Sample records for accurate transcript normalization

  1. Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions

    PubMed Central

    Mafra, Valéria; Kubo, Karen S.; Alves-Ferreira, Marcio; Ribeiro-Alves, Marcelo; Stuart, Rodrigo M.; Boava, Leonardo P.; Rodrigues, Carolina M.; Machado, Marcos A.

    2012-01-01

    Real-time reverse transcription PCR (RT-qPCR) has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus). We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family) and GAPC2 (GAPDH) was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin), TUB (tubulin) and CtP (cathepsin) were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein), GAPC2 and UPL7 (ubiquitin protein ligase 7) to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress. PMID:22347455

  2. Evaluation of New Reference Genes in Papaya for Accurate Transcript Normalization under Different Experimental Conditions

    PubMed Central

    Chen, Weixin; Chen, Jianye; Lu, Wangjin; Chen, Lei; Fu, Danwen

    2012-01-01

    Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions. PMID

  3. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  4. Transcriptional network control of normal and leukaemic haematopoiesis

    PubMed Central

    Sive, Jonathan I.; Göttgens, Berthold

    2014-01-01

    Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. PMID:25014893

  5. Transcriptional network control of normal and leukaemic haematopoiesis.

    PubMed

    Sive, Jonathan I; Göttgens, Berthold

    2014-12-10

    Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis1[w

    PubMed Central

    Czechowski, Tomasz; Stitt, Mark; Altmann, Thomas; Udvardi, Michael K.; Scheible, Wolf-Rüdiger

    2005-01-01

    Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future. PMID:16166256

  7. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    PubMed

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  8. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  9. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  10. Strawberry: Fast and accurate genome-guided transcript reconstruction and quantification from RNA-Seq.

    PubMed

    Liu, Ruolin; Dickerson, Julie

    2017-11-01

    We propose a novel method and software tool, Strawberry, for transcript reconstruction and quantification from RNA-Seq data under the guidance of genome alignment and independent of gene annotation. Strawberry consists of two modules: assembly and quantification. The novelty of Strawberry is that the two modules use different optimization frameworks but utilize the same data graph structure, which allows a highly efficient, expandable and accurate algorithm for dealing large data. The assembly module parses aligned reads into splicing graphs, and uses network flow algorithms to select the most likely transcripts. The quantification module uses a latent class model to assign read counts from the nodes of splicing graphs to transcripts. Strawberry simultaneously estimates the transcript abundances and corrects for sequencing bias through an EM algorithm. Based on simulations, Strawberry outperforms Cufflinks and StringTie in terms of both assembly and quantification accuracies. Under the evaluation of a real data set, the estimated transcript expression by Strawberry has the highest correlation with Nanostring probe counts, an independent experiment measure for transcript expression. Strawberry is written in C++14, and is available as open source software at https://github.com/ruolin/strawberry under the MIT license.

  11. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro.

    PubMed

    Liu, Mingying; Jiang, Jing; Han, Xiaojiao; Qiao, Guirong; Zhuo, Renying

    2014-01-01

    Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.

  12. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  13. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA

  14. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.

    PubMed

    Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio

    2002-10-15

    Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.

  15. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor.

    PubMed Central

    Mishima, Y; Financsek, I; Kominami, R; Muramatsu, M

    1982-01-01

    Mouse and human cell extracts (S100) can support an accurate and efficient transcription initiation on homologous ribosomal RNA gene (rDNA) templates. The cell extracts were fractionated with the aid of a phosphocellulose column into four fractions (termed A, B, C and D), including one containing a major part of the RNA polymerase I activity. Various reconstitution experiments indicate that fraction D is an absolute requirement for the correct and efficient transcription initiation by RNA polymerase I on both mouse and human genes. Fraction B effectively suppresses random initiation on these templates. Fraction A appears to further enhance the transcription which takes place with fractions C and D. Although fractions A, B and C are interchangeable between mouse and human extracts, fraction D is not; i.e. initiation of transcription required the presence of a homologous fraction D for both templates. The factor(s) in fraction D, however, is not literally species-specific, since mouse D fraction is capable of supporting accurate transcription initiation on a rat rDNA template in the presence of all the other fractions from human cell extract under the conditions where human D fraction is unable to support it. We conclude from these experiments that a species-dependent factor in fraction D plays an important role in the initiation of rDNA transcription in each animal species. Images PMID:7177852

  16. Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba.

    PubMed

    Lin, Liyuan; Han, Xiaojiao; Chen, Yicun; Wu, Qingke; Wang, Yangdong

    2013-12-01

    Quantitative real-time PCR has emerged as a highly sensitive and widely used method for detection of gene expression profiles, via which accurate detection depends on reliable normalization. Since no single control is appropriate for all experimental treatments, it is generally advocated to select suitable internal controls prior to use for normalization. This study reported the evaluation of the expression stability of twelve potential reference genes in different tissue/organs and six fruit developmental stages of Litsea cubeba in order to screen the superior internal reference genes for data normalization. Two softwares-geNorm, and NormFinder-were used to identify stability of these candidate genes. The cycle threshold difference and coefficient of variance were also calculated to evaluate the expression stability of candidate genes. F-BOX, EF1α, UBC, and TUA were selected as the most stable reference genes across 11 sample pools. F-BOX, EF1α, and EIF4α exhibited the highest expression stability in different tissue/organs and different fruit developmental stages. Besides, a combination of two stable reference genes would be sufficient for gene expression normalization in different fruit developmental stages. In addition, the relative expression profiles of DXS and DXR were evaluated by EF1α, UBC, and SAMDC. The results further validated the reliability of stable reference genes and also highlighted the importance of selecting suitable internal controls for L. cubeba. These reference genes will be of great importance for transcript normalization in future gene expression studies on L. cubeba.

  17. Are normally sighted, visually impaired, and blind pedestrians accurate and reliable at making street crossing decisions?

    PubMed

    Hassan, Shirin E

    2012-05-04

    The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times.

  18. Are Normally Sighted, Visually Impaired, and Blind Pedestrians Accurate and Reliable at Making Street Crossing Decisions?

    PubMed Central

    Hassan, Shirin E.

    2012-01-01

    Purpose. The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Methods. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. Results. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Conclusions. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times. PMID:22427593

  19. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients.

    PubMed

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan; Mora-Jensen, Helena; Krogh, Anders; Kohlmann, Alexander; Thiede, Christian; Borregaard, Niels; Bullinger, Lars; Winther, Ole; Theilgaard-Mönch, Kim; Porse, Bo T

    2014-02-06

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy, using expression profiles from normal stem/progenitor cells, and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs normal method (CvN method) to be superior to conventional methods in stratifying AML patients with aberrant karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.

  20. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGES

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  1. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    PubMed

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  2. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    PubMed Central

    2010-01-01

    Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene

  3. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    PubMed

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  4. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  5. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.

    PubMed

    Testa, Alison C; Hane, James K; Ellwood, Simon R; Oliver, Richard P

    2015-03-11

    The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against

  7. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    PubMed

    Tuerk, Andreas; Wiktorin, Gregor; Güler, Serhat

    2017-05-01

    Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare"), a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC) Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  8. The transcriptional activator ZNF143 is essential for normal development in zebrafish

    PubMed Central

    2012-01-01

    Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977

  9. The transcriptional activator ZNF143 is essential for normal development in zebrafish.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2012-01-23

    ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.

  10. Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays.

    PubMed

    Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv

    2012-12-11

    Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement

  11. DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.)

    PubMed Central

    Link, Gerhard

    1984-01-01

    A nuclease-treated plastid extract from mustard (Sinapis alba L.) allows efficient transcription of cloned plastid DNA templates. In this in vitro system, the major runoff transcript of the truncated gene for the 32 000 mol. wt. photosystem II protein was accurately initiated from a site close to or identical with the in vivo start site. By using plasmids with deletions in the 5'-flanking region of this gene as templates, a DNA region required for efficient and selective initiation was detected ˜28-35 nucleotides upstream of the transcription start site. This region contains the sequence element TTGACA, which matches the consensus sequence for prokaryotic `−35' promoter elements. In the absence of this region, a region ˜13-27 nucleotides upstream of the start site still enables a basic level of specific transcription. This second region contains the sequence element TATATAA, which matches the consensus sequence for the `TATA' box of genes transcribed by RNA polymerase II (or B). The region between the `TATA'-like element and the transcription start site is not sufficient but may be required for specific transcription of the plastid gene. This latter region contains the sequence element TATACT, which resembles the prokaryotic `−10' (Pribnow) box. Based on the structural and transcriptional features of the 5' upstream region, a `promoter switch' mechanism is proposed, which may account for the developmentally regulated expression of this plastid gene. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Figure 5. PMID:16453540

  12. Polymerase chain reaction amplification fails to detect aromatase cytochrome P450 transcripts in normal human endometrium or decidua.

    PubMed

    Bulun, S E; Mahendroo, M S; Simpson, E R

    1993-06-01

    It has been proposed that the biosynthesis of estrogens by the human endometrium may be of physiological significance during the menstrual cycle. Local estrogen production was also suggested to be important in the development of endometrial cancer; however, the presence or absence of aromatase enzyme activity in normal human endometrium is controversial. To address this issue, we used a sensitive technique capable of detecting mRNA transcripts present in only very low copy number. The polymerase chain reaction linked to reverse transcription (RT-PCR) was used to evaluate the presence or absence of aromatase cytochrome P450 (P450arom) transcripts in endometrial tissues (n = 7) and endometrial stromal cells (n = 9) under various culture conditions. RNA was isolated from four proliferative and three secretory tissue samples and from cultured endometrial stromal cells isolated from seven proliferative and two secretory endometria. Five sets of cultures were treated with medroxyprogesterone acetate (MPA), estradiol (E2), and forskolin. Additionally, RNA was isolated from decidualized endometrium obtained from a patient with tubal pregnancy. A single stranded cDNA was synthesized from total RNA using Moloney murine leukemia virus reverse transcriptase and a P450arom-specific oligonucleotide. The single stranded cDNA was used as a template for PCR and was amplified for 20-35 cycles using P450arom-specific primers. RNA from adipose tissue and placenta was amplified to provide positive controls, whereas myometrial RNA was used as a negative control. In two experiments involving two endometrial tissues and three sets of cells in culture, a rat P450arom cRNA was coamplified in each sample as an internal control to demonstrate that the remote possibility of RT-PCR failures in individual test samples cannot account for our negative results. By Southern or slot blot hybridization of the amplified fragments using human and rat P450arom-specific probes, we found no evidence for

  13. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill.

    PubMed

    de Almeida, Márcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G

    2010-09-20

    Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression

  14. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill

    PubMed Central

    2010-01-01

    Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based

  15. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer.

    PubMed

    Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G

    2015-06-01

    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation

  16. Transcription Regulation in Archaea

    PubMed Central

    Gehring, Alexandra M.; Walker, Julie E.

    2016-01-01

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  17. Transcript and protein environmental biomarkers in fish--a review.

    PubMed

    Tom, Moshe; Auslander, Meirav

    2005-04-01

    The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.

  18. Differential Transcriptional Response in Macrophages Infected with Cell Wall Deficient versus Normal Mycobacterium Tuberculosis

    PubMed Central

    Fu, Yu-Rong; Gao, Kun-Shan; Ji, Rui; Yi, Zheng-Jun

    2015-01-01

    Host-pathogen interactions determine the outcome following infection by mycobacterium tuberculosis (Mtb). Under adverse circumstances, normal Mtb can form cell-wall deficient (CWD) variants within macrophages, which have been considered an adaptive strategy for facilitating bacterial survival inside macrophages. However, the molecular mechanism by which infection of macrophages with different phenotypic Mtb elicits distinct responses of macrophages is not fully understood. To explore the molecular events triggered upon Mtb infection of macrophages, differential transcriptional responses of RAW264.7 cells infected with two forms of Mtb, CWD-Mtb and normal Mtb, were studied by microarray analysis. Some of the differentially regulated genes were confirmed by RT-qPCR in both RAW264.7 cells and primary macrophages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was used to analyze functions of differentially expressed genes. Distinct gene expression patterns were observed between CWD-Mtb and normal Mtb group. Mapt was up-regulated, while NOS2 and IL-11 were down-regulated in CWD-Mtb infected RAW264.7 cells and primary macrophages compared with normal Mtb infected ones. Many deregulated genes were found to be related to macrophages activation, immune response, phagosome maturation, autophagy and lipid metabolism. KEGG analysis showed that the differentially expressed genes were mainly involved in MAPK signaling pathway, nitrogen metabolism, cytokine-cytokine receptor interaction and focal adhesion. Taken together, the present study showed that differential macrophage responses were induced by intracellular CWD-Mtb an normal Mtb infection, which suggested that interactions between macrophages and different phenotypic Mtb are very complex. The results provide evidence for further understanding of pathogenesis of CWD-Mtb and may help in improving strategies to eliminate intracellular CWD-Mtb. PMID:25552926

  19. Accurate, Streamlined Analysis of mRNA Translation by Sucrose Gradient Fractionation

    PubMed Central

    Aboulhouda, Soufiane; Di Santo, Rachael; Therizols, Gabriel; Weinberg, David

    2017-01-01

    The efficiency with which proteins are produced from mRNA molecules can vary widely across transcripts, cell types, and cellular states. Methods that accurately assay the translational efficiency of mRNAs are critical to gaining a mechanistic understanding of post-transcriptional gene regulation. One way to measure translational efficiency is to determine the number of ribosomes associated with an mRNA molecule, normalized to the length of the coding sequence. The primary method for this analysis of individual mRNAs is sucrose gradient fractionation, which physically separates mRNAs based on the number of bound ribosomes. Here, we describe a streamlined protocol for accurate analysis of mRNA association with ribosomes. Compared to previous protocols, our method incorporates internal controls and improved buffer conditions that together reduce artifacts caused by non-specific mRNA–ribosome interactions. Moreover, our direct-from-fraction qRT-PCR protocol eliminates the need for RNA purification from gradient fractions, which greatly reduces the amount of hands-on time required and facilitates parallel analysis of multiple conditions or gene targets. Additionally, no phenol waste is generated during the procedure. We initially developed the protocol to investigate the translationally repressed state of the HAC1 mRNA in S. cerevisiae, but we also detail adapted procedures for mammalian cell lines and tissues. PMID:29170751

  20. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks.

    PubMed

    Pellacani, Davide; Bilenky, Misha; Kannan, Nagarajan; Heravi-Moussavi, Alireza; Knapp, David J H F; Gakkhar, Sitanshu; Moksa, Michelle; Carles, Annaick; Moore, Richard; Mungall, Andrew J; Marra, Marco A; Jones, Steven J M; Aparicio, Samuel; Hirst, Martin; Eaves, Connie J

    2016-11-15

    The normal adult human mammary gland is a continuous bilayered epithelial system. Bipotent and myoepithelial progenitors are prominent and unique components of the outer (basal) layer. The inner (luminal) layer includes both luminal-restricted progenitors and a phenotypically separable fraction that lacks progenitor activity. We now report an epigenomic comparison of these three subsets with one another, with their associated stromal cells, and with three immortalized, non-tumorigenic human mammary cell lines. Each genome-wide analysis contains profiles for six histone marks, methylated DNA, and RNA transcripts. Analysis of these datasets shows that each cell type has unique features, primarily within genomic regulatory regions, and that the cell lines group together. Analyses of the promoter and enhancer profiles place the luminal progenitors in between the basal cells and the non-progenitor luminal subset. Integrative analysis reveals networks of subset-specific transcription factors. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  3. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  4. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  5. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia.

    PubMed

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-08-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  6. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less

  7. Selection and Validation of Reference Genes for Accurate RT-qPCR Data Normalization in Coffea spp. under a Climate Changes Context of Interacting Elevated [CO2] and Temperature

    PubMed Central

    Martins, Madlles Q.; Fortunato, Ana S.; Rodrigues, Weverton P.; Partelli, Fábio L.; Campostrini, Eliemar; Lidon, Fernando C.; DaMatta, Fábio M.; Ramalho, José C.; Ribeiro-Barros, Ana I.

    2017-01-01

    World coffee production has faced increasing challenges associated with ongoing climatic changes. Several studies, which have been almost exclusively based on temperature increase, have predicted extensive reductions (higher than half by 2,050) of actual coffee cropped areas. However, recent studies showed that elevated [CO2] can strongly mitigate the negative impacts of heat stress at the physiological and biochemical levels in coffee leaves. In addition, it has also been shown that coffee genotypes can successfully cope with temperatures above what has been traditionally accepted. Altogether, this information suggests that the real impact of climate changes on coffee growth and production could be significantly lower than previously estimated. Gene expression studies are an important tool to unravel crop acclimation ability, demanding the use of adequate reference genes. We have examined the transcript stability of 10 candidate reference genes to normalize RT-qPCR expression studies using a set of 24 cDNAs from leaves of three coffee genotypes (CL153, Icatu, and IPR108), grown under 380 or 700 μL CO2 L−1, and submitted to increasing temperatures from 25/20°C (day/night) to 42/34°C. Samples were analyzed according to genotype, [CO2], temperature, multiple stress interaction ([CO2], temperature) and total stress interaction (genotype, [CO2], and temperature). The transcript stability of each gene was assessed through a multiple analytical approach combining the Coeficient of Variation method and three algorithms (geNorm, BestKeeper, NormFinder). The transcript stability varied according to the type of stress for most genes, but the consensus ranking obtained with RefFinder, classified MDH as the gene with the highest mRNA stability to a global use, followed by ACT and S15, whereas α-TUB and CYCL showed the least stable mRNA contents. Using the coffee expression profiles of the gene encoding the large-subunit of ribulose-1,5-bisphosphate carboxylase

  8. Selection and Validation of Reference Genes for Accurate RT-qPCR Data Normalization in Coffea spp. under a Climate Changes Context of Interacting Elevated [CO2] and Temperature.

    PubMed

    Martins, Madlles Q; Fortunato, Ana S; Rodrigues, Weverton P; Partelli, Fábio L; Campostrini, Eliemar; Lidon, Fernando C; DaMatta, Fábio M; Ramalho, José C; Ribeiro-Barros, Ana I

    2017-01-01

    World coffee production has faced increasing challenges associated with ongoing climatic changes. Several studies, which have been almost exclusively based on temperature increase, have predicted extensive reductions (higher than half by 2,050) of actual coffee cropped areas. However, recent studies showed that elevated [CO 2 ] can strongly mitigate the negative impacts of heat stress at the physiological and biochemical levels in coffee leaves. In addition, it has also been shown that coffee genotypes can successfully cope with temperatures above what has been traditionally accepted. Altogether, this information suggests that the real impact of climate changes on coffee growth and production could be significantly lower than previously estimated. Gene expression studies are an important tool to unravel crop acclimation ability, demanding the use of adequate reference genes. We have examined the transcript stability of 10 candidate reference genes to normalize RT-qPCR expression studies using a set of 24 cDNAs from leaves of three coffee genotypes (CL153, Icatu, and IPR108), grown under 380 or 700 μL CO 2 L -1 , and submitted to increasing temperatures from 25/20°C (day/night) to 42/34°C. Samples were analyzed according to genotype, [CO 2 ], temperature, multiple stress interaction ([CO 2 ], temperature) and total stress interaction (genotype, [CO 2 ], and temperature). The transcript stability of each gene was assessed through a multiple analytical approach combining the Coeficient of Variation method and three algorithms (geNorm, BestKeeper, NormFinder). The transcript stability varied according to the type of stress for most genes, but the consensus ranking obtained with RefFinder, classified MDH as the gene with the highest mRNA stability to a global use, followed by ACT and S15 , whereas α -TUB and CYCL showed the least stable mRNA contents. Using the coffee expression profiles of the gene encoding the large-subunit of ribulose-1,5-bisphosphate carboxylase

  9. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

    PubMed Central

    Koloušková, Pavla; Stone, James D.

    2017-01-01

    Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728

  10. Assessment of reference genes for reliable analysis of gene transcription by RT-qPCR in ovine leukocytes.

    PubMed

    Mahakapuge, T A N; Scheerlinck, J-P Y; Rojas, C A Alvarez; Every, A L; Hagen, J

    2016-03-01

    With the availability of genetic sequencing data, quantitative reverse transcription PCR (RT-qPCR) is increasingly being used for the quantification of gene transcription across species. Too often there is little regard to the selection of reference genes and the impact that a poor choice has on data interpretation. Indeed, RT-qPCR provides a snapshot of relative gene transcription at a given time-point, and hence is highly dependent on the stability of the transcription of the reference gene(s). Using ovine efferent lymph cells and peripheral blood mono-nuclear cells (PBMCs), the two most frequently used leukocytes in immunological studies, we have compared the stability of transcription of the most commonly used ovine reference genes: YWHAZ, RPL-13A, PGK1, B2M, GAPDH, HPRT, SDHA and ACTB. Using established algorithms for reference gene normalization "geNorm" and "Norm Finder", PGK1, GAPDH and YWHAZ were deemed the most stably transcribed genes for efferent leukocytes and PGK1, YWHAZ and SDHA were optimal in PBMCs. These genes should therefore be considered for accurate and reproducible RT-qPCR data analysis of gene transcription in sheep. Copyright © 2016. Published by Elsevier B.V.

  11. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses.

    PubMed

    Galli, Vanessa; Borowski, Joyce Moura; Perin, Ellen Cristina; Messias, Rafael da Silva; Labonde, Julia; Pereira, Ivan dos Santos; Silva, Sérgio Delmar Dos Anjos; Rombaldi, Cesar Valmor

    2015-01-10

    The increasing demand of strawberry (Fragaria×ananassa Duch) fruits is associated mainly with their sensorial characteristics and the content of antioxidant compounds. Nevertheless, the strawberry production has been hampered due to its sensitivity to abiotic stresses. Therefore, to understand the molecular mechanisms highlighting stress response is of great importance to enable genetic engineering approaches aiming to improve strawberry tolerance. However, the study of expression of genes in strawberry requires the use of suitable reference genes. In the present study, seven traditional and novel candidate reference genes were evaluated for transcript normalization in fruits of ten strawberry cultivars and two abiotic stresses, using RefFinder, which integrates the four major currently available software programs: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. The results indicate that the expression stability is dependent on the experimental conditions. The candidate reference gene DBP (DNA binding protein) was considered the most suitable to normalize expression data in samples of strawberry cultivars and under drought stress condition, and the candidate reference gene HISTH4 (histone H4) was the most stable under osmotic stresses and salt stress. The traditional genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 18S (18S ribosomal RNA) were considered the most unstable genes in all conditions. The expression of phenylalanine ammonia lyase (PAL) and 9-cis epoxycarotenoid dioxygenase (NCED1) genes were used to further confirm the validated candidate reference genes, showing that the use of an inappropriate reference gene may induce erroneous results. This study is the first survey on the stability of reference genes in strawberry cultivars and osmotic stresses and provides guidelines to obtain more accurate RT-qPCR results for future breeding efforts. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Clk post-transcriptional control denoises circadian transcription both temporally and spatially.

    PubMed

    Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian

    2015-05-08

    The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.

  13. Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo

    PubMed Central

    Siepel, Adam; Lis, John T.

    2012-01-01

    DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity. PMID:22479205

  14. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    PubMed

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  16. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  17. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  18. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  19. Selection of internal reference genes for normalization of quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in the canine brain and other organs.

    PubMed

    Park, Sang-Je; Huh, Jae-Won; Kim, Young-Hyun; Lee, Sang-Rae; Kim, Sang-Hyun; Kim, Sun-Uk; Kim, Heui-Soo; Kim, Min Kyu; Chang, Kyu-Tae

    2013-05-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive technique for quantifying gene expression. To analyze qRT-PCR data accurately, suitable reference genes that show consistent expression patterns across different tissues and experimental conditions should be selected. The objective of this study was to obtain the most stable reference genes in dogs, using samples from 13 different brain tissues and 10 other organs. 16 well-known candidate reference genes were analyzed by the geNorm, NormFinder, and BestKeeper programs. Brain tissues were derived from several different anatomical regions, including the forebrain, cerebrum, diencephalon, hindbrain, and metencephalon, and grouped accordingly. Combination of the three different analyses clearly indicated that the ideal reference genes are ribosomal protien S5 (RPS5) in whole brain, RPL8 and RPS5 in whole body tissues, RPS5 and RPS19 in the forebrain and cerebrum, RPL32 and RPS19 in the diencephalon, GAPDH and RPS19 in the hindbrain, and MRPS7 and RPL13A in the metencephalon. These genes were identified as ideal for the normalization of qRT-PCR results in the respective tissues. These findings indicate more suitable and stable reference genes for future studies of canine gene expression.

  20. Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    PubMed Central

    Kirchner, Jasmin; Vissi, Emese; Gross, Sascha; Szoor, Balazs; Rudenko, Andrey; Alphey, Luke; White-Cooper, Helen

    2008-01-01

    Background Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β. Results URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. Conclusion Uri is the first PP1α specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development. PMID:18412953

  1. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  2. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-05

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  4. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  6. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    PubMed

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

  7. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Transcriptional mutagenesis: causes and involvement in tumor development

    PubMed Central

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  9. The transcription factor Nfix is essential for normal brain development.

    PubMed

    Campbell, Christine E; Piper, Michael; Plachez, Céline; Yeh, Yu-Ting; Baizer, Joan S; Osinski, Jason M; Litwack, E David; Richards, Linda J; Gronostajski, Richard M

    2008-05-13

    The Nuclear Factor I (NFI) multi-gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects; Nfib-deficient mice have defects in lung maturation and show callosal agenesis and forebrain defects resembling those seen in Nfia-deficient animals, while Nfic-deficient mice have defects in tooth root formation. Recently the Nfix gene has been disrupted and these studies indicated that there were largely uncharacterized defects in brain and skeletal development in Nfix-deficient mice. Here we show that disruption of Nfix by Cre-recombinase mediated excision of the 2nd exon results in defects in brain development that differ from those seen in Nfia and Nfib KO mice. In particular, complete callosal agenesis is not seen in Nfix-/- mice but rather there appears to be an overabundance of aberrant Pax6- and doublecortin-positive cells in the lateral ventricles of Nfix-/- mice, increased brain weight, expansion of the cingulate cortex and entire brain along the dorsal ventral axis, and aberrant formation of the hippocampus. On standard lab chow Nfix-/- animals show a decreased growth rate from ~P8 to P14, lose weight from ~P14 to P22 and die at ~P22. If their food is supplemented with a soft dough chow from P10, Nfix-/- animals show a lag in weight gain from P8 to P20 but then increase their growth rate. A fraction of the animals survive to adulthood and are fertile. The weight loss correlates with delayed eye and ear canal opening and suggests a delay in the development of several epithelial structures in Nfix-/- animals. These data show that Nfix is essential for normal brain development and may be required for neural stem cell homeostasis. The delays seen in eye and ear opening and the brain morphology defects appear independent of the nutritional deprivation, as rescue of perinatal lethality with soft

  10. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes.

    PubMed

    Lomsadze, Alexandre; Gemayel, Karl; Tang, Shiyuyun; Borodovsky, Mark

    2018-05-17

    In a conventional view of the prokaryotic genome organization, promoters precede operons and ribosome binding sites (RBSs) with Shine-Dalgarno consensus precede genes. However, recent experimental research suggesting a more diverse view motivated us to develop an algorithm with improved gene-finding accuracy. We describe GeneMarkS-2, an ab initio algorithm that uses a model derived by self-training for finding species-specific (native) genes, along with an array of precomputed "heuristic" models designed to identify harder-to-detect genes (likely horizontally transferred). Importantly, we designed GeneMarkS-2 to identify several types of distinct sequence patterns (signals) involved in gene expression control, among them the patterns characteristic for leaderless transcription as well as noncanonical RBS patterns. To assess the accuracy of GeneMarkS-2, we used genes validated by COG (Clusters of Orthologous Groups) annotation, proteomics experiments, and N-terminal protein sequencing. We observed that GeneMarkS-2 performed better on average in all accuracy measures when compared with the current state-of-the-art gene prediction tools. Furthermore, the screening of ∼5000 representative prokaryotic genomes made by GeneMarkS-2 predicted frequent leaderless transcription in both archaea and bacteria. We also observed that the RBS sites in some species with leadered transcription did not necessarily exhibit the Shine-Dalgarno consensus. The modeling of different types of sequence motifs regulating gene expression prompted a division of prokaryotic genomes into five categories with distinct sequence patterns around the gene starts. © 2018 Lomsadze et al.; Published by Cold Spring Harbor Laboratory Press.

  11. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  12. The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

    PubMed Central

    Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.

    1999-01-01

    Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype

  13. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    PubMed

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  14. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine.

    PubMed

    Lobo, Nazleen C; Gedye, Craig; Apostoli, Anthony J; Brown, Kevin R; Paterson, Joshua; Stickle, Natalie; Robinette, Michael; Fleshner, Neil; Hamilton, Robert J; Kulkarni, Girish; Zlotta, Alexandre; Evans, Andrew; Finelli, Antonio; Moffat, Jason; Jewett, Michael A S; Ailles, Laurie

    2016-07-16

    Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. The

  15. Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer

    PubMed Central

    Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi

    2007-01-01

    Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589

  16. A Transcription and Translation Protocol for Sensitive Cross-Cultural Team Research.

    PubMed

    Clark, Lauren; Birkhead, Ana Sanchez; Fernandez, Cecilia; Egger, Marlene J

    2017-10-01

    Assurance of transcript accuracy and quality in interview-based qualitative research is foundational for data accuracy and study validity. Based on our experience in a cross-cultural ethnographic study of women's pelvic organ prolapse, we provide practical guidance to set up step-by-step interview transcription and translation protocols for team-based research on sensitive topics. Beginning with team decisions about level of detail in transcription, completeness, and accuracy, we operationalize the process of securing vendors to deliver the required quality of transcription and translation. We also share rubrics for assessing transcript quality and the team protocol for managing transcripts (assuring consistency of format, insertion of metadata, anonymization, and file labeling conventions) and procuring an acceptable initial translation of Spanish-language interviews. Accurate, complete, and systematically constructed transcripts in both source and target languages respond to the call for more transparency and reproducibility of scientific methods.

  17. The AACRAO 2003 Academic Record and Transcript Guide. AACRAO Professional Development & Education Series.

    ERIC Educational Resources Information Center

    American Association of Collegiate Registrars and Admissions Officers, Washington, DC.

    This guide is a source of information on a wide range of issues involving student records and transcripts. It focuses on the necessity of reconciling the need to provide accurate information promptly to various constituencies and the need to safeguard privacy. Recommendations are provided for database and transcript elements, and current issues…

  18. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes.

    PubMed

    Hayward, Catherine P M; Liang, Minggao; Tasneem, Subia; Soomro, Asim; Waye, John S; Paterson, Andrew D; Rivard, Georges E; Wilson, Michael D

    2017-01-01

    Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD

  19. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes

    PubMed Central

    Soomro, Asim; Waye, John S.; Paterson, Andrew D.; Rivard, Georges E.; Wilson, Michael D.

    2017-01-01

    Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD

  20. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    PubMed

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  1. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision.

    PubMed

    Chuang, Trees-Juen; Wu, Chan-Shuo; Chen, Chia-Ying; Hung, Li-Yuan; Chiang, Tai-Wei; Yang, Min-Yu

    2016-02-18

    Analysis of RNA-seq data often detects numerous 'non-co-linear' (NCL) transcripts, which comprised sequence segments that are topologically inconsistent with their corresponding DNA sequences in the reference genome. However, detection of NCL transcripts involves two major challenges: removal of false positives arising from alignment artifacts and discrimination between different types of NCL transcripts (trans-spliced, circular or fusion transcripts). Here, we developed a new NCL-transcript-detecting method ('NCLscan'), which utilized a stepwise alignment strategy to almost completely eliminate false calls (>98% precision) without sacrificing true positives, enabling NCLscan outperform 18 other publicly-available tools (including fusion- and circular-RNA-detecting tools) in terms of sensitivity and precision, regardless of the generation strategy of simulated dataset, type of intragenic or intergenic NCL event, read depth of coverage, read length or expression level of NCL transcript. With the high accuracy, NCLscan was applied to distinguishing between trans-spliced, circular and fusion transcripts on the basis of poly(A)- and nonpoly(A)-selected RNA-seq data. We showed that circular RNAs were expressed more ubiquitously, more abundantly and less cell type-specifically than trans-spliced and fusion transcripts. Our study thus describes a robust pipeline for the discovery of NCL transcripts, and sheds light on the fundamental biology of these non-canonical RNA events in human transcriptome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. RNA-Seq-Based Transcript Structure Analysis with TrBorderExt.

    PubMed

    Wang, Yejun; Sun, Ming-An; White, Aaron P

    2018-01-01

    RNA-Seq has become a routine strategy for genome-wide gene expression comparisons in bacteria. Despite lower resolution in transcript border parsing compared with dRNA-Seq, TSS-EMOTE, Cappable-seq, Term-seq, and others, directional RNA-Seq still illustrates its advantages: low cost, quantification and transcript border analysis with a medium resolution (±10-20 nt). To facilitate mining of directional RNA-Seq datasets especially with respect to transcript structure analysis, we developed a tool, TrBorderExt, which can parse transcript start sites and termination sites accurately in bacteria. A detailed protocol is described in this chapter for how to use the software package step by step to identify bacterial transcript borders from raw RNA-Seq data. The package was developed with Perl and R programming languages, and is accessible freely through the website: http://www.szu-bioinf.org/TrBorderExt .

  3. Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53

    PubMed Central

    Venkata Narayanan, Ishwarya; Paulsen, Michelle T.; Bedi, Karan; Berg, Nathan; Ljungman, Emily A.; Francia, Sofia; Veloso, Artur; Magnuson, Brian; di Fagagna, Fabrizio d’Adda; Wilson, Thomas E.; Ljungman, Mats

    2017-01-01

    In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells. PMID:28256581

  4. Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity.

    PubMed

    Santos, Fabiane Igansi de Castro Dos; Marini, Naciele; Santos, Railson Schreinert Dos; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio; de Oliveira, Antonio Costa

    2018-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here.

  5. Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity

    PubMed Central

    dos Santos, Fabiane Igansi de Castro; Marini, Naciele; dos Santos, Railson Schreinert; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio

    2018-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here. PMID:29494624

  6. Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2-8) in Normal and Cancerous Breast and Prostate Cells.

    PubMed

    Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn

    2016-12-27

    Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).

  7. The WRKY transcription factor family in Brachypodium distachyon.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor

  8. TALE-mediated modulation of transcriptional enhancers in vivo.

    PubMed

    Crocker, Justin; Stern, David L

    2013-08-01

    We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.

  9. Organization of supercoil domains and their reorganization by transcription

    PubMed Central

    Deng, Shuang; Stein, Richard A.; Higgins, N. Patrick

    2006-01-01

    Summary During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems. PMID:16135220

  10. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  11. Decreased Integrity, Content, and Increased Transcript Level of Mitochondrial DNA Are Associated with Keratoconus

    PubMed Central

    Hao, Xiao-Dan; Chen, Zhao-Li; Qu, Ming-Li; Zhao, Xiao-Wen; Li, Su-Xia; Chen, Peng

    2016-01-01

    Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC. PMID:27783701

  12. Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures

    PubMed Central

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G.; Faraco, Vincenza; Amore, Antonella

    2012-01-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  13. The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.

    PubMed

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  14. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature.

    PubMed

    Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun

    2016-01-01

    As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

  15. HALO--a Java framework for precise transcript half-life determination.

    PubMed

    Friedel, Caroline C; Kaufmann, Stefanie; Dölken, Lars; Zimmer, Ralf

    2010-05-01

    Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.

  16. ChimeRScope: a novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data

    PubMed Central

    Li, You; Heavican, Tayla B.; Vellichirammal, Neetha N.; Iqbal, Javeed

    2017-01-01

    Abstract The RNA-Seq technology has revolutionized transcriptome characterization not only by accurately quantifying gene expression, but also by the identification of novel transcripts like chimeric fusion transcripts. The ‘fusion’ or ‘chimeric’ transcripts have improved the diagnosis and prognosis of several tumors, and have led to the development of novel therapeutic regimen. The fusion transcript detection is currently accomplished by several software packages, primarily relying on sequence alignment algorithms. The alignment of sequencing reads from fusion transcript loci in cancer genomes can be highly challenging due to the incorrect mapping induced by genomic alterations, thereby limiting the performance of alignment-based fusion transcript detection methods. Here, we developed a novel alignment-free method, ChimeRScope that accurately predicts fusion transcripts based on the gene fingerprint (as k-mers) profiles of the RNA-Seq paired-end reads. Results on published datasets and in-house cancer cell line datasets followed by experimental validations demonstrate that ChimeRScope consistently outperforms other popular methods irrespective of the read lengths and sequencing depth. More importantly, results on our in-house datasets show that ChimeRScope is a better tool that is capable of identifying novel fusion transcripts with potential oncogenic functions. ChimeRScope is accessible as a standalone software at (https://github.com/ChimeRScope/ChimeRScope/wiki) or via the Galaxy web-interface at (https://galaxy.unmc.edu/). PMID:28472320

  17. CT of Normal Developmental and Variant Anatomy of the Pediatric Skull: Distinguishing Trauma from Normality.

    PubMed

    Idriz, Sanjin; Patel, Jaymin H; Ameli Renani, Seyed; Allan, Rosemary; Vlahos, Ioannis

    2015-01-01

    The use of computed tomography (CT) in clinical practice has been increasing rapidly, with the number of CT examinations performed in adults and children rising by 10% per year in England. Because the radiology community strives to reduce the radiation dose associated with pediatric examinations, external factors, including guidelines for pediatric head injury, are raising expectations for use of cranial CT in the pediatric population. Thus, radiologists are increasingly likely to encounter pediatric head CT examinations in daily practice. The variable appearance of cranial sutures at different ages can be confusing for inexperienced readers of radiologic images. The evolution of multidetector CT with thin-section acquisition increases the clarity of some of these sutures, which may be misinterpreted as fractures. Familiarity with the normal anatomy of the pediatric skull, how it changes with age, and normal variants can assist in translating the increased resolution of multidetector CT into more accurate detection of fractures and confident determination of normality, thereby reducing prolonged hospitalization of children with normal developmental structures that have been misinterpreted as fractures. More important, the potential morbidity and mortality related to false-negative interpretation of fractures as normal sutures may be avoided. The authors describe the normal anatomy of all standard pediatric sutures, common variants, and sutural mimics, thereby providing an accurate and safe framework for CT evaluation of skull trauma in pediatric patients. (©)RSNA, 2015.

  18. An Annotation Agnostic Algorithm for Detecting Nascent RNA Transcripts in GRO-Seq.

    PubMed

    Azofeifa, Joseph G; Allen, Mary A; Lladser, Manuel E; Dowell, Robin D

    2017-01-01

    We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed. Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.

  19. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.

    PubMed

    Qureshi, S A; Bell, S D; Jackson, S P

    1997-05-15

    Archaea (archaebacteria) constitute a domain of life that is distinct from Bacteria (eubacteria) and Eucarya (eukaryotes). Although archaeal cells share many morphological features with eubacteria, their transcriptional apparatus is more akin to eukaryotic RNA polymerases I, II and III than it is to eubacterial transcription systems. Thus, in addition to possessing a 10 subunit RNA polymerase and a homologue of the TATA-binding protein (TBP), Archaea possess a polypeptide termed TFB that is homologous to eukaryotic TFIIB. Here, we investigate the factor requirements for transcription of several promoters of the archaeon Sulfolobus shibatae and its associated virus SSV. Through in vitro transcription and immunodepletion, we demonstrate that S. shibatae TBP, TFB and RNA polymerase are not complexed tightly with one another and that each is required for efficient transcription of all promoters tested. Furthermore, full transcription is restored by supplementing respective depleted extracts with recombinant TBP or TFB, indicating that TBP-associated factors or TFB-associated factors are not required. Indeed, gel-filtration suggests that Sulfolobus TBP and TFB are not associated stably with other proteins. Finally, all promoters analysed are transcribed accurately and efficiently in an in vitro system comprising recombinant TBP and TFB, together with essentially homogeneous preparation of RNA polymerase. Transcription in Archaea is therefore fundamentally homologous to that in eukaryotes, although factor requirements appear to be much less complex.

  20. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    PubMed

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  1. The WRKY transcription factor family in Brachypodium distachyon

    PubMed Central

    2012-01-01

    Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. Conclusions The description

  2. Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2–8) in Normal and Cancerous Breast and Prostate Cells

    PubMed Central

    Hu, Dong Gui; McKinnon, Ross A.; Hulin, Julie-Ann; Mackenzie, Peter I.; Meech, Robyn

    2016-01-01

    Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2–8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE). PMID:28035996

  3. Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappa B and AP-1 in abnormal cancer cells.

    PubMed

    Gopalakrishnan, Avanthika; Tony Kong, Ah-Ng

    2008-04-01

    Cancer statistics from the American Cancer Society and other sources are a stark reminder of our failure to combat this deadly disease. Chemoprevention entails the use of specific naturally occurring dietary or synthetic agents to thwart cancer development and progression. Some of these agents are believed to do so by protecting the cells or tissues from the malicious attack of exogenous carcinogens and/or endogenous reactive oxygen/nitrogen species (RONS) by inducing several detoxifying/antioxidant enzymes that appear to form stable conjugates such as glutathione, glucuronides or sulfates thus rendering the carcinogenic species harmless. This process of inducing the cellular defense enzymes is believed to be mediated by the antioxidant response elements (ARE) within the promoter regions of these genes. Nrf2, a redox sensitive transcription factor has been documented to play a central role in ARE-driven gene expression. Nrf2, under normal unstimulated conditions, remains sequestered in the cytosol by Keap1. The putative chemopreventive agents disrupt the Nrf2-Keap1 association, thereby releasing Nrf2 which then translocates to the nucleus and drives the gene expression of detoxifying enzymes. The role of other transcription factors such as NF-kappaB and AP-1 in carcinogenesis is well established. By modulating the activity of these transcription factors and their upstream signaling molecules, naturally occurring dietary phytochemicals appear to cause apoptosis in abnormal cells that over-express these factors, thereby inhibiting the promotion and progression. This review discusses the most current and up to date understanding of the possible signaling mechanisms by which these naturally dietary phytochemicals can differentially modulate signal transduction cascades such that they can bring about apoptosis/cell death in abnormal cancer cells but at the same time induce defensive enzymes to protect against carcinogenesis in normal cells.

  4. Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage

    PubMed Central

    Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.

    2007-01-01

    The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513

  5. Inflatable bladder provides accurate calibration of pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J.

    1965-01-01

    Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.

  6. Post-transcriptional regulation in hematopoiesis: RNA binding proteins take control.

    PubMed

    de Rooij, Laura P M H; Chan, Derek C H; Keyvani Chahi, Ava; Hope, Kristin J

    2018-06-13

    Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved, however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSC, its implications for normal, perturbed and malignant hematopoiesis, as well as the most recent technological innovations aimed at RBP-RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.

  7. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics.

    PubMed

    Mizuno, Hajime; Ueda, Kazuki; Kobayashi, Yuta; Tsuyama, Naohiro; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2017-01-01

    The non-targeted metabolomics analysis of biological samples is very important to understand biological functions and diseases. LC combined with electrospray ionization-based MS has been a powerful tool and widely used for metabolomic analyses. However, the ionization efficiency of electrospray ionization fluctuates for various unexpected reasons such as matrix effects and intraday variations of the instrument performances. To remove these fluctuations, normalization methods have been developed. Such techniques include increasing the sensitivity, separating co-eluting components and normalizing the ionization efficiencies. Normalization techniques allow simultaneously correcting of the ionization efficiencies of the detected metabolite peaks and achieving quantitative non-targeted metabolomics. In this review paper, we focused on these normalization methods for non-targeted metabolomics by LC-MS. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    PubMed

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.

  9. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  10. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    PubMed

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  11. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, andmore » its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.« less

  12. 3D surface voxel tracing corrector for accurate bone segmentation.

    PubMed

    Guo, Haoyan; Song, Sicong; Wang, Jinke; Guo, Maozu; Cheng, Yuanzhi; Wang, Yadong; Tamura, Shinichi

    2018-06-18

    For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images. Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation [Formula: see text] to improve the estimation of normal direction. Secondly, we determine an optimal value of [Formula: see text] for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of [Formula: see text] is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of [Formula: see text] is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration. We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of [Formula: see text]% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of [Formula: see text], [Formula: see text]%, and [Formula: see text]% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively. Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two

  13. Transcriptional response of dermal fibroblasts in direct current electric fields.

    PubMed

    Jennings, Jessica; Chen, Dongquan; Feldman, Dale

    2008-07-01

    During the course of normal wound healing, fibroblasts at the wound edge are exposed to electric fields (EFs) ranging from 40 to 200 mV/mm. Various forms of EFs influence fibroblast migration, proliferation, and protein synthesis. Thus, EFs may contribute to fibroblast activation during wound repair. To elucidate the role of EFs during the normal progression of healing, this study compares gene expression in normal adult dermal fibroblasts exposed to a 100 mV/mm EF for 1 h to non-stimulated controls. Significantly increased expression of 162 transcripts and decreased expression of 302 transcripts was detected using microarrays, with 126 transcripts above the level of 1.4-fold increases or decreases compared to the controls. Above the level of twofold, only 11 genes were significantly increased or decreased compared to controls. Many of these significantly regulated genes are associated with wound repair through the processes of matrix production, cellular signaling, and growth. Activity within specific cellular signaling pathways is noted, including TGF-beta, G-proteins, and inhibition of apoptosis. In addition, RT-PCR analysis of the expression of KLF6, FN1, RGS2, and JMJD1C over continued stimulation and at different field strengths suggests that there are specific windows of field characteristics for maximum induction of these genes. EFs thus appear to have an important role in controlling fibroblast activity in the process of wound healing.

  14. Epigenetic differences in normal colon mucosa of cancer patients suggests altered dietary metabolic pathways

    PubMed Central

    Silviera, Matthew L.; Smith, Brian P.; Powell, Jasmine; Sapienza, Carmen

    2012-01-01

    We have compared DNA methylation in normal colon mucosa between colon cancer patients and patients without cancer. We identified significant differences in methylation between the two groups at 114 – 874 genes. The majority of the differences are in pathways involved in the metabolism of carbohydrates, lipids and amino acids. We also compared transcript levels of genes in the insulin-signaling pathway. We found that the mucosa of cancer patients had significantly higher transcript levels of several hormones regulating glucose metabolism and significantly lower transcript levels of a glycolytic enzyme and a key regulator of glucose and lipid homeostasis. The se differences suggest that the normal colon mucosa of cancer patients metabolizes dietary components differently than the colon mucosa of controls. Because the differences identified are present in morphologically normal tissue, they may be diagnostic of colon cancer and/or prognostic of colon cancer susceptibility. PMID:22300984

  15. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma

    PubMed Central

    Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052

  16. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  17. An RNA motif advances transcription by preventing Rho-dependent termination

    PubMed Central

    Sevostyanova, Anastasia; Groisman, Eduardo A.

    2015-01-01

    The transcription termination factor Rho associates with most nascent bacterial RNAs as they emerge from RNA polymerase. However, pharmacological inhibition of Rho derepresses only a small fraction of these transcripts. What, then, determines the specificity of Rho-dependent transcription termination? We now report the identification of a Rho-antagonizing RNA element (RARE) that hinders Rho-dependent transcription termination. We establish that RARE traps Rho in an inactive complex but does not prevent Rho binding to its recruitment sites. Although translating ribosomes normally block Rho access to an mRNA, inefficient translation of an open reading frame in the leader region of the Salmonella mgtCBR operon actually enables transcription of its associated coding region by favoring an RNA conformation that sequesters RARE. The discovery of an RNA element that inactivates Rho signifies that the specificity of nucleic-acid binding proteins is defined not only by the sequences that recruit these proteins but also by sequences that antagonize their activity. PMID:26630006

  18. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  19. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder

    PubMed Central

    Yu, J S; Xue, A Y; Redei, E E; Bagheri, N

    2016-01-01

    Major depressive disorder (MDD) is a critical cause of morbidity and disability with an economic cost of hundreds of billions of dollars each year, necessitating more effective treatment strategies and novel approaches to translational research. A notable barrier in addressing this public health threat involves reliable identification of the disorder, as many affected individuals remain undiagnosed or misdiagnosed. An objective blood-based diagnostic test using transcript levels of a panel of markers would provide an invaluable tool for MDD as the infrastructure—including equipment, trained personnel, billing, and governmental approval—for similar tests is well established in clinics worldwide. Here we present a supervised classification model utilizing support vector machines (SVMs) for the analysis of transcriptomic data readily obtained from a peripheral blood specimen. The model was trained on data from subjects with MDD (n=32) and age- and gender-matched controls (n=32). This SVM model provides a cross-validated sensitivity and specificity of 90.6% for the diagnosis of MDD using a panel of 10 transcripts. We applied a logistic equation on the SVM model and quantified a likelihood of depression score. This score gives the probability of a MDD diagnosis and allows the tuning of specificity and sensitivity for individual patients to bring personalized medicine closer in psychiatry. PMID:27779627

  20. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  1. Transcription as a source of genome instability

    PubMed Central

    Kim, Nayun; Jinks-Robertson, Sue

    2012-01-01

    Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The critical roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well known, but the more localized stability costs associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways that the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape. PMID:22330764

  2. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression.

    PubMed

    Koontz, Laura M; Liu-Chittenden, Yi; Yin, Feng; Zheng, Yonggang; Yu, Jianzhong; Huang, Bo; Chen, Qian; Wu, Shian; Pan, Duojia

    2013-05-28

    The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Post-transcriptional modifications in development and stem cells.

    PubMed

    Frye, Michaela; Blanco, Sandra

    2016-11-01

    Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N 6 -methyladenosine (m 6 A), 5-methylcytosine (m 5 C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development. © 2016. Published by The Company of Biologists Ltd.

  4. The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans.

    PubMed

    Fassnacht, Christina; Tocchini, Cristina; Kumari, Pooja; Gaidatzis, Dimos; Stadler, Michael B; Ciosk, Rafal

    2018-03-01

    Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition.

  5. Transcriptional responses of the rat vasopressin gene to acute and repeated acute osmotic stress.

    PubMed

    Zemo, David A; McCabe, Joseph T

    2002-09-01

    To determine the impact of hypertonic saline administration upon rat arginine vasopressin (AVP) gene transcription in supraoptic nucleus neurons, a probe complementary to the first intron (AVP1) of AVP was used to measure changes in AVP heteronuclear RNA (hnRNA) levels. Animals that received hypertonic saline had increases in AVP1 after 15 and 30 min, with a return to baseline levels by 180 min. In a double injection paradigm, animals were given an injection of normal or hypertonic saline followed 180 min later by a second injection of normal or hypertonic saline and sacrificed 30 min later. When both injections were hypertonic saline (H-H), AVP1 levels were greater than levels seen after a single hypertonic saline injection, or after an injection of normal saline followed by a second injection of hypertonic saline (N-H). This study shows acute, repeated exposure to hypertonic saline causes a robust increase in vasopressin gene transcription. Since a second hyperosmotic stimulus is known to increase neuronal firing rate and activity, our results suggest that a correlation exists with intracellular mechanisms regulating vasopressin gene transcription.

  6. Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture.

    PubMed

    Chen, Ya Huei; Tsai, Yi Jung; Huang, Jian Zhi; Chen, Fure Chyi

    2005-08-01

    Tissue culture has been widely used for mass propagation of Phalaenopsis. However, somaclonal variation occurred during micropropagation process posed a severe problem by affecting product quality. In this study, wild type and peloric flower buds of Phalaenopsis hybrids derived from flower stalk nodal culture were used for cDNA-RAPD and cDNA suppression subtractive hybridization analyses in order to study their genetic difference in terms of expressed sequence tags. A total of 209 ESTs from normal flower buds and 230 from mutants were sequenced. These ESTs sequences can be grouped into several functional categories involved in different cellular processes including metabolism, signal transduction, transcription, cell growth and division, protein synthesis, and protein localization, and into a subcategory of proteins with unknown function. Cymbidium mosaic virus transcript was surprisingly found expressed frequently in the peloric mutant of P. Little Mary. Real-time RT-PCR analysis on selected ESTs showed that in mutant flower buds, a bZIP transcription factor (TGA1a-like protein) was down-regulated, while up-regulated genes include auxin-regulated protein kinase, cyclophilin, and TCP-like genes. A retroelement clone was also preferentially expressed in the peloric mutant flowers. On the other hand, ESTs involved in DNA methylation, chromatin remodeling and post-transcriptional regulation, such as DNA methyltransferase, histone acetyltransferase, ERECTA, and DEAD/DEAH RNA helicase, were enriched in normal flower buds than the mutants. The enriched transcripts in the wild type indicate the down regulation of these transcripts in the mutants, and vice versa. The potential roles of the analyzed transcripts in the development of Phalaenopsis flowers are discussed.

  7. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  8. Transcript mapping for handwritten English documents

    NASA Astrophysics Data System (ADS)

    Jose, Damien; Bharadwaj, Anurag; Govindaraju, Venu

    2008-01-01

    Transcript mapping or text alignment with handwritten documents is the automatic alignment of words in a text file with word images in a handwritten document. Such a mapping has several applications in fields ranging from machine learning where large quantities of truth data are required for evaluating handwriting recognition algorithms, to data mining where word image indexes are used in ranked retrieval of scanned documents in a digital library. The alignment also aids "writer identity" verification algorithms. Interfaces which display scanned handwritten documents may use this alignment to highlight manuscript tokens when a person examines the corresponding transcript word. We propose an adaptation of the True DTW dynamic programming algorithm for English handwritten documents. The integration of the dissimilarity scores from a word-model word recognizer and Levenshtein distance between the recognized word and lexicon word, as a cost metric in the DTW algorithm leading to a fast and accurate alignment, is our primary contribution. Results provided, confirm the effectiveness of our approach.

  9. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast.

    PubMed

    Nevers, Alicia; Doyen, Antonia; Malabat, Christophe; Néron, Bertrand; Kergrohen, Thomas; Jacquier, Alain; Badis, Gwenael

    2018-05-18

    Pervasive transcription generates many unstable non-coding transcripts in budding yeast. The transcription of such noncoding RNAs, in particular antisense RNAs (asRNAs), has been shown in a few examples to repress the expression of the associated mRNAs. Yet, such mechanism is not known to commonly contribute to the regulation of a given class of genes. Using a mutant context that stabilized pervasive transcripts, we observed that the least expressed mRNAs during the exponential phase were associated with high levels of asRNAs. These asRNAs also overlapped their corresponding gene promoters with a much higher frequency than average. Interrupting antisense transcription of a subset of genes corresponding to quiescence-enriched mRNAs restored their expression. The underlying mechanism acts in cis and involves several chromatin modifiers. Our results convey that transcription interference represses up to 30% of the 590 least expressed genes, which includes 163 genes with quiescence-enriched mRNAs. We also found that pervasive transcripts constitute a higher fraction of the transcriptome in quiescence relative to the exponential phase, consistent with gene expression itself playing an important role to suppress pervasive transcription. Accordingly, the HIS1 asRNA, normally only present in quiescence, is expressed in exponential phase upon HIS1 mRNA transcription interruption.

  10. Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene.

    PubMed Central

    Birkeland, N K; Lindqvist, B H; Christie, G E

    1991-01-01

    The bacteriophage P2 ogr gene encodes an 8.3-kDa protein that is a positive effector of P2 late gene transcription. The ogr gene is preceded by a promoter sequence (Pogr) resembling a normal Escherichia coli promoter and is located just downstream of a late transcription unit. We analyzed the kinetics and regulation of ogr gene transcription by using an ogr-specific antisense RNA probe in an S1 mapping assay. During a normal P2 infection, ogr gene transcription starts from Pogr at an intermediate time between the onset of early and late transcription. At late times after infection the ogr gene is cotranscribed with the late FETUD operon; the ogr gene product thus positively regulates its own synthesis from the P2 late promoter PF. Expression of the P2 late genes also requires P2 DNA replication. Complementation experiments and transcriptional analysis show that a nonreplicating P2 phage expresses the ogr gene from Pogr but is unable to transcribe the late genes. A P2 ogr-defective phage makes an increased level of ogr mRNA, consistent with autogenous control from Pogr. Transcription of the ogr gene in the prophage of a P2 heteroimmune lysogen is stimulated after infection with P2, suggesting that Pogr is under indirect immunity control and is activated by a yet-unidentified P2 early gene product during infection. Images FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:1938896

  11. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    PubMed Central

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  12. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    PubMed Central

    Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V.; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER−,PR−,HER2−). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos. PMID:24292813

  13. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    PubMed

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  14. The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans

    PubMed Central

    Tocchini, Cristina; Kumari, Pooja; Gaidatzis, Dimos

    2018-01-01

    Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition. PMID:29579041

  15. Transcriptional and Posttranscriptional Control of Phaseolin and Phytohemagglutinin Gene Expression in Developing Cotyledons of Phaseolus vulgaris.

    PubMed

    Chappell, J; Chrispeels, M J

    1986-05-01

    The expression of phaseolin and phytohemagglutinin (PHA) in the developing cotyledons of a normal (Greensleeves) and a PHA-deficient (Pinto 111) cultivar of Phaseolus vulgaris was investigated. Phaseolin mRNA translational activity and abundance were present at similar levels in both cultivars. In contrast, PHA mRNA translational activity and abundance in Pinto 111 were less than 1% of the levels measured in Greensleeves. Using nuclear runoff assays, the transcription rate of phaseolin gene sequences was similar in both cultivars. The transcription rate of PHA gene sequences in Pinto 111 was only 20% of that measured in Greensleeves. Comparison of the transcription rates with the relative mRNA amounts measured in RNA blot hybridizations indicated that the normally expressed storage protein gene mRNAs were very stable with half-lives greater than several days. Because a low level of PHA gene transcription in Pinto 111 was measurable but no PHA mRNA accumulated, these results suggest that the PHA deficiency in Pinto 111 is due to a reduced transcription rate and possibly an instability of the mRNA.

  16. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  17. Divergent transcription is associated with promoters of transcriptional regulators

    PubMed Central

    2013-01-01

    Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181

  18. FOXO Transcriptional Factors and Long-Term Living

    PubMed Central

    Rashid, Rehana; Muneer, Saiqa; Hasan, Syed Muhammad Farid

    2017-01-01

    Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity. PMID:28894507

  19. GC-Content Normalization for RNA-Seq Data

    PubMed Central

    2011-01-01

    Background Transcriptome sequencing (RNA-Seq) has become the assay of choice for high-throughput studies of gene expression. However, as is the case with microarrays, major technology-related artifacts and biases affect the resulting expression measures. Normalization is therefore essential to ensure accurate inference of expression levels and subsequent analyses thereof. Results We focus on biases related to GC-content and demonstrate the existence of strong sample-specific GC-content effects on RNA-Seq read counts, which can substantially bias differential expression analysis. We propose three simple within-lane gene-level GC-content normalization approaches and assess their performance on two different RNA-Seq datasets, involving different species and experimental designs. Our methods are compared to state-of-the-art normalization procedures in terms of bias and mean squared error for expression fold-change estimation and in terms of Type I error and p-value distributions for tests of differential expression. The exploratory data analysis and normalization methods proposed in this article are implemented in the open-source Bioconductor R package EDASeq. Conclusions Our within-lane normalization procedures, followed by between-lane normalization, reduce GC-content bias and lead to more accurate estimates of expression fold-changes and tests of differential expression. Such results are crucial for the biological interpretation of RNA-Seq experiments, where downstream analyses can be sensitive to the supplied lists of genes. PMID:22177264

  20. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    PubMed

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  1. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  2. The G-Box Transcriptional Regulatory Code in Arabidopsis1[OPEN

    PubMed Central

    Shepherd, Samuel J.K.; Brestovitsky, Anna; Dickinson, Patrick; Biswas, Surojit

    2017-01-01

    Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations. PMID:28864470

  3. A normalization strategy for comparing tag count data

    PubMed Central

    2012-01-01

    Background High-throughput sequencing, such as ribonucleic acid sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, enables various features of organisms to be compared through tag counts. Recent studies have demonstrated that the normalization step for RNA-seq data is critical for a more accurate subsequent analysis of differential gene expression. Development of a more robust normalization method is desirable for identifying the true difference in tag count data. Results We describe a strategy for normalizing tag count data, focusing on RNA-seq. The key concept is to remove data assigned as potential differentially expressed genes (DEGs) before calculating the normalization factor. Several R packages for identifying DEGs are currently available, and each package uses its own normalization method and gene ranking algorithm. We compared a total of eight package combinations: four R packages (edgeR, DESeq, baySeq, and NBPSeq) with their default normalization settings and with our normalization strategy. Many synthetic datasets under various scenarios were evaluated on the basis of the area under the curve (AUC) as a measure for both sensitivity and specificity. We found that packages using our strategy in the data normalization step overall performed well. This result was also observed for a real experimental dataset. Conclusion Our results showed that the elimination of potential DEGs is essential for more accurate normalization of RNA-seq data. The concept of this normalization strategy can widely be applied to other types of tag count data and to microarray data. PMID:22475125

  4. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.

    PubMed

    Rokyta, Darin R; Margres, Mark J; Calvin, Kate

    2015-09-09

    Protein expression is a major link in the genotype-phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms. Copyright © 2015 Rokyta et al.

  5. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress

    PubMed Central

    Liang, Chaoqiong; Hao, Jianjun; Meng, Yan; Luo, Laixin; Li, Jianqiang

    2018-01-01

    Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall. PMID:29543906

  6. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  7. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription

    PubMed Central

    Grierson, Patrick M.; Lillard, Kate; Behbehani, Gregory K.; Combs, Kelly A.; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-01-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. 3H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS. PMID:22106380

  8. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription.

    PubMed

    Grierson, Patrick M; Lillard, Kate; Behbehani, Gregory K; Combs, Kelly A; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-03-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.

  9. Accurate determination of complex materials coefficients of piezoelectric resonators.

    PubMed

    Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji

    2003-03-01

    This paper presents a method of accurately determining the complex piezoelectric and elastic coefficients of piezoelectric ceramic resonators from the measurement of the normalized electric admittance, Y, which is electric admittance Y of piezoelectric resonator normalized by the angular frequency omega. The coefficients are derived from the measurements near three special frequency points that correspond to the maximum and the minimum normalized susceptance (B) and the maximum normalized conductance (G). The complex elastic coefficient is determined from the frequencies at these points, and the real and imaginary parts of the piezoelectric coefficient are related to the derivative of the susceptance with respect to the frequency and the asymmetry of the conductance, respectively, near the maximum conductance point. The measurements for some lead zirconate titanate (PZT) based ceramics are used as examples to demonstrate the calculation and experimental procedures and the comparisons with the standard methods.

  10. PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events.

    PubMed

    Izuogu, Osagie G; Alhasan, Abd A; Alafghani, Hani M; Santibanez-Koref, Mauro; Elliott, David J; Elliot, David J; Jackson, Michael S

    2016-01-13

    Transcripts, which have been subject to Post-transcriptional exon shuffling (PTES), have an exon order inconsistent with the underlying genomic sequence. These have been identified in a wide variety of tissues and cell types from many eukaryotes, and are now known to be mostly circular, cytoplasmic, and non-coding. Although there is no uniformly ascribed function, several have been shown to be involved in gene regulation. Accurate identification of these transcripts can, however, be difficult due to artefacts from a wide variety of sources. Here, we present a computational method, PTESFinder, to identify these transcripts from high throughput RNAseq data. Uniquely, it systematically excludes potential artefacts emanating from pseudogenes, segmental duplications, and template switching, and outputs both PTES and canonical exon junction counts to facilitate comparative analyses. In comparison with four existing methods, PTESFinder achieves highest specificity and comparable sensitivity at a variety of read depths. PTESFinder also identifies between 13 % and 41.6 % more structures, compared to publicly available methods recently used to identify human circular RNAs. With high sensitivity and specificity, user-adjustable filters that target known sources of false positives, and tailored output to facilitate comparison of transcript levels, PTESFinder will facilitate the discovery and analysis of these poorly understood transcripts.

  11. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.

    PubMed

    Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar

    2013-10-15

    High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.

  12. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quina, Ana Sofia; Instituto Gulbenkian de Ciencia, 2781-901 Oeiras; Parreira, Leonor

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters uponmore » activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.« less

  13. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  14. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors.

    PubMed

    Glahn, Felix; Schmidt-Heck, Wolfgang; Zellmer, Sebastian; Guthke, Reinhard; Wiese, Jan; Golka, Klaus; Hergenröder, Roland; Degen, Gisela H; Lehmann, Thomas; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam; Gebhardt, Rolf; Hengstler, Jan G; Foth, Heidi

    2008-08-01

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15 microg/l Cd(II), 25 microg/l Co(II) and 550 microg/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes.

  15. Transcription profiling using RNA-Seq demonstrates expression differences in the body walls of juvenile albino and normal sea cucumbers Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Ma, Deyou; Yang, Hongsheng; Sun, Lina; Chen, Muyan

    2014-01-01

    Sea cucumbers Apostichopus japonicus are one of the most important aquaculture species in China. Their normal body color is black to fit their surroundings. Wild albinos are rare and hard to breed. To understand the differences between albino and normal (control) sea cucumbers at the transcriptional level, we sequenced the transcriptomes in their body-wall tissues using RNA-Seq high-throughput sequencing. Approximately 4.876 million (M) and 4.884 M 200-nucleotide-long cDNA reads were produced in the cDNA libraries derived from the body walls of albino and control samples, respectively. A total of 9 561 (46.89%) putative genes were identified from among the RNA-Seq reads in both libraries. After filtering, 837 significantly differentially regulated genes were identified in the albino library compared with in the control library, and 3.6% of the differentially expressed genes (DEGs) were found to have changed those more than five-fold. The expression levels of 10 DEGs were checked by real-time PCR and the results were in full accord with the RNA-Seq expression trends, although the amplitude of the differences in expression levels was lower in all cases. A series of pathways were significantly enriched for the DEGs. These pathways were closely related to phagocytosis, the complement and coagulation cascades, apoptosis-related diseases, cytokine-cytokine receptor interaction, and cell adhesion. The differences in gene expression and enriched pathways between the albino and control sea cucumbers offer control targets for cultivating excellent albino A. japonicus strains in the future.

  16. Resetting the transcription factor network reverses terminal chronic hepatic failure

    PubMed Central

    Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M.; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H.; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J.

    2015-01-01

    The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement. PMID:25774505

  17. Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells▿ †

    PubMed Central

    Park, Hyunsook; Liu, Yaoping; Solis, Norma; Spotkov, Joshua; Hamaker, Jessica; Blankenship, Jill R.; Yeaman, Michael R.; Mitchell, Aaron P.; Liu, Haoping; Filler, Scott G.

    2009-01-01

    Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream. PMID:19700637

  18. Variations of transcript profiles between sea otters Enhydra lutris from Prince William Sound, Alaska, and clinically normal reference otters

    USGS Publications Warehouse

    Miles, A. Keith; Bowen, Lizabeth; Ballachey, Brenda E.; Bodkin, James L.; Murray, M.; Estes, J.L.; Keister, Robin A.; Stott, J.L.

    2012-01-01

    Development of blood leukocyte gene transcript profiles has the potential to expand condition assessments beyond those currently available to evaluate wildlife health, including sea otters Enhydra lutris, both individually and as populations. The 10 genes targeted in our study represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumor suppression, cellular stress-response, xenobiotic metabolizing enzymes, and antioxidant enzymes. These genes can be modified by biological, physical, or anthropogenic impacts and consequently provide information on the general type of stressors present in a given environment. We compared gene transcript profiles of sea otters sampled in 2008 among areas within Prince William Sound impacted to varying degrees by the 1989 ‘Exxon Valdez’ oil spill with those of captive and wild reference sea otters. Profiles of sea otters from Prince William Sound showed elevated transcription in genes associated with tumor formation, cell death, organic exposure, inflammation, and viral exposure when compared to the reference sea otter group, indicating possible recent and chronic exposure to organic contaminants. Sea otters from historically designated oiled areas within Prince William Sound 19 yr after the oil spill had higher transcription of genes associated with tumor formation, cell death, heat shock, and inflammation than those from areas designated as less impacted by the spill.

  19. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  20. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    PubMed Central

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun

    2008-01-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches. PMID:18317777

  1. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  2. Growth-dependent regulation of rRNA synthesis is mediated by a transcription initiation factor (TIF-IA).

    PubMed

    Buttgereit, D; Pflugfelder, G; Grummt, I

    1985-11-25

    Mouse RNA polymerase I requires at least two chromatographically distinct transcription factors (designated TIF-IA and TIF-IB) to initiate transcription accurately and efficiently in vitro. In this paper we describe the partial purification of TIF-IA by a four-step fractionation procedure. The amount or activity of TIF-IA fluctuates in response to the physiological state of the cells. Extracts from quiescent cells are incapable of specific transcription and do not contain detectable levels of TIF-IA. Transcriptionally inactive extracts can be restored by the addition of TIF-IA preparations that have been highly purified from exponentially growing cells. During the fractionating procedure TIF-IA co-purifies with RNA polymerase I, suggesting that it is functionally associated with the transcribing enzyme. We suggest that only those enzyme molecules that are associated with TIF-IA are capable to interact with TIF-IB and to initiate transcription.

  3. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    PubMed

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex

    PubMed Central

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.

    2014-01-01

    SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805

  5. Co-transcriptional nuclear actin dynamics

    PubMed Central

    Percipalle, Piergiorgio

    2013-01-01

    Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849

  6. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis.

    PubMed

    Ohlsson, E; Schuster, M B; Hasemann, M; Porse, B T

    2016-04-01

    The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions. Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of C/EBPα during normal and malignant haematopoiesis with special emphasis on

  7. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  8. Analysis of the mechanism of nucleosome survival during transcription

    PubMed Central

    Chang, Han-Wen; Kulaeva, Olga I.; Shaytan, Alexey K.; Kibanov, Mikhail; Kuznedelov, Konstantin; Severinov, Konstantin V.; Kirpichnikov, Mikhail P.; Clark, David J.; Studitsky, Vasily M.

    2014-01-01

    Maintenance of nucleosomal structure in the cell nuclei is essential for cell viability, regulation of gene expression and normal aging. Our previous data identified a key intermediate (a small intranucleosomal DNA loop, Ø-loop) that is likely required for nucleosome survival during transcription by RNA polymerase II (Pol II) through chromatin, and suggested that strong nucleosomal pausing guarantees efficient nucleosome survival. To evaluate these predictions, we analysed transcription through a nucleosome by different, structurally related RNA polymerases and mutant yeast Pol II having different histone-interacting surfaces that presumably stabilize the Ø-loop. The height of the nucleosomal barrier to transcription and efficiency of nucleosome survival correlate with the net negative charges of the histone-interacting surfaces. Molecular modeling and analysis of Pol II-nucleosome intermediates by DNase I footprinting suggest that efficient Ø-loop formation and nucleosome survival are mediated by electrostatic interactions between the largest subunit of Pol II and core histones. PMID:24234452

  9. Identifying transcription factor functions and targets by phenotypic activation

    PubMed Central

    Chua, Gordon; Morris, Quaid D.; Sopko, Richelle; Robinson, Mark D.; Ryan, Owen; Chan, Esther T.; Frey, Brendan J.; Andrews, Brenda J.; Boone, Charles; Hughes, Timothy R.

    2006-01-01

    Mapping transcriptional regulatory networks is difficult because many transcription factors (TFs) are activated only under specific conditions. We describe a generic strategy for identifying genes and pathways induced by individual TFs that does not require knowledge of their normal activation cues. Microarray analysis of 55 yeast TFs that caused a growth phenotype when overexpressed showed that the majority caused increased transcript levels of genes in specific physiological categories, suggesting a mechanism for growth inhibition. Induced genes typically included established targets and genes with consensus promoter motifs, if known, indicating that these data are useful for identifying potential new target genes and binding sites. We identified the sequence 5′-TCACGCAA as a binding sequence for Hms1p, a TF that positively regulates pseudohyphal growth and previously had no known motif. The general strategy outlined here presents a straightforward approach to discovery of TF activities and mapping targets that could be adapted to any organism with transgenic technology. PMID:16880382

  10. The Renilla luciferase gene as a reference gene for normalization of gene expression in transiently transfected cells.

    PubMed

    Jiwaji, Meesbah; Daly, Rónán; Pansare, Kshama; McLean, Pauline; Yang, Jingli; Kolch, Walter; Pitt, Andrew R

    2010-12-31

    The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data.

  11. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids

    PubMed Central

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5′ ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5′ untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed. PMID:17959651

  12. SEASTAR: systematic evaluation of alternative transcription start sites in RNA.

    PubMed

    Qin, Zhiyi; Stoilov, Peter; Zhang, Xuegong; Xing, Yi

    2018-05-04

    Alternative first exons diversify the transcriptomes of eukaryotes by producing variants of the 5' Untranslated Regions (5'UTRs) and N-terminal coding sequences. Accurate transcriptome-wide detection of alternative first exons typically requires specialized experimental approaches that are designed to identify the 5' ends of transcripts. We developed a computational pipeline SEASTAR that identifies first exons from RNA-seq data alone then quantifies and compares alternative first exon usage across multiple biological conditions. The exons inferred by SEASTAR coincide with transcription start sites identified directly by CAGE experiments and bear epigenetic hallmarks of active promoters. To determine if differential usage of alternative first exons can yield insights into the mechanism controlling gene expression, we applied SEASTAR to an RNA-seq dataset that tracked the reprogramming of mouse fibroblasts into induced pluripotent stem cells. We observed dynamic temporal changes in the usage of alternative first exons, along with correlated changes in transcription factor expression. Using a combined sequence motif and gene set enrichment analysis we identified N-Myc as a regulator of alternative first exon usage in the pluripotent state. Our results demonstrate that SEASTAR can leverage the available RNA-seq data to gain insights into the control of gene expression and alternative transcript variation in eukaryotic transcriptomes.

  13. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  14. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes1

    PubMed Central

    Burton, Rachel A.; Shirley, Neil J.; King, Brendon J.; Harvey, Andrew J.; Fincher, Geoffrey B.

    2004-01-01

    Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis. PMID:14701917

  16. Transcriptional variations in the wider peritumoral tissue environment of pancreatic cancer

    PubMed Central

    Bauer, Andrea S.; Nazarov, Petr V.; Giese, Nathalia A.; Beghelli, Stefania; Heller, Anette; Greenhalf, William; Costello, Eithne; Muller, Arnaud; Bier, Melanie; Strobel, Oliver; Hackert, Thilo; Vallar, Laurent; Scarpa, Aldo; Büchler, Markus W.; Neoptolemos, John P.; Kreis, Stephanie

    2017-01-01

    Transcriptional profiling was performed on 452 RNA preparations isolated from various types of pancreatic tissue from tumour patients and healthy donors, with a particular focus on peritumoral samples. Pancreatic ductal adenocarcinomas (PDAC) and cystic tumours were most different in these non‐tumorous tissues surrounding them, whereas the actual tumours exhibited rather similar transcript patterns. The environment of cystic tumours was transcriptionally nearly identical to normal pancreas tissue. In contrast, the tissue around PDAC behaved a lot like the tumour, indicating some kind of field defect, while showing far less molecular resemblance to both chronic pancreatitis and healthy tissue. This suggests that the major pathogenic difference between cystic and ductal tumours may be due to their cellular environment rather than the few variations between the tumours. Lack of correlation between DNA methylation and transcript levels makes it unlikely that the observed field defect in the peritumoral tissue of PDAC is controlled to a large extent by such epigenetic regulation. Functionally, a strikingly large number of autophagy‐related transcripts was changed in both PDAC and its peritumoral tissue, but not in other pancreatic tumours. A transcription signature of 15 autophagy‐related genes was established that permits a prognosis of survival with high accuracy and indicates the role of autophagy in tumour biology. PMID:28983920

  17. Experiences and Perspectives About Breastfeeding in "Public": A Qualitative Exploration Among Normal-Weight and Obese Mothers.

    PubMed

    McKenzie, Shanice A; Rasmussen, Kathleen M; Garner, Christine D

    2018-01-01

    Women face societal and cultural barriers to breastfeeding. These challenges have been investigated in international studies and U.S. public opinion polls; however, mothers' experiences with breastfeeding in public in the United States remain unexplored. Research aim: The aim of this study was to describe the experiences of obese and normal-weight women with breastfeeding in public in central New York. Pregnant women ( N = 26) in central New York who intended to breastfeed and were either normal weight or obese were enrolled during their third trimester. A longitudinal, qualitative study was conducted to obtain information about women's experiences from birth through 3 to 6 months postpartum. Interviews were audio recorded, transcribed, and verified for accuracy. Transcripts were analyzed iteratively using conventional content analysis. The concept of "public" was situational rather than a set of physical places; women experienced challenges while breastfeeding around others in private locations that were indistinguishable from those they encountered in places typically considered public. Women experienced social and physical awkwardness including perceived lack of acceptability, fear of confrontation, exposure, and positioning difficulties. They used strategies to reduce awkwardness, for example, being "discreet" and minimizing breastfeeding around other people. Obese women experienced similar challenges but to a greater degree than normal-weight women. "Breastfeeding around others" described mother's experiences more accurately than "breastfeeding in public" and was experienced as awkward both socially and physically, particularly by obese women. Strategies are needed to normalize breastfeeding in the United States and to prepare mothers for the challenges of breastfeeding around others.

  18. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    PubMed

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  19. Chromatin potentiates transcription

    PubMed Central

    Nagai, Shigeki; Davis, Ralph E.; Mattei, Pierre Jean; Eagen, Kyle Patrick; Kornberg, Roger D.

    2017-01-01

    Chromatin isolated from the chromosomal locus of the PHO5 gene of yeast in a transcriptionally repressed state was transcribed with 12 pure proteins (80 polypeptides): RNA polymerase II, six general transcription factors, TFIIS, the Pho4 gene activator protein, and the SAGA, SWI/SNF, and Mediator complexes. Contrary to expectation, a nucleosome occluding the TATA box and transcription start sites did not impede transcription but rather, enhanced it: the level of chromatin transcription was at least sevenfold greater than that of naked DNA, and chromatin gave patterns of transcription start sites closely similar to those occurring in vivo, whereas naked DNA gave many aberrant transcripts. Both histone acetylation and trimethylation of H3K4 (H3K4me3) were important for chromatin transcription. The nucleosome, long known to serve as a general gene repressor, thus also performs an important positive role in transcription. PMID:28137832

  20. Detection of rearrangements and transcriptional up-regulation of ALK in FFPE lung cancer specimens using a novel, sensitive, quantitative reverse transcription polymerase chain reaction assay.

    PubMed

    Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia

    2014-03-01

    The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.

  1. c-rel activates but v-rel suppresses transcription from kappa B sites.

    PubMed Central

    Inoue, J; Kerr, L D; Ransone, L J; Bengal, E; Hunter, T; Verma, I M

    1991-01-01

    We show that the product of the protooncogene c-rel is a constituent of an NF-kappa B-like complex that binds to the kappa B site originally identified in the enhancer of immunoglobulin kappa light chain gene. c-rel protein synthesized in bacteria binds to the kappa B site in a sequence-specific manner. The rel-kappa B complex can be disrupted by incubation with anti-rel antibodies. The rel protein can form oligomers. The c-rel protein can activate transcription from promoters containing kappa B sites; v-rel, on the other hand, suppresses the transcription of genes linked to kappa B sites. Thus, v-rel may interfere with the normal transcriptional machinery of the cell by acting as a dominant negative mutant. Images PMID:2023921

  2. Normal evaporation of binary alloys

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.

  3. Sensitive and accurate identification of protein–DNA binding events in ChIP-chip assays using higher order derivative analysis

    PubMed Central

    Barrett, Christian L.; Cho, Byung-Kwan

    2011-01-01

    Immuno-precipitation of protein–DNA complexes followed by microarray hybridization is a powerful and cost-effective technology for discovering protein–DNA binding events at the genome scale. It is still an unresolved challenge to comprehensively, accurately and sensitively extract binding event information from the produced data. We have developed a novel strategy composed of an information-preserving signal-smoothing procedure, higher order derivative analysis and application of the principle of maximum entropy to address this challenge. Importantly, our method does not require any input parameters to be specified by the user. Using genome-scale binding data of two Escherichia coli global transcription regulators for which a relatively large number of experimentally supported sites are known, we show that ∼90% of known sites were resolved to within four probes, or ∼88 bp. Over half of the sites were resolved to within two probes, or ∼38 bp. Furthermore, we demonstrate that our strategy delivers significant quantitative and qualitative performance gains over available methods. Such accurate and sensitive binding site resolution has important consequences for accurately reconstructing transcriptional regulatory networks, for motif discovery, for furthering our understanding of local and non-local factors in protein–DNA interactions and for extending the usefulness horizon of the ChIP-chip platform. PMID:21051353

  4. Normalization of energy-dependent gamma survey data.

    PubMed

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  5. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation.

    PubMed

    Matheis, S; Yemelin, A; Scheps, D; Andresen, K; Jacob, S; Thines, E; Foster, A J

    2017-03-01

    The Magnaporthe oryzae genes FLB3 and FLB4, orthologues of the Aspergillus nidulans regulators of conidiation FlbC and FlbD, were inactivated. These genes encode C2H2 zinc finger and Myb-like transcription factors, respectively, in A. nidulans. Analysis of the resultant mutants demonstrated that FLB4 is essential for spore formation and that strains lacking this gene are fluffy in their colony morphology due to an inability to complete conidiophore formation. Meanwhile, FLB3 is required for normal levels of aerial mycelium formation. We identified genes dependent on both transcription factors using microarray analysis. This analysis revealed that the transcription of several genes encoding proteins implicated in sporulation in Magnaporthe oryzae and other filamentous fungi are affected by FLB3 or FLB4 inactivation. Furthermore, the microarray analysis indicates that Flb3p may effectively reprogramme the cell metabolically by repressing transcription of genes encoding biosynthetic enzymes and inducing transcription of genes encoding catabolic enzymes. Additionally, qRT-PCR was employed and showed that FLB3 and FLB4 transcripts are enriched in synchronously sporulating cultures, as were the transcripts of other genes that are necessary for normal conidiation, consistent with a role for their gene products in this process. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

    PubMed

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I; Nakashima, Jin; Benedito, Vagner A; Kondorosi, Eva; Udvardi, Michael K

    2013-09-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.

  7. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    PubMed

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  8. Longitudinal evaluation of leukocyte transcripts in killer whales (Orcinus Orca).

    PubMed

    Sitt, Tatjana; Bowen, Lizabeth; Lee, Chia-Shan; Blanchard, Myra T; McBain, James; Dold, Christopher; Stott, Jeffrey L

    2016-07-01

    Early identification of illness and/or presence of environmental and/or social stressors in free-ranging and domestic cetaceans is a priority for marine mammal health care professionals. Incorporation of leukocyte gene transcript analysis into the diagnostic tool kit has the potential to augment classical diagnostics based upon ease of sample storage and shipment, inducible nature and well-defined roles of transcription and associated downstream actions. Development of biomarkers that could serve to identify "insults" and potentially differentiate disease etiology would be of great diagnostic value. To this end, a modest number of peripheral blood leukocyte gene transcripts were selected for application to a domestic killer whale population with a focus on broad representation of inducible immunologically relevant genes. Normalized leukocyte transcript values, longitudinally acquired from 232 blood samples derived from 26 clinically healthy whales, were not visibly influenced temporally nor by sex or the specific Park in which they resided. Stability in leukocyte transcript number during periods of health enhances their potential use in diagnostics through identification of outliers. Transcript levels of two cytokine genes, IL-4 and IL-17, were highly variable within the group as compared to the other transcripts. IL-4 transcripts were typically absent. Analysis of transcript levels on the other genes of interest, on an individual animal basis, identified more outliers than were visible when analyzed in the context of the entire population. The majority of outliers (9 samples) were low, though elevated transcripts were identified for IL-17 from 2 animals and one each for Cox-2 and IL-10. The low number of outliers was not unexpected as sample selection was intentionally directed towards animals that were clinically healthy at the time of collection. Outliers may reflect animals experiencing subclinical disease that is transient and self-limiting. The immunologic

  9. Longitudinal evaluation of leukocyte transcripts in killer whales (Orcinus Orca)

    USGS Publications Warehouse

    Sitt, Tatjana; Bowen, Lizabeth; Lee, Chia-Shan; Blanchard, Myra; McBain, James; Dold, Christopher; Stott, Jeffrey L.

    2016-01-01

    Early identification of illness and/or presence of environmental and/or social stressors in free-ranging and domestic cetaceans is a priority for marine mammal health care professionals. Incorporation of leukocyte gene transcript analysis into the diagnostic tool kit has the potential to augment classical diagnostics based upon ease of sample storage and shipment, inducible nature and well-defined roles of transcription and associated downstream actions. Development of biomarkers that could serve to identify “insults” and potentially differentiate disease etiology would be of great diagnostic value. To this end, a modest number of peripheral blood leukocyte gene transcripts were selected for application to a domestic killer whale population with a focus on broad representation of inducible immunologically relevant genes. Normalized leukocyte transcript values, longitudinally acquired from 232 blood samples derived from 26 clinically healthy whales, were not visibly influenced temporally nor by sex or the specific Park in which they resided. Stability in leukocyte transcript number during periods of health enhances their potential use in diagnostics through identification of outliers. Transcript levels of two cytokine genes, IL-4 and IL-17, were highly variable within the group as compared to the other transcripts. IL-4 transcripts were typically absent. Analysis of transcript levels on the other genes of interest, on an individual animal basis, identified more outliers than were visible when analyzed in the context of the entire population. The majority of outliers (9 samples) were low, though elevated transcripts were identified for IL-17 from 2 animals and one each for Cox-2 and IL-10. The low number of outliers was not unexpected as sample selection was intentionally directed towards animals that were clinically healthy at the time of collection. Outliers may reflect animals experiencing subclinical disease that is transient and self-limiting. The

  10. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  11. Normalization of RNA-seq data using factor analysis of control genes or samples

    PubMed Central

    Risso, Davide; Ngai, John; Speed, Terence P.; Dudoit, Sandrine

    2015-01-01

    Normalization of RNA-seq data has proven essential to ensure accurate inference of expression levels. Here we show that usual normalization approaches mostly account for sequencing depth and fail to correct for library preparation and other more-complex unwanted effects. We evaluate the performance of the External RNA Control Consortium (ERCC) spike-in controls and investigate the possibility of using them directly for normalization. We show that the spike-ins are not reliable enough to be used in standard global-scaling or regression-based normalization procedures. We propose a normalization strategy, remove unwanted variation (RUV), that adjusts for nuisance technical effects by performing factor analysis on suitable sets of control genes (e.g., ERCC spike-ins) or samples (e.g., replicate libraries). Our approach leads to more-accurate estimates of expression fold-changes and tests of differential expression compared to state-of-the-art normalization methods. In particular, RUV promises to be valuable for large collaborative projects involving multiple labs, technicians, and/or platforms. PMID:25150836

  12. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta.

    PubMed

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-23

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies.

  13. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta

    PubMed Central

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-01

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies. PMID:18215254

  14. Maize Iranian mosaic virus shows a descending transcript accumulation order in plant and insect hosts.

    PubMed

    Hortamani, Mozhgan; Massah, Amir; Izadpanah, Keramat

    2018-04-01

    Maize Iranian mosaic virus (MIMV) is a distinct member of the genus Nucleorhabdovirus. In this study, expression of all MIMV genes in maize for four weeks after inoculation and in inoculative planthoppers was examined using a quantitative RT-PCR (RT-qPCR) assay. Accumulation of MIMV P, gene 3, M, G and L transcripts relative to N transcripts was measured and normalized to 18S rRNA in maize plants and to the ribosomal protein S13 gene (RPS13) in planthoppers using the comparative C T method. In plants, higher levels of MIMV N transcripts were found relative to other transcripts, while MIMV L transcripts were at the lowest levels. The highest accumulation of MIMV transcripts was found at 14 days postinoculation (dpi). At 21 dpi, we found the lowest transcript levels for all genes, which increased again at 28 dpi, although in lower amounts than at 14 dpi. In Laodelphax striatellus, MIMV M, G and L transcripts accumulated at lower levels than other transcripts. The gene 3 transcript level was high in both plants and planthoppers. Our results showed that transcript accumulation for the MIMV genes was similar in both hosts and followed the pattern of sequential transcriptional attenuation from the 3' to the 5' end of the genome, similar to vertebrate rhabdoviruses. These results indicate that the regulation of virus gene transcription for this plant-infecting rhabdovirus is similar to that of some vertebrate-infecting rhabdoviruses.

  15. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapnell, B.C.; Chinshyan Chu; Paakko, P.K.

    1991-08-01

    The most common mutation of the cystic fibrosis transmembrane conductance regulator gene, CFTR, associated with the clinical disorder cystic fibrosis (CF) is called {Delta}Phe{sup 508}, a triple-base deletion resulting in loss of phenylalanine at residue 508 of the predicted 1480-amino acid CFTR protein. In the context that the lung is the major site of morbidity and mortality in CF, the authors evaluated airway epithelial cells for CFTR mRNA transcripts in normal individuals, normal-{Delta}Phe{sup 508} heterozygotes, and {Delta}Phe{sup 508} homozygotes to determine if the normal and {Delta}Phe{sup 508} CFTR alleles are expressed in the respiratory epithelium, to what extent they aremore » expressed, and whether there are relative differences in the expression of the normal and abnormal alleles at the mRNA level. Respiratory tract epithelial cells recovered by fiberoptic bronchoscopy with a cytology brush demonstrated CFTR mRNA transcripts with sequences appropriately reflecting the normal and {Delta}Phe{sup 508} CFTR alleles of the various study groups. CFTR gene expression quantified by limited polymerase chain reaction amplification showed that in normal individuals, CFTR mRNA transcripts are expressed in nasal, tracheal, and bronchial epithelial cells.« less

  16. Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

    PubMed

    Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B

    2014-09-05

    The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.

  17. Normal Modes Expose Active Sites in Enzymes.

    PubMed

    Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O

    2016-12-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.

  18. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  19. Is this the right normalization? A diagnostic tool for ChIP-seq normalization.

    PubMed

    Angelini, Claudia; Heller, Ruth; Volkinshtein, Rita; Yekutieli, Daniel

    2015-05-09

    Chip-seq experiments are becoming a standard approach for genome-wide profiling protein-DNA interactions, such as detecting transcription factor binding sites, histone modification marks and RNA Polymerase II occupancy. However, when comparing a ChIP sample versus a control sample, such as Input DNA, normalization procedures have to be applied in order to remove experimental source of biases. Despite the substantial impact that the choice of the normalization method can have on the results of a ChIP-seq data analysis, their assessment is not fully explored in the literature. In particular, there are no diagnostic tools that show whether the applied normalization is indeed appropriate for the data being analyzed. In this work we propose a novel diagnostic tool to examine the appropriateness of the estimated normalization procedure. By plotting the empirical densities of log relative risks in bins of equal read count, along with the estimated normalization constant, after logarithmic transformation, the researcher is able to assess the appropriateness of the estimated normalization constant. We use the diagnostic plot to evaluate the appropriateness of the estimates obtained by CisGenome, NCIS and CCAT on several real data examples. Moreover, we show the impact that the choice of the normalization constant can have on standard tools for peak calling such as MACS or SICER. Finally, we propose a novel procedure for controlling the FDR using sample swapping. This procedure makes use of the estimated normalization constant in order to gain power over the naive choice of constant (used in MACS and SICER), which is the ratio of the total number of reads in the ChIP and Input samples. Linear normalization approaches aim to estimate a scale factor, r, to adjust for different sequencing depths when comparing ChIP versus Input samples. The estimated scaling factor can easily be incorporated in many peak caller algorithms to improve the accuracy of the peak identification. The

  20. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  1. Helicase promotes replication re-initiation from an RNA transcript.

    PubMed

    Sun, Bo; Singh, Anupam; Sultana, Shemaila; Inman, James T; Patel, Smita S; Wang, Michelle D

    2018-06-13

    To ensure accurate DNA replication, a replisome must effectively overcome numerous obstacles on its DNA substrate. After encountering an obstacle, a progressing replisome often aborts DNA synthesis but continues to unwind. However, little is known about how DNA synthesis is resumed downstream of an obstacle. Here, we examine the consequences of a non-replicating replisome collision with a co-directional RNA polymerase (RNAP). Using single-molecule and ensemble methods, we find that T7 helicase interacts strongly with a non-replicating T7 DNA polymerase (DNAP) at a replication fork. As the helicase advances, the associated DNAP also moves forward. The presence of the DNAP increases both helicase's processivity and unwinding rate. We show that such a DNAP, together with its helicase, is indeed able to actively disrupt a stalled transcription elongation complex, and then initiates replication using the RNA transcript as a primer. These observations exhibit T7 helicase's novel role in replication re-initiation.

  2. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  3. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  4. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  5. The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula[W][OPEN

    PubMed Central

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I.; Nakashima, Jin; Benedito, Vagner A.; Kondorosi, Eva; Udvardi, Michael K.

    2013-01-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants. PMID:24082011

  6. Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

    PubMed

    Sun, Bing; Tao, Lian; Zheng, Yun-Ling

    2014-06-01

    Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.

  7. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  8. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  9. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  10. A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans.

    PubMed

    Lee, Ji-Yeon; Kim, Lee-Han; Kim, Ha-Eun; Park, Jae-Sin; Han, Kap-Hoon; Han, Dong-Min

    2013-12-01

    The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.

  11. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing.

    PubMed

    Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok

    2016-04-01

    Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

  12. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.).

    PubMed

    Hande, Atul S; Katageri, Ishwarappa S; Jadhav, Mangesh P; Adiger, Sateesh; Gamanagatti, Savita; Padmalatha, Kethireddy Venkata; Dhandapani, Gurusamy; Kanakachari, Mogilicherla; Kumar, Polumetla Ananda; Reddy, Vanga Siva

    2017-08-31

    Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array. Scanning electron microscopy (SEM) analysis uncovered the occurrence of few fibre cell initials in the Fl line as compared to many in Normal FL at -2 and 0 dpa. However, at 10 dpa there were no fibre cells found elongated in Fl but many elongated cells were found in FL line. Up-regulation of transcription factors, AP2-EREBP, C2H2, C3H, HB and WRKY was observed at 0 dpa whereas in 10 dpa transcription factors, AP2-EREBP, AUX/IAA, bHLH, C2H2, C3H, HB, MYB, NAC, Orphans, PLATZ and WRKY were found down regulated in Fl line. These transcription factors were mainly involved in metabolic pathways such as phytohormone signaling, energy metabolism of cell, fatty acid metabolism, secondary metabolism and other signaling pathways and are related directly or indirectly in fiber development. Quantitative real-time PCR was performed to check fold up or down-regulation of these genes and transcription factors (TFs) down regulated in mutants as compared to normal at 0 and 10 dpa. This study elucidates that the up-regulation of transcription factors like AP2-EREBP, C2H2, C3H, HB, WRKY and phytohormone signaling genes at 0 dpa and their down-regulation at the 10 dpa might have constrain the fibre elongation in fuzzy-lintless line. Along with this the down-regulation of genes involved in synthesis of VLCFA chain, transcripts necessary for energy and cell wall metabolism, EXPANSINs

  13. Transcriptomics of cortical gray matter thickness decline during normal aging

    PubMed Central

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J

    2013-01-01

    Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID

  14. Transcriptomics of cortical gray matter thickness decline during normal aging.

    PubMed

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, L E; Nichols, T E; Curran, J E; Sprooten, E; Jahanshad, N; Thompson, P M; Johnson, M P; Kent, J W; Landman, B A; Mitchell, B; Cole, S A; Dyer, T D; Moses, E K; Goring, H H H; Almasy, L; Duggirala, R; Olvera, R L; Glahn, D C; Blangero, J

    2013-11-15

    We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. Copyright © 2013 Elsevier Inc. All

  15. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    PubMed

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  16. Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages.

    PubMed

    Kanakachari, Mogilicherla; Solanke, Amolkumar U; Prabhakaran, Narayanasamy; Ahmad, Israr; Dhandapani, Gurusamy; Jayabalan, Narayanasamy; Kumar, Polumetla Ananda

    2016-02-01

    Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

  17. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    PubMed

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  18. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  19. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast.

    PubMed

    Crisp, Robert J; Pollington, Annette; Galea, Charles; Jaron, Shulamit; Yamaguchi-Iwai, Yuko; Kaplan, Jerry

    2003-11-14

    Yeast are capable of modifying their metabolism in response to environmental changes. We investigated the activity of the oxygen-dependent high-affinity iron uptake system of Saccharomyces cerevisiae under conditions of heme depletion. We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon. Decreased transcription of the iron regulon was not due to decreased expression of the iron sensitive transcriptional activator Aft1p. Expression of the constitutively active allele AFT1-1up was unable to induce transcription of the high affinity iron uptake system in heme-depleted cells. We demonstrated that under heme-depleted conditions, Aft1p-GFP was able to cycle normally between the nucleus and cytosol in response to cytosolic iron. Despite the inability to induce transcription under low iron conditions, chromatin immunoprecipitation demonstrated that Aft1p binds to the FET3 promoter in the absence of heme. Finally, we provide evidence that under heme-depleted conditions, yeast are able to regulate mitochondrial iron uptake and do not accumulate pathologic iron concentrations, as is seen when iron-sulfur cluster synthesis is disrupted.

  20. Normal Approximations to the Distributions of the Wilcoxon Statistics: Accurate to What "N"? Graphical Insights

    ERIC Educational Resources Information Center

    Bellera, Carine A.; Julien, Marilyse; Hanley, James A.

    2010-01-01

    The Wilcoxon statistics are usually taught as nonparametric alternatives for the 1- and 2-sample Student-"t" statistics in situations where the data appear to arise from non-normal distributions, or where sample sizes are so small that we cannot check whether they do. In the past, critical values, based on exact tail areas, were…

  1. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  2. Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability

    PubMed Central

    Tani, Hidenori; Imamachi, Naoto; Salam, Kazi Abdus; Mizutani, Rena; Ijiri, Kenichi; Irie, Takuma; Yada, Tetsushi; Suzuki, Yutaka; Akimitsu, Nobuyoshi

    2012-01-01

    UPF1 eliminates aberrant mRNAs harboring premature termination codons, and regulates the steady-state levels of normal physiological mRNAs. Although genome-wide studies of UPF1 targets performed, previous studies did not distinguish indirect UPF1 targets because they could not determine UPF1-dependent altered RNA stabilities. Here, we measured the decay rates of the whole transcriptome in UPF1-depleted HeLa cells using BRIC-seq, an inhibitor-free method for directly measuring RNA stability. We determined the half-lives and expression levels of 9,229 transcripts. An amount of 785 transcripts were stabilized in UPF1-depleted cells. Among these, the expression levels of 76 transcripts were increased, but those of the other 709 transcripts were not altered. RNA immunoprecipitation showed UPF1 bound to the stabilized transcripts, suggesting that UPF1 directly degrades the 709 transcripts. Many UPF1 targets in this study were newly identified. This study clearly demonstrates that direct determination of RNA stability is a powerful approach for identifying targets of RNA degradation factors. PMID:23064114

  3. On the wall-normal velocity of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1991-01-01

    Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.

  4. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search.

    PubMed

    Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R

    2013-07-10

    The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process

  5. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  6. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  7. Gene Expression Analysis of Early Stage Endometrial Cancers Reveals Unique Transcripts Associated with Grade and Histology but Not Depth of Invasion

    PubMed Central

    Risinger, John I.; Allard, Jay; Chandran, Uma; Day, Roger; Chandramouli, Gadisetti V. R.; Miller, Caela; Zahn, Christopher; Oliver, Julie; Litzi, Tracy; Marcus, Charlotte; Dubil, Elizabeth; Byrd, Kevin; Cassablanca, Yovanni; Becich, Michael; Berchuck, Andrew; Darcy, Kathleen M.; Hamilton, Chad A.; Conrads, Thomas P.; Maxwell, G. Larry

    2013-01-01

    Endometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype. We utilized oligonucleotide microarrays to assess the transcript expression profile in epithelial glandular cells laser microdissected from 79 endometrioid and 12 serous stage I endometrial cancers with a heterogeneous distribution of grade and depth of myometrial invasion, along with 12 normal post-menopausal endometrial samples. Unsupervised multidimensional scaling analyses revealed that serous and endometrioid stage I cancers have similar transcript expression patterns when compared to normal controls where 900 transcripts were identified to be differentially expressed by at least fourfold (univariate t-test, p < 0.001) between the cancers and normal endometrium. This analysis also identified transcript expression differences between serous and endometrioid cancers and tumor grade, but no apparent differences were identified as a function of depth of myometrial invasion. Four genes were validated by quantitative PCR on an independent set of cancer and normal endometrium samples. These findings indicate that unique gene expression profiles are associated with histologic type and grade, but not myometrial invasion among early stage endometrial cancers. These data provide a comprehensive perspective on the molecular alterations associated with stage I endometrial cancer, particularly those subtypes that have the worst prognosis. PMID:23785665

  8. A Magnetic Bead-Integrated Chip for the Large Scale Manufacture of Normalized esiRNAs

    PubMed Central

    Wang, Zhao; Huang, Huang; Zhang, Hanshuo; Sun, Changhong; Hao, Yang; Yang, Junyu; Fan, Yu; Xi, Jianzhong Jeff

    2012-01-01

    The chemically-synthesized siRNA duplex has become a powerful and widely used tool for RNAi loss-of-function studies, but suffers from a high off-target effect problem. Recently, endoribonulease-prepared siRNA (esiRNA) has been shown to be an attractive alternative due to its lower off-target effect and cost effectiveness. However, the current manufacturing method for esiRNA is complicated, mainly in regards to purification and normalization on a large-scale level. In this study, we present a magnetic bead-integrated chip that can immobilize amplification or transcription products on beads and accomplish transcription, digestion, normalization and purification in a robust and convenient manner. This chip is equipped to manufacture ready-to-use esiRNAs on a large-scale level. Silencing specificity and efficiency of these esiRNAs were validated at the transcriptional, translational and functional levels. Manufacture of several normalized esiRNAs in a single well, including those silencing PARP1 and BRCA1, was successfully achieved, and the esiRNAs were subsequently utilized to effectively investigate their synergistic effect on cell viability. A small esiRNA library targeting 68 tyrosine kinase genes was constructed for a loss-of-function study, and four genes were identified in regulating the migration capability of Hela cells. We believe that this approach provides a more robust and cost-effective choice for manufacturing esiRNAs than current approaches, and therefore these heterogeneous RNA strands may have utility in most intensive and extensive applications. PMID:22761791

  9. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  11. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma

    PubMed Central

    Hamilton, Michael J.; Girke, Thomas; Martinez, Ernest

    2018-01-01

    Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

  12. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function

    PubMed Central

    Herzel, Lydia; Ottoz, Diana S. M.; Alpert, Tara; Neugebauer, Karla M.

    2018-01-01

    Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing. PMID:28792005

  13. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    PubMed

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  14. Identification and expression profiles of the WRKY transcription factor family in Ricinus communis.

    PubMed

    Li, Hui-Liang; Zhang, Liang-Bo; Guo, Dong; Li, Chang-Zhu; Peng, Shi-Qing

    2012-07-25

    In plants, WRKY proteins constitute a large family of transcription factors. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. A large number of WRKY transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of castor bean (Ricinus communis) has allowed a genome-wide search for R. communis WRKY (RcWRKY) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. A total of 47 WRKY genes were identified in the castor bean genome. According to the structural features of the WRKY domain, the RcWRKY are classified into seven main phylogenetic groups. Furthermore, putative orthologs of RcWRKY proteins in Arabidopsis and rice could now be assigned. An analysis of expression profiles of RcWRKY genes indicates that 47 WRKY genes display differential expressions either in their transcript abundance or expression patterns under normal growth conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    PubMed

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  16. Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation.

    PubMed Central

    Chang, D D; Clayton, D A

    1986-01-01

    Transcription of the heavy strand of mouse mitochondrial DNA starts from two closely spaced, distinct sites located in the displacement loop region of the genome. We report here an analysis of regulatory sequences required for faithful transcription from these two sites. Data obtained from in vitro assays demonstrated that a 51-base-pair region, encompassing nucleotides -40 to +11 of the downstream start site, contains sufficient information for accurate transcription from both start sites. Deletion of the 3' flanking sequences, including one or both start sites to -17, resulted in the initiation of transcription by the mitochondrial RNA polymerase from alternative sites within vector DNA sequences. This feature places the mouse heavy-strand promoter uniquely among other known mitochondrial promoters, all of which absolutely require cognate start sites for transcription. Comparison of the heavy-strand promoter with those of other vertebrate mitochondrial DNAs revealed a remarkably high rate of sequence divergence among species. Images PMID:3785226

  17. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  18. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation.

    PubMed

    Chibazakura, T; Kawamura, F; Takahashi, H

    1991-04-01

    We have shown by S1 nuclease mapping with in vivo transcripts that the differential expression of a sporulation-regulatory gene, spo0A, is regulated by switching of two discrete promoters during the initiation of sporulation in Bacillus subtilis; vegetative mRNA was transcribed from an upstream promoter (Pv, vegetative promoter), and sporulation-specific mRNA was transcribed from the other promoter (Ps, sporulation-specific promoter) about 150 bp downstream of the Pv promoter. Transcription from the Pv promoter was at a low level and shut off at T0.5. On the other hand, transcription from the Ps promoter was strongly induced at T0.5 and increased until T2.5. In the presence of 2% glucose, Pv-directed transcription was not shut off and was observed even at T1.5, whereas the induction of Ps-directed transcription was completely repressed. A mutant in which the spo0A gene was transcribed only from the Ps promoter could sporulate normally in the presence of 0.1% glucose but could not sporulate at all in the presence of 2% glucose. In a catabolite-resistant sporulation mutant carrying crsA47 (sigA47), a mutation within the gene encoding sigma A, normal promoter switching from Pv to Ps was observed in the presence of 2% glucose.

  19. Finger vein extraction using gradient normalization and principal curvature

    NASA Astrophysics Data System (ADS)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  20. Transcriptional Dynamics of LTR Retrotransposons in Early Generation and Ancient Sunflower Hybrids

    PubMed Central

    Ungerer, Mark C.; Kawakami, Takeshi

    2013-01-01

    Hybridization and abiotic stress are natural agents hypothesized to influence activation and proliferation of transposable elements in wild populations. In this report, we examine the effects of these agents on expression dynamics of both quiescent and transcriptionally active sublineages of long terminal repeat (LTR) retrotransposons in wild sunflower species with a notable history of transposable element proliferation. For annual sunflower species Helianthus annuus and H. petiolaris, neither early generation hybridization nor abiotic stress, alone or in combination, induced transcriptional activation of quiescent sublineages of LTR retrotransposons. These treatments also failed to further induce expression of sublineages that are transcriptionally active; instead, expression of active sublineages in F1 and backcross hybrids was nondistinguishable from, or intermediate relative to, parental lines, and abiotic stress generally decreased normalized expression relative to controls. In contrast to findings for early generation hybridization between H. annuus and H. petiolaris, ancient sunflower hybrid species derived from these same two species and which have undergone massive proliferation events of LTR retrotransposons display 2× to 6× higher expression levels of transcriptionally active sublineages relative to parental sunflower species H. annuus and H. petiolaris. Implications and possible explanations for these findings are discussed. PMID:23335122

  1. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  2. Simultaneous Quantification of Multiple Alternatively Spliced mRNA Transcripts Using Droplet Digital PCR.

    PubMed

    Sun, Bing; Zheng, Yun-Ling

    2018-01-01

    Currently there is no sensitive, precise, and reproducible method to quantitate alternative splicing of mRNA transcripts. Droplet digital™ PCR (ddPCR™) analysis allows for accurate digital counting for quantification of gene expression. Human telomerase reverse transcriptase (hTERT) is one of the essential components required for telomerase activity and for the maintenance of telomeres. Several alternatively spliced forms of hTERT mRNA in human primary and tumor cells have been reported in the literature. Using one pair of primers and two probes for hTERT, four alternatively spliced forms of hTERT (α-/β+, α+/β- single deletions, α-/β- double deletion, and nondeletion α+/β+) were accurately quantified through a novel analysis method via data collected from a single ddPCR reaction. In this chapter, we describe this ddPCR method that enables direct quantitative comparison of four alternatively spliced forms of the hTERT messenger RNA without the need for internal standards or multiple pairs of primers specific for each variant, eliminating the technical variation due to differential PCR amplification efficiency for different amplicons and the challenges of quantification using standard curves. This simple and straightforward method should have general utility for quantifying alternatively spliced gene transcripts.

  3. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  4. Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses

    PubMed Central

    Zhou, Yonggang; Chen, Huan; Dong, Yuanyuan; Wang, Nan; Li, Xiaowei; Jameel, Aysha; Yang, He; Zhang, Min; Chen, Kai; Wang, Fawei; Li, Haiyan

    2016-01-01

    Plant microRNAs are small non-coding, endogenic RNA molecule (containing 20–24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels. Normalizing the data using reference genes is essential for the analysis of reliable RT-qPCR data. In this study, two groups of candidate reference mRNAs and miRNAs in soybean leaves and roots treated with various abiotic stresses (PEG-simulated drought, salinity, alkalinity, salinity+alkalinity, and abscisic acid) were analyzed by RT-qPCR. We analyzed the most appropriate reference mRNA/miRNAs using the geNorm, NormFinder, and BestKeeper algorithms. According to the results, Act and EF1b were the most suitable reference mRNAs in leaf and root samples, for mRNA and miRNA precursor data normalization. The most suitable reference miRNAs found in leaf and root samples were 166a and 167a for mature miRNA data normalization. Hence the best combinations of reference mRNAs for mRNA and miRNA precursor data normalization were EF1a + Act or EF1b + Act in leaf samples, and EF1a + EF1b or 60s + EF1b in root samples. For mature miRNA data normalization, the most suitable combinations of reference miRNAs were 166a + 167d in leaf samples, and 171a + 156a or 167a + 171a in root samples. We identified potential reference mRNA/miRNAs for accurate RT-qPCR data normalization for mature miRNA, miRNA precursors, and their targeted mRNAs. Our results promote miRNA-based studies on soybean plants exposed to abiotic stress conditions. PMID:27176476

  5. An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

    NASA Astrophysics Data System (ADS)

    Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.

    2016-02-01

    As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.

  6. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  7. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    PubMed

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  8. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants

    PubMed Central

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda

    2016-01-01

    Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775

  9. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  10. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  11. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.

    PubMed

    Kokabu, Shoichiro; Nakatomi, Chihiro; Matsubara, Takuma; Ono, Yusuke; Addison, William N; Lowery, Jonathan W; Urata, Mariko; Hudnall, Aaron M; Hitomi, Suzuro; Nakatomi, Mitsushiro; Sato, Tsuyoshi; Osawa, Kenji; Yoda, Tetsuya; Rosen, Vicki; Jimi, Eijiro

    2017-08-04

    Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma

    PubMed Central

    Sharma, Vivek; Salwan, Richa; Sharma, P. N.; Gulati, Arvind

    2017-01-01

    Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms. PMID:28900417

  13. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  14. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  15. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  16. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  17. Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer.

    PubMed

    Wezel, Felix; Pearson, Joanna; Kirkwood, Lisa A; Southgate, Jennifer

    2013-10-01

    The transcription factor octamer-binding protein 4 (Oct4; encoded by POU5F1) has a key role in maintaining embryonic stem cell pluripotency during early embryonic development and it is required for generation of induced pluripotent stem cells. Controversy exists concerning Oct4 expression in somatic tissues, with reports that Oct4 is expressed in normal and in neoplastic urothelium carrying implications for a bladder cancer stem cell phenotype. Here, we show that the pluripotency-associated Oct4A transcript was absent from cultures of highly regenerative normal human urothelial cells and from low-grade to high-grade urothelial carcinoma cell lines, whereas alternatively spliced variants and transcribed pseudogenes were expressed in abundance. Immunolabeling and immunoblotting studies confirmed the absence of Oct4A in normal and neoplastic urothelial cells and tissues, but indicated the presence of alternative isoforms or potentially translated pseudogenes. The stable forced expression of Oct4A in normal human urothelial cells in vitro profoundly inhibited growth and affected morphology, but protein expression was rapidly down-regulated. Our findings demonstrate that pluripotency-associated isoform Oct4A is not expressed by normal or malignant human urothelium and therefore is unlikely to play a role in a cancer stem cell phenotype. However, our findings also indicate that urothelium expresses a variety of other Oct4 splice-variant isoforms and transcribed pseudogenes that warrant further study. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    PubMed

    Dorrell, Richard G; Hinksman, George A; Howe, Christopher J

    2016-02-01

    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.

  19. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    PubMed

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE PAGES

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; ...

    2017-10-04

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  1. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  2. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data

    PubMed Central

    2017-01-01

    Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations. Findr outperformed existing methods on the DREAM5 Systems Genetics challenge and on the prediction of microRNA and transcription factor targets in human lymphoblastoid cells, while being nearly a million times faster. Findr is publicly available at https://github.com/lingfeiwang/findr. PMID:28821014

  3. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation

    PubMed Central

    Dorado, Beatriz; Area, Estela; Akman, Hasan O.; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency. PMID:20940150

  4. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    PubMed

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  5. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TFIID component TAF-4

    PubMed Central

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M.; Lin, Rueyling

    2008-01-01

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1–P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres, but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II following fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wildtype OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators. PMID:18854162

  6. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  7. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport inmore » sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.« less

  8. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  9. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.

    PubMed

    Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M

    2016-05-30

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.

  10. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  11. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors.

    PubMed

    Bodei, L; Kidd, M; Modlin, I M; Severi, S; Drozdov, I; Nicolini, S; Kwekkeboom, D J; Krenning, E P; Baum, R P; Paganelli, G

    2016-05-01

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with (177)Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 (18)FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ(2) = 27.4; p = 1.2 × 10(-7)) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p

  12. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  13. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  14. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Intron retention generates ANKRD1 splice variants that are co-regulated with the main transcript in normal and failing myocardium.

    PubMed

    Torrado, Mario; Iglesias, Raquel; Nespereira, Beatriz; Centeno, Alberto; López, Eduardo; Mikhailov, Alexander T

    2009-07-01

    The cardiac ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) has been extensively characterized with regard to its proposed functions as a cardio-enriched transcriptional co-factor and stress-inducible myofibrillar protein. The present results show the occurrence of alternative splicing by intron retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is expressed as four alternatively spliced transcripts, three of which have non-excised introns: ankrd1-contained introns 6, 7 and 8 (i.e., ankrd1-i6,7,8), ankrd1-contained introns 7 and 8 (i.e., ankrd1-i7,8), and ankrd1 retained only intron 8 (i.e., ankrd1-i8). In the human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-i8 and ankrd1-i7,8) are detected. We demonstrate that these newly-identified intron-retaining ankrd1 transcripts are functionally intact, efficiently translated into protein in vitro and exported to the cytoplasm in cardiomyocytes in vivo. In the piglet heart, both the intronless and intron-retaining ankrd1 mRNAs are co-expressed in a chamber-dependent manner being more abundant in the left as compared to the right myocardium. Our data further indicate co-upregulation of the ankrd1 spliced variants in myocardium in the porcine model of diastolic heart failure. Most significantly, we demonstrate that in vivo forced expression of recombinant intronless ankrd1 markedly increases the levels of intron-retaining ankrd1 variants (but not of the endogenous main transcript) in piglet myocardium, suggesting that ANKRD1 may positively regulate the expression of its own intron-containing RNAs in response to cardiac stress. Overall, our findings demonstrate that in cardiomyocytes ANKRD1 can exist in multiple isoforms which may contribute to the functional diversity of this factor in heart development and disease.

  16. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    PubMed

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription

  17. The Transcription Factor Bright Plays a Role in Marginal Zone B Lymphocyte Development and Autoantibody Production

    PubMed Central

    Oldham, Athenia L.; Miner, Cathrine A.; Wang, Hong-Cheng; Webb, Carol F.

    2011-01-01

    Previous data suggested that constitutive expression of the transcription factor Bright (B cell regulator of immunoglobulin heavy chain transcription), normally tightly regulated during B cell differentiation, was associated with autoantibody production. Here we show that constitutive Bright expression results in skewing of mature B lineage subpopulations toward marginal zone cells at the expense of the follicular subpopulation. C57Bl/6 transgenic mice constitutively expressing Bright in B lineage cells generated autoantibodies that were not the result of global increases in immunoglobulin or of breaches in key tolerance checkpoints typically defective in other autoimmune mouse models. Rather, autoimmunity correlated with increased numbers of marginal zone B cells and alterations in the phenotype and gene expression profiles of lymphocytes within the follicular B cell compartment. These data suggest a novel role for Bright in the normal development of mature B cell subsets and in autoantibody production. PMID:21963220

  18. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III.

    PubMed Central

    Das, G; Henning, D; Wright, D; Reddy, R

    1988-01-01

    Whereas the genes coding for trimethyl guanosine-capped snRNAs are transcribed by RNA polymerase II, the U6 RNA genes are transcribed by RNA polymerase III. In this study, we have analyzed the cis-regulatory elements involved in the transcription of a mouse U6 snRNA gene in vitro and in frog oocytes. Transcriptional analysis of mutant U6 gene constructs showed that, unlike most known cases of polymerase III transcription, intragenic sequences except the initiation nucleotide are dispensable for efficient and accurate transcription of U6 gene in vitro. Transcription of 5' deletion mutants in vitro and in frog oocytes showed that the upstream region, within 79 bp from the initiation nucleotide, contains elements necessary for U6 gene transcription. Transcription studies were carried out in frog oocytes with U6 genes containing 5' distal sequence; these studies revealed that the distal element acts as an orientation-dependent enhancer when present upstream to the gene, while it is orientation-independent but distance-dependent enhancer when placed down-stream to the U6 gene. Analysis of 3' deletion mutants showed that the transcription termination of U6 RNA is dependent on a T cluster present on the 3' end of the gene, thus providing further support to other lines of evidence that U6 genes are transcribed by RNA polymerase III. These observations suggest the involvement of a composite of components of RNA polymerase II and III transcription machineries in the transcription of U6 genes by RNA polymerase III. Images PMID:3366121

  19. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    PubMed

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  20. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome.

    PubMed

    Wu, Jia Qian; Du, Jiang; Rozowsky, Joel; Zhang, Zhengdong; Urban, Alexander E; Euskirchen, Ghia; Weissman, Sherman; Gerstein, Mark; Snyder, Michael

    2008-01-03

    Recent studies of the mammalian transcriptome have revealed a large number of additional transcribed regions and extraordinary complexity in transcript diversity. However, there is still much uncertainty regarding precisely what portion of the genome is transcribed, the exact structures of these novel transcripts, and the levels of the transcripts produced. We have interrogated the transcribed loci in 420 selected ENCyclopedia Of DNA Elements (ENCODE) regions using rapid amplification of cDNA ends (RACE) sequencing. We analyzed annotated known gene regions, but primarily we focused on novel transcriptionally active regions (TARs), which were previously identified by high-density oligonucleotide tiling arrays and on random regions that were not believed to be transcribed. We found RACE sequencing to be very sensitive and were able to detect low levels of transcripts in specific cell types that were not detectable by microarrays. We also observed many instances of sense-antisense transcripts; further analysis suggests that many of the antisense transcripts (but not all) may be artifacts generated from the reverse transcription reaction. Our results show that the majority of the novel TARs analyzed (60%) are connected to other novel TARs or known exons. Of previously unannotated random regions, 17% were shown to produce overlapping transcripts. Furthermore, it is estimated that 9% of the novel transcripts encode proteins. We conclude that RACE sequencing is an efficient, sensitive, and highly accurate method for characterization of the transcriptome of specific cell/tissue types. Using this method, it appears that much of the genome is represented in polyA+ RNA. Moreover, a fraction of the novel RNAs can encode protein and are likely to be functional.

  1. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  2. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    PubMed

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  3. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.

  4. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    PubMed Central

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  5. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  6. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures.

    PubMed Central

    Gomes, S L; Gober, J W; Shapiro, L

    1990-01-01

    Caulobacter crescentus has a single dnaK gene that is highly homologous to the hsp70 family of heat shock genes. Analysis of the cloned and sequenced dnaK gene has shown that the deduced amino acid sequence could encode a protein of 67.6 kilodaltons that is 68% identical to the DnaK protein of Escherichia coli and 49% identical to the Drosophila and human hsp70 protein family. A partial open reading frame 165 base pairs 3' to the end of dnaK encodes a peptide of 190 amino acids that is 59% identical to DnaJ of E. coli. Northern blot analysis revealed a single 4.0-kilobase mRNA homologous to the cloned fragment. Since the dnaK coding region is 1.89 kilobases, dnaK and dnaJ may be transcribed as a polycistronic message. S1 mapping and primer extension experiments showed that transcription initiated at two sites 5' to the dnaK coding sequence. A single start site of transcription was identified during heat shock at 42 degrees C, and the predicted promoter sequence conformed to the consensus heat shock promoters of E. coli. At normal growth temperature (30 degrees C), a different start site was identified 3' to the heat shock start site that conformed to the E. coli sigma 70 promoter consensus sequence. S1 protection assays and analysis of expression of the dnaK gene fused to the lux transcription reporter gene showed that expression of dnaK is temporally controlled under normal physiological conditions and that transcription occurs just before the initiation of DNA replication. Thus, in both human cells (I. K. L. Milarski and R. I. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986) and in a simple bacterium, the transcription of a hsp70 gene is temporally controlled as a function of the cell cycle under normal growth conditions. Images PMID:2345134

  7. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Gene C., E-mail: gness@hsc.usf.edu; Edelman, Jeffrey L.; Brooks, Patricia A.

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from themore » HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.« less

  8. When transcription goes on Holliday: Double Holliday junctions block RNA polymerase II transcription in vitro.

    PubMed

    Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C

    2017-02-01

    Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  10. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics

    PubMed Central

    2018-01-01

    Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics. PMID:29922517

  11. Measurements of normal joint angles by goniometry in calves.

    PubMed

    Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S

    2014-01-01

    The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.

  12. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse

    PubMed Central

    Diehl, Adam G

    2018-01-01

    Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190

  13. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis.

    PubMed

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M

    2011-04-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.

  14. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration.

    PubMed

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-03-01

    In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo

  15. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  16. Nucleosome displacement in transcription.

    PubMed

    Workman, Jerry L

    2006-08-01

    Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.

  17. Archaeal RNA polymerase and transcription regulation

    PubMed Central

    Jun, Sung-Hoon; Reichlen, Matthew J.; Tajiri, Momoko; Murakami, Katsuhiko S.

    2010-01-01

    To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high resolution X-ray crystal structures together with structure-guided biochemical, biophysical and genetics studies are essential. The recently-solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors, is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all three domains of life. PMID:21250781

  18. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients.

    PubMed

    Martínez-Llordella, Marc; Lozano, Juan José; Puig-Pey, Isabel; Orlando, Giuseppe; Tisone, Giuseppe; Lerut, Jan; Benítez, Carlos; Pons, Jose Antonio; Parrilla, Pascual; Ramírez, Pablo; Bruguera, Miquel; Rimola, Antoni; Sánchez-Fueyo, Alberto

    2008-08-01

    A fraction of liver transplant recipients are able to discontinue all immunosuppressive therapies without rejecting their grafts and are said to be operationally tolerant to the transplant. However, accurate identification of these recipients remains a challenge. To design a clinically applicable molecular test of operational tolerance in liver transplantation, we studied transcriptional patterns in the peripheral blood of 80 liver transplant recipients and 16 nontransplanted healthy individuals by employing oligonucleotide microarrays and quantitative real-time PCR. This resulted in the discovery and validation of several gene signatures comprising a modest number of genes capable of identifying tolerant and nontolerant recipients with high accuracy. Multiple peripheral blood lymphocyte subsets contributed to the tolerance-associated transcriptional patterns, although NK and gammadeltaTCR+ T cells exerted the predominant influence. These data suggest that transcriptional profiling of peripheral blood can be employed to identify liver transplant recipients who can discontinue immunosuppressive therapy and that innate immune cells are likely to play a major role in the maintenance of operational tolerance in liver transplantation.

  19. Elucidating the role of transcription in shaping the 3D structure of the bacterial genome

    NASA Astrophysics Data System (ADS)

    Brandao, Hugo B.; Wang, Xindan; Rudner, David Z.; Mirny, Leonid

    Active transcription has been linked to several genome conformation changes in bacteria, including the recruitment of chromosomal DNA to the cell membrane and formation of nucleoid clusters. Using genomic and imaging data as input into mathematical models and polymer simulations, we sought to explore the extent to which bacterial 3D genome structure could be explained by 1D transcription tracks. Using B. subtilis as a model organism, we investigated via polymer simulations the role of loop extrusion and DNA super-coiling on the formation of interaction domains and other fine-scale features that are visible in chromosome conformation capture (Hi-C) data. We then explored the role of the condensin structural maintenance of chromosome complex on the alignment of chromosomal arms. A parameter-free transcription traffic model demonstrated that mean chromosomal arm alignment can be quantitatively explained, and the effects on arm alignment in genomically rearranged strains of B. subtilis were accurately predicted. H.B. acknowledges support from the Natural Sciences and Engineering Research Council of Canada for a PGS-D fellowship.

  20. Transcriptional Regulation of Seprase in Invasive Melanoma Cells by Transforming Growth Factor-β Signaling*

    PubMed Central

    Tulley, Shaun; Chen, Wen-Tien

    2014-01-01

    The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis. PMID:24727589

  1. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.

    PubMed

    Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali

    2010-01-01

    Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.

  2. Genome-Wide Gene Expression Analysis Shows AKAP13-Mediated PKD1 Signaling Regulates the Transcriptional Response to Cardiac Hypertrophy.

    PubMed

    Johnson, Keven R; Nicodemus-Johnson, Jessie; Spindler, Mathew J; Carnegie, Graeme K

    2015-01-01

    In the heart, scaffolding proteins such as A-Kinase Anchoring Proteins (AKAPs) play a crucial role in normal cellular function by serving as a signaling hub for multiple protein kinases including protein kinase D1 (PKD1). Under cardiac hypertrophic conditions AKAP13 anchored PKD1 activates the transcription factor MEF2 leading to subsequent fetal gene activation and hypertrophic response. We used an expression microarray to identify the global transcriptional response in the hearts of wild-type mice expressing the native form of AKAP13 compared to a gene-trap mouse model expressing a truncated form of AKAP13 that is unable to bind PKD1 (AKAP13-ΔPKD1). Microarray analysis showed that AKAP13-ΔPKD1 mice broadly failed to exhibit the transcriptional profile normally associated with compensatory cardiac hypertrophy following trans-aortic constriction (TAC). The identified differentially expressed genes in WT and AKAP13-ΔPKD1 hearts are vital for the compensatory hypertrophic response to pressure-overload and include myofilament, apoptotic, and cell growth/differentiation genes in addition to genes not previously identified as affected by AKAP13-anchored PKD1. Our results show that AKAP13-PKD1 signaling is critical for transcriptional regulation of key contractile, cell death, and metabolic pathways during the development of compensatory hypertrophy in vivo.

  3. Genome-Wide Gene Expression Analysis Shows AKAP13-Mediated PKD1 Signaling Regulates the Transcriptional Response to Cardiac Hypertrophy

    PubMed Central

    Johnson, Keven R.; Nicodemus-Johnson, Jessie; Spindler, Mathew J.

    2015-01-01

    In the heart, scaffolding proteins such as A-Kinase Anchoring Proteins (AKAPs) play a crucial role in normal cellular function by serving as a signaling hub for multiple protein kinases including protein kinase D1 (PKD1). Under cardiac hypertrophic conditions AKAP13 anchored PKD1 activates the transcription factor MEF2 leading to subsequent fetal gene activation and hypertrophic response. We used an expression microarray to identify the global transcriptional response in the hearts of wild-type mice expressing the native form of AKAP13 compared to a gene-trap mouse model expressing a truncated form of AKAP13 that is unable to bind PKD1 (AKAP13-ΔPKD1). Microarray analysis showed that AKAP13-ΔPKD1 mice broadly failed to exhibit the transcriptional profile normally associated with compensatory cardiac hypertrophy following trans-aortic constriction (TAC). The identified differentially expressed genes in WT and AKAP13-ΔPKD1 hearts are vital for the compensatory hypertrophic response to pressure-overload and include myofilament, apoptotic, and cell growth/differentiation genes in addition to genes not previously identified as affected by AKAP13-anchored PKD1. Our results show that AKAP13-PKD1 signaling is critical for transcriptional regulation of key contractile, cell death, and metabolic pathways during the development of compensatory hypertrophy in vivo. PMID:26192751

  4. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript.

    PubMed

    Todeschini, Alice; Gualandi, Francesca; Trabanelli, Cecilia; Armaroli, Annarita; Ravani, Anna; Fanin, Marina; Rota, Silvia; Bello, Luca; Ferlini, Alessandra; Pegoraro, Elena; Padovani, Alessandro; Filosto, Massimiliano

    2016-10-01

    We describe a 29-year-old patient who complained of left thigh muscle weakness since he was 23 and of moderate proximal weakness of both lower limbs with difficulty in climbing stairs and running since he was 27. Mild weakness of iliopsoas and quadriceps muscles and muscle atrophy of both the distal forearm and thigh were observed upon clinical examination. He harboured a novel c.1150-3C>G substitution in the DMD gene, affecting the intron 10 acceptor splice site and causing exon 11 skipping and an out-of-frame transcript. However, protein of normal molecular weight but in reduced amounts was observed on Western Blot analysis. Reverse transcription analysis on muscle RNA showed production, via alternative splicing, of a transcript missing exon 11 as well as a low abundant full-length transcript which is enough to avoid the severe Duchenne phenotype. Our study showed that a reduced amount of full length dystrophin leads to a mild form of Becker muscular dystrophy. These results confirm earlier findings that low amounts of dystrophin can be associated with a milder phenotype, which is promising for therapies aiming at dystrophin restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

    PubMed

    Hamperl, Stephan; Bocek, Michael J; Saldivar, Joshua C; Swigut, Tomek; Cimprich, Karlene A

    2017-08-10

    Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison of radiographic and anatomic femoral varus angle measurements in normal dogs.

    PubMed

    Swiderski, Jennifer K; Radecki, Steven V; Park, Richard D; Palmer, Ross H

    2008-01-01

    To determine if the clinically practiced method of radiographic femoral varus angle (R-FVA) measurement is repeatable, reproducible, and accurate. Radiographic and anatomic study. ANIMALS/SAMPLE POPULATION: Normal Walker hound cadavers (n=5) and femora (n=10). Cadavers were held in dorsally-recumbent and torso-elevated positions as 3 craniocaudal radiographs were made of each femur, by each of 2 different technicians. Femora were then harvested for direct measurement of anatomic femoral varus angle (A-FVA). R-FVA was measured on each radiograph by each of 3 examiners on 3 separate occasions. Intra-observer (repeatability) and inter-observer (reproducibility) variance in R-FVA measurement and the strength of relationship between R-FVA and A-FVA (accuracy) were determined. Mean (+/-SD) A-FVA was 5.2+/-2.1 degrees (range, 2.4-8.2 degrees). Mean (+/-SD) R-FVA was 5.8+/-1.0 degrees (range, 2.7-9.6 degrees). Intra-observer variance (range: 11-16%) and inter-observer variance (16%) were acceptable. The strength of relationship between measured R-FVA and A-FVA (maximum adjusted R(2)<0) was unacceptably low regardless of observer, patient position, or radiographic technician. R-FVA measurement was repeatable and reproducible, but not statistically accurate in predicting A-FVA in these 5 normal Walker hounds. The detected inaccuracy may be real or the result of a selection bias for normal dogs obscuring the true relationship. R-FVA may not be an accurate method of femoral varus measurement in dogs with A-FVA<10 degrees. Using Slocum's criteria for distal femoral osteotomy (R-FVA>10 degrees), the procedure would not have been erroneously performed in any of the normal dogs of this study.

  7. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target

    PubMed Central

    Watanabe, Hideo; Francis, Joshua M.; Woo, Michele S.; Etemad, Banafsheh; Lin, Wenchu; Fries, Daniel F.; Peng, Shouyong; Snyder, Eric L.; Tata, Purushothama Rao; Izzo, Francesca; Schinzel, Anna C.; Cho, Jeonghee; Hammerman, Peter S.; Verhaak, Roel G.; Hahn, William C.; Rajagopal, Jayaraj; Jacks, Tyler; Meyerson, Matthew

    2013-01-01

    The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas. PMID:23322301

  8. Development of an accurate portable recording peak-flow meter for the diagnosis of asthma.

    PubMed

    Hitchings, D J; Dickinson, S A; Miller, M R; Fairfax, A J

    1993-05-01

    This article describes the systematic design of an electronic recording peak expiratory flow (PEF) meter to provide accurate data for the diagnosis of occupational asthma. Traditional diagnosis of asthma relies on accurate data of PEF tests performed by the patients in their own homes and places of work. Unfortunately there are high error rates in data produced and recorded by the patient, most of these are transcription errors and some patients falsify their records. The PEF measurement itself is not effort independent, the data produced depending on the way in which the patient performs the test. Patients are taught how to perform the test giving maximal effort to the expiration being measured. If the measurement is performed incorrectly then errors will occur. Accurate data can be produced if an electronically recording PEF instrument is developed, thus freeing the patient from the task of recording the test data. It should also be capable of determining whether the PEF measurement has been correctly performed. A requirement specification for a recording PEF meter was produced. A commercially available electronic PEF meter was modified to provide the functions required for accurate serial recording of the measurements produced by the patients. This is now being used in three hospitals in the West Midlands for investigations into the diagnosis of occupational asthma. In investigating current methods of measuring PEF and other pulmonary quantities a greater understanding was obtained of the limitations of current methods of measurement, and quantities being measured.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Comparison of voice-automated transcription and human transcription in generating pathology reports.

    PubMed

    Al-Aynati, Maamoun M; Chorneyko, Katherine A

    2003-06-01

    Software that can convert spoken words into written text has been available since the early 1980s. Early continuous speech systems were developed in 1994, with the latest commercially available editions having a claimed accuracy of up to 98% of speech recognition at natural speech rates. To evaluate the efficacy of one commercially available voice-recognition software system with pathology vocabulary in generating pathology reports and to compare this with human transcription. To draw cost analysis conclusions regarding human versus computer-based transcription. Two hundred six routine pathology reports from the surgical pathology material handled at St Joseph's Healthcare, Hamilton, Ontario, were generated simultaneously using computer-based transcription and human transcription. The following hardware and software were used: a desktop 450-MHz Intel Pentium III processor with 192 MB of RAM, a speech-quality sound card (Sound Blaster), noise-canceling headset microphone, and IBM ViaVoice Pro version 8 with pathology vocabulary support (Voice Automated, Huntington Beach, Calif). The cost of the hardware and software used was approximately Can 2250 dollars. A total of 23 458 words were transcribed using both methods with a mean of 114 words per report. The mean accuracy rate was 93.6% (range, 87.4%-96%) using the computer software, compared to a mean accuracy of 99.6% (range, 99.4%-99.8%) for human transcription (P <.001). Time needed to edit documents by the primary evaluator (M.A.) using the computer was on average twice that needed for editing the documents produced by human transcriptionists (range, 1.4-3.5 times). The extra time needed to edit documents was 67 minutes per week (13 minutes per day). Computer-based continuous speech-recognition systems in pathology can be successfully used in pathology practice even during the handling of gross pathology specimens. The relatively low accuracy rate of this voice-recognition software with resultant increased editing

  10. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of readthrough products

    PubMed Central

    Morita, Teppei; Ueda, Masaki; Kubo, Kento; Aiba, Hiroji

    2015-01-01

    The genes encoding Hfq-dependent sRNAs possess a typical Rho-independent transcription terminator. Here, we have studied the molecular events occurring at Rho-independent terminators of sRNA genes, focusing on two well-characterized Hfq-binding sRNAs, SgrS and RyhB. We constructed several hybrid genes in which the DNA sequence corresponding to a strong Rho-independent terminator was placed just downstream from the Rho-independent terminators of sRNA genes. By using this system, we demonstrate that transcripts frequently read through the Rho-independent terminators of sgrS and ryhB in normally growing cells. We show that Hfq does not affect the transcriptional readthrough event itself. We also find that the readthrough products no longer bind to Hfq in vivo. We have developed a competition assay based on a biotin–streptavidin system to analyze the interaction of Hfq and a particular RNA molecule in vitro. By using this method, we verify that the 3′-extended form of SgrS does not bind to Hfq in vitro. Finally, we demonstrate that transcription termination is significantly enhanced under stress conditions where transcription initiation of sRNA genes on the chromosome is induced. We conclude that the production of sRNAs is regulated not only at the step of transcription initiation but also at the step of transcription termination. The mechanism by which transcription termination is enhanced under stress conditions remains to be understood. PMID:26106215

  11. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development

    PubMed Central

    Sajgo, Szilard; Ali, Seid; Popescu, Octavian; Badea, Tudor Constantin

    2015-01-01

    During development transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors, but rather emerge through the intersection of their expression domains. Brn3a, Brn3b and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of Retinal Ganglion Cells (RGC), Spiral and Vestibular Ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the Dorsal Root Ganglia (DRG). In the present study we investigated the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII and VIII and visceromotor nuclei of nerves VII, IX, X, as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3bKO RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor. PMID:26356988

  12. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B

    PubMed Central

    Lee, Chih-Yung Sean; Lu, Tu

    2017-01-01

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin. PMID:29111977

  13. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B.

    PubMed

    Lee, Chih-Yung Sean; Lu, Tu; Seydoux, Geraldine

    2017-11-07

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.

  14. Normal Databases for the Relative Quantification of Myocardial Perfusion

    PubMed Central

    Rubeaux, Mathieu; Xu, Yuan; Germano, Guido; Berman, Daniel S.; Slomka, Piotr J.

    2016-01-01

    Purpose of review Myocardial perfusion imaging (MPI) with SPECT is performed clinically worldwide to detect and monitor coronary artery disease (CAD). MPI allows an objective quantification of myocardial perfusion at stress and rest. This established technique relies on normal databases to compare patient scans against reference normal limits. In this review, we aim to introduce the process of MPI quantification with normal databases and describe the associated perfusion quantitative measures that are used. Recent findings New equipment and new software reconstruction algorithms have been introduced which require the development of new normal limits. The appearance and regional count variations of normal MPI scan may differ between these new scanners and standard Anger cameras. Therefore, these new systems may require the determination of new normal limits to achieve optimal accuracy in relative myocardial perfusion quantification. Accurate diagnostic and prognostic results rivaling those obtained by expert readers can be obtained by this widely used technique. Summary Throughout this review, we emphasize the importance of the different normal databases and the need for specific databases relative to distinct imaging procedures. use of appropriate normal limits allows optimal quantification of MPI by taking into account subtle image differences due to the hardware and software used, and the population studied. PMID:28138354

  15. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac

  16. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    PubMed Central

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In

  17. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both

  18. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  19. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  20. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression

    PubMed Central

    Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R

    2013-01-01

    Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311

  1. mRNA quality control is bypassed for immediate export of stress-responsive transcripts.

    PubMed

    Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike

    2016-12-12

    Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.

  2. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki, E-mail: yoshi1224@gmail.com

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. Black-Right-Pointing-Pointer miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. Black-Right-Pointing-Pointer Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. Black-Right-Pointing-Pointer Esophageal cancer tissues have lower SnoN expression levels than normal tissues. Black-Right-Pointing-Pointer Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator withinmore » a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.« less

  3. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma

    PubMed Central

    Yang, Qingshan; Chen, Lisa S.; Neelapu, Sattva S.; Miranda, Roberto N.; Medeiros, L. Jeffrey

    2012-01-01

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small mol-ecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL. PMID:22955922

  4. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma.

    PubMed

    Yang, Qingshan; Chen, Lisa S; Neelapu, Sattva S; Miranda, Roberto N; Medeiros, L Jeffrey; Gandhi, Varsha

    2012-10-25

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small molecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL.

  5. Integrating discrete stochastic models and single-cell experiments to infer predictive models of MAPK-induced transcription dynamics

    NASA Astrophysics Data System (ADS)

    Munsky, Brian

    2015-03-01

    MAPK signal-activated transcription plays central roles in myriad biological processes including stress adaptation responses and cell fate decisions. Recent single-cell and single-molecule experiments have advanced our ability to quantify the spatial, temporal, and stochastic fluctuations for such signals and their downstream effects on transcription regulation. This talk explores how integrating such experiments with discrete stochastic computational analyses can yield quantitative and predictive understanding of transcription regulation in both space and time. We use single-molecule mRNA fluorescence in situ hybridization (smFISH) experiments to reveal locations and numbers of multiple endogenous mRNA species in 100,000's of individual cells, at different times and under different genetic and environmental perturbations. We use finite state projection methods to precisely and efficiently compute the full joint probability distributions of these mRNA, which capture measured spatial, temporal and correlative fluctuations. By combining these experimental and computational tools with uncertainty quantification, we systematically compare models of varying complexity and select those which give optimally precise and accurate predictions in new situations. We use these tools to explore two MAPK-activated gene regulation pathways. In yeast adaptation to osmotic shock, we analyze Hog1 kinase activation of transcription for three different genes STL1 (osmotic stress), CTT1 (oxidative stress) and HSP12 (heat shock). In human osteosarcoma cells under serum induction, we analyze ERK activation of c-Fos transcription.

  6. Accurate Modeling Method for Cu Interconnect

    NASA Astrophysics Data System (ADS)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  7. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    PubMed

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The use of normal forms for analysing nonlinear mechanical vibrations

    PubMed Central

    Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea

    2015-01-01

    A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917

  9. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers

    PubMed Central

    2014-01-01

    Background Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee’s diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. Results Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional

  10. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Transcriptional consequences of XPA disruption in human cell lines

    PubMed Central

    Manandhar, Mandira; Lowery, Megan G.; Boulware, Karen S.; Lin, Kevin H.; Lu, Yue; Wood, Richard D.

    2017-01-01

    Nucleotide excision repair (NER) in mammalian cells requires the xeroderma pigmentosum group A protein (XPA) as a core factor. Remarkably, XPA and other NER proteins have been detected by chromatin immunoprecipitation at some active promoters, and NER deficiency is reported to influence the activated transcription of selected genes. However, the global influence of XPA on transcription in human cells has not been determined. We analyzed the human transcriptome by RNA sequencing (RNA-Seq). We first confirmed that XPA is confined to the cell nucleus even in the absence of external DNA damage, in contrast to previous reports that XPA is normally resident in the cytoplasm and is imported following DNA damage. We then analyzed four genetically matched human cell line pairs deficient or proficient in XPA. Of the ∼14,000 genes transcribed in each cell line, 325 genes (2%) had a significant XPA-dependent directional change in gene expression that was common to all four pairs (with a false discovery rate of 0.05). These genes were enriched in pathways for the maintenance of mitochondria. Only 27 common genes were different by more than 1.5-fold. The most significant hits were AKR1C1 and AKR1C2, involved in steroid hormone metabolism. AKR1C2 protein was lower in all of the immortalized XPA-deficient cells. Retinoic acid treatment led to modest XPA-dependent activation of some genes with transcription-related functions. We conclude that XPA status does not globally influence human gene transcription. However, XPA significantly influences expression of a small subset of genes important for mitochondrial functions and steroid hormone metabolism. The results may help explain defects in neurological function and sterility in individuals with xeroderma pigmentosum. PMID:28704716

  12. Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator

    PubMed Central

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  13. Divergent Functions of orthologous NAC Transcription Factors in Wheat and Rice

    PubMed Central

    Distelfeld, Assaf; Pearce, Stephen P.; Avni, Raz; Scherer, Beatrice; Uauy, Cristobal; Piston, Fernando; Slade, Ann; Zhao, Rongrong; Dubcovsky, Jorge

    2016-01-01

    The wheat GPC-B1 gene located on chromosome 6B is an early regulator of senescence and affects remobilization of protein and minerals to the grain. GPC-B1 is a NAC transcription factor and has a paralogous copy on chromosome 2B in tetraploid wheat, GPC-B2. The closest rice homolog to both wheat GPC genes is Os07g37920 which is located on rice chromosome 2 and is colinear with GPC-B2. Since rice is a diploid species with a sequenced genome, we initiated the study of Os07g37920 to develop a simpler model to study senescence and mineral remobilization in cereals. We developed eleven independent RNA interference transgenic rice lines (Os07g37920-RNAi) and 10 over-expressing transgenic lines (Os07g37920-OE), but none of them showed differences in senescence. Transgenic Os07g37920-RNAi rice plants had reduced proportions of viable pollen grains and were male-sterile, but were able to produce seeds by cross pollination. Analysis of the flower morphology of the transgenic rice plants showed that anthers failed to dehisce. Transgenic Os07g37920-OE lines showed no sterility or anther dehiscence problems. Os07g37920 transcript levels were higher in stamens compared to leaves and significantly reduced in the transgenic Os07g37920-RNAi plants. Wheat GPC genes showed the opposite transcription profile (higher transcript levels in leaves than in flowers) and plants carrying knock-out mutations of all GPC-1 and GPC-2 genes exhibited delayed senescence but normal anther dehiscence and fertility. These results indicate a functional divergence of the homologous wheat and rice NAC genes and suggest the need for separate studies of the function and targets of these transcription factors in wheat and rice. PMID:22278768

  14. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types

    PubMed Central

    Wang, Peter Lincoln; Lacayo, Norman; Brown, Patrick O.

    2012-01-01

    Most human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene expression program in human cells. PMID:22319583

  15. Regulation of RB Transcription In Vivo by RB Family Members▿ ‡

    PubMed Central

    Burkhart, Deborah L.; Ngai, Lynn K.; Roake, Caitlin M.; Viatour, Patrick; Thangavel, Chellappagounder; Ho, Victoria M.; Knudsen, Erik S.; Sage, Julien

    2010-01-01

    In cancer cells, the retinoblastoma tumor suppressor RB is directly inactivated by mutation in the RB gene or functionally inhibited by abnormal activation of cyclin-dependent kinase activity. While variations in RB levels may also provide an important means of controlling RB function in both normal and cancer cells, little is known about the mechanisms regulating RB transcription. Here we show that members of the RB and E2F families bind directly to the RB promoter. To investigate how the RB/E2F pathway may regulate Rb transcription, we generated reporter mice carrying an eGFP transgene inserted into a bacterial artificial chromosome containing most of the Rb gene. Expression of eGFP largely parallels that of Rb in transgenic embryos and adult mice. Using these reporter mice and mutant alleles for Rb, p107, and p130, we found that RB family members modulate Rb transcription in specific cell populations in vivo and in culture. Interestingly, while Rb is a target of the RB/E2F pathway in mouse and human cells, Rb expression does not strictly correlate with the cell cycle status of these cells. These experiments identify novel regulatory feedback mechanisms within the RB pathway in mammalian cells. PMID:20100864

  16. The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels

    PubMed Central

    Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min

    2016-01-01

    Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439

  17. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  18. Centromere Transcription: Means and Motive.

    PubMed

    Duda, Zachary; Trusiak, Sarah; O'Neill, Rachel

    2017-01-01

    The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.

  19. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    PubMed Central

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  20. IDLN-MSP: Idiolocal normalization of real-time methylation-specific PCR for genetic imbalanced DNA specimens.

    PubMed

    Santourlidis, Simeon; Ghanjati, Foued; Beermann, Agnes; Hermanns, Thomas; Poyet, Cédric

    2016-02-01

    Sensitive, accurate, and reliable measurements of tumor cell-specific DNA methylation changes are of fundamental importance in cancer diagnosis, prognosis, and monitoring. Real-time methylation-specific PCR (MSP) using intercalating dyes is an established method of choice for this purpose. Here we present a simple but crucial adaptation of this widely applied method that overcomes a major obstacle: genetic abnormalities in the DNA samples, such as aneuploidy or copy number variations, that could result in inaccurate results due to improper normalization if the copy numbers of the target and reference sequences are not the same. In our idiolocal normalization (IDLN) method, the locus for the normalizing, methylation-independent reference amplification is chosen close to the locus of the methylation-dependent target amplification. This ensures that the copy numbers of both the target and reference sequences will be identical in most cases if they are close enough to each other, resulting in accurate normalization and reliable comparative measurements of DNA methylation in clinical samples when using real-time MSP.

  1. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  2. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection.

    PubMed

    Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua

    2013-01-01

    Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular

  3. Accurate Projection Methods for the Incompressible Navier–Stokes Equations

    DOE PAGES

    Brown, David L.; Cortez, Ricardo; Minion, Michael L.

    2001-04-10

    This paper considers the accuracy of projection method approximations to the initial–boundary-value problem for the incompressible Navier–Stokes equations. The issue of how to correctly specify numerical boundary conditions for these methods has been outstanding since the birth of the second-order methodology a decade and a half ago. It has been observed that while the velocity can be reliably computed to second-order accuracy in time and space, the pressure is typically only first-order accurate in the L ∞-norm. Here, we identify the source of this problem in the interplay of the global pressure-update formula with the numerical boundary conditions and presentsmore » an improved projection algorithm which is fully second-order accurate, as demonstrated by a normal mode analysis and numerical experiments. In addition, a numerical method based on a gauge variable formulation of the incompressible Navier–Stokes equations, which provides another option for obtaining fully second-order convergence in both velocity and pressure, is discussed. The connection between the boundary conditions for projection methods and the gauge method is explained in detail.« less

  4. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  5. Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas

    PubMed Central

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B.; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J.; Ghadimi, B. Michael; Ried, Thomas

    2016-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P < 1e–7). A significant proportion of these genes mapped to chromosome 20 (P = 0.01). Seventeen genes had a >5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node–negative and lymph node–positive tumors (P < 0.001), the functional annotation of which revealed a preponderance of genes that play a role in cellular immune response and surveillance. The microarray-derived gene expression levels of 20 deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/β-catenin signaling cascade, suggesting similar pathogenic pathways. PMID:17210682

  6. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas.

    PubMed

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Ried, Thomas

    2007-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P < 1e-7). A significant proportion of these genes mapped to chromosome 20 (P = 0.01). Seventeen genes had a >5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node-negative and lymph node-positive tumors (P < 0.001), the functional annotation of which revealed a preponderance of genes that play a role in cellular immune response and surveillance. The microarray-derived gene expression levels of 20 deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/beta-catenin signaling cascade, suggesting similar pathogenic pathways.

  7. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  8. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  9. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Höynck, Michael

    2004-12-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  10. Synthesis of photolabile transcription initiators and preparation of photocleavable functional RNA by transcription.

    PubMed

    Huang, Faqing; Shi, Yongliang

    2012-07-01

    Two new photolabile adenosine-containing transcription initiators with terminal thiol and amino functionalities are chemically synthesized. Transcription in the presence of the transcription initiators under the T7 phi2.5 promoter produces 5' thiol- and amino-functionalized RNA conjugated by a photocleavable (PC) linker. Further RNA functionalization with biotin may be achieved through acyl transfer reactions from either biotinyl AMP to the RNA thiol group or biotin NHS to the RNA amino group. Photocleavage of the PC linker displays relatively fast kinetics with a half-life of 4-5 min. The availability of these transcription initiators makes new photolabile RNA accessible for affinity purification of RNA, in vitro selection of functional RNAs, and functional RNA caging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  12. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  13. Systematic Analysis of the Transcriptional Switch Inducing Migration of Border Cells

    PubMed Central

    Borghese, Lodovica; Fletcher, Georgina; Mathieu, Juliette; Atzberger, Ann; Eades, William C.; Cagan, Ross L.; Rørth, Pernille

    2010-01-01

    Summary Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of “muscle-specific” genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells. PMID:16580994

  14. Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63

    PubMed Central

    Testoni, Barbara; Mantovani, Roberto

    2006-01-01

    p63 is a developmentally regulated transcription factor related to p53, which activates and represses specific genes. The human AEC (Ankyloblepharon–Ectodermal dysplasia-Clefting) and EEC (Ectrodactyly–Ectodermal dysplasia–Cleft lip/palate) syndromes are caused by missense mutations of p63, within the DNA-binding domain (EEC) or in the C-terminal sterile alpha motif domain (AEC). We show here that p63 represses transcription of cell-cycle G2/M genes by binding to multiple CCAAT core promoters in immortalized and primary keratinocytes. The CCAAT-activator NF-Y and ΔNp63α are associated in vivo and a conserved α-helix of the NF-YC histone fold is required. p63 AEC mutants, but not an EEC mutant, are incapable to bind NF-Y. ΔNp63α, but not the AEC mutants repress CCAAT-dependent transcription of G2/M genes. Chromatin immunoprecipitation recruitment assays establish that the AEC mutants are not recruited to G2/M promoters, while normally present on 14-3-3σ, which contains a sequence-specific binding site. Surprisingly, the EEC C306R mutant activates transcription. Upon keratinocytes differentiation, NF-Y and p63 remain bound to G2/M promoters, while HDACs are recruited, histones deacetylated, Pol II displaced and transcription repressed. Our data indicate that NF-Y is a molecular target of p63 and that inhibition of growth activating genes upon differentiation is compromised by AEC missense mutations. PMID:16473849

  15. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    PubMed

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  16. The transcriptional stress response of Candida albicans to weak organic acids.

    PubMed

    Cottier, Fabien; Tan, Alrina Shin Min; Chen, Jinmiao; Lum, Josephine; Zolezzi, Francesca; Poidinger, Michael; Pavelka, Norman

    2015-01-29

    Candida albicans is the most important fungal pathogen of humans, causing severe infections, especially in nosocomial and immunocompromised settings. However, it is also the most prevalent fungus of the normal human microbiome, where it shares its habitat with hundreds of trillions of other microbial cells. Despite weak organic acids (WOAs) being among the most abundant metabolites produced by bacterial microbiota, little is known about their effect on C. albicans. Here we used a sequencing-based profiling strategy to systematically investigate the transcriptional stress response of C. albicans to lactic, acetic, propionic, and butyric acid at several time points after treatment. Our data reveal a complex transcriptional response, with individual WOAs triggering unique gene expression profiles and with important differences between acute and chronic exposure. Despite these dissimilarities, we found significant overlaps between the gene expression changes induced by each WOA, which led us to uncover a core transcriptional response that was largely unrelated to other previously published C. albicans transcriptional stress responses. Genes commonly up-regulated by WOAs were enriched in several iron transporters, which was associated with an overall decrease in intracellular iron concentrations. Moreover, chronic exposure to any WOA lead to down-regulation of RNA synthesis and ribosome biogenesis genes, which resulted in significant reduction of total RNA levels and of ribosomal RNA in particular. In conclusion, this study suggests that gastrointestinal microbiota might directly influence C. albicans physiology via production of WOAs, with possible implications of how this fungus interacts with its host in both health and disease. Copyright © 2015 Cottier et al.

  17. The Transcriptional Stress Response of Candida albicans to Weak Organic Acids

    PubMed Central

    Cottier, Fabien; Tan, Alrina Shin Min; Chen, Jinmiao; Lum, Josephine; Zolezzi, Francesca; Poidinger, Michael; Pavelka, Norman

    2015-01-01

    Candida albicans is the most important fungal pathogen of humans, causing severe infections, especially in nosocomial and immunocompromised settings. However, it is also the most prevalent fungus of the normal human microbiome, where it shares its habitat with hundreds of trillions of other microbial cells. Despite weak organic acids (WOAs) being among the most abundant metabolites produced by bacterial microbiota, little is known about their effect on C. albicans. Here we used a sequencing-based profiling strategy to systematically investigate the transcriptional stress response of C. albicans to lactic, acetic, propionic, and butyric acid at several time points after treatment. Our data reveal a complex transcriptional response, with individual WOAs triggering unique gene expression profiles and with important differences between acute and chronic exposure. Despite these dissimilarities, we found significant overlaps between the gene expression changes induced by each WOA, which led us to uncover a core transcriptional response that was largely unrelated to other previously published C. albicans transcriptional stress responses. Genes commonly up-regulated by WOAs were enriched in several iron transporters, which was associated with an overall decrease in intracellular iron concentrations. Moreover, chronic exposure to any WOA lead to down-regulation of RNA synthesis and ribosome biogenesis genes, which resulted in significant reduction of total RNA levels and of ribosomal RNA in particular. In conclusion, this study suggests that gastrointestinal microbiota might directly influence C. albicans physiology via production of WOAs, with possible implications of how this fungus interacts with its host in both health and disease. PMID:25636313

  18. Assessing Pharmacy Students’ Ability to Accurately Measure Blood Pressure Using a Blood Pressure Simulator Arm

    PubMed Central

    Bryant, Ginelle A.; Haack, Sally L.; North, Andrew M.

    2013-01-01

    Objective. To compare student accuracy in measuring normal and high blood pressures using a simulator arm. Methods. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. Results. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Conclusions. Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign. PMID:23788809

  19. Assessing pharmacy students' ability to accurately measure blood pressure using a blood pressure simulator arm.

    PubMed

    Bottenberg, Michelle M; Bryant, Ginelle A; Haack, Sally L; North, Andrew M

    2013-06-12

    To compare student accuracy in measuring normal and high blood pressures using a simulator arm. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign.

  20. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    PubMed Central

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  1. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  2. visnormsc: A Graphical User Interface to Normalize Single-cell RNA Sequencing Data.

    PubMed

    Tang, Lijun; Zhou, Nan

    2017-12-26

    Single-cell RNA sequencing (RNA-seq) allows the analysis of gene expression with high resolution. The intrinsic defects of this promising technology imports technical noise into the single-cell RNA-seq data, increasing the difficulty of accurate downstream inference. Normalization is a crucial step in single-cell RNA-seq data pre-processing. SCnorm is an accurate and efficient method that can be used for this purpose. An R implementation of this method is currently available. On one hand, the R package possesses many excellent features from R. On the other hand, R programming ability is required, which prevents the biologists who lack the skills from learning to use it quickly. To make this method more user-friendly, we developed a graphical user interface, visnormsc, for normalization of single-cell RNA-seq data. It is implemented in Python and is freely available at https://github.com/solo7773/visnormsc . Although visnormsc is based on the existing method, it contributes to this field by offering a user-friendly alternative. The out-of-the-box and cross-platform features make visnormsc easy to learn and to use. It is expected to serve biologists by simplifying single-cell RNA-seq normalization.

  3. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.)

    PubMed Central

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-01-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. PMID:25362073

  4. Chromatin immunoprecipitation assays: application of ChIP-on-chip for defining dynamic transcriptional mechanisms in bone cells.

    PubMed

    van der Deen, Margaretha; Hassan, Mohammad Q; Pratap, Jitesh; Teplyuk, Nadiya M; Young, Daniel W; Javed, Amjad; Zaidi, Sayyed K; Lian, Jane B; Montecino, Martin; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J

    2008-01-01

    Normal cell growth and differentiation of bone cells requires the sequential expression of cell type specific genes to permit lineage specification and development of cellular phenotypes. Transcriptional activation and repression of distinct sets of genes support the anabolic functions of osteoblasts and the catabolic properties of osteoclasts. Furthermore, metastasis of tumors to the bone environment is controlled by transcriptional mechanisms. Insights into the transcriptional regulation of genes in bone cells may provide a conceptual basis for improved therapeutic approaches to treat bone fractures, genetic osteopathologies, and/or cancer metastases to bone. Chromatin immunoprecipitation (ChIP) is a powerful technique to establish in vivo binding of transcription factors to the promoters of genes that are either activated or repressed in bone cells. Combining ChIP with genomic microarray analysis, colloquially referred to as "ChIP-on-chip," has become a valuable method for analysis of endogenous protein/DNA interactions. This technique permits assessment of chromosomal binding sites for transcription factors or the location of histone modifications at a genomic scale. This chapter discusses protocols for performing chromatin immunoprecipitation experiments, with a focus on ChIP-on-chip analysis. The information presented is based on the authors' experience with defining interactions of Runt-related (RUNX) transcription factors with bone-related genes within the context of the native nucleosomal organization of intact osteoblastic cells.

  5. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    PubMed

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  6. Binding of TFIIIC to SINE Elements Controls the Relocation of Activity-Dependent Neuronal Genes to Transcription Factories

    PubMed Central

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877

  7. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms

  8. Absence of 60-Hz, 0.1-mT magnetic field-induced changes in oncogene transcription rates or levels in CEM-CM3 cells.

    PubMed

    Jahreis, G P; Johnson, P G; Zhao, Y L; Hui, S W

    1998-12-22

    Our objective was to assess the reproducibility of the 60-Hz magnetic field-induced, time-dependent transcription changes of c-fos, c-jun and c-myc oncogenes in CEM-CM3 cells reported by Phillips et al. (Biochim. Biophys. Acta, 1132 (1992) 140-144). Cells were exposed to a 60-Hz magnetic field (MF) at 0.1 mT (rms), generated by a pair of Helmholtz coils energized in a reinforcing (MF) mode, or to a null magnetic field when the coils were energized in a bucking (sham) mode. After MF or sham exposure for 15, 30, 60 or 120 min, nuclei and cytoplasmic RNA were extracted. Transcription rates were measured by a nuclear run-on assay, and values were normalized against either their zero-time exposure values, or against those of the c-G3PDH (housekeeping) gene at the same time points. There was no significant difference, at P=0.05, detected between MF and either sham-exposed or control cells at any time point. Transcript levels of the oncogenes were measured by Northern analysis and normalized as above. No significant difference (P=0.05) in transcript levels between MF and either sham-exposed or control cells was detected.

  9. Transcription factor ETV1 is essential for rapid conduction in the heart.

    PubMed

    Shekhar, Akshay; Lin, Xianming; Liu, Fang-Yu; Zhang, Jie; Mo, Huan; Bastarache, Lisa; Denny, Joshua C; Cox, Nancy J; Delmar, Mario; Roden, Dan M; Fishman, Glenn I; Park, David S

    2016-12-01

    Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart.

  10. Transcription factor ETV1 is essential for rapid conduction in the heart

    PubMed Central

    Shekhar, Akshay; Lin, Xianming; Liu, Fang-Yu; Zhang, Jie; Mo, Huan; Bastarache, Lisa; Denny, Joshua C.; Cox, Nancy J.; Delmar, Mario; Roden, Dan M.; Fishman, Glenn I.; Park, David S.

    2016-01-01

    Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart. PMID:27775552

  11. Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae.

    PubMed

    Shahi, Puja; Gulshan, Kailash; Näär, Anders M; Moye-Rowley, W Scott

    2010-07-15

    The multiprotein transcriptional Mediator complex provides a key link between RNA polymerase II and upstream transcriptional activator proteins. Previous work has established that the multidrug resistance transcription factors Pdr1 and Pdr3 interact with the Mediator component Med15/Gal11 to drive normal levels of expression of the ATP-binding cassette transporter-encoding gene PDR5 in Saccharomyces cerevisiae. PDR5 transcription is induced upon loss of the mitochondrial genome (rho(0) cells) and here we provide evidence that this rho(0) induction is Med15 independent. A search through other known Mediator components determined that Med12/Srb8, a member of the CDK8 Mediator submodule, is required for rho(0) activation of PDR5 transcription. The CDK8 submodule contains the cyclin C homologue (CycC/Srb11), cyclin-dependent kinase Cdk8/Srb10, and the large Med13/Srb9 protein. Loss of these other proteins did not lead to the same block in PDR5 induction. Chromatin immunoprecipitation analyses demonstrated that Med15 is associated with the PDR5 promoter in both rho(+) and rho(0), whereas Med12 recruitment to this target promoter is highly responsive to loss of the mitochondrial genome. Coimmunoprecipitation experiments revealed that association of Pdr3 with Med12 can only be detected in rho(0) cells. These experiments uncover the unique importance of Med12 in activated transcription of PDR5 seen in rho(0) cells.

  12. Differences in transcriptional effects of 1α,25 dihydroxyvitamin D3 on fibroblasts associated to breast carcinomas and from paired normal breast tissues.

    PubMed

    Campos, Laura Tojeiro; Brentani, Helena; Roela, Rosimeire Aparecida; Katayama, Maria Lucia Hirata; Lima, Leandro; Rolim, Cíntia Flores; Milani, Cíntia; Folgueira, Maria Aparecida Azevedo Koike; Brentani, Maria Mitzi

    2013-01-01

    The effects of 1α,25 dihydroxyvitamin D3 (1,25D) on breast carcinoma associated fibroblasts (CAFs) are still unknown. This study aimed to identify genes whose expression was altered after 1,25D treatment in CAFs and matched adjacent normal mammary associated fibroblasts (NAFs). CAFs and NAFs (from 5 patients) were cultured with or without (control) 1,25D 100 nM. Both CAF and NAF expressed vitamin D receptor (VDR) and 1,25D induction of the genomic pathway was detected through up-regulation of the target gene CYP24A1. Microarray analysis showed that despite presenting 50% of overlapping genes, CAFs and NAFs exhibited distinct transcriptional profiles after 1,25D treatment (FDR<0.05). Functional analysis revealed that in CAFs, genes associated with proliferation (NRG1, WNT5A, PDGFC) were down regulated and those involved in immune modulation (NFKBIA, TREM-1) were up regulated, consistent with anti tumor activities of 1,25D in breast cancer. In NAFs, a distinct subset of genes was induced by 1,25D, involved in anti apoptosis, detoxification, antibacterial defense system and protection against oxidative stress, which may limit carcinogenesis. Co-expression network and interactome analysis of genes commonly regulated by 1,25D in NAFs and CAFs revealed differences in their co-expression values, suggesting that 1,25D effects in NAFs are distinct from those triggered in CAFs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  14. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection.

    PubMed

    Lin, Hung Wen; Thompson, John W; Morris, Kahlilia C; Perez-Pinzon, Miguel A

    2011-05-15

    Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.

  15. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor

    PubMed Central

    Manuel, Martine N.; Mi, Da; Mason, John O.; Price, David J.

    2015-01-01

    Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development. PMID:25805971

  16. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.

    PubMed

    Weeda, G; Rossignol, M; Fraser, R A; Winkler, G S; Vermeulen, W; van 't Veer, L J; Ma, L; Hoeijmakers, J H; Egly, J M

    1997-06-15

    Mutations in the basal transcription initiation/DNA repair factor TFIIH are responsible for three human disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS) and trichothiodystrophy (TTD). The non-repair features of CS and TTD are thought to be due to a partial inactivation of the transcription function of the complex. To search for proteins whose interaction with TFIIH subunits is disturbed by mutations in patients we used the yeast two-hybrid system and report the isolation of a novel XPB interacting protein, SUG1. The interaction was validated in vivo and in vitro in the following manner. (i) SUG1 interacts with XPB but not with the other core TFIIH subunits in the two-hybrid assay. (ii) Physical interaction is observed in a baculovirus co-expression system. (iii) In fibroblasts under non-overexpression conditions a portion of SUG1 is bound to the TFIIH holocomplex as deduced from co-purification, immunopurification and nickel-chelate affinity chromatography using functional tagged TFIIH. Furthermore, overexpression of SUG1 in normal fibroblasts induced arrest of transcription and a chromatin collapse in vivo. Interestingly, the interaction was diminished with a mutant form of XPB, thus providing a potential link with the clinical features of XP-B patients. Since SUG1 is an integral component of the 26S proteasome and may be part of the mediator, our findings disclose a SUG1-dependent link between TFIIH and the cellular machinery involved in protein modelling/degradation.

  18. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.

    PubMed Central

    Weeda, G; Rossignol, M; Fraser, R A; Winkler, G S; Vermeulen, W; van 't Veer, L J; Ma, L; Hoeijmakers, J H; Egly, J M

    1997-01-01

    Mutations in the basal transcription initiation/DNA repair factor TFIIH are responsible for three human disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS) and trichothiodystrophy (TTD). The non-repair features of CS and TTD are thought to be due to a partial inactivation of the transcription function of the complex. To search for proteins whose interaction with TFIIH subunits is disturbed by mutations in patients we used the yeast two-hybrid system and report the isolation of a novel XPB interacting protein, SUG1. The interaction was validated in vivo and in vitro in the following manner. (i) SUG1 interacts with XPB but not with the other core TFIIH subunits in the two-hybrid assay. (ii) Physical interaction is observed in a baculovirus co-expression system. (iii) In fibroblasts under non-overexpression conditions a portion of SUG1 is bound to the TFIIH holocomplex as deduced from co-purification, immunopurification and nickel-chelate affinity chromatography using functional tagged TFIIH. Furthermore, overexpression of SUG1 in normal fibroblasts induced arrest of transcription and a chromatin collapse in vivo. Interestingly, the interaction was diminished with a mutant form of XPB, thus providing a potential link with the clinical features of XP-B patients. Since SUG1 is an integral component of the 26S proteasome and may be part of the mediator, our findings disclose a SUG1-dependent link between TFIIH and the cellular machinery involved in protein modelling/degradation. PMID:9173976

  19. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  20. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.

    PubMed

    Lemahieu, V; Gastier, J M; Francke, U

    1999-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia, eczema, and recurrent infections, and caused by mutations in the WAS protein (WASP) gene. WASP contains several functional domains through which it interacts with proteins involved in intracellular signaling and regulation of the actin cytoskeleton. In this report, 17 WASP gene mutations were identified, 12 of which are novel. DNA of affected males and obligate carriers was PCR amplified and analyzed by SSCA, heteroduplex analysis, and direct sequencing. The effects of the mutations at the mRNA and protein level were ascertained by RT-PCR and Western blot analyses. All missense mutations were located in exons 1-4. Most of the nonsense, frameshift and splice site mutations were found in exons 6-11. Mutations that alter splice sites led to the synthesis of several types of mRNAs, a fraction of which represented the normally spliced product. The presence of normally spliced transcripts was correlated with a milder phenotype. When one such case was studied by Western blotting, reduced amounts of normal-size WASP were present. In other cases as well, a correlation was found between the amount of normal or mutant WASP present and the phenotypes of the affected individuals. No protein was detected in two individuals with severe WAS. Reduced levels of a normal-size WASP with a missense mutation were seen in two individuals with XLT. It is concluded that mutation analysis at the DNA level is not sufficient for predicting clinical course. Studies at the transcript and protein level are needed for a better assessment.

  1. Post-transcriptional regulation of inducible nitric oxide synthase in chronic lymphocytic leukemia B cells in pro- and antiapoptotic culture conditions.

    PubMed

    Tiscornia, A C; Cayota, A; Landoni, A I; Brito, C; Oppezzo, P; Vuillier, F; Robello, C; Dighiero, G; Gabús, R; Pritsch, O

    2004-01-01

    Functional inducible NOS (iNOS) may be involved in the prolonged lifespan of chronic lymphocytic leukemia cells (B-CLL), although the exact mechanisms implicated remain elusive as yet. In this work, we have examined iNOS expression in normal B lymphocytes and B-CLL cells in pro- and antiapoptotic conditions. Our results demonstrate: (1) The existence of a new splice variant characterized by a complete deletion of exon 14 (iNOS 13-16(14del)), which was preferentially detected in normal B lymphocytes and may represent an isoform that could play a role in the regulation of enzyme activity. (2) The existence of another alternatively spliced iNOS mRNA transcript involving a partial deletion of the flavodoxin region (iNOS 13-16(neg)) was correlated to a decreased B-CLL cell viability. The 9-beta-D-arabinofuranosyl-2-fluoradenine or fludarabine (F-ara) treatment induced iNOS 13-16(neg) transcript variants, whereas IL-4 enhanced both the transcription of variants, including these exons (iNOS 13-16(pos)), and the expression of a 122 kDa iNOS protein. These results suggest that in B-CLL, a regulation process involving nitric oxide (.- NO) levels could occur by a post-transcriptional mechanism mediated by soluble factors. Our results also provide an insight into a new complementary proapoptotic action of F-ara in B-CLL by the induction of particular iNOS splice variants, leading to the activation of a caspase-3-dependent apoptotic pathway.

  2. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia

    PubMed Central

    Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.

    2017-01-01

    Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620

  3. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease

    PubMed Central

    Jeziorska, Danuta M.; Murray, Robert J. S.; De Gobbi, Marco; Gaentzsch, Ricarda; Garrick, David; Ayyub, Helena; Chen, Taiping; Li, En; Telenius, Jelena; Lynch, Magnus; Graham, Bryony; Smith, Andrew J. H.; Lund, Jonathan N.; Hughes, Jim R.; Higgs, Douglas R.

    2017-01-01

    The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease. PMID:28827334

  5. Silencing and transcriptional properties of the imprinted Airn ncRNA are independent of the endogenous promoter

    PubMed Central

    Stricker, Stefan H; Steenpass, Laura; Pauler, Florian M; Santoro, Federica; Latos, Paulina A; Huang, Ru; Koerner, Martha V; Sloane, Mathew A; Warczok, Katarzyna E; Barlow, Denise P

    2008-01-01

    The Airn macro ncRNA is the master regulator of imprinted expression in the Igf2r imprinted gene cluster where it silences three flanking genes in cis. Airn transcription shows unusual features normally viewed as promoter specific, such as impaired post-transcriptional processing and a macro size. The Airn transcript is 108 kb long, predominantly unspliced and nuclear localized, with only a minority being variably spliced and exported. Here, we show by deletion of the Airn ncRNA promoter and replacement with a constitutive strong or weak promoter that splicing suppression and termination, as well as silencing activity, are maintained by strong Airn expression from an exogenous promoter. This indicates that all functional regions are located within the Airn transcript. DNA methylation of the maternal imprint control element (ICE) restricts Airn expression to the paternal allele and we also show that a strong active promoter is required to maintain the unmethylated state of the paternal ICE. Thus, Airn expression not only induces silencing of flanking mRNA genes but also protects the paternal copy of the ICE from de novo methylation. PMID:19008856

  6. Teaching Normal Birth, Normally

    PubMed Central

    Hotelling, Barbara A

    2009-01-01

    Teaching normal-birth Lamaze classes normally involves considering the qualities that make birth normal and structuring classes to embrace those qualities. In this column, teaching strategies are suggested for classes that unfold naturally, free from unnecessary interventions. PMID:19436595

  7. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  9. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci

    PubMed Central

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too. PMID

  10. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    PubMed

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  11. Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    PubMed Central

    Kaer, Kristel; Branovets, Jelena; Hallikma, Anni; Nigumann, Pilvi; Speek, Mart

    2011-01-01

    Background Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. Methodology/Principal Findings Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. Conclusions/Significance Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression. PMID:22022525

  12. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae

    PubMed Central

    Davis, Carrie Anne; Ares, Manuel

    2006-01-01

    Mutations in RRP6 result in the accumulation of aberrant polyadenylated transcripts from small nucleolar RNA genes. We exploited this observation to search for novel noncoding RNA genes in the yeast genome. When RNA from rrp6Δ yeast is compared with wild-type on whole-genome microarrays, numerous intergenic loci exhibit an increased mutant/wild type signal ratio. Among these loci, we found one encoding a new C/D box small nucleolar RNA, as well as a surprising number that gave rise to heterogeneous Trf4p-polyadenylated RNAs with lengths of ≈250–500 nt. This class of RNAs is not easily detected in wild-type cells and appears associated with promoters. Fine mapping of several such transcripts shows they originate near known promoter elements but do not usually extend far enough to act as mRNAs, and may regulate the transcription of downstream mRNAs. Rather than being uninformative transcriptional “noise,” we hypothesize that these transcripts reflect important features of RNA polymerase activity at the promoter. This activity is normally undetectable in wild-type cells because the transcripts are somehow distinguished from true mRNAs and are degraded in an Rrp6p-dependent fashion in the nucleus. PMID:16484372

  13. Learning fast accurate movements requires intact frontostriatal circuits

    PubMed Central

    Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro

    2013-01-01

    The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037

  14. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    NASA Astrophysics Data System (ADS)

    Reed, Jason; Hsueh, Carlin; Mishra, Bud; Gimzewski, James K.

    2008-09-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.

  15. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  16. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  17. The Saccharomyces cerevisiae Cdk8 Mediator Represses AQY1 Transcription by Inhibiting Set1p-Dependent Histone Methylation.

    PubMed

    Law, Michael J; Finger, Michael A

    2017-03-10

    In the budding yeast Saccharomyces cerevisiae , nutrient depletion induces massive transcriptional reprogramming that relies upon communication between transcription factors, post-translational histone modifications, and the RNA polymerase II holoenzyme complex. Histone H3Lys4 methylation (H3Lys4 me), regulated by the Set1p-containing COMPASS methyltransferase complex and Jhd2p demethylase, is one of the most well-studied histone modifications. We previously demonstrated that the RNA polymerase II mediator components cyclin C-Cdk8p inhibit locus-specific H3Lys4 3me independently of Jhd2p Here, we identify loci subject to cyclin C- and Jhd2p-dependent histone H3Lys4 3me inhibition using chromatin immunoprecipitation (ChIP)-seq. We further characterized the independent and combined roles of cyclin C and Jhd2p in controlling H3Lys4 3me and transcription in response to fermentable and nonfermentable carbon at multiple loci. These experiments suggest that H3Lys4 3me alone is insufficient to induce transcription. Interestingly, we identified an unexpected role for cyclin C-Cdk8p in repressing AQY1 transcription, an aquaporin whose expression is normally induced during nutrient deprivation. These experiments, combined with previous work in other labs, support a two-step model in which cyclin C-Cdk8p mediate AQY1 transcriptional repression by stimulating transcription factor proteolysis and preventing Set1p recruitment to the AQY1 locus. Copyright © 2017 Law and Finger.

  18. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  19. Epigenetic priors for identifying active transcription factor binding sites.

    PubMed

    Cuellar-Partida, Gabriel; Buske, Fabian A; McLeay, Robert C; Whitington, Tom; Noble, William Stafford; Bailey, Timothy L

    2012-01-01

    Accurate knowledge of the genome-wide binding of transcription factors in a particular cell type or under a particular condition is necessary for understanding transcriptional regulation. Using epigenetic data such as histone modification and DNase I, accessibility data has been shown to improve motif-based in silico methods for predicting such binding, but this approach has not yet been fully explored. We describe a probabilistic method for combining one or more tracks of epigenetic data with a standard DNA sequence motif model to improve our ability to identify active transcription factor binding sites (TFBSs). We convert each data type into a position-specific probabilistic prior and combine these priors with a traditional probabilistic motif model to compute a log-posterior odds score. Our experiments, using histone modifications H3K4me1, H3K4me3, H3K9ac and H3K27ac, as well as DNase I sensitivity, show conclusively that the log-posterior odds score consistently outperforms a simple binary filter based on the same data. We also show that our approach performs competitively with a more complex method, CENTIPEDE, and suggest that the relative simplicity of the log-posterior odds scoring method makes it an appealing and very general method for identifying functional TFBSs on the basis of DNA and epigenetic evidence. FIMO, part of the MEME Suite software toolkit, now supports log-posterior odds scoring using position-specific priors for motif search. A web server and source code are available at http://meme.nbcr.net. Utilities for creating priors are at http://research.imb.uq.edu.au/t.bailey/SD/Cuellar2011. t.bailey@uq.edu.au Supplementary data are available at Bioinformatics online.

  20. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    PubMed Central

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  1. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  2. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    PubMed

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-03-01

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem.

    PubMed

    Hall, Hardy; Ellis, Brian

    2013-01-25

    Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.

  4. Relationships between Translation and Transcription Processes during fMRI Connectivity Scanning and Coded Translation and Transcription in Writing Products after Scanning in Children with and without Transcription Disabilities

    PubMed Central

    Wallis, Peter; Richards, Todd; Boord, Peter; Abbott, Robert; Berninger, Virginia

    2018-01-01

    Students with transcription disabilities (dysgraphia/impaired handwriting, n = 13 or dyslexia/impaired word spelling, n = 16) or without transcription disabilities (controls) completed transcription and translation (idea generating, planning, and creating) writing tasks during fMRI connectivity scanning and compositions after scanning, which were coded for transcription and translation variables. Compositions in both groups showed diversity in genre beyond usual narrative-expository distinction; groups differed in coded transcription but not translation variables. For the control group specific transcription or translation tasks during scanning correlated with corresponding coded transcription or translation skills in composition, but connectivity during scanning was not correlated with coded handwriting during composing in dysgraphia group and connectivity during translating was not correlated with any coded variable during composing in dyslexia group. Results are discussed in reference to the trend in neuroscience to use connectivity from relevant seed points while performing tasks and trends in education to recognize the generativity (creativity) of composing at both the genre and syntax levels. PMID:29600113

  5. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    NASA Astrophysics Data System (ADS)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  6. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  7. Characterization of Critical Domains within the Tumor Suppressor CASZ1 Required for Transcriptional Regulation and Growth Suppression

    PubMed Central

    Virden, Ryan A.

    2012-01-01

    CASZ1 is a zinc finger (ZF) transcription factor that is critical for controlling the normal differentiation of subtypes of neural and cardiac muscle cells. In neuroblastoma tumors, loss of CASZ1 is associated with poor prognosis and restoration of CASZ1 function suppresses neuroblastoma tumorigenicity. However, the key domains by which CASZ1 transcription controls developmental processes and neuroblastoma tumorigenicity have yet to be elucidated. In this study, we show that loss of any one of ZF1 to ZF4 resulted in a 58 to 79% loss in transcriptional activity, as measured by induction of tyrosine hydroxylase promoter-luciferase activity, compared to that of wild-type (WT) CASZ1b. Mutation of ZF5 or deletion of the C-terminal sequence of amino acids (aa) 728 to 1166 (a truncation of 38% of the protein) does not significantly alter transcriptional function. A series of N-terminal truncations reveals a critical transcriptional activation domain at aa 31 to 185 and a nuclear localization signal at aa 23 to 29. Soft agar colony formation assays and xenograft studies show that WT CASZ1b is more active in suppressing neuroblastoma growth than CASZ1b with a ZF4 mutation or a deletion of aa 31 to 185. This study identifies key domains needed for CASZ1b to regulate gene transcription. Furthermore, we establish a link between loss of CASZ1b transcriptional activity and attenuation of CASZ1b-mediated inhibition of neuroblastoma growth and tumorigenicity. PMID:22331471

  8. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  9. Estimation of Teacher Practices Based on Text Transcripts of Teacher Speech Using a Support Vector Machine Algorithm

    ERIC Educational Resources Information Center

    Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen

    2012-01-01

    Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…

  10. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men

    PubMed Central

    Ellis, Peter J I; Furlong, Robert A; Conner, Sarah J; Kirkman‐Brown, Jackson; Afnan, Masoud; Barratt, Christopher; Griffin, Darren K; Affara, Nabeel A

    2007-01-01

    Introduction Microarray gene‐expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene‐expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell‐specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller‐scale patterns were also observed, relating to unique features of the individual biopsies. PMID:17496197

  11. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    PubMed

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  13. Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero

    PubMed Central

    Tea, Joy S.; Chihara, Takahiro; Luo, Liqun

    2010-01-01

    Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276

  14. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  15. Novel mechanism of transcriptional regulation of cell matrix protein through CREB

    PubMed Central

    Habib, Samy L; Mohan, Sumathy; Liang, Sitai; Li, Baojie; Yadav, Mukesh

    2015-01-01

    The transcription mechanism(s) of renal cell matrix accumulation in diabetes does not explored. Phosphorylation of the transcription factor cAMP-responsive element binding protein (CREB) significantly increased in cells treated with high glucose (HG) compared to cell grown in normal glucose (NG). Cells pretreated with rapamycin before exposure to HG showed significant decrease phosphorylation of CREB, increase in AMPK activity and decrease protein/mRNA and promoter activity of fibronectin. In addition, cells transfected with siRNA against CREB showed significant increase in AMPK activity, decrease in protein/mRNA and promoter activity of fibronectin. Cells treated with HG showed nuclear localization of p-CREB while pretreated cells with rapamycin reversed HG effect. Moreover, gel shift analysis shows increase binding of CREB to fibronectin promoter in cells treated with HG while cells pretreated with rapamycin reversed the effect of HG. Furthermore, db/db mice treated with rapamycin showed significant increase in AMPK activity, decrease in expression of p-CREB and protein/mRNA of fibronectin. Strong staining of fibronectin and p-CREB was detected in kidney cortex of db/db mice while treated mice with rapamycin reversed hyperglycemia effect. In summary, our data provide a novel mechanism of transcriptional regulation of fibronectin through CREB that may be used as therapeutic approach to prevent diabetes complications. PMID:26115221

  16. The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels.

    PubMed

    Hernández-Prieto, Miguel A; Lin, Yuankui; Chen, Min

    2017-02-09

    Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina , multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA , we detected a similar transcriptional pattern for psbJ and psbU , which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. Copyright © 2017 Hernandez-Prieto et al.

  17. Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Pu, Fei; Yang, Bingye; Ke, Caihuan

    2015-07-01

    Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 ( ACT-2), elongation factor 1 alpha ( EF-1α), elongation factor 1 beta ( EF-1β), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH), ubiquitin ( UBQ), β-tubulin ( β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene ( Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.

  18. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    NASA Astrophysics Data System (ADS)

    Jang, Jae K.; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2016-12-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  19. Gene transcription in sea otters (Enhydra lutris); development of a diagnostic tool for sea otter and ecosystem health

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Murray, Michael; Haulena, Martin; Tuttle, Judy; van Bonn, William; Adams, Lance; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Tinker, M. Tim; Keister, Robin; Stott, Jeffrey L.

    2012-01-01

    Gene transcription analysis for diagnosing or monitoring wildlife health requires the ability to distinguish pathophysiological change from natural variation. Herein, we describe methodology for the development of quantitative real-time polymerase chain reaction (qPCR) assays to measure differential transcript levels of multiple immune function genes in the sea otter (Enhydra lutris); sea otter-specific qPCR primer sequences for the genes of interest are defined. We establish a ‘reference’ range of transcripts for each gene in a group of clinically healthy captive and free-ranging sea otters. The 10 genes of interest represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumour suppression, cellular stress response, xenobiotic metabolizing enzymes, antioxidant enzymes and cell–cell adhesion. The cycle threshold (CT) measures for most genes were normally distributed; the complement cytolysis inhibitor was the exception. The relative enumeration of multiple gene transcripts in simple peripheral blood samples expands the diagnostic capability currently available to assess the health of sea otters in situ and provides a better understanding of the state of their environment.

  20. Indentation stiffness does not discriminate between normal and degraded articular cartilage.

    PubMed

    Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle

    2007-08-01

    Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.

  1. Multiple Oxygen Tension Environments Reveal Diverse Patterns of Transcriptional Regulation in Primary Astrocytes

    PubMed Central

    Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart

    2011-01-01

    The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745

  2. Analysis of the regulation of viral transcription.

    PubMed

    Gloss, Bernd; Kalantari, Mina; Bernard, Hans-Ulrich

    2005-01-01

    Despite the small genomes and number of genes of papillomaviruses, regulation of their transcription is very complex and governed by numerous transcription factors, cis-responsive elements, and epigenetic phenomena. This chapter describes the strategies of how one can approach a systematic analysis of these factors, elements, and mechanisms. From the numerous different techniques useful for studying transcription, we describe in detail three selected protocols of approaches that have been relevant in shaping our knowledge of human papillomavirus transcription. These are DNAse I protection ("footprinting") for location of transcription-factor binding sites, electrophoretic mobility shifts ("gelshifts") for analysis of bound transcription factors, and bisulfite sequencing for analysis of DNA methylation as a prerequisite for epigenetic transcriptional regulation.

  3. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  4. Sample normalization methods in quantitative metabolomics.

    PubMed

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts.

    PubMed

    Shimada, Yukiko; Mohn, Fabio; Bühler, Marc

    2016-12-01

    Small RNAs regulate chromatin modification and transcriptional gene silencing across the eukaryotic kingdom. Although these processes have been well studied, fundamental mechanistic aspects remain obscure. Specifically, it is unclear exactly how small RNA-loaded Argonaute protein complexes target chromatin to mediate silencing. Here, using fission yeast, we demonstrate that transcription of the target locus is essential for RNA-directed formation of heterochromatin. However, high transcriptional activity is inhibitory; thus, a transcriptional window exists that is optimal for silencing. We further found that pre-mRNA splicing is compatible with RNA-directed heterochromatin formation. However, the kinetics of pre-mRNA processing is critical. Introns close to the 5' end of a transcript that are rapidly spliced result in a bistable response whereby the target either remains euchromatic or becomes fully silenced. Together, our results discount siRNA-DNA base pairing in RNA-mediated heterochromatin formation, and the mechanistic insights further reveal guiding paradigms for the design of small RNA-directed chromatin silencing studies in multicellular organisms. © 2016 Shimada et al.; Published by Cold Spring Harbor Laboratory Press.

  6. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells.

    PubMed

    Hua, Ping; Feng, Wenguang; Rezonzew, Gabriel; Chumley, Phillip; Jaimes, Edgar A

    2012-06-01

    Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.

  7. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  8. Stalled RNAP-II molecules bound to non-coding rDNA spacers are required for normal nucleolus architecture.

    PubMed

    Freire-Picos, M A; Landeira-Ameijeiras, V; Mayán, María D

    2013-07-01

    The correct distribution of nuclear domains is critical for the maintenance of normal cellular processes such as transcription and replication, which are regulated depending on their location and surroundings. The most well-characterized nuclear domain, the nucleolus, is essential for cell survival and metabolism. Alterations in nucleolar structure affect nuclear dynamics; however, how the nucleolus and the rest of the nuclear domains are interconnected is largely unknown. In this report, we demonstrate that RNAP-II is vital for the maintenance of the typical crescent-shaped structure of the nucleolar rDNA repeats and rRNA transcription. When stalled RNAP-II molecules are not bound to the chromatin, the nucleolus loses its typical crescent-shaped structure. However, the RNAP-II interaction with Seh1p, or cryptic transcription by RNAP-II, is not critical for morphological changes. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Poly A- transcripts expressed in HeLa cells.

    PubMed

    Wu, Qingfa; Kim, Yeong C; Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q; Wu, Chung-I; Wang, San Ming

    2008-07-30

    Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3' poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3' poly A tail; 3) applying the 454 sequencing technology for massive 3' EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3' ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3' poly A tail. Most of the poly A- 3' ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3' ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts.

  10. How to normalize metatranscriptomic count data for differential expression analysis.

    PubMed

    Klingenberg, Heiner; Meinicke, Peter

    2017-01-01

    Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable detection of transcriptional differences. Until now it has not been clear whether and how the transcriptomic approach can be used for differential expression analysis in metatranscriptomics. We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations in the taxonomic composition of transcripts across different samples. As a main consequence the correct normalization of metatranscriptomic count data under this model requires the taxonomic separation of the data into organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization and allows us to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and recombination of scaled counts we provide a simple R script. When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data with an organism-independent (global) scaling of counts the resulting differences may be difficult to interpret. The differences may correspond to changing functional profiles of the contributing organisms but may also result from a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation and therefore the resulting differences actually reflect a different behavior of organisms under changing conditions. In simulation studies we show that the divergence between results from global and taxon-specific scaling can be drastic. In particular, the variation of organism abundances can imply a considerable increase of significant differences with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-specific and global scaling can differ

  11. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae.

    PubMed

    Reavey, Caitlin T; Hickman, Mark J; Dobi, Krista C; Botstein, David; Winston, Fred

    2015-10-01

    Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance. Copyright © 2015 by the Genetics Society of America.

  12. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  13. A structure-based kinetic model of transcription.

    PubMed

    Zuo, Yuhong; Steitz, Thomas A

    2017-01-01

    During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.

  14. Transcriptional response of peripheral lymphocytes to early fibrosarcoma: a model system for cancer detection based on hybridization signatures.

    PubMed

    Marques, Márcia M C; Junta, Cristina M; Zárate-Blades, Carlos R; Sakamoto-Hojo, Elza Tiemi; Donadi, Eduardo A; Passos, Geraldo A S

    2009-07-01

    Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer.

  15. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    PubMed

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  16. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  17. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  18. Meta-analysis of published transcriptional and translational fold changes reveals a preference for low-fold inductions.

    PubMed

    Wren, Jonathan D; Conway, Tyrrell

    2006-01-01

    The goals of this study were to gain a better quantitative understanding of the dynamic range of transcriptional and translational response observed in biological systems and to examine the reporting of regulatory events for trends and biases. A straightforward pattern-matching routine extracted 3,408 independent observations regarding transcriptional fold-changes and 1,125 regarding translational fold-changes from over 15 million MEDLINE abstracts. Approximately 95% of reported changes were > or =2-fold. Further, the historical trend of reporting individual fold-changes is declining in favor of high-throughput methods for transcription but not translation. Where it was possible to compare the average fold-changes in transcription and translation for the same gene/product (203 examples), approximately 53% were a < or =2-fold difference, suggesting a loose tendency for the two to be coupled in magnitude. We found also that approximately three-fourths of reported regulatory events have been at the transcriptional level. The frequency distribution appears to be normally distributed and peaks near 2-fold, suggesting that nature selects for a low-energy solution to regulatory responses. Because high-throughput technologies ordinarily sacrifice measurement quality for quantity, this also suggests that many regulatory events may not be reliably detectable by such technologies. Text mining of regulatory events and responses provides additional information incorporable into microarray analysis, such as prior fold-change observations and flagging genes that are regulated post-transcription. All extracted regulation and response patterns can be downloaded at the following website: www.ou.edu/microarray/ oumcf/Meta_analysis.xls.

  19. A difference in the pattern of repair in a large genomic region in UV-irradiated normal human and Cockayne syndrome cells.

    PubMed

    Shanower, G A; Kantor, G J

    1997-11-01

    Xeroderma pigmentosum group C cells repair DNA damaged by ultraviolet radiation in an unusual pattern throughout the genome. They remove cyclobutane pyrimidine dimers only from the DNA of transcriptionally active chromatin regions and only from the strand that contains the transcribed strand. The repair proceeds in a manner that creates damage-free islands which are in some cases much larger than the active gene associated with them. For example, the small transcriptionally active beta-actin gene (3.5 kb) is repaired as part of a 50 kb single-stranded region. The repair responsible for creating these islands requires active transcription, suggesting that the two activities are coupled. A preferential repair pathway in normal human cells promotes repair of actively transcribed DNA strands and is coupled to transcription. It is not known if similar large islands, referred to as repair domains, are preferentially created as a result of the coupling. Data are presented showing that in normal cells, preferential repair in the beta-actin region is associated with the creation of a large, completely repaired region in the partially repaired genome. Repair at other genomic locations which contain inactive genes (insulin, 754) does not create similar large regions as quickly. In contrast, repair in Cockayne syndrome cells, which are defective in the preferential repair pathway but not in genome-overall repair, proceeds in the beta-actin region by a mechanism which does not create preferentially a large repaired region. Thus a correlation between the activity required to preferentially repair active genes and that required to create repaired domains is detected. We propose an involvement of the transcription-repair coupling factor in a coordinated repair pathway for removing DNA damage from entire transcription units.

  20. A structure-based kinetic model of transcription

    PubMed Central

    Steitz, Thomas A.

    2017-01-01

    ABSTRACT During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement. PMID:27656764

  1. Investigating transcription reinitiation through in vitro approaches

    PubMed Central

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies. PMID:25764113

  2. Accurate registration of temporal CT images for pulmonary nodules detection

    NASA Astrophysics Data System (ADS)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  3. Poly A- Transcripts Expressed in HeLa Cells

    PubMed Central

    Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q.; Wu, Chung-I; Wang, San Ming

    2008-01-01

    Background Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3′ poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. Methodology/Principal Findings We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3′ poly A tail; 3) applying the 454 sequencing technology for massive 3′ EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3′ ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3′ poly A tail. Most of the poly A- 3′ ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3′ ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Conclusion/Significance Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts. PMID:18665230

  4. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  5. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Zhang, Songdou; An, Shiheng; Li, Zhen; Wu, Fengming; Yang, Qingpo; Liu, Yichen; Cao, Jinjun; Zhang, Huaijiang; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-25

    Recent studies have focused on determining functional genes and microRNAs in the pest Helicoverpa armigera (Lepidoptera: Noctuidae). Most of these studies used quantitative real-time PCR (qRT-PCR). Suitable reference genes are necessary to normalize gene expression data of qRT-PCR. However, a comprehensive study on the reference genes in H. armigera remains lacking. Twelve candidate reference genes of H. armigera were selected and evaluated for their expression stability under different biotic and abiotic conditions. The comprehensive stability ranking of candidate reference genes was recommended by RefFinder and the optimal number of reference genes was calculated by geNorm. Two target genes, thioredoxin (TRX) and Cu/Zn superoxide dismutase (SOD), were used to validate the selection of reference genes. Results showed that the most suitable candidate combinations of reference genes were as follows: 28S and RPS15 for developmental stages; RPS15 and RPL13 for larvae tissues; EF and RPL27 for adult tissues; GAPDH, RPL27, and β-TUB for nuclear polyhedrosis virus infection; RPS15 and RPL32 for insecticide treatment; RPS15 and RPL27 for temperature treatment; and RPL32, RPS15, and RPL27 for all samples. This study not only establishes an accurate method for normalizing qRT-PCR data in H. armigera but also serve as a reference for further study on gene transcription in H. armigera and other insects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation

    PubMed Central

    Knott, Simon RV; Munera Maravilla, Ester; Jackson, Benjamin T; Wild, Sophia A; Kovacevic, Tatjana; Stork, Eva Maria; Zhou, Meng; Erard, Nicolas; Lee, Emily; Kelley, David R; Roth, Mareike; Barbosa, Inês AM; Zuber, Johannes; Rinn, John L

    2017-01-01

    A substantial fraction of the genome is transcribed in a cell-type-specific manner, producing long non-coding RNAs (lncRNAs), rather than protein-coding transcripts. Here, we systematically characterize transcriptional dynamics during hematopoiesis and in hematological malignancies. Our analysis of annotated and de novo assembled lncRNAs showed many are regulated during differentiation and mis-regulated in disease. We assessed lncRNA function via an in vivo RNAi screen in a model of acute myeloid leukemia. This identified several lncRNAs essential for leukemia maintenance, and found that a number act by promoting leukemia stem cell signatures. Leukemia blasts show a myeloid differentiation phenotype when these lncRNAs were depleted, and our data indicates that this effect is mediated via effects on the MYC oncogene. Bone marrow reconstitutions showed that a lncRNA expressed across all progenitors was required for the myeloid lineage, whereas the other leukemia-induced lncRNAs were dispensable in the normal setting. PMID:28875933

  7. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation.

    PubMed

    Delás, M Joaquina; Sabin, Leah R; Dolzhenko, Egor; Knott, Simon Rv; Munera Maravilla, Ester; Jackson, Benjamin T; Wild, Sophia A; Kovacevic, Tatjana; Stork, Eva Maria; Zhou, Meng; Erard, Nicolas; Lee, Emily; Kelley, David R; Roth, Mareike; Barbosa, Inês Am; Zuber, Johannes; Rinn, John L; Smith, Andrew D; Hannon, Gregory J

    2017-09-06

    A substantial fraction of the genome is transcribed in a cell-type-specific manner, producing long non-coding RNAs (lncRNAs), rather than protein-coding transcripts. Here, we systematically characterize transcriptional dynamics during hematopoiesis and in hematological malignancies. Our analysis of annotated and de novo assembled lncRNAs showed many are regulated during differentiation and mis-regulated in disease. We assessed lncRNA function via an in vivo RNAi screen in a model of acute myeloid leukemia. This identified several lncRNAs essential for leukemia maintenance, and found that a number act by promoting leukemia stem cell signatures. Leukemia blasts show a myeloid differentiation phenotype when these lncRNAs were depleted, and our data indicates that this effect is mediated via effects on the MYC oncogene. Bone marrow reconstitutions showed that a lncRNA expressed across all progenitors was required for the myeloid lineage, whereas the other leukemia-induced lncRNAs were dispensable in the normal setting.

  8. Deformation field correction for spatial normalization of PET images

    PubMed Central

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  9. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Aimy; Loots, Gabriela G.

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  10. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE PAGES

    Sebastian, Aimy; Loots, Gabriela G.

    2016-10-19

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  11. Patient-specific distal radius locking plate for fixation and accurate 3D positioning in corrective osteotomy.

    PubMed

    Dobbe, J G G; Vroemen, J C; Strackee, S D; Streekstra, G J

    2014-11-01

    Preoperative three-dimensional planning methods have been described extensively. However, transferring the virtual plan to the patient is often challenging. In this report, we describe the management of a severely malunited distal radius fracture using a patient-specific plate for accurate spatial positioning and fixation. Twenty months postoperatively the patient shows almost painless reconstruction and a nearly normal range of motion.

  12. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    PubMed

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  13. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational

  14. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  15. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  16. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  17. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse

    PubMed Central

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named ‘RegNetwork’, of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org PMID:26424082

  18. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines.

    PubMed

    Latypov, Vitaly F; Tubbs, Julie L; Watson, Amanda J; Marriott, Andrew S; McGown, Gail; Thorncroft, Mary; Wilkinson, Oliver J; Senthong, Pattama; Butt, Amna; Arvai, Andrew S; Millington, Christopher L; Povey, Andrew C; Williams, David M; Santibanez-Koref, Mauro F; Tainer, John A; Margison, Geoffrey P

    2012-07-13

    Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.

    PubMed

    Lun, Aaron T L; Bach, Karsten; Marioni, John C

    2016-04-27

    Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.

  20. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription.

    PubMed

    Kogoma, T

    1997-06-01

    Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.

  1. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the

  2. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.).

    PubMed

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-02-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq.

    PubMed

    Hu, Ming; Zhu, Yu; Taylor, Jeremy M G; Liu, Jun S; Qin, Zhaohui S

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful new technology for mapping and quantifying transcriptomes using ultra high-throughput next-generation sequencing technologies. Using deep sequencing, gene expression levels of all transcripts including novel ones can be quantified digitally. Although extremely promising, the massive amounts of data generated by RNA-Seq, substantial biases and uncertainty in short read alignment pose challenges for data analysis. In particular, large base-specific variation and between-base dependence make simple approaches, such as those that use averaging to normalize RNA-Seq data and quantify gene expressions, ineffective. In this study, we propose a Poisson mixed-effects (POME) model to characterize base-level read coverage within each transcript. The underlying expression level is included as a key parameter in this model. Since the proposed model is capable of incorporating base-specific variation as well as between-base dependence that affect read coverage profile throughout the transcript, it can lead to improved quantification of the true underlying expression level. POME can be freely downloaded at http://www.stat.purdue.edu/~yuzhu/pome.html. yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary data are available at Bioinformatics online.

  4. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.

    PubMed Central

    Venema, J; van Hoffen, A; Natarajan, A T; van Zeeland, A A; Mullenders, L H

    1990-01-01

    We have measured removal of pyrimidine dimers in defined DNA sequences in confluent and actively growing normal human and xeroderma pigmentosum complementation group C (XP-C) fibroblasts exposed to 10 J/m2 UV-irradiation. In normal fibroblasts 45% and 90% of the dimers are removed from the transcriptionally active adenosine deaminase (ADA) gene within 4 and 24 hours after irradiation respectively. Equal repair efficiencies are found in fragments located entirely within the transcription unit or partly in the 3' flanking region of the ADA gene. The rate and extent of dimer removal from the dihydrofolate reductase (DHFR) gene is very similar to that of the ADA gene. Repair of the transcriptionally inactive 754 locus is less efficient: 18% and 52% of the dimers are removed within 4 and 24 hours respectively. In spite of the limited overall repair capacity, confluent XP-C fibroblasts efficiently remove dimers from the ADA and DHFR genes: about 90% and 50% within 24 hours respectively. The 3' end of the ADA gene is repaired as efficiently as in normal human fibroblasts, but less efficient repair occurs in DNA fragments located in the DHFR gene and at the 5' end of the ADA gene. Repair of the inactive 754 locus does not exceed the very slow rate of dimer removal from the genome overall. Confluent and actively growing XP-C cells show similar efficiencies of repair of the ADA, DHFR and 754 genes. Our findings suggest the existence of two independently operating pathways directed towards repair of pyrimidine dimers in either active or inactive chromatin. XP-C cells have lost the capacity to repair inactive chromatin, but are still able to repair active chromatin. Images PMID:2308842

  5. Stochastic Model of Supercoiling-Dependent Transcription

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.

    2016-07-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.

  6. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  7. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  8. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy

    PubMed Central

    Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J.; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G.; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A.; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R.; Baranello, Laura; Levens, David; Kraemer, Kenneth H.; Stefanini, Miria

    2016-01-01

    The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP. PMID:26996949

  9. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  10. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  11. Electronic Transcripts: Past, Present, and Future

    ERIC Educational Resources Information Center

    Harris, Sarah; Hannah, Andrew; Stones, Dave; Morley, Robert

    2011-01-01

    Electronic transcripts are no longer a concept awaiting definition. They are here to stay. Although paper transcripts remain the standard--at least in terms of volume--an ever-increasing number and eventual majority of students and alumni will expect if not require electronic transcripts. College registrars and admissions officers' obligation to…

  12. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  13. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  14. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  15. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  16. Expression of Transcription Factors and Nuclear Receptors in Mixed Germ Cell-Sex Cord Stromal Tumor and Related Tumors of the Gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2015-11-01

    In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors.

  17. The role of STATs in transcriptional control and their impact on cellular function.

    PubMed

    Bromberg, J; Darnell, J E

    2000-05-15

    The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ

  18. Trojan dynamics well approximated by a new Hamiltonian normal form

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Locatelli, Ugo

    2015-10-01

    We revisit a classical perturbative approach to the Hamiltonian related to the motions of Trojan bodies, in the framework of the planar circular restricted three-body problem, by introducing a number of key new ideas in the formulation. In some sense, we adapt the approach of Garfinkel to the context of the normal form theory and its modern techniques. First, we make use of Delaunay variables for a physically accurate representation of the system. Therefore, we introduce a novel manipulation of the variables so as to respect the natural behaviour of the model. We develop a normalization procedure over the fast angle which exploits the fact that singularities in this model are essentially related to the slow angle. Thus, we produce a new normal form, i.e. an integrable approximation to the Hamiltonian. We emphasize some practical examples of the applicability of our normalizing scheme, e.g. the estimation of the stable libration region. Finally, we compare the level curves produced by our normal form with surfaces of section provided by the integration of the non-normalized Hamiltonian, with very good agreement. Further precision tests are also provided. In addition, we give a step-by-step description of the algorithm, allowing for extensions to more complicated models.

  19. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  20. Suppression of PTEN transcription by UVA

    PubMed Central

    Zhao, Baozhong; Ming, Mei; He, Yu-Ying

    2012-01-01

    Although UVA has different physical and biological targets than UVB, the contribution of UVA to skin cancer susceptibility and its molecular basis remain largely unknown. Here we show that chronic UVA radiation suppresses PTEN expression at the mRNA level. Subchronic and acute UVA radiation also down-regulated PTEN in normal human epidermal keratinocytes, skin culture and mouse skin. At the molecular level, chronic UVA radiation decreased the transcriptional activity of the PTEN promoter in a methylation-independent manner, while it had no effect on the protein stability or mRNA stability of PTEN. In contrast, we found that UVA-induced activation of the Ras/ERK/AKT and NF-κB pathways plays an important role in UV-induced PTEN down-regulation. Inhibiting ERK or AKT increases PTEN expression. Our findings may provide unique insights into PTEN down-regulation as a critical component of UVA’s molecular impact during keratinocyte transformation. PMID:23129115

  1. A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue

    PubMed Central

    Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina

    2013-01-01

    We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235

  2. Signal Transducers and Activators of Transcription: STATs-Mediated Mitochondrial Neuroprotection

    PubMed Central

    Lin, Hung Wen; Thompson, John W.; Morris, Kahlilia C.

    2011-01-01

    Abstract Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia. Antioxid. Redox Signal. 14, 1853–1861. PMID:20712401

  3. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer.

    PubMed

    Snezhkina, Anastasiya Vladimirovna; Krasnov, George Sergeevich; Zaretsky, Andrew Rostislavovich; Zhavoronkov, Alex; Nyushko, Kirill Mikhailovich; Moskalev, Alexey Alexandrovich; Karpova, Irina Yurievna; Afremova, Anastasiya Isaevna; Lipatova, Anastasiya Valerievna; Kochetkov, Dmitriy Vladimitovich; Fedorova, Maria Sergeena; Volchenko, Nadezhda Nikolaevna; Sadritdinova, Asiya Fayazovna; Melnikova, Nataliya Vladimirovna; Sidorov, Dmitry Vladimirovich; Popov, Anatoly Yurievich; Kalinin, Dmitry Valerievich; Kaprin, Andrey Dmitrievich; Alekseev, Boris Yakovlevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna

    2016-12-28

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.

  4. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening

    PubMed Central

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M.; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M.; Smith, Rhonda J.; Ebeler, Susan E.

    2017-01-01

    Abstract Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. PMID:28338755

  5. Widespread antisense transcription of Populus genome under drought.

    PubMed

    Yuan, Yinan; Chen, Su

    2018-06-06

    Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

  6. Expression profiling of snoRNAs in normal hematopoiesis and AML

    PubMed Central

    Warner, Wayne A.; Spencer, David H.; Trissal, Maria; White, Brian S.; Helton, Nichole; Ley, Timothy J.

    2018-01-01

    Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis. PMID:29365324

  7. Differences in otosclerotic and normal human stapedial osteoblast properties are normalized by alendronate in vitro.

    PubMed

    Gronowicz, Gloria; Richardson, Yvonne L; Flynn, John; Kveton, John; Eisen, Marc; Leonard, Gerald; Aronow, Michael; Rodner, Craig; Parham, Kourosh

    2014-10-01

    Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10(-10)M-10(-8)M alendronate. Academic hospital. Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  8. Strategies to identify natural antisense transcripts.

    PubMed

    Sun, Yulong; Li, Dijie; Zhang, Ru; Peng, Shang; Zhang, Ge; Yang, Tuanmin; Qian, Airong

    2017-01-01

    Natural antisense transcripts, originally considered as transcriptional noises arising from so-called "junk DNA″, are recently recognized as important modulators for gene regulation. They are prevalent in nearly all realms of life and have been found to modulate gene expression positively or negatively. By affecting almost all stages of gene expression range from pre-transcriptional, transcriptional and post-transcriptional to translation, NATs are fundamentally involved in various biological processes. However, compared to increasing huge data from transcriptional analysis especially high-throughput sequencing technologies (such as RNA-seq), limited functional NATs (around 70) are so far reported, which hinder our advanced comprehensive understanding for this field. Hence, efficient strategies for identifying NATs are urgently desired. In this review, we discussed the current strategies for identifying NATs, with a focus on the advantages, disadvantages, and applications of methods isolating functional NATs. Moreover, publicly available databases for NATs were also discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Directed Differentiation of Embryonic Stem Cells Into Cardiomyocytes by Bacterial Injection of Defined Transcription Factors.

    PubMed

    Bai, Fang; Ho Lim, Chae; Jia, Jingyue; Santostefano, Katherine; Simmons, Chelsey; Kasahara, Hideko; Wu, Weihui; Terada, Naohiro; Jin, Shouguang

    2015-10-09

    Forced expression of defined transcriptional factors has been well documented as an effective method for cellular reprogramming or directed differentiation. However, transgene expression is not amenable for therapeutic application due to potential insertional mutagenesis. Here, we have developed a bacterial type III secretion system (T3SS)-based protein delivery tool and shown its application in directing pluripotent stem cell differentiation by a controlled delivery of transcription factors relevant to early heart development. By fusing to an N-terminal secretion sequence for T3SS-dependent injection, three transcriptional factors, namely Gata4, Mef2c, and Tbx5 (abbreviated as GMT), were translocated into murine embryonic stem cells (ESCs), where the proteins are effectively targeted to the nucleus with an average intracellular half-life of 5.5 hours. Exogenous GMT protein injection activated the cardiac program, and multiple rounds of GMT protein delivery significantly improved the efficiency of ESC differentiation into cardiomyocytes. Combination of T3SS-mediated GMT delivery and Activin A treatment showed an additive effect, resulting in on average 60% of the ESCs differentiated into cardiomyocytes. ESC derived cardiomyocytes displayed spontaneous rhythmic contractile movement as well as normal hormonal responses. This work serves as a foundation for the bacterial delivery of multiple transcription factors to direct cell fate without jeopardizing genomic integrity.

  10. Directed Differentiation of Embryonic Stem Cells Into Cardiomyocytes by Bacterial Injection of Defined Transcription Factors

    PubMed Central

    Bai, Fang; Ho Lim, Chae; Jia, Jingyue; Santostefano, Katherine; Simmons, Chelsey; Kasahara, Hideko; Wu, Weihui; Terada, Naohiro; Jin, Shouguang

    2015-01-01

    Forced expression of defined transcriptional factors has been well documented as an effective method for cellular reprogramming or directed differentiation. However, transgene expression is not amenable for therapeutic application due to potential insertional mutagenesis. Here, we have developed a bacterial type III secretion system (T3SS)-based protein delivery tool and shown its application in directing pluripotent stem cell differentiation by a controlled delivery of transcription factors relevant to early heart development. By fusing to an N-terminal secretion sequence for T3SS-dependent injection, three transcriptional factors, namely Gata4, Mef2c, and Tbx5 (abbreviated as GMT), were translocated into murine embryonic stem cells (ESCs), where the proteins are effectively targeted to the nucleus with an average intracellular half-life of 5.5 hours. Exogenous GMT protein injection activated the cardiac program, and multiple rounds of GMT protein delivery significantly improved the efficiency of ESC differentiation into cardiomyocytes. Combination of T3SS-mediated GMT delivery and Activin A treatment showed an additive effect, resulting in on average 60% of the ESCs differentiated into cardiomyocytes. ESC derived cardiomyocytes displayed spontaneous rhythmic contractile movement as well as normal hormonal responses. This work serves as a foundation for the bacterial delivery of multiple transcription factors to direct cell fate without jeopardizing genomic integrity. PMID:26449528

  11. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-11-01

    PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.

  12. SeqTU: A web server for identification of bacterial transcription units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Chou, Wen -Chi; Ma, Qin

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  13. SeqTU: A web server for identification of bacterial transcription units

    DOE PAGES

    Chen, Xin; Chou, Wen -Chi; Ma, Qin; ...

    2017-03-07

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  14. TFIIH and P-TEFb Coordinate Transcription with Capping Enzyme Recruitment at Specific Genes in Fission Yeast

    PubMed Central

    Viladevall, Laia; St. Amour, Courtney V.; Rosebrock, Adam; Schneider, Susanne; Zhang, Chao; Allen, Jasmina J.; Shokat, Kevan M.; Schwer, Beate; Leatherwood, Janet K.; Fisher, Robert P.

    2009-01-01

    Summary Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5—a CDK substrate and regulator of elongation—accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient, and necessary, to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs. PMID:19328067

  15. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  16. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.

    PubMed

    Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel

    2008-03-15

    Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.

  17. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

    PubMed

    Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai

    2015-12-18

    Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively

  18. Post-transcriptional regulation of breast cancer resistance protein after intestinal ischemia-reperfusion.

    PubMed

    Ogura, Jiro; Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2008-05-01

    Breast cancer resistance protein (BCRP), the product of the ABCG2 gene, is a recently identified ATP binding cassette half-transporter. BCRP is expressed in a variety of tumor cells and many normal human tissues. In the small intestine, BCRP can limit the influx and facilitate the efflux to prevent intracellular accumulation of BCRP substrates. Ischemia-reperfusion (I/R) induces the release of reactive oxygen species, and organs are severely damaged by I/R. It has been shown that the expression of transporters was altered in the organ after I/R. The present study was undertaken to clarify the expression of BCRP after intestinal I/R. We showed that the expression level of Bcrp was significantly decreased at 1 h after I/R. Bcrp mRNA level was not altered at 1 h after I/R. These results suggest that Bcrp expression was regulated by a post-transcriptional regulation mechanism after intestinal I/R. Bcrp mRNA level was increased at 24 h after I/R, and the expression level of Bcrp protein was of the same level or slightly increased compared with sham operated-rats. Bcrp was slightly located at the intestinal membrane at 24 h after intestinal I/R. These results suggested that Bcrp was not translocated to the intestinal membrane after intestinal I/R. There is little information on post-transcriptional regulation compared with information on transcriptional regulation. In this study, it was shown that Bcrp expression is regulated by post-transcriptional regulation after intestinal I/R. These results of this study may provide important information for further studies aimed at revealing the biological function of Bcrp.

  19. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  20. Transcription Factor RFX1 Is Crucial for Maintenance of Genome Integrity in Fusarium graminearum

    PubMed Central

    Min, Kyunghun; Son, Hokyoung; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Harris, Steven D.

    2014-01-01

    The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity. PMID:24465002