufficiently accurate solution of the complex radiative transfer problems turned out to be a necessity. The size of the resulting linear system of equations makes the use of parallelization techniques and grid refinement strategies indispensable.

  20. Single exposure three-dimensional imaging of dusty plasma clusters.

    PubMed

    Hartmann, Peter; Donkó, István; Donkó, Zoltán

    2013-02-01

    We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer. The reconstruction of the third coordinate (depth) is found to be accurate and even shadowing particles can be identified.

  1. Three-dimensional hydrogeological modelling application to the Alverà mudslide (Cortina d'Ampezzo, Italy)

    NASA Astrophysics Data System (ADS)

    Bonomi, Tullia; Cavallin, Angelo

    1999-10-01

    Within the framework of Geographic Information System (GIS), the distributed three-dimensional groundwater model MODFLOW has been applied to evaluate the groundwater processes of the hydrogeological system in the Alverà mudslide (Cortina d'Ampezzo, Italy; test site in the TESLEC Project of the European Union). The application of this model has permitted an analysis of the spatial distribution of the structure (DTM and landslide bottom) and the mass transfer elements of the hydrogeological system. The field survey suggested zoning the area on the basis of the recharge, groundwater fluctuation and drainage system. For each zone, a hydraulic conductivity value to simulate the different recharge and the drainage responses has been assigned. The effect of rainfall infiltration into the ground and its effect on the groundwater table, with different intensity related to different time periods, have been simulated to reproduce the real condition of the area. The applied model can simulate the positive fluctuations of the water table on the whole landslide, with a different response of the hydrogeological system in each zone. The spatial simulated water level distribution is in accordance with the real one, with very small difference between them. The application of distributed three-dimensional models, within the framework of GIS, is an approach which permits data to be continually updated, standardised and integrated.

  2. A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1988-01-01

    A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.

  3. Spontaneous Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environments

    PubMed Central

    Hawkins, Rhoda J.; Poincloux, Renaud; Bénichou, Olivier; Piel, Matthieu; Chavrier, Philippe; Voituriez, Raphaël

    2011-01-01

    We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments. PMID:21889440

  4. Three-dimensional transgenic cell model to quantify genotoxic effects of space environment

    NASA Astrophysics Data System (ADS)

    Gonda, S. R.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.

    In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of multiple copies of defined target genes for genotoxic assessment. Rat 2λ fibroblasts, genetically engineered to contain high-density target genes for mutagenesis (Stratagene, Inc., Austin, TX), were cocultured with human epithelial cells on Cytodex beads in the High Aspect Ratio Bioreactor (Synthecon, Inc, Houston, TX). Multi-bead aggregates were formed by day 5 following the complete covering of the beads by fibroblasts. Cellular retraction occurred 8-14 days after coculture initiation culminating in spheroids retaining few or no beads. Analysis of the resulting tissue assemblies revealed: multicellular spheroids, fibroblasts synthesized collagen, and cell viability was retained for the 30-day test period after removal from the bioreactor. Quantification of mutation at the LacI gene in Rat 2λ fibroblasts in spheroids exposed to 0-2 Gy neon using the Big Blue color assay (Stratagene, Inc.), revealed a linear dose-response for mutation induction. Limited sequencing analysis of mutant clones from 0.25 or 1 Gy exposures revealed a higher frequency of deletions and multiple base sequencing changes with increasing dose. These results suggest that the three-dimensional, multicellular tissue assembly model produced in NASA bioreactors are applicable to a wide variety of studies involving the quantification and identification of genotocity including measurement of the inherent damage incurred in Space.

  5. Application of Mathematical and Three-Dimensional Computer Modeling Tools in the Planning of Processes of Fuel and Energy Complexes

    NASA Astrophysics Data System (ADS)

    Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal

    2017-11-01

    This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.

  6. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  7. Three-dimensional magnetic induction model of an octagonal edge-defined film-fed growth system

    NASA Astrophysics Data System (ADS)

    Rajendran, S.; Holmes, K.; Menna, A.

    1994-03-01

    Silicon wafers for the photovoltaic industry are produced by growing thin octagonal tubes by the edge-defined film-fed growth (EFG) process. The thermal origin of the wafer thickness variations was studied with a three-dimensional (3D) magnetic induction model. The implementation of the computer code and the significance of the computed results for improving the thickness uniformity are discussed.

  8. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  9. Fourier optics of constant-thickness three-dimensional objects on the basis of diffraction models

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2017-09-01

    Results of investigations of diffraction phenomena on constant-thickness three-dimensional objects with flat inner surfaces (thick plates) are summarized on the basis of our constructive theory of their calculation as applied to dimensional inspection. It is based on diffraction models of 3D objects with the use of equivalent diaphragms (distributions), which allow the Kirchhoff-Fresnel approximation to be effectively used. In contrast to available rigorous and approximate methods, the present approach does not require cumbersome calculations; it is a clearly arranged method, which ensures sufficient accuracy for engineering applications. It is found that the fundamental diffraction parameter for 3D objects of constant thickness d is the critical diffraction angle {θ _{cr}} = √ {λ /d} at which the effect of three-dimensionality on the spectrum of the 3D object becomes appreciable. Calculated Fraunhofer diffraction patterns (spectra) and images of constant-thickness 3D objects with absolutely absorbing, absolutely reflecting, and gray internal faces are presented. It is demonstrated that selection of 3D object fragments can be performed by choosing an appropriate configuration of the wave illuminating the object (plane normal or inclined waves, spherical waves).

  10. Biomechanical factors associated with mandibular cantilevers: analysis with three-dimensional finite element models.

    PubMed

    Gonda, Tomoya; Yasuda, Daiisa; Ikebe, Kazunori; Maeda, Yoshinobu

    2014-01-01

    Although the risks of using a cantilever to treat missing teeth have been described, the mechanisms remain unclear. This study aimed to reveal these mechanisms from a biomechanical perspective. The effects of various implant sites, number of implants, and superstructural connections on stress distribution in the marginal bone were analyzed with three-dimensional finite element models based on mandibular computed tomography data. Forces from the masseter, temporalis, and internal pterygoid were applied as vectors. Two three-dimensional finite element models were created with the edentulous mandible showing severe and relatively modest residual ridge resorption. Cantilevers of the premolar and molar were simulated in the superstructures in the models. The following conditions were also included as factors in the models to investigate changes: poor bone quality, shortened dental arch, posterior occlusion, lateral occlusion, double force of the masseter, and short implant. Multiple linear regression analysis with a forced-entry method was performed with stress values as the objective variable and the factors as the explanatory variable. When bone mass was high, stress around the implant caused by differences in implantation sites was reduced. When bone mass was low, the presence of a cantilever was a possible risk factor. The stress around the implant increased significantly if bone quality was poor or if increased force (eg, bruxism) was applied. The addition of a cantilever to the superstructure increased stress around implants. When large muscle forces were applied to a superstructure with cantilevers or if bone quality was poor, stress around the implants increased.

  11. Three-dimensional endoanal ultrasound is accurate and reproducible in determining type and height of anal fistulas.

    PubMed

    Kołodziejczak, M; Santoro, G A; Obcowska, A; Lorenc, Z; Mańczak, M; Sudoł-Szopińska, I

    2017-04-01

    Surgical treatment of high anal fistulas is associated with the potential risk of faecal incontinence and recurrence. The primary aim of this study was to determine the accuracy of three-dimensional endoanal ultrasound (3D-EAUS) in the assessment of height and type of anal fistulas, compared to the intra-operative findings (gold standard). The secondary aim was to evaluate the inter-observer reproducibility of 3D-EAUS. The study design was a prospective analysis of retrospective data. 299 patients (202 men), mean age 45.3 years, who underwent surgery for anal fistulas, were included. All patients were preoperatively assessed by 3D-EAUS. Two readers independently reviewed the volumes to determine the type and height of fistulas. Sensitivity, specificity, positive and negative predictive values, proportion of agreements and Cohen's kappa coefficient (κ) were calculated for both examiners. Ultrasound findings were compared with intra-operative data (reference standard), evaluated blindly by the surgeons. At surgery, 201 (67%) were transsphincteric, 49 (16%) suprasphincteric, 47 (16%) intersphincteric and two (1%) extrasphincteric fistulas. Intra-operatively, 177 (59%) were low and 122 (41%) high fistulas. The overall accuracy of 3D-EAUS was 91% for fistula type (271/299 fistulas: 97% transsphincteric, 100% intersphincteric, 57% suprasphincteric, 0% extrasphincteric) and 92% for fistula height (275/299 fistulas: 80% high and 100% low). Both readers reported very good agreement with surgery in the assessment of fistula type (proportion of agreement 0.88, κ = 0.89) and height (proportion of agreement 0.90, κ = 0.91). 3D-EAUS is an accurate and reproducible modality for the assessment of type and height of anal fistulas. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  12. A Three-Dimensional Mediastinal Model Created with Rapid Prototyping in a Patient with Ectopic Thymoma

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133

  13. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  14. Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras

    2016-04-01

    into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.

  15. Accurate modeling and evaluation of microstructures in complex materials

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman

    2018-02-01

    Accurate characterization of heterogeneous materials is of great importance for different fields of science and engineering. Such a goal can be achieved through imaging. Acquiring three- or two-dimensional images under different conditions is not, however, always plausible. On the other hand, accurate characterization of complex and multiphase materials requires various digital images (I) under different conditions. An ensemble method is presented that can take one single (or a set of) I(s) and stochastically produce several similar models of the given disordered material. The method is based on a successive calculating of a conditional probability by which the initial stochastic models are produced. Then, a graph formulation is utilized for removing unrealistic structures. A distance transform function for the Is with highly connected microstructure and long-range features is considered which results in a new I that is more informative. Reproduction of the I is also considered through a histogram matching approach in an iterative framework. Such an iterative algorithm avoids reproduction of unrealistic structures. Furthermore, a multiscale approach, based on pyramid representation of the large Is, is presented that can produce materials with millions of pixels in a matter of seconds. Finally, the nonstationary systems—those for which the distribution of data varies spatially—are studied using two different methods. The method is tested on several complex and large examples of microstructures. The produced results are all in excellent agreement with the utilized Is and the similarities are quantified using various correlation functions.

  16. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  17. A Simple and Accurate Rate-Driven Infiltration Model

    NASA Astrophysics Data System (ADS)

    Cui, G.; Zhu, J.

    2017-12-01

    In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.

  18. Trading spaces: building three-dimensional nets from two-dimensional tilings

    PubMed Central

    Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa

    2012-01-01

    We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839

  19. Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt

    NASA Astrophysics Data System (ADS)

    Sahraoui, M.; Marshall, H.; Kaviany, M.

    1993-09-01

    In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.

  20. Three-dimensional Structure of the Milky Way Dust: Modeling of LAMOST Data

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Shen, Shiyin; Hou, Jinliang; Yuan, Haibo; Xiang, Maosheng; Chen, Bingqiu; Huang, Yang; Liu, Xiaowei

    2018-05-01

    We present a three-dimensional modeling of the Milky Way dust distribution by fitting the value-added star catalog of the LAMOST spectral survey. The global dust distribution can be described by an exponential disk with a scale length of 3192 pc and a scale height of 103 pc. In this modeling, the Sun is located above the dust disk with a vertical distance of 23 pc. Besides the global smooth structure, two substructures around the solar position are also identified. The one located at 150° < l < 200° and ‑5° < b < ‑30° is consistent with the Gould Belt model of Gontcharov, and the other one located at 140° < l < 165° and 0° < b < 15° is associated with the Camelopardalis molecular clouds.