Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.
Hunter, Brian; Guo, Zhixiong
2012-04-20
The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux. PMID:22534933
Marelli, Damián; Baumgartner, Robert; Majdak, Piotr
2015-01-01
Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930
Ratcliff, Laura E; Grisanti, Luca; Genovese, Luigi; Deutsch, Thierry; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang; Beljonne, David; Cornil, Jérôme
2015-05-12
A fast and accurate scheme has been developed to evaluate two key molecular parameters (on-site energies and transfer integrals) that govern charge transport in organic supramolecular architecture devices. The scheme is based on a constrained density functional theory (CDFT) approach implemented in the linear-scaling BigDFT code that exploits a wavelet basis set. The method has been applied to model disordered structures generated by force-field simulations. The role of the environment on the transport parameters has been taken into account by building large clusters around the active molecules involved in the charge transfer. PMID:26574411
NASA Technical Reports Server (NTRS)
Taback, I.
1979-01-01
The vulnerability of electronic equipment to carbon fibers is studied. The effectiveness of interfaces, such as filters, doors, window screens, and cabinets, which affect the concentration, exposure, or deposition of carbon fibers on both (internal and external) sides of the interface is examined. The transfer function of multilayer aluminum mesh, wet and dry, polyurethane foam, and window screen are determined as a function of air velocity. FIlters installed in typical traffic control boxes and air conditioners are also considered.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700
Accurate density functional thermochemistry for larger molecules.
Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.
1997-06-20
Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).
Accurate momentum transfer cross section for the attractive Yukawa potential
Khrapak, S. A.
2014-04-15
Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.
Goulding, J.R. )
1991-01-01
This paper details the approach and methodology used to build adaptive transfer functions in a feed-forward Back-Propagation neural network, and provides insight into the structure dependent properties of using non-scaled analog inputs. The results of using adaptive transfer functions are shown to outperform conventional architectures in the implementation of a mechanical power transmission gearbox design expert system knowledge base. 4 refs., 4 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.
Adaptive Transfer Function Networks
Goulding, J.R. |
1993-06-01
Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.
Adaptive Transfer Function Networks
Goulding, J.R. Portland State Univ., OR . Dept. of Electrical Engineering)
1993-01-01
Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.
A spectroscopic transfer standard for accurate atmospheric CO measurements
NASA Astrophysics Data System (ADS)
Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker
2016-04-01
Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
Automated generation of highly accurate, efficient and transferable pseudopotentials
NASA Astrophysics Data System (ADS)
Hansel, R. A.; Brock, C. N.; Paikoff, B. C.; Tackett, A. R.; Walker, D. G.
2015-11-01
A multi-objective genetic algorithm (MOGA) was used to automate a search for optimized pseudopotential parameters. Pseudopotentials were generated using the atomPAW program and density functional theory (DFT) simulations were conducted using the pwPAW program. The optimized parameters were the cutoff radius and projector energies for the s and p orbitals. The two objectives were low pseudopotential error and low computational work requirements. The error was determined from (1) the root mean square difference between the all-electron and pseudized-electron log derivative, (2) the calculated lattice constant versus reference data of Holzwarth et al., and (3) the calculated bulk modulus versus reference potentials. The computational work was defined as the number of flops required to perform the DFT simulation. Pseudopotential transferability was encouraged by optimizing each element in different lattices: (1) nitrogen in GaN, AlN, and YN, (2) oxygen in NO, ZnO, and SiO4, and (3) fluorine in LiF, NaF, and KF. The optimal solutions were equivalent in error and required significantly less computational work than the reference data. This proof-of-concept study demonstrates that the combination of MOGA and ab-initio simulations is a powerful tool that can generate a set of transferable potentials with a trade-off between accuracy (error) and computational efficiency (work).
Operationalizing the Transfer Function.
ERIC Educational Resources Information Center
Garcia, Philip
In statistical terms, transfer rates require two components: a numerator that represents community college students who transfer and a denominator that approximates the pool of potential transfer students. The California Task Force adopted a set of criteria to judge the appropriateness of prospective pairs of numerators and denominators. Its form…
Free Flap Functional Muscle Transfers.
Garcia, Ryan M; Ruch, David S
2016-08-01
Free functional muscle transfers remain a powerful reconstructive tool to restore upper extremity function when other options such as tendon or nerve transfers are not available. This reconstructive technique is commonly used for patients following trauma, ischemic contractures, and brachial plexopathies. Variable outcomes have been reported following free functional muscle transfers that are related to motor nerve availability and reinnervation. This article highlights considerations around donor motor nerve selection, dissection, and use of the gracilis muscle, and the surgical approach to performing a free functional muscle transfer to restore elbow flexion and/or digit flexion. PMID:27387083
Combination of TWSTFT and GNSS for accurate UTC time transfer
NASA Astrophysics Data System (ADS)
Jiang, Z.; Petit, G.
2009-06-01
The international UTC/TAI time and frequency transfer network is based on two independent space techniques: Two-Way Satellite Time and Frequency Transfer (TWSTFT) and Global Navigation Satellite System (GNSS). The network is highly redundant. In fact, 28% of the national time laboratories, which contribute 88% of the total atomic clock weight and all the primary frequency standards to UTC/TAI, operate both techniques. This redundancy is not fully used in UTC/TAI generation. We propose a combination that keeps the advantages of TWSTFT and GNSS and offers a new and effective strategy to improve UTC/TAI in terms of accuracy, stability and robustness. We focus on the combination of two BIPM routine products, TWSTFT and GPS PPP (time transfer using the precise point positioning technique), but the proposed method can be used for any carrier phase-based GNSS product.
Accurate transfer of soft tissue morphology with interim prosthesis to definitive cast.
Noh, Kwantae; Kwon, Kung-Rock; Kim, Hyeong-Seob; Kim, Duck-Su; Pae, Ahran
2014-02-01
With conventional fixed dental prostheses, the interim restoration is a valuable diagnostic tool in the evaluation of esthetics and function. To achieve predictable definitive esthetic results, information about the subgingival and the supragingival contour of a properly designed restoration should be communicated to the dental laboratory technician. The technique described enables the accurate transfer of the soft tissue morphology developed with an interim prosthesis to the definitive cast. This modified definitive cast allows the dental laboratory technician to fabricate a restoration with an emergence profile identical to that of the interim prosthesis. PMID:24286639
Automatic computation of transfer functions
Atcitty, Stanley; Watson, Luke Dale
2015-04-14
Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.
Accurate perception of negative emotions predicts functional capacity in schizophrenia.
Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J
2014-04-30
Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947
Easy Accurate Transfer of the Sculpted Soft Tissue Contours to the Working Cast: A Clinical Tip.
Jambhekar, Shantanu S; Kheur, Mohit G; Matani, Jay; Sethi, Sumit
2014-12-01
Tooth replacement in the esthetic zone presents a myriad of challenges for the clinician. An ovate pontic accurately duplicates the emergence profile of the natural tooth it replaces in order to provide an esthetic, yet cleansable prosthesis. The accurate transfer of this sculpted tissue beneath the pontic of the provisional restoration is critical to provide the dental laboratory technician with the necessary information to fabricate a definitive restoration with an appropriate emergence profile. This article presents an innovative, simple and convenient impression technique for easy and accurate transfer of the tissue contours to the working cast, avoiding tissue collapse and tissue compression produced due to the impression material. PMID:26199543
Molecular adsorption at Pt(111). How accurate are DFT functionals?
Gautier, Sarah; Steinmann, Stephan N; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe
2015-11-21
Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange-correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies. PMID:26455444
Accurate bs and w testing important for crude-oil custody transfer
Williams, J. )
1990-11-12
This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.
A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Springel, Volker
2011-08-01
We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code AREPO, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can
Accurate and transferable extended Hückel-type tight-binding parameters
NASA Astrophysics Data System (ADS)
Cerdá, J.; Soria, F.
2000-03-01
We show how the simple extended Hückel theory can be easily parametrized in order to yield accurate band structures for bulk materials, while the resulting optimized atomic orbital basis sets present good transferability properties. The number of parameters involved is exceedingly small, typically ten or eleven per structural phase. We apply the method to almost fifty elemental and compound bulk phases.
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Spurr, R. J. D.; Shia, R. L.; Yung, Y. L.
2014-12-01
Radiative transfer (RT) computations are an essential component of energy budget calculations in climate models. However, full treatment of RT processes is computationally expensive, prompting usage of 2-stream approximations in operational climate models. This simplification introduces errors of the order of 10% in the top of the atmosphere (TOA) fluxes [Randles et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT simulations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those (few) optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Here, we extend the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Comparisons between the new model, called Universal Principal Component Analysis model for Radiative Transfer (UPCART), 2-stream models (such as those used in climate applications) and line-by-line RT models are performed, in order for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the TOA for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and solar and viewing geometries. We demonstrate that very accurate radiative forcing estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases as compared to an exact line-by-line RT model. The model is comparable in speeds to 2-stream models, potentially rendering UPCART useful for operational General Circulation Models (GCMs). The operational speed and accuracy of UPCART can be further
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.
2015-12-01
Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work
Fast and accurate Coulomb calculation with Gaussian functions.
Füsti-Molnár, László; Kong, Jing
2005-02-15
Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions. PMID:15743222
Transfer function characteristics of super resolving systems
NASA Technical Reports Server (NTRS)
Milster, Tom D.; Curtis, Craig H.
1992-01-01
Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed.
Accurate ionization potential of semiconductors from efficient density functional calculations
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2016-07-01
Despite its huge successes in total-energy-related applications, the Kohn-Sham scheme of density functional theory cannot get reliable single-particle excitation energies for solids. In particular, it has not been able to calculate the ionization potential (IP), one of the most important material parameters, for semiconductors. We illustrate that an approximate exact-exchange optimized effective potential (EXX-OEP), the Becke-Johnson exchange, can be used to largely solve this long-standing problem. For a group of 17 semiconductors, we have obtained the IPs to an accuracy similar to that of the much more sophisticated G W approximation (GWA), with the computational cost of only local-density approximation/generalized gradient approximation. The EXX-OEP, therefore, is likely as useful for solids as for finite systems. For solid surfaces, the asymptotic behavior of the vx c has effects similar to those of finite systems which, when neglected, typically cause the semiconductor IPs to be underestimated. This may partially explain why standard GWA systematically underestimates the IPs and why using the same GWA procedures has not been able to get an accurate IP and band gap at the same time.
GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers
NASA Astrophysics Data System (ADS)
Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan
2016-06-01
We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.
Community Colleges and the Transfer Function.
ERIC Educational Resources Information Center
Perkins, Mary E.
This paper examines how the traditional transfer role of the community college has become less significant as a vocational and community-based role has assumed importance. The paper describes factors contributing to the transfer function's decline and illustrates various attitudes surrounding the issue. The history of transfer education is…
VALIDATION OF BENEFIT-TRANSFER FUNCTIONS
1. Identification of benefit-transfer functions that are the most credible. 2. Identification of benefit-transfer issues that are related to transfer method and those related to data limitations. 3. Clarification of issues t...
Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D
2016-07-29
Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769
NASA Astrophysics Data System (ADS)
Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.
2016-07-01
Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.
NASA Astrophysics Data System (ADS)
Sabatino, D. R.; Praisner, T. J.; Smith, C. R.
1998-11-01
The color change of thermochromic liquid crystals with temperature can be effectively utilized as full-field surface temperature sensors to investigate the fundamental structure of wall turbulence. In order to accurately quantify turbulent heat transfer behavior, a new technique has been developed for the calibration of wide-band micro-encapsulated thermochromic liquid crystals. Lighting/viewing arrangements are described and evaluated for ease of implementation and accuracy of the displayed color. This new technique employs images recorded in-situ with the test surface systematically exposed to a series of uniform temperature conditions spanning the bandwidth of the liquid crystals. This sequence of images is used to generate point-wise color/temperature calibration curves for the entire surface. Experimental results will be presented illustrating the application of the technique for assessment of spatial/temporal surface heat transfer behavior due to selected turbulent flows in a water channel
Exponentially accurate approximations to piece-wise smooth periodic functions
NASA Technical Reports Server (NTRS)
Greer, James; Banerjee, Saheb
1995-01-01
A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.
Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission
NASA Technical Reports Server (NTRS)
Imaoka, Atsushi; Kihara, Masami
1996-01-01
An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.
Development of highly accurate approximate scheme for computing the charge transfer integral.
Pershin, Anton; Szalay, Péter G
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117
Development of highly accurate approximate scheme for computing the charge transfer integral
Pershin, Anton; Szalay, Péter G.
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.
Wiener filter estimation of transfer functions.
Kessel, Robert
2004-01-01
The use of a Wiener filter estimate for the linear transfer function can significantly improve the description of behavioral dynamics. This report presents a two-pass, Monte-Carlo-based algorithm that is well suited to repeated-trials local average measurements. The Wiener filter transfer functions strongly suppress noise artifacts as well as allow reliable transfer function determination under a much wider class of reinforcement schedules. Implications of expanding the possible form of experimental design are considered along with improvements in the fidelity of resulting predictions. PMID:15357511
Application of transfer functions to canned tuna fish thermal processing.
Ansorena, M R; del Valle, C; Salvadori, V O
2010-02-01
Design and optimization of thermal processing of foods need accurate dynamic models to ensure safe and high quality food products. Transfer functions had been demonstrated to be a useful tool to predict thermal histories, especially under variable operating conditions. This work presents the development and experimental validation of a dynamic model (discrete transfer function) for the thermal processing of tuna fish in steam retorts. Transfer function coefficients were obtained numerically, using commercial software of finite elements (COMSOL Multiphysics) to solve the heat transfer balance. Dependence of transfer function coefficients on the characteristic dimensions of cylindrical containers (diameter and height) and on the sampling interval is reported. A simple equation, with two empirical parameters that depends on the container dimensions, represented the behavior of transfer function coefficients with very high accuracy. Experimental runs with different size containers and different external conditions (constant and variable retort temperature) were carried out to validate the developed methodology. Performance of the thermal process simulation was tested for predicting internal product temperature of the cold point and lethality and very satisfactory results were found. The developed methodology can play an important role in reducing the computational effort while guaranteeing accuracy by simplifying the calculus involved in the solution of heat balances with variable external conditions and emerges as a potential approach to the implementation of new food control strategies leading not only to more efficient processes but also to product quality and safety. PMID:21339120
Accurate estimators of correlation functions in Fourier space
NASA Astrophysics Data System (ADS)
Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.
2016-08-01
Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.
An Accurate Density Functional from Exchange-Correlation Hole
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Mo, Yuxiang
The exchange-correlation hole is most fundamentally important in the development and understanding of density functional theory (DFT). However, due to the nonlocal nature of the exchange-correlation hole, development of DFT from the underlying hole presents a great challenge, and the works along this direction are limited. Here I will discuss a novel nonempirical DFT based on a semilocal hole, which is obtained from the density matrix expansion. Extensive tests on molecules and solids show that this functional can achieve remarkable accuracy for wide-ranging properties in condensed matter physics and quantum chemistry. This work was supported by NSF under Grant No. CHE-1261918.
Nerve Transfers to Restore Elbow Function.
Bulstra, Liselotte F; Shin, Alexander Y
2016-05-01
The purpose of this article is to provide an overview of the various nerve transfer options for restoration of elbow function. This article describes nerve transfer strategies for elbow flexion and extension including the indications, limitations, and expected outcomes based on current literature. PMID:27094889
Accurate and fast DFT calculations with the AM05 functional
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.
2008-03-01
The AM05 functional [1] has the same excellent performance for solids as the hybrid density functionals tested in Paier et. al. (J. Chem. Phys 124, 154709 (2006); ibid 125, 249901 (2006)). This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. While hybrid functionals are computationally expensive, preveting them from being used in large systems and/or long molecular dynamics simulations, the AM05 functional is on a regular semi-local GGA form with corresponding computational cost. The performance of AM05 is even superior to an `informed choice' between LDA and PBE. By comparing data from different electronic-structure codes we have determined that the numerical errors in this study are equal to or smaller than corresponding experimental uncertainties. Results for other systems will also be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. [1] R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region
NASA Astrophysics Data System (ADS)
Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.
2016-04-01
Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.
Transfer Function Control for Biometric Monitoring System
NASA Technical Reports Server (NTRS)
Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)
2015-01-01
A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.
Nerve Transfers to Restore Shoulder Function.
Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat
2016-05-01
The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. PMID:27094888
Ren, Yinghui; Bian, Wensheng
2015-05-21
We present the first accurate quantum dynamics calculations of mode-specific tunneling splittings in a sequential double-hydrogen transfer process. This is achieved in the vinylidene-acetylene system, the simplest molecular system of this kind, and by large-scale parallel computations with an efficient theoretical scheme developed by us. In our scheme, basis functions are customized for the hydrogen transfer process; a 4-dimensional basis contraction strategy is combined with the preconditioned inexact spectral transform method; efficient parallel implementation is achieved. Mode-specific permutation tunneling splittings of vinylidene states are reported and tremendous mode-specific promotion effects are revealed; in particular, the CH2 rock mode enhances the ground-state splitting by a factor of 10(3). We find that the ground-state vinylidene has a reversible-isomerization time of 622 ps, much longer than all previous estimates. Our calculations also shed light on the importance of the deep intermediate well and vibrational excitation in the double-hydrogen transfer processes. PMID:26263255
Free Functional Muscle Transfers to Restore Upper Extremity Function.
Krauss, Emily M; Tung, Thomas H; Moore, Amy M
2016-05-01
Free functional muscle transfer provides an option for functional restoration when nerve reconstruction and tendon transfers are not feasible. To ensure a successful outcome, many factors need to be optimized, including proper patient selection, timing of intervention, donor muscle and motor nerve selection, optimal microneurovascular technique and tension setting, proper postoperative management, and appropriate rehabilitation. Functional outcomes of various applications to the upper extremity and the authors' algorithm for the use of free functional muscle transfer are also included in this article. PMID:27094895
Modulation transfer function for infrared reflectarrays.
Gómez-Pedrero, Jose Antonio; Ginn, James; Alda, Javier; Boreman, Glenn
2011-09-20
The quality of the image produced by optical reflectarrays as a function of the F/#, polarization, and wavelength is analyzed in this paper. The results are expressed as monochromatic and polychromatic modulation transfer functions. They show that large aperture multilevel reflectarrays perform quite close to the diffraction-limited case. The chromatic aberrations make these elements highly wavelength-selective. PMID:21947056
NASA Astrophysics Data System (ADS)
O'Brien, Edward P.; Morrison, Greg; Brooks, Bernard R.; Thirumalai, D.
2009-03-01
Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, ⟨E⟩, the distance distribution P(R ) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R ) is determined by equating the calculated and measured ⟨E⟩. In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [⟨E⟩ and P(R )] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed ⟨E⟩ for the GRM and protein L, we infer P(R ) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using ⟨E⟩ and polymer models for P(R ). However, the value extracted for the radius of gyration (Rg) and the persistence length (lp) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred Rg and lp, with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of ⟨E⟩ by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order→disorder transition, the Gaussian P(R ) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET
Calculation of retroreflector array transfer functions
NASA Technical Reports Server (NTRS)
Arnold, D. A.
1972-01-01
Computer programs have been developed for calculating the transfer function of a retroreflector array. The transfer functions provide range corrections and effective reflecting areas for the retroreflector arrays carried by satellites now in orbit. This information can be used to estimate laser echo signal strengths and to correct laser range measurements in order to obtain the range to the center of mass of the satellite. The values are tabulated for various angles of incidence of the laser beam with respect to the symmetry axis of the satellite. Transfer functions have been computed for the following satellites: BE-B, BE-C, Geos 1, D1C, D1D, Geos 2, Peole, and Geos C.
Wavelet excited measurement of system transfer function.
Olkkonen, H; Olkkonen, J T
2007-02-01
This article introduces a new method, which is referred to as the wavelet excitation method (WEM), for the measurement of the system transfer function. Instead of commonly used impulse or sine wave excitations, the method uses a sequential excitation by biorthogonal symmetric wavelets. The system transfer function is reconstructed from the output measurements. In the WEM the signals can be designed so that if N different excitation sequences are used and the excitation rate is f, the sampling rate of the analog-to-digital converter can be reduced to f/N. The WEM is especially advantageous in testing systems, where high quality impulse excitation cannot be applied. The WEM gave consistent results in transfer function measurements of various multistage amplifiers with the linear circuit analysis (SPICE) and the sine wave excitation methods. The WEM makes available new high speed sensor applications, where the sampling rate of the sensor may be considerably lower compared with the system bandwidth. PMID:17578145
Instrument transfer function of slope measuring deflectometry systems.
Su, Tianquan; Maldonado, Alejandro; Su, Peng; Burge, James H
2015-04-01
Slope measuring deflectometry (SMD) systems are developing rapidly in testing freeform optics. They measure the surface slope using a camera and an incoherent source. The principle of the test is mainly discussed in geometric optic domain. The system response as a function of spatial frequency or instrument transfer function (ITF) has yet to be studied thoroughly. Through mathematical modeling, simulation, and experiment we show that the ITF of an SMD system is very close to the modulation transfer function of the camera used. Furthermore, the ITF can be enhanced using a deconvolution filter. This study will lead to more accurate measurements in SMD and will show the physical optics nature of these tests. PMID:25967213
Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes
2013-02-07
Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.
Enhancements to the SSME transfer function modeling code
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.
1995-01-01
effort to filter out high frequency characteristics. The fourth method removes the presumed system excitation and its harmonics in order to investigate the effects of the excitation on the modeling process. The fifth method is an attempt to apply constrained RID to obtain better transfer functions through more accurate modeling over certain frequency ranges. Section 4 presents some new C main files which were created to round out the functionality of the existing SSME transfer function modeling code. It is now possible to go from time data to transfer function models using only the C codes; it is not necessary to rely on external software. The new C main files and instructions for their use are included. Section 5 presents current and future enhancements to the XPLOT graphics program which was delivered with the initial software. Several new features which have been added to the program are detailed in the first part of this section. The remainder of Section 5 then lists some possible features which may be added in the future. Section 6 contains the conclusion section of this report. Section 6.1 is an overview of the work including a summary and observations relating to finding transfer functions with the SSME code. Section 6.2 contains information relating to future work on the project.
Exploring the transferability of safety performance functions.
Farid, Ahmed; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen; Wang, Jung-Han
2016-09-01
Safety performance functions (SPFs), by predicting the number of crashes on roadway facilities, have been a vital tool in the highway safety area. The SPFs are typically applied for identifying hot spots in network screening and evaluating the effectiveness of road safety countermeasures. The Highway Safety Manual (HSM) provides a series of SPFs for several crash types by various roadway facilities. The SPFs, provided in the HSM, were developed using data from multiple states. In regions without local jurisdiction based SPFs it is common practice to adopt national SPFs for crash prediction. There has been little research to examine the viability of such national level models for local jurisdictions. Towards understanding the influence of SPF transferability, we examine the rural divided multilane highway models from Florida, Ohio, and California. Traffic, roadway geometry and crash data from the three states are employed to estimate single-state SPFs, two-state SPFs and three-state SPFs. The SPFs are estimated using the negative binomial model formulation for several crash types and severities. To evaluate transferability of models, we estimate a transfer index that allows us to understand which models transfer adequately to other regions. The results indicate that models from Florida and California seem to be more transferable compared to models from Ohio. More importantly, we observe that the transfer index increases when we used pooled data (from two or three states). Finally, to assist in model transferability, we propose a Modified Empirical Bayes (MEB) measure that provides segment specific calibration factors for transferring SPFs to local jurisdictions. The proposed measure is shown to outperform the HSM calibration factor for transferring SPFs. PMID:27322637
Energy Transfer and a Recurring Mathematical Function
ERIC Educational Resources Information Center
Atkin, Keith
2013-01-01
This paper extends the interesting work of a previous contributor concerning the analogies between physical phenomena such as mechanical collisions and the transfer of power in an electric circuit. Emphasis is placed on a mathematical function linking these different areas of physics. This unifying principle is seen as an exciting opportunity to…
NASA Astrophysics Data System (ADS)
Guerlet, Sandrine; Spiga, A.; Sylvestre, M.; Fouchet, T.; Millour, E.; Wordsworth, R.; Leconte, J.; Forget, F.
2013-10-01
Recent observations of Saturn’s stratospheric thermal structure and composition revealed new phenomena: an equatorial oscillation in temperature, reminiscent of the Earth's Quasi-Biennal Oscillation ; strong meridional contrasts of hydrocarbons ; a warm “beacon” associated with the powerful 2010 storm. Those signatures cannot be reproduced by 1D photochemical and radiative models and suggest that atmospheric dynamics plays a key role. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmosphere. We include internal heat flux, ring shadowing and aerosols. We will report on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). We will also discuss the radiative effect of the ring shadowing on Saturn's atmosphere. We will present a comparison of temperature fields obtained with this new radiative equilibrium model to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere (20mbar
Transfer function bounds on the performance of turbo codes
NASA Technical Reports Server (NTRS)
Divsalar, D.; Dolinar, S.; Pollara, F.; Mceliece, R. J.
1995-01-01
In this article we apply transfer function bounding techniques to obtain upper bounds on the bit-error rate for maximum likelihood decoding of turbo codes constructed with random permutations. These techniques are applied to two turbo codes with constraint length 3 and later extended to other codes. The performance predicted by these bounds is compared with simulation results. The bounds are useful in estimating the 'error floor' that is difficult to measure by simulation, and they provide insight on how to lower this floor. More refined bounds are needed for accurate performance measures at lower signal-to-noise ratios.
Measuring Dynamic Transfer Functions of Cavitating Pumps
NASA Technical Reports Server (NTRS)
Baun, Daniel
2007-01-01
A water-flow test facility has been built to enable measurement of dynamic transfer functions (DTFs) of cavitating pumps and of inducers in such pumps. Originally, the facility was intended for use in an investigation of the effects of cavitation in a rocket-engine low-pressure oxygen turbopump. The facility can also be used to measure DTFs of cavitating pumps in general
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
NASA Astrophysics Data System (ADS)
Sun, Yuansheng; Periasamy, Ammasi
2010-03-01
Förster resonance energy transfer (FRET) microscopy is commonly used to monitor protein interactions with filter-based imaging systems, which require spectral bleedthrough (or cross talk) correction to accurately measure energy transfer efficiency (E). The double-label (donor+acceptor) specimen is excited with the donor wavelength, the acceptor emission provided the uncorrected FRET signal and the donor emission (the donor channel) represents the quenched donor (qD), the basis for the E calculation. Our results indicate this is not the most accurate determination of the quenched donor signal as it fails to consider the donor spectral bleedthrough (DSBT) signals in the qD for the E calculation, which our new model addresses, leading to a more accurate E result. This refinement improves E comparisons made with lifetime and spectral FRET imaging microscopy as shown here using several genetic (FRET standard) constructs, where cerulean and venus fluorescent proteins are tethered by different amino acid linkers.
Aerosol modulation transfer function: an overview
NASA Astrophysics Data System (ADS)
Kopeika, Norman S.
1997-09-01
The aerosol modulation transfer function (MTF) describes blurring deriving from light scatter caused by aerosols. Little scintillations or image dancing are involved. When overall atmospheric point spread function (PSF) is analyzed for its turbulence component deriving from angle-of-arrival fluctuations or scintillations, a significant portion of the PSF is left over. This is the aerosol component. This overview describes the basic physical mechanisms for aerosol MTF and its wavelength, weather, and time exposure dependences, as well as a comparison to turbulence MiT.
Contextual Control by Function and Form of Transfer of Functions
ERIC Educational Resources Information Center
Perkins, David R.; Dougher, Michael J.; Greenway, David E.
2007-01-01
This study investigated conditions leading to contextual control by stimulus topography over transfer of functions. Three 4-member stimulus equivalence classes, each consisting of four (A, B, C, D) topographically distinct visual stimuli, were established for 5 college students. Across classes, designated A stimuli were open-ended linear figures,…
Multiple functions of microsomal triglyceride transfer protein
2012-01-01
Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition. PMID:22353470
Accurate definition of brain regions position through the functional landmark approach.
Thirion, Bertrand; Varoquaux, Gaël; Poline, Jean-Baptiste
2010-01-01
In many application of functional Magnetic Resonance Imaging (fMRI), including clinical or pharmacological studies, the definition of the location of the functional activity between subjects is crucial. While current acquisition and normalization procedures improve the accuracy of the functional signal localization, it is also important to ensure that functional foci detection yields accurate results, and reflects between-subject variability. Here we introduce a fast functional landmark detection procedure, that explicitly models the spatial variability of activation foci in the observed population. We compare this detection approach to standard statistical maps peak extraction procedures: we show that it yields more accurate results on simulations, and more reproducible results on a large cohort of subjects. These results demonstrate that explicit functional landmark modeling approaches are more effective than standard statistical mapping for brain functional focus detection. PMID:20879321
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.
Tao, Jianmin; Mo, Yuxiang
2016-08-12
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Mo, Yuxiang
2016-08-01
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young
2015-07-01
This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.
Partially coherent contrast-transfer-function approximation.
Nesterets, Yakov I; Gureyev, Timur E
2016-04-01
The contrast-transfer-function (CTF) approximation, widely used in various phase-contrast imaging techniques, is revisited. CTF validity conditions are extended to a wide class of strongly absorbing and refracting objects, as well as to nonuniform partially coherent incident illumination. Partially coherent free-space propagators, describing amplitude and phase in-line contrast, are introduced and their properties are investigated. The present results are relevant to the design of imaging experiments with partially coherent sources, as well as to the analysis and interpretation of the corresponding images. PMID:27140752
Pressure Transfer Functions for Interfacial Fluids Problems
NASA Astrophysics Data System (ADS)
Chen, Robin Ming; Hur, Vera Mikyoung; Walsh, Samuel
2016-06-01
We make a consistent derivation, from the governing equations, of the pressure transfer function in the small-amplitude Stokes wave regime and the hydrostatic approximation in the small-amplitude solitary water wave regime, in the presence of a background shear flow. The results agree with the well-known formulae in the zero vorticity case, but they incorporate the effects of vorticity through solutions to the Rayleigh equation. We extend the results to permit continuous density stratification and to internal waves between two constant-density fluids. Several examples are discussed.
Computer method for identification of boiler transfer functions
NASA Technical Reports Server (NTRS)
Miles, J. H.
1972-01-01
Iterative computer aided procedure was developed which provides for identification of boiler transfer functions using frequency response data. Method uses frequency response data to obtain satisfactory transfer function for both high and low vapor exit quality data.
Modulation transfer function of bar code scanning
NASA Astrophysics Data System (ADS)
Tang, Hong; Milster, Tom D.
1998-09-01
Bar code scanners are ubiquitous in supermarkets. As a bar code is passed over a scanner, a laser beam scans across the bar code. The scattered light is modulated by the reflectivity of the bars and spaces of the bar code. The bar code scanning process can be described as a 1D convolution of the scanning laser profile and the bar code reflectivity function. The modulation transfer function (MTF) of bar code scanning is the Fourier transform of the marginal profile of the laser beam. The properties of the MTF of bar code scanning is similar to that of an incoherent imaging system. Measurements of the MTF of bar code scanning at one focus position are presented. The experimental results are then discussed.
More accurate fitting of {sup 125}I and {sup 103}Pd radial dose functions
Taylor, R. E. P.; Rogers, D. W. O.
2008-09-15
In this study an improved functional form for fitting the radial dose functions, g(r), of {sup 125}I and {sup 103}Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm{<=}r{<=}10 cm for {sup 125}I seeds and 0.10 cm{<=}r{<=}10 cm for {sup 103}Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r<0.1 cm. This upturn has previously been attributed to the breakdown of the approximation of the sources as a line, however, in this study we demonstrate that another contributing factor is the 4.5 keV characteristic x-rays emitted from the Ti seed casing. Radial dose functions are calculated for 18 {sup 125}I seeds and 9 {sup 103}Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all {sup 103}Pd and {sup 125}I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma.
Optical design of optical transfer function instrument
NASA Astrophysics Data System (ADS)
Zhang, Liangjun; Chen, Xinhua; Chen, Yuheng; Ji, Yiqun; Xiang, Chunchang; Shen, Weimin
2009-11-01
The optical design of Optical transfer function (OTF) instrument, which is based on the image Fourier analysis method, is presented. To perform infinite conjugate testing of an optical system, the designed system is mainly composed of the object generator, lens under test, and image analyzer. The object generator offers an object at infinite distance with known spectral and spatial content. It includes the illumination system and the collimating system. The illumination system is analyzed and optimized with CODEV and LightTools software. Performance evaluation indicates that its illumination uniformity in the required area is above 95% .The collimation system based on an off-axis parabolic mirror is of the focal length of 2000mm and the entrance pupil diameter 200mm. Through optimization, the image quality of the collimator is excellent and its on-axis modulation transfer function (MTF) approaches diffraction limit. Collimated beam of the target is imaged by the lens under test. The image is magnified and acquired by image analyzer, which is made up of four parts: an infinite conjugate microscope objective, a tube lens, an eyepiece and a CCD camera. Image Results show that this designed scheme meets the requirements of this OTF instrument.
Unbiased rigid registration using transfer functions
NASA Astrophysics Data System (ADS)
Hahn, Dieter A.; Hornegger, Joachim; Bautz, Werner; Kuwert, Torsten; Roemer, Wolfgang
2005-04-01
The evaluation of tumor growth as regression under therapy is an important clinical issue. Rigid registration of sequentially acquired 3D-images has proven its value for this purpose. Existing approaches to rigid image registration use the whole volume for the estimation of the rigid transform. Non-rigid soft tissue deformation, however, will imply a bias to the registration result, because local deformations cannot be modeled by rigid transforms. Anatomical substructures, like bones or teeth, are not affected by these deformations, but follow a rigid transform. This important observation is incorporated in the proposed registration algorithm. The selection of anatomical substructure is done by manual interaction of medical experts adjusting the transfer function of the volume rendering software. The parameters of the transfer function are used to identify the voxels that are considered for registration. A rigid transform is estimated by a quaternion gradient descent algorithm based on the intensity values of the specified tissue classes. Commonly used voxel intensity measures are adjusted to the modified registration algorithm. The contribution describes the mathematical framework of the proposed registration method and its implementation in a commercial software package. The experimental evaluation includes the discussion of different similarity measures, the comparison of the proposed method to established rigid registration techniques and the evaluation of the efficiency of the new method. We conclude with the discussion of potential medical applications of the proposed registration algorithm.
Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.
Sharma, Ashok K; Gupta, Ankit; Kumar, Sanjiv; Dhakan, Darshan B; Sharma, Vineet K
2015-07-01
Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annotate and classify proteins are extremely slow. Therefore, to achieve faster and accurate functional annotation, we have developed an orthology-based functional classifier 'Woods' by using a combination of machine learning and similarity-based approaches. Woods displayed a precision of 98.79% on independent genomic dataset, 96.66% on simulated metagenomic dataset and >97% on two real metagenomic datasets. In addition, it performed >87 times faster than BLAST on the two real metagenomic datasets. Woods can be used as a highly efficient and accurate classifier with high-throughput capability which facilitates its usability on large metagenomic datasets. PMID:25863333
A stable and high-order accurate conjugate heat transfer problem
NASA Astrophysics Data System (ADS)
Lindström, Jens; Nordström, Jan
2010-08-01
This paper analyzes well-posedness and stability of a conjugate heat transfer problem in one space dimension. We study a model problem for heat transfer between a fluid and a solid. The energy method is used to derive boundary and interface conditions that make the continuous problem well-posed and the semi-discrete problem stable. The numerical scheme is implemented using 2nd-, 3rd- and 4th-order finite difference operators on Summation-By-Parts (SBP) form. The boundary and interface conditions are implemented weakly. We investigate the spectrum of the spatial discretization to determine which type of coupling that gives attractive convergence properties. The rate of convergence is verified using the method of manufactured solutions.
Modeling individual differences in ferret external ear transfer functions
NASA Astrophysics Data System (ADS)
Schnupp, Jan W. H.; Booth, John; King, Andrew J.
2003-04-01
Individual variations in head and outer ear size, as well as growth of these structures during development, can markedly alter the values of the binaural and monaural cues which form the basis for auditory localization. This study investigated individual differences in the directional component of the head-related transfer function of both adult and juvenile ferrets. In line with previous studies in humans and cats, intersubject spectral differences were found to be reduced by scaling one of the directional transfer functions on a log-frequency axis. The optimal scale factor correlated most highly with pinna cavity height. Optimal frequency scaling reduced interear spectral difference equally well for adult-juvenile comparisons as for comparisons between pairs of adult ears. This illustrates that the developmental changes in localization cue values should be at least partly predictable on the basis of the expected growth rate of the outer ear structures. Predictions of interaural time differences (ITDs) were also derived from the physical dimensions of the head. ITDs were found to be poorly fitted by the spherical head model, while much better predictions could be derived from a model based on von Mises spherical basis functions. Together, these findings show how more accurate estimates of spatial cue values can be made from knowledge of the dimensions of the head and outer ears, and may facilitate the generation of virtual acoustic space stimuli in the absence of acoustical measurements from individual subjects.
NASA Astrophysics Data System (ADS)
Skone, Jonathan; Govoni, Marco; Galli, Giulia
Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.
A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies
2014-01-01
We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys.1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616
A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies.
Truchon, Jean-François; Pettitt, B Montgomery; Labute, Paul
2014-03-11
We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys. 1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616
Toward Transfer Functions for Land Surface Phenologies
NASA Astrophysics Data System (ADS)
Henebry, G. M.
2010-12-01
A key problem in projecting future landscapes is simulating the associated land surface phenologies (or LSPs). A recent study of land surface models concluded that the representations of crop phenologies among the models diverged sufficiently to impede a useful intercomparison of simulation results from their associated climate models. Grassland phenologies are far more complicated than cropland phenologies due to multiple forcing factors, photosynthetic pathways (C3 vs C4), and spatial heterogeneities in both resource availabilities and land management practices. Furthermore, many tallgrass species (such as switchgrass) are widely distributed across temperature, but not moisture, gradients, resulting in significant ecotypic variation across the species' geographic range. Thus, how feasible is "transplanting" tallgrass LSPs across isotherms—but along isohyets—to simulate a shift in cultivation from maize-soy to switchgrass? Prior work has shown a quadratic model can provide a parsimonious link between a Normalized Difference Vegetation Index (or NDVI) time series and thermal time, measured in terms of accumulated growing degree-days (or AGDD). Moreover, the thermal time to peak NDVI (or TTP) is a simple function of the parameter coefficients of fitted model. I fitted quadratic models to MODIS NDVI and weather station data at multiple sites across the Northern Great Plains over ten growing seasons, 2000-2009. There is a strong latitudinal gradient in TTP that results in part from a quasi-linear gradient in accumulated daylight hours (or ADH) between 30 and 50 degrees north. However, AGDD improves upon ADH by providing sensitivity to the variability of growing season weather. In the quadratic parameter coefficients there is a geographic pattern apparent as a function of TTP, although it is more variable at shorter TTPs. Using these patterns, an LSP transfer function was implemented along a latitudinal transect to simulate switchgrass cultivation in areas now
The Evolution of a More Rigorous Approach to Benefit Transfer: Benefit Function Transfer
NASA Astrophysics Data System (ADS)
Loomis, John B.
1992-03-01
The desire for economic values of recreation for unstudied recreation resources dates back to the water resource development benefit-cost analyses of the early 1960s. Rather than simply applying existing estimates of benefits per trip to the study site, a fairly rigorous approach was developed by a number of economists. This approach involves application of travel cost demand equations and contingent valuation benefit functions from existing sites to the new site. In this way the spatial market of the new site (i.e., its differing own price, substitute prices and population distribution) is accounted for in the new estimate of total recreation benefits. The assumptions of benefit transfer from recreation sites in one state to another state for the same recreation activity is empirically tested. The equality of demand coefficients for ocean sport salmon fishing in Oregon versus Washington and for freshwater steelhead fishing in Oregon versus Idaho is rejected. Thus transfer of either demand equations or average benefits per trip are likely to be in error. Using the Oregon steelhead equation, benefit transfers to rivers within the state are shown to be accurate to within 5-15%.
Robust algorithm for estimation of time-varying transfer functions.
Zou, Rui; Chon, Ki H
2004-02-01
We introduce a new method to estimate reliable time-varying (TV) transfer functions (TFs) and TV impulse response functions. The method is based on TV autoregressive moving average models in which the TV parameters are accurately obtained using the optimal parameter search method which we have previously developed. The new method is more accurate than the recursive least-squares (RLS), and remains robust even in the case of significant noise contamination. Furthermore, the new method is able to track dynamics that change abruptly, which is certainly a deficiency of the RLS. Application of the new method to renal blood pressure and flow revealed that hypertensive rats undergo more complex and TV autoregulation in maintaining stable blood flow than do normotensive rats. This observation has not been previously revealed using time-invariant TF analyses. The newly developed approach may promote the broader use of TV system identification in studies of physiological systems and makes linear and nonlinear TV modeling possible in certain cases previously thought intractable. PMID:14765694
Neural network identification of power system transfer functions
Gillard, D.M.; Bollinger, K.E.
1996-03-01
This paper describes an investigation into the use of a multilayered neural network for measuring the transfer function of a power system for use in power system stabilizer (PSS) tuning and assessing PSS damping. The objectives are to quickly and accurately measure the transfer function relating the electric power output to the AVR PSS reference voltage input of a system with the plant operating under normal conditions. In addition, the excitation signal used in the identification procedure is such that it will not adversely affect the terminal voltage or the system frequency. This research emphasized the development of a neural network that is easily trained and robust to changing system conditions. Performance studies of the trained neural network are described. Simulation studies suggest the practical feasibility of the algorithm as a stand-alone identification package and as a portion of a self-tuning algorithm requiring identification in the strategy. The same technique applied to a forward modeling scheme can be used to test the damping contribution from different control strategies.
NASA Astrophysics Data System (ADS)
Peng, Liang-You; Gong, Qihuang
2010-12-01
The accurate computations of hydrogenic continuum wave functions are very important in many branches of physics such as electron-atom collisions, cold atom physics, and atomic ionization in strong laser fields, etc. Although there already exist various algorithms and codes, most of them are only reliable in a certain ranges of parameters. In some practical applications, accurate continuum wave functions need to be calculated at extremely low energies, large radial distances and/or large angular momentum number. Here we provide such a code, which can generate accurate hydrogenic continuum wave functions and corresponding Coulomb phase shifts at a wide range of parameters. Without any essential restrict to angular momentum number, the present code is able to give reliable results at the electron energy range [10,10] eV for radial distances of [10,10] a.u. We also find the present code is very efficient, which should find numerous applications in many fields such as strong field physics. Program summaryProgram title: HContinuumGautchi Catalogue identifier: AEHD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1233 No. of bytes in distributed program, including test data, etc.: 7405 Distribution format: tar.gz Programming language: Fortran90 in fixed format Computer: AMD Processors Operating system: Linux RAM: 20 MBytes Classification: 2.7, 4.5 Nature of problem: The accurate computation of atomic continuum wave functions is very important in many research fields such as strong field physics and cold atom physics. Although there have already existed various algorithms and codes, most of them can only be applicable and reliable in a certain range of parameters. We present here an accurate FORTRAN program for
Satellite modulation transfer function estimation from natural scenes
NASA Astrophysics Data System (ADS)
Xiyang, Zhi; Wei, Zhang; Xuan, Sun; Dawei, Wang
2015-11-01
We propose an in-orbit modulation transfer function (MTF) statistical estimation algorithm based on natural scene, called SeMTF. The algorithm can estimate the in-orbit MTF of a sensor from an image without specialized targets. First, the power spectrum of a satellite image is analyzed, then a two-dimensional (2-D) fractal Brownian motion model is adopted to represent the natural scene. The in-orbit MTF is modeled by a parametric exponential function. Subsequently, the statistical model of satellite imaging is established. Second, the model is solved by the improved profile-likelihood function method. In order to handle the nuisance parameter in the profile-likelihood function, we divided the estimation problem into two minimization problems for the parameters of the MTF model and nuisance parameters, respectively. By alternating the two iterative minimizations, the result will converge to the optimal MTF parameters. Then the SeMTF algorithm is proposed. Finally, the algorithm is tested using real satellite images. Experimental results indicate that the estimation of MTF is highly accurate.
Transfer Function Design for Scientific Discovery
Jian Huang
2008-12-08
As computation scales beyond terascale, the scientific problems under study through computing are increasingly pushing the boundaries of human knowledge about the physical world. It is more pivotal than ever to quickly and reliably extract new knowledge from these complex simulations of ultra scale. In this project, the PI expanded the traditional notion of transfer function, which maps physical quantities to visual cues via table look-ups, to include general temporal as well as multivariate patterns that can be described procedurally through specialty mini programming languages. Their efforts aimed at answering a perpetual question of fundamental importance. That is "what a visualization should show". Instead of waiting for application scientists to initiate the process, the team at University of Tennessee worked closely with scientists at ORNL in a proactive role to envision and design elegant, powerful, and reliable tools that a user can use to specify "what is interesting". Their new techniques include visualization operators that revolve around correlation and graph properties, relative patterns in statistical distribution, temporal regular expressions, concurrent attribute subspaces and traditional compound boolean range queries. The team also paid special attention to ensure that all visualization operators are inherently designed with great parallel scalability to handle tera-scale datasets in both homogeneous and heterogeneous environments. Success has been demonstrated with leading edge computational science areas include climate modeling, combustion and systems genetics.
Atmospheric modulation transfer function in the infrared.
Buskila, Kobi; Towito, Shay; Shmuel, Elad; Levi, Ran; Kopeika, Natan; Krapels, Keith; Driggers, Ronald G; Vollmerhausen, Richard H; Halford, Carl E
2004-01-10
In high-resolution ultranarrow field-of-view thermal imagers, image quality over relatively long path lengths is typically limited by atmospheric degradation, especially atmospheric blur. We report our results and analyses of infrared images from two sites, Fort A. P. Hill and Aberdeen Proving Ground. The images are influenced by the various atmospheric phenomena: scattering, absorption, and turbulence. A series of experiments with high-resolution equipment in both the 3-5- and 8-13-microm regions at the two locations indicate that, as in the visible, image quality is limited much more by atmosphere than by the instrumentation for ranges even of the order of only a few kilometers. For paths close to the ground, turbulence is more dominant, whereas for paths involving higher average elevation, aerosol modulation transfer function (MTF) is dominant. As wavelength increases, turbulence MTF also increases, thus permitting aerosol MTF to become more dominant. A critical role in aerosol MTF in the thermal infrared is attributed to absorption, which noticeably decreases atmospheric transmission much more than in the visible, thereby reducing high-spatial-frequency aerosol MTF. These measurements indicate that atmospheric MTF should be a basic component in imaging system design and analysis even in the infrared, especially as higher-resolution hardware becomes available. PMID:14735966
The Modulation Transfer Function for Speech Intelligibility
Elliott, Taffeta M.; Theunissen, Frédéric E.
2009-01-01
We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the speech signal. We applied a novel modulation filtering technique to recorded sentences to restrict acoustic information quantitatively and to obtain a joint spectrotemporal modulation transfer function for speech comprehension, the speech MTF. For American English, the speech MTF showed the criticality of low modulation frequencies in both time and frequency. Comprehension was significantly impaired when temporal modulations <12 Hz or spectral modulations <4 cycles/kHz were removed. More specifically, the MTF was bandpass in temporal modulations and low-pass in spectral modulations: temporal modulations from 1 to 7 Hz and spectral modulations <1 cycles/kHz were the most important. We evaluated the importance of spectrotemporal modulations for vocal gender identification and found a different region of interest: removing spectral modulations between 3 and 7 cycles/kHz significantly increases gender misidentifications of female speakers. The determination of the speech MTF furnishes an additional method for producing speech signals with reduced bandwidth but high intelligibility. Such compression could be used for audio applications such as file compression or noise removal and for clinical applications such as signal processing for cochlear implants. PMID:19266016
Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.
2010-09-15
The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)
SUTO, Noriko; HARADA, Makoto; IZUTSU, Jun; NAGAO, Toshiyasu
2006-01-01
In order to accurately estimate the geomagnetic transfer functions in the area of the volcano Mt. Iwate (IWT), we applied the interstation transfer function (ISTF) method to the three-component geomagnetic field data observed at Mt. Iwate station (IWT), using the Kakioka Magnetic Observatory, JMA (KAK) as remote reference station. Instead of the conventional Fourier transform, in which temporary transient noises badly degrade the accuracy of long term properties, continuous wavelet transform has been used. The accuracy of the results was as high as that of robust estimations of transfer functions obtained by the Fourier transform method. This would provide us with possibilities for routinely monitoring the transfer functions, without sophisticated statistical procedures, to detect changes in the underground electrical conductivity structure. PMID:25792780
Computer method for identification of boiler transfer functions
NASA Technical Reports Server (NTRS)
Miles, J. H.
1971-01-01
An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function to the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.
NASA Astrophysics Data System (ADS)
Skone, Jonathan; Govoni, Marco; Galli, Giulia
2015-03-01
Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.
Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling
NASA Astrophysics Data System (ADS)
Quine, B. M.; Abrarov, S. M.
2013-09-01
We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.
Do Bond Functions Help for the Calculation of Accurate Bond Energies?
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1998-01-01
The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.
2005-01-01
Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results. PMID:27240749
16 CFR 1750.2 - Transfer of functions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Transfer of functions. 1750.2 Section 1750.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.2 Transfer of functions. Effective May 14, 1973, section...
SIFTER search: a web server for accurate phylogeny-based protein function prediction.
Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E
2015-07-01
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264
Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A
2016-05-01
The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available. PMID:27013261
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
NASA Astrophysics Data System (ADS)
Jolivet, L.; Cohen, M.; Ruas, A.
2015-08-01
Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.
Perfect function transfer in two and three dimensions without initialization
Wu Lianao; Byrd, Mark; Wang, Z. D.; Shao Bin
2010-11-15
We find analytic models that can perfectly transfer, without state initialization or remote collaboration, arbitrary functions in two- and three-dimensional interacting bosonic and fermionic networks. This provides for the possible experimental implementation of state transfer through bosonic or fermionic atoms trapped in optical lattices. A significant finding is that the state of a spin qubit can be perfectly transferred through a fermionic system. Families of Hamiltonians are described that are related to the linear models and that enable the perfect transfer of arbitrary functions. Furthermore, we propose methods for eliminating certain types of errors.
Determining A Purely Symbolic Transfer Function from Symbol Streams: Theory and Algorithms
Griffin, Christopher H
2008-01-01
Transfer function modeling is a \\emph{standard technique} in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classical $(r,s,k)$ transfer functions. Discrete event systems are often \\emph{used} for modeling hybrid control structures and high-level decision problems. \\emph{Examples include} discrete time, discrete strategy repeated games. For these games, a \\emph{discrete transfer function in the form of} an accurate hidden Markov model of input-output relations \\emph{could be used to derive optimal response strategies.} In this paper, we develop an algorithm \\emph{for} creating probabilistic \\textit{Mealy machines} that act as transfer function models for discrete event dynamic systems (DEDS). Our models are defined by three parameters, $(l_1, l_2, k)$ just as the Box-Jenkins transfer function models. Here $l_1$ is the maximal input history lengths to consider, $l_2$ is the maximal output history lengths to consider and $k$ is the response lag. Using related results, We show that our Mealy machine transfer functions are optimal in the sense that they maximize the mutual information between the current known state of the DEDS and the next observed input/output pair.
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-28
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449
NASA Astrophysics Data System (ADS)
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-01
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
Multivariable synthesis with transfer functions. [applications to gas turbine engines
NASA Technical Reports Server (NTRS)
Peczkowski, J. L.
1980-01-01
A transfer function design theory for multivariable control synthesis is highlighted. The use of unique transfer function matrices and two simple, basic relationships - a synthesis equation and a design equation - are presented and illustrated. This multivariable transfer function approach provides the designer with a capability to specify directly desired dynamic relationships between command variables and controlled or response variables. At the same time, insight and influence over response, simplifications, and internal stability is afforded by the method. A general, comprehensive multivariable synthesis capability is indicated including nonminmum phase and unstable plants. Gas turbine engine examples are used to illustrate the ideas and method.
High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.
Patterson, Jennifer Megan M
2016-05-01
Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893
MODELING ENVIRONMENTAL TOBACCO SMOKE IN THE HOME USING TRANSFER FUNCTIONS
This paper presents the theoretical and practical development of a multi-compartment indoor air quality model designed for predicting pollutant concentrations from environmental tobacco smoke (ETS) in the home. he model is developed using transfer functions for each compartment, ...
Newton algorithm for fitting transfer functions to frequency response measurements
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Mingori, D. L.
1993-01-01
In this paper the problem of synthesizing transfer functions from frequency response measurements is considered. Given a complex vector representing the measured frequency response of a physical system, a transfer function of specified order is determined that minimizes the sum of the magnitude-squared of the frequency response errors. This nonlinear least squares minimization problem is solved by an iterative global descent algorithm of the Newton type that converges quadratically near the minimum. The unknown transfer function is expressed as a sum of second-order rational polynomials, a parameterization that facilitates a numerically robust computer implementation. The algorithm is developed for single-input, single-output, causal, stable transfer functions. Two numerical examples demonstrate the effectiveness of the algorithm.
Development of a transfer function method for dynamic stability measurement
NASA Technical Reports Server (NTRS)
Johnson, W.
1977-01-01
Flutter testing method based on transfer function measurements is developed. The error statistics of several dynamic stability measurement methods are reviewed. It is shown that the transfer function measurement controls the error level by averaging the data and correlating the input and output. The method also gives a direct estimate of the error in the response measurement. An algorithm is developed for obtaining the natural frequency and damping ratio of low damped modes of the system, using integrals of the transfer function in the vicinity of a resonant peak. Guidelines are given for selecting the parameters in the transfer function measurement. Finally, the dynamic stability measurement technique is applied to data from a wind tunnel test of a proprotor and wing model.
Predicting Transfer Performance: A Comparison of Competing Function Learning Models
ERIC Educational Resources Information Center
McDaniel, Mark A.; Dimperio, Eric; Griego, Jacqueline A.; Busemeyer, Jerome R.
2009-01-01
The population of linear experts (POLE) model suggests that function learning and transfer are mediated by activation of a set of prestored linear functions that together approximate the given function (Kalish, Lewandowsky, & Kruschke, 2004). In the extrapolation-association (EXAM) model, an exemplar-based architecture associates trained input…
Hatt, Mathieu; Cheze le Rest, Catherine; Descourt, Patrice; Dekker, Andre; De Ruysscher, Dirk; Oellers, Michel; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2010-05-01
Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization. Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy. Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T{sub bckg}) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% +- 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% +- 11%. T{sub bckg} and FCM led to mean errors of 20% +- 12% and 17% +- 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with <6% standard deviation, whereas binary FLAB, T{sub bckg} and FCM lead to 10%, 12%, and 13%, respectively. Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.
Transfer function analysis in epi-illumination Fourier ptychography
Pacheco, Shaun; Salahieh, Basel; Milster, Tom; Rodriguez, Jeffrey J.; Liang, Rongguang
2016-01-01
This letter explores Fourier ptychography (FP) using epi-illumination. The approach effectively modifies the FP transfer function to be coherent-like out to the incoherent limit of twice the numerical aperture over the wavelength 2NA/λ. Images reconstructed using this approach are shown to have higher contrast at finer details compared with images using incoherent illumination, indicating that the FP transfer function is superior in high spatial frequency regions. PMID:26565870
NASA Technical Reports Server (NTRS)
Susskind, J.; Rosenfield, J.; Reuter, D.
1983-01-01
The direct computation of atmospheric transmittance and clear column radiances for the channels of HIRS2 and MSU as a function of atmospheric and surface conditions is described in detail. A comparison is made between the observations and the calculated radiances derived from colocated oceanic radiosondes. It is found that under clear conditions, calculated brightness temperatures for the HIRS2 have a standard deviation of the order of 0.7 C compared with observations, whereas MSU channels have a standard deviation of approximately 1 C. In some channels, small biases are found that can be removed by an empirical 'tuning' with coefficients that can be successfully transferred from one season to another. Less satisfactory agreement is obtained from a comparison of calculations with 'reconstructed' clear radiances, which are used in analyzing sounding data under partially cloudy conditions.
Sun, Y. Y.; Kim, Y. H.; Lee, K.; Zhang, S. B.
2008-01-01
Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.
Forward and reverse transfer function model synthesis
NASA Technical Reports Server (NTRS)
Houghton, J. R.
1985-01-01
A process for synthesizing a mathematical model for a linear mechanical system using the forward and reverse Fourier transform functions is described. The differential equation for a system model is given. The Bode conversion of the differential equation, and the frequency and time-domain optimization matching of the model to the forward and reverse transform functions using the geometric simplex method of Nelder and Mead (1965) are examined. The effect of the window function on the linear mechanical system is analyzed. The model is applied to two examples; in one the signal damps down before the end of the time window and in the second the signal has significant energy at the end of the time window.
The Transfer Functions of Cardiac Tissue during Stochastic Pacing
de Lange, Enno; Kucera, Jan P.
2009-01-01
Abstract The restitution properties of cardiac action potential duration (APD) and conduction velocity (CV) are important factors in arrhythmogenesis. They determine alternans, wavebreak, and the patterns of reentrant arrhythmias. We developed a novel approach to characterize restitution using transfer functions. Transfer functions relate an input and an output quantity in terms of gain and phase shift in the complex frequency domain. We derived an analytical expression for the transfer function of interbeat intervals (IBIs) during conduction from one site (input) to another site downstream (output). Transfer functions can be efficiently obtained using a stochastic pacing protocol. Using simulations of conduction and extracellular mapping of strands of neonatal rat ventricular myocytes, we show that transfer functions permit the quantification of APD and CV restitution slopes when it is difficult to measure APD directly. We find that the normally positive CV restitution slope attenuates IBI variations. In contrast, a negative CV restitution slope (induced by decreasing extracellular [K+]) amplifies IBI variations with a maximum at the frequency of alternans. Hence, it potentiates alternans and renders conduction unstable, even in the absence of APD restitution. Thus, stochastic pacing and transfer function analysis represent a powerful strategy to evaluate restitution and the stability of conduction. PMID:19134481
Modulation Transfer Function Measurement Using Three- and Four-bar Targets.
Boreman, G D; Yang, S
1995-12-01
Modulation-transfer-function (MTF) measurement often involves the use of three- and four-bar resolution targets. In the conversion of three- and four-bar image data to MTF, biased results can occur when we use series-expansion techniques appropriate for square-wave targets of infinite extent. For systems where the image data are digitally recorded, a convenient and accurate conversion of bar-target data to MTF can be performed using a Fourier-domain method. PMID:21068904
[Contrast transfer function of the visual system].
Pak, M A; Cleveland, S J
1991-09-01
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc. PMID:1657228
Green's function solution to heat transfer of a transparent gas through a tube
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1989-01-01
A heat transfer analysis of a transparent gas flowing through a circular tube of finite thickness is presented. This study includes the effects of wall conduction, internal radiative exchange, and convective heat transfer. The natural mathematical formulation produces a nonlinear, integrodifferential equation governing the wall temperature and an ordinary differential equation describing the gas temperature. This investigation proposes to convert the original system of equations into an equivalent system of integral equations. The Green's function method permits the conversion of an integrodifferential equation into a pure integral equation. The proposed integral formulation and subsequent computational procedure are shown to be stable and accurate.
Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions
Marois, C; Lafreniere, D; Macintosh, B; Doyon, R
2006-02-07
For ground-based adaptive optics point source imaging, differential atmospheric refraction and flexure introduce a small drift of the point spread function (PSF) with time, and seeing and sky transmission variations modify the PSF flux. These effects need to be corrected to properly combine the images and obtain optimal signal-to-noise ratios, accurate relative astrometry and photometry of detected companions as well as precise detection limits. Usually, one can easily correct for these effects by using the PSF core, but this is impossible when high dynamic range observing techniques are used, like coronagraphy with a non-transmissive occulting mask, or if the stellar PSF core is saturated. We present a new technique that can solve these issues by using off-axis satellite PSFs produced by a periodic amplitude or phase mask conjugated to a pupil plane. It will be shown that these satellite PSFs track precisely the PSF position, its Strehl ratio and its intensity and can thus be used to register and to flux normalize the PSF. This approach can be easily implemented in existing adaptive optics instruments and should be considered for future extreme adaptive optics coronagraph instruments and in high-contrast imaging space observatories.
Accurate calculation and modeling of the adiabatic connection in density functional theory
NASA Astrophysics Data System (ADS)
Teale, A. M.; Coriani, S.; Helgaker, T.
2010-04-01
AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.
Parametric dependence of ocean wave-radar modulation transfer functions
NASA Technical Reports Server (NTRS)
Plant, W. J.; Keller, W. C.; Cross, A.
1983-01-01
Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.
Förster-Induced Energy Transfer in Functionalized Graphene.
Malic, Ermin; Appel, Heiko; Hofmann, Oliver T; Rubio, Angel
2014-05-01
Carbon nanostructures are ideal substrates for functionalization with molecules since they consist of a single atomic layer giving rise to an extraordinary sensitivity to changes in their surrounding. The functionalization opens a new research field of hybrid nanostructures with tailored properties. Here, we present a microscopic view on the substrate-molecule interaction in the exemplary hybrid material consisting of graphene functionalized with perylene molecules. First experiments on similar systems have been recently realized illustrating an extremely efficient transfer of excitation energy from adsorbed molecules to the carbon substrate, a process with a large application potential for high-efficiency photovoltaic devices and biomedical imaging and sensing. So far, there has been no microscopically founded explanation for the observed energy transfer. Based on first-principle calculations, we have explicitly investigated the different transfer mechanisms revealing the crucial importance of Förster coupling. Due to the efficient Coulomb interaction in graphene, we obtain strong Förster rates in the range of 1/fs. We investigate its dependence on the substrate-molecule distance R and describe the impact of the momentum transfer q for an efficient energy transfer. Furthermore, we find that the Dexter transfer mechanism is negligibly small due to the vanishing overlap between the involved strongly localized orbital functions. The gained insights are applicable to a variety of carbon-based hybrid nanostructures. PMID:24808936
Förster-Induced Energy Transfer in Functionalized Graphene
2014-01-01
Carbon nanostructures are ideal substrates for functionalization with molecules since they consist of a single atomic layer giving rise to an extraordinary sensitivity to changes in their surrounding. The functionalization opens a new research field of hybrid nanostructures with tailored properties. Here, we present a microscopic view on the substrate–molecule interaction in the exemplary hybrid material consisting of graphene functionalized with perylene molecules. First experiments on similar systems have been recently realized illustrating an extremely efficient transfer of excitation energy from adsorbed molecules to the carbon substrate, a process with a large application potential for high-efficiency photovoltaic devices and biomedical imaging and sensing. So far, there has been no microscopically founded explanation for the observed energy transfer. Based on first-principle calculations, we have explicitly investigated the different transfer mechanisms revealing the crucial importance of Förster coupling. Due to the efficient Coulomb interaction in graphene, we obtain strong Förster rates in the range of 1/fs. We investigate its dependence on the substrate–molecule distance R and describe the impact of the momentum transfer q for an efficient energy transfer. Furthermore, we find that the Dexter transfer mechanism is negligibly small due to the vanishing overlap between the involved strongly localized orbital functions. The gained insights are applicable to a variety of carbon-based hybrid nanostructures. PMID:24808936
Autocorrelation method for measuring the transfer function of optical systems
NASA Astrophysics Data System (ADS)
Grover, C. P.; van Driel, H. M.
1980-03-01
An unconventional autocorrelation method is described for measuring the transfer function of optical systems. The interference takes place between the scattered waves obtained from two laterally sheared correlated partial diffusers. The output of a detector responding only to an extremely narrowband of spatial frequencies is proportional to the autocorrelation of the system pupil function. An automatic display of the transfer function is obtained by continuously varying the shear between the diffusers. The theory and some experimental results of this simple and inexpensive device are presented. A study of various parameters affecting the performance of the instrument is also given.
Transfer Functions Via Laplace- And Fourier-Borel Transforms
NASA Technical Reports Server (NTRS)
Can, Sumer; Unal, Aynur
1991-01-01
Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.
Optical transfer function of NTS-1 retroreflector array
NASA Technical Reports Server (NTRS)
Arnold, D. A.
1974-01-01
An optical transfer function was computed for the retroreflector array carried by the NTS-1 satellite. Range corrections are presented for extrapolating laser range measurements to the center of mass of the satellite. The gain function of the array was computed for use in estimating laser-echo signal strengths.
Applications of dispersion relations to the geomagnetic transfer function
NASA Astrophysics Data System (ADS)
Marcuello, A.; Queralt, P.; Ledo, J.
2005-05-01
The geomagnetic transfer function is nowadays used to constrain the magnetotelluric inversion procedure given that this function contains complementary information to the impedance tensor. For the models usually employed by inversions, the real and imaginary parts of the geomagnetic transfer function are related by dispersion relations. The computation of the dispersion relations involves the Hilbert transform, and here we discuss different expressions to compute them. This computation was verified using synthetically generated geomagnetic transfer function from 2D and 3D models. The dispersion relations were applied on two cases: (a) to study the consistency between the real and imaginary parts of field recorded data, and (b) to develop a procedure to complete or extend the amount of measured data.
Chen, Qiang; Yang, Bicheng
2016-01-01
By means of weight functions and Hermite-Hadamard's inequality, and introducing a discrete interval variable, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function and a best possible constant factor is given, which is an extension of a published result. The equivalent forms and the operator expressions are also considered. PMID:27563512
NASA Astrophysics Data System (ADS)
Hekkenberg, R. T.; Richards, A.; Beissner, K.; Zeqiri, B.; Prout, G.; Cantrall, Ch; Bezemer, R. A.; Koch, Ch; Hodnett, M.
2004-01-01
Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within +/-20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably.
Perfect function transfer and interference effects in interacting boson lattices
Wu Lianao; Miranowicz, Adam; Wang Xiangbin; Liu Yuxi; Nori, Franco
2009-07-15
We show how to perfectly transfer, without state initialization and remote collaboration, arbitrary functions in interacting boson lattices. We describe a possible implementation of state transfer through bosonic atoms trapped in optical lattices or polaritons in on-chip coupled cavities. Significantly, a family of Hamiltonians, both linear and nonlinear, is found which are related to the Bose-Hubbard model and that enable the perfect transfer of arbitrary functions. It is shown that the state transfer between two sites in two-dimensional lattices can result in quantum interference due to the different numbers of intermediate sites in different paths. The signature factor in nuclear physics can be useful to characterize this quantum interference.
Modulation transfer function of QWIP and superlattice focal plane arrays
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Liu, J. K.; Khoshakhlagh, A.; Keo, S. A.; Mumolo, J. M.; Nguyen, J.
2013-07-01
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.
Optical transfer function optimization based on linear expansions
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim
2015-09-01
The Optical Transfer Function (OTF) and its modulus the Modulation Transfer Function (MTF) are metrics of optical system performance. However in system optimization, calculation times for the OTF are often substantially longer than more traditional optimization targets such as wavefront error or transverse ray error. The OTF is typically calculated as either the autocorrelation of the complex pupil function or as the Fourier transform of the Point Spread Function. We recently demonstrated that the on-axis OTF can be represented as a linear combination of analytical functions where the weighting terms are directly related to the wavefront error coefficients and apodization of the complex pupil function. Here, we extend this technique to the off-axis case. The expansion technique offers a potential for accelerating OTF optimization in lens design, as well as insight into the interaction of aberrations with components of the OTF.
H2 -norm of fractional transfer functions of implicit type
NASA Astrophysics Data System (ADS)
Malti, Rachid; Chevrié, Mathieu; Farges, Christophe; Sabatier, Jocelyn
2015-09-01
This paper studies the H2 -norm (or impulse response energy) of fractional transfer functions of implicit type. Stability conditions are first shown to be identical as in rational systems with all poles located in the open left half complex plane. Then, analytical expressions of the H2 -norm are derived for elementary fractional transfer functions of the first and the second kind cascaded with a pure fractional integrator. Next, general boundedness conditions are established in terms of transfer function relative degree. Three illustrative examples are finally proposed. The first one evaluates the quality of a rational approximation of a fractional model of implicit type on the basis of the H2 -norm of the error signal. The second one evaluates the Integral Squared Error of a CRONE control loop and compares it to a classical proportional-derivative controller in a vehicle suspension. Finally, the third one allows to set up an implicit fractional preshaping filter for closed-loop control.
The dynamic transfer function for a cavitating inducer
NASA Technical Reports Server (NTRS)
Brennen, C.; Acosta, A. J.
1975-01-01
Knowledge of the dynamic performance of pumps is essential for the prediction of transient behavior and instabilities in hydraulic systems; the necessary information is in the form of a transfer function which relates the instantaneous or fluctuating pressure and mass flow rate at inlet to the same quantities in the discharge from the pump. The presence of cavitation within the pump can have a major effect on this transfer function since dynamical changes in the volume of cavitation contribute to the difference in the instantaneous inlet and discharge mass flow rates. The present paper utilizes results from free streamline cascade theory to evaluate the elements in the transfer function for a cavitating inducer and shows that the numerical results are consistent with the characteristics observed in some dynamic tests on rocket engine turbopumps.
NASA Astrophysics Data System (ADS)
Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand
2015-09-01
Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α =0.0 ) and HSE06 (α =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been
NASA Astrophysics Data System (ADS)
Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia
The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.
ERIC Educational Resources Information Center
Holton, James M.
During the 1990-91 academic year, Frederick Community College (FCC) in Maryland conducted a major research project to help determine the extent and effectiveness of the college's transfer function. In the study's first phase, a Transfer Tracking System (TTS) was developed by conducting a detailed audit of all transcript requests from FCC students.…
NASA Astrophysics Data System (ADS)
Javad Fahimi, Mohammad; Fathi, Davood; Ansari-Rad, Mehdi
2015-09-01
Electron transfer rate from quantum dot (QD) to metal oxide (MO) in quantum dot sensitized solar cells (QDSSCs) has an important role in the efficiency. In this work, we analyse the electron transfer rate from CdSe, CdS and CdTe QDs to TiO2, ZnO and SnO2 MOs by extending the related equations with considering various effects, based on the Marcus theory. In this regard, the effects of QD diameter, QD-MO spacing, the crystalline defects, temperature, and the reorganizational energy, on the electron transfer rate are investigated. The results show that, the maximum electron transfer rate is achieved for CdTe QD with the mentioned three MOs. Moreover, in order to direct the designer to reach the appropriate QDs-MOs combinations for obtaining the maximum electron transfer rate, the average electron transfer rate for various combinations is calculated. For the verification of simulation method, a part of work has been compared with the previous experimental and theoretical results, which indicates the correctness of our simulation algorithm.
Horizontal functional gene transfer from bacteria to fishes
Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shun-Min; Huang, Da-Wei
2015-01-01
Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution. PMID:26691285
Determination of acoustical transfer functions using an impulse method
NASA Astrophysics Data System (ADS)
MacPherson, J.
1985-02-01
The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.
Track/train dynamics test procedure transfer function test
NASA Technical Reports Server (NTRS)
Vigil, R. A.
1975-01-01
A transfer function vibration test was made on an 80 ton open hopper freight car in an effort to obtain validation data on the car's nonlinear elastic model. Test configuration, handling, test facilities, test operations, and data acquisition/reduction activities necessary to meet the conditions of test requirements are given.
Modulation transfer function measurement using spatial noise targets
NASA Astrophysics Data System (ADS)
Boreman, Glenn D.
1995-06-01
In this paper, we consider the measurement of modulation transfer function (MTF) by means of spatially random, noise-like targets. We begin our discussion with the concept of shift- invariance and the measurement of MTF in pixelated systems. We then proceed to the methods for generation of these noise targets, using both laser speckle and transparency-based techniques.
Human transfer functions used to predict system performance parameters
NASA Technical Reports Server (NTRS)
1966-01-01
Automatic, parameter-tracking, model-matching technique compares the responses of a human operator with those of an analog computer model of a human operator to predict and analyze the performance of mechanical or electromechanical systems prior to construction. Transfer functions represent the input-output relation of an operator controlling a closed-loop system.
Naulleau, Patrick P; Gallatin, Gregg M
2003-06-10
The control of line-edge roughness (LER) of features printed in photoresist poses significant challenges to next-generation lithography techniques such as extreme-ultraviolet (EUV) lithography. Achieving adequately low LER levels will require accurate resist characterization as well as the ability to separate resist effects from other potential contributors to LER. One significant potential contributor is LER on the mask. Here we explicitly study the mask to resist LER coupling using both analytical and computer-simulation methods. We present what is to our knowledge a new imaging transfer function referred to as the LER transfer function (LTF), which fundamentally differs from both the conventional modulation transfer function and the optical transfer function. Moreover, we present experimental results demonstrating the impact of current EUV masks on projection-lithography-based LER experiments. PMID:12816326
Context transfer in reinforcement learning using action-value functions.
Mousavi, Amin; Nadjar Araabi, Babak; Nili Ahmadabadi, Majid
2014-01-01
This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This requires the existence of an underlying common Markov decision process (MDP) to which all the agents' MDPs can be mapped. This is formulated in terms of the notion of MDP homomorphism. The learning framework is Q-learning. To transfer the knowledge between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of different tasks. The Q-values learned during the learning process of the source tasks are mapped to the sets of Q-values for the target task. These transferred Q-values are merged together and used to initialize the learning process of the target task. An interval-based approach is used to represent and merge the knowledge of the source tasks. Empirical results show that the transferred initialization can be beneficial to the learning process of the target task. PMID:25610457
Impact of permeability on seismoelectric transfer function of P waves
NASA Astrophysics Data System (ADS)
Holzhauer, J.; Bordes, C.; Oppermann, F.; Brito, D.; Yaramanci, U.
2012-04-01
Recent developments in the understanding of seismoelectrics have shown its potential relevance for porous media characterization with particular focus on permeability estimations. According to promising theoretical and numerical studies, permeability should influence the seismoelectric transfer function at higher frequencies. The dynamic seismoelectric transfer function E(ω)/ ü(ω), where E relates to the coseismic electric field induced by the seismic particle acceleration ü, is expected to increase with increasing permeabilities when crossing the Biot transition frequency. Still, only few experiments have been developed on that matter so far. To address the transfer function dependence on permeability, we adapted a column experiment to comply with steady-state permeability estimations. These observations were run in-situ, during the fluid-balancing phase prior to seismoelectric measurements. The 50 cm-long column had previously been carefully filled with perfectly rounded glass beads. The use of sorted glass beads is expected to achieve similar porosities reproducible throughout the experiment, opposed to varying permeabilities depending on the introduced particle size. The acoustic source delivered compressional waves with an optimal effect limited to the [1-3] kHz frequency range. These limitations are due to strong seismic attenuation in uncompacted porous media on one side, and to the dilemma of observing propagation in downsized laboratory setup on the other. First results validated the experimental protocol in terms of porosity/permeability independence: for particle size varying between 100 μm and 500 μm, permeability varied by a factor 20, with a maximum by 5.10-11 m2, while porosity remained by 39 ± 2 % during the whole experiment. Further investigations are being led regarding the normalised transfer function, corrected for both the fluid conductivity and the seismic energy. For that purpose, we compare the dependence of our measured transfer
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.
A new class of atomic basis functions for accurate electronic structure calculations of molecules
NASA Astrophysics Data System (ADS)
Laikov, Dimitri N.
2005-11-01
A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.
A simple transfer function for nonlinear dendritic integration
Singh, Matthew F.; Zald, David H.
2015-01-01
Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration (“dendritic integration”). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches obeys previous linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which some authors have likened to the sigmoid function. Here we show the implausibility of a sigmoidal relation and present a more realistic transfer function in both an elegant artificial form and a biophysically derived form that further considers input locations along the dendritic arbor. As the distance between input locations determines their ability to produce nonlinear interactions, models incorporating dendritic topology are essential to understanding the computational power afforded by these early stages of integration. We use the biophysical transfer function to emulate empirical data using biophysical parameters and describe the conditions under which the artificial and biophysically derived forms are equivalent. PMID:26321940
Transfer function analysis of dynamic cerebral autoregulation in humans
NASA Technical Reports Server (NTRS)
Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.
Comparison of geometrical and diffraction optical transfer functions
NASA Astrophysics Data System (ADS)
Mahajan, Virendra N.; Díaz, José Antonio
2015-09-01
The geometrical and diffraction point-spread functions of an optical imaging system have been reviewed and compared in the past [V. N. Mahajan, "Comparison of geometrical and diffraction point-spread functions," SPIE Proc. 3729, 434-445 (1999)]. In this paper, we review and compare its corresponding optical transfer functions. While the truth lies with the diffraction OTF, it is considered easier and quicker to calculate the geometrical OTF, especially for large aberrations. We briefly describe the theory of the two OTFs, and explore the range of spatial frequencies and the magnitude of the primary aberrations over which the geometrical OTF may provide a reasonable approximation of the diffraction OTF.
Subotnik, Joseph E.; Vura-Weis, Josh; Sodt, Alex J.; Ratner, Mark A.
2010-05-06
We model the triplet-triplet energy-transfer experiments from the Closs group [Closs, G. L.; et al. J. Am. Chem. Soc. 1988, 110, 2652.] using a combination of Marcus theory and either Boys or Edmiston-Ruedenberg localized diabatization, and we show that relative and absolute rates of electronic excitation transfer may be computed successfully. For the case where both the donor and acceptor occupy equatorial positions on a rigid cyclohexane bridge, we find β_{calc} = 2.8 per C-C bond, compared with the experimental value β_{exp} = 2.6. This work highlights the power of using localized diabatization methods as a tool for modeling nonequilibrium processes.
On the role of covarying functions in stimulus class formation and transfer of function.
Markham, Rebecca G; Markham, Michael R
2002-01-01
This experiment investigated whether directly trained covarying functions are necessary for stimulus class formation and transfer of function in humans. Initial class training was designed to establish two respondent-based stimulus classes by pairing two visual stimuli with shock and two other visual stimuli with no shock. Next, two operant discrimination functions were trained to one stimulus of each putative class. The no-shock group received the same training and testing in all phases, except no stimuli were ever paired with shock. The data indicated that skin conductance response conditioning did not occur for the shock groups or for the no-shock group. Tests showed transfer of the established discriminative functions, however, only for the shock groups, indicating the formation of two stimulus classes only for those participants who received respondent class training. The results suggest that transfer of function does not depend on first covarying the stimulus class functions. PMID:12507017
Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando; Henson, Neil J.
2014-10-05
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schr€odinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.
Matanović, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando H; Henson, Neil J
2014-10-01
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of -2.62 and -1.1% for the N-N stretching and Rh-H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh-H and N-N stretching modes from the bulk phonons and by solving one- and two-dimensional Schrödinger equation associated with the Rh-H, Rh-N, and N-N potential energy we calculated the anharmonic correction for N-N and Rh-H stretching modes as -31 cm(-1) and -77 cm(-1) at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. PMID:25164265
Measurement of the modulation transfer function of infrared cameras
NASA Astrophysics Data System (ADS)
Tzannes, Alexis P.; Mooney, Jonathan M.
1995-06-01
The performance of starting PtSi infrared cameras is characterized based on estimating their spatial frequency response. Applying a modified knife-edge technique, we arrive at an estimate of the edge spread function (ESF), which is used to obtain a profile through the center of the 2-D modulation transfer function (MTF). Using this technique, the complete system MTF in the horizontal and vertical direction is measured for various imaging systems. The influence of charge transfer efficiency (CTE) on the knife-edge measurement and resulting MTF is also modeled and discussed. An estimate of the CTE can actually be obtained from the shape of the ESF in the horizontal direction. In addition, we demonstrate that this technique can be used as a filed measurement. By applying the technique at long range, the MTF of the atmosphere can be measured.
Structural model updating using incomplete transfer function of strain data
NASA Astrophysics Data System (ADS)
Esfandiari, A.
2014-08-01
In this paper a model updating algorithm is presented to estimate structural parameters at the element level utilizing frequency domain representation of the strain data. Sensitivity equations for mass and stiffness parameters estimation are derived using decomposed form of the strain-based transfer functions. The rate of changes of eigenvectors and a subset of measured natural frequencies are used to assemble the sensitivity equation of the strain-based transfer function. Solution of the derived sensitivity equations through the least square method resulted in a robust parameters estimation method. Numerical examples using simulated noise polluted data of 2D truss and frame models confirm that the proposed method is able to successfully update structural models even in the presence of mass modeling errors.
Characterization of the modulation transfer function of discrete filtered backprojection.
Glick, S J; King, M A; Penney, B C
1989-01-01
A mathematical expression for the modulation transfer function (MTF) of image reconstruction by discrete filtered backprojection (DFBP) is derived. A simulation study is used to investigate the dependence of the MTF of DFBP on: (1) the number of projection views; (2) the type of ramp filter used; (3) the interpolation method used during backprojection; and (4) the position of the object. These results were compared to MTFs calculated from point-source single-photon-emission computed tomographic (SPECT) acquisitions in air. The experimentally obtained MTFs contained much of the same structure as the MTFs of DFBP obtained through simulation. It is shown that the discretization of the filtered backprojection process can cause the tomographic transfer function to be anisotropic and nonstationary. However, through proper selection of the methods used in reconstruction, a nearly isotropic and stationary MTF can be obtained. PMID:18230518
Properties of Zero-Free Transfer Function Matrices
NASA Astrophysics Data System (ADS)
D. O. Anderson, Brian; Deistler, Manfred
Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.
Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade
2015-10-30
This research provides a performance investigation of density functional theory and also proposes new functional parameterizations to deal with electric field gradient (EFG) calculations at nuclear positions. The entire procedure is conducted within the four-component formalism. First, we noticed that traditional hybrid and long-range corrected functionals are more efficient in the description of EFG variations for a set of elements (indium, antimony, iodine, lutetium, and hafnium) among linear molecules. Thus, we selected the PBE0, B3LYP, and CAM-B3LYP functionals and promoted a reoptimization of their parameters for a better description of these EFG changes. The PBE0q variant developed here showed an overall promising performance in a validation test conducted with potassium, iodine, copper, and gold. In general, the correlation coefficients found in linear regressions between experimental nuclear quadrupole coupling constants and calculated EFGs are improved while the systematic EFG errors also decrease as a result of this reparameterization. PMID:26284820
Return of lymphatic function after flap transfer for acute lymphedema.
Slavin, S A; Van den Abbeele, A D; Losken, A; Swartz, M A; Jain, R K
1999-01-01
OBJECTIVE: The goals of this work were to develop animal models of lymphedema and tissue flap transfer, and to observe physiologic changes in lymphatic function that occur in these models over time, both systemically with lymphoscintigraphy (LS) and locally using fluorescence microlymphangiography (FM). SUMMARY BACKGROUND DATA: Although lymphedema has been managed by a combination of medical and surgical approaches, no effective long-term cure exists. Surgical attempts aimed at reconnecting impaired lymphatic channels or bypassing obstructed areas have failed. METHODS: The tails of rats (A groups) and mice (B groups) were used because of their different features. Lymphedema was created by ligation of the lymphatics at the tail base and quantified by diameter measurements there. In the experimental group, rectus abdominis myocutaneous flap was transferred across the ligation. In addition to the ligation (A1 and B1) and ligation + flap (A2 and B2) groups, three control groups were included: sham flap with ligation (B4), sham flap alone (B5), and normal (A3 and B3) animals. Observations were made at weekly time points for lymphatic function and continuity. RESULTS: Lymphedema was successfully created in the mouse ligation groups (B1 and B4) and sustained for the entire length of observation (up to 14 weeks). Lymphatic continuity was restored in those animals with transferred flaps across the ligation site (A2 and B2), as seen both by LS and FM. Sham flaps did not visibly affect lymphatic function nor did they cause any visible swelling in the tail. CONCLUSIONS: Acute lymphedema developing after ligation of tail lymphatics in mice can be prevented by myocutaneous flap transfer. Restored lymphatic continuity and function were demonstrable using lymphoscintigraphy and fluorescence microlymphangiography. Images Figure 2. Figure 4. Figure 5. PMID:10077056
A Derived Transfer of Mood Functions through Equivalence Relations
ERIC Educational Resources Information Center
Barnes-Holmes, Yvonne; Barnes-Holmes, Dermot; Smeets, Paul M.; Luciano, Carmen
2004-01-01
The present study investigated the transfer of induced happy and sad mood functions through equivalence relations. Sixteen subjects participated in a combined equivalence and mood induction procedure. In Phase 1, all subjects were trained in 2 conditional discriminations using a matching-to-sample format (i.e., A1-B1, A2-B2, A1-C1, A2-C2). In…
Determination of the electronics transfer function for current transient measurements
NASA Astrophysics Data System (ADS)
Scharf, Christian; Klanner, Robert
2015-04-01
We describe a straight-forward method for determining the transfer function of the readout of a sensor for the situation in which the current transient of the sensor can be precisely simulated. The method relies on the convolution theorem of Fourier transforms. The specific example is a planar silicon pad diode. The charge carriers in the sensor are produced by picosecond lasers with light of wavelengths of 675 and 1060 nm. The transfer function is determined from the 1060 nm data with the pad diode biased at 1000 V. It is shown that the simulated sensor response convoluted with this transfer function provides an excellent description of the measured transients for laser light of both wavelengths. The method has been applied successfully for the simulation of current transients of several different silicon pad diodes. It can also be applied for the analysis of transient-current measurements of radiation-damaged solid state sensors, as long as sensors properties, like high-frequency capacitance, are not too different.
Photothermal transfer function of dielectric mirrors for precision measurements
NASA Astrophysics Data System (ADS)
Ballmer, Stefan W.
2015-01-01
The photothermal transfer function from absorbed power incident on a dielectric mirror to the effective mirror position is calculated using the coating design as input. The effect is found to change in amplitude and sign for frequencies corresponding to diffusion length comparable to the coating thickness. Transfer functions are calculated for the T i -doped Ta2O5:SiO2 coating used in Advanced LIGO and for a crystalline AlxGa1 -xAs coating. The shape of the transfer function at high frequencies is shown to be a sensitive indicator of the effective absorption depth, providing a potentially powerful tool to distinguish coating-internal absorption from surface contamination related absorption. The sign change of the photothermal effect could also be useful to stabilize radiation pressure-based optomechanical systems. High frequency corrections to the previously published thermo-optic noise estimates are also provided. Finally, estimating the quality of the thermo-optic noise cancellation occurring in fine-tuned AlxGa1 -xAs coatings requires the detailed heat flow analysis done in this paper.
Boundary emphasis transfer function generation based on HSL color space
NASA Astrophysics Data System (ADS)
Li, Xiao; Wu, Jianhuang; Luo, Shengzhou; Ma, Xin
2011-10-01
Direct volume rendering has been received much attention since it need not to extract geometric primitives for visualization and its performance is generally better than surface rendering. Transfer functions, which are used for mapping scalar field to optical properties, are of vital importance in obtaining a sensible rendering result from volume data. Though traditional color transfer functions are in RGB color space, HSL color space that conveys semantic meanings is more intuitive and user-friendly. In this paper, we present a novel approach aims to emphasize and distinguish strong boundaries between different materials. We achieve it by using data value, gradient magnitude and dimension of the volumetric data to set opacity. Then, through a linear map from data value, gradient magnitude and second derivative to hue, saturation and lightness respectively, a color transfer function is obtained in HSL color space. Experimental tests on real-world datasets indicate that our method could achieve desirable rendering results with revealing important boundaries between different structures and indicating data value's distribution in the volume by using different colors.
Data formats for a library of Kerr metric transfer functions
NASA Astrophysics Data System (ADS)
McDowell, Jonathan C.; Brenneman, Laura; Reynolds, Christopher S.; Keck, Mason; Risaliti, Guido
2015-01-01
As part of a project to model time-resolved X-ray obscuration in AGN, we have reimplemented and improved the Reynolds et al (1999, ApJ 514, 164) approach to calculating the transfer functions which give the redshift and projected orientation of an accretion disk element in the observer frame. We define a multi-extension FITS image array format which contains the computed transfer function for a given value of observation angle and black hole spin parameter. Each extension contains an image, in observer plane coordinates, of a different physical quantity: redshift, direction cosine, geodesic coordinates, etc. This allows us to build up a library of transfer function files for different observation angles, each with moderate (less than 200 Mbyte) storage requirements. Use of the FITS format allows us to record the associated model parameters and coordinate systems in a standard way and to visualize the results using standard analysis tools such as ds9. We illustrate preliminary spectral modelling results obtained using this approach.
Transfer Function Identification of an Electro-Rheological Actuator
NASA Astrophysics Data System (ADS)
Brookfield, D. J.; Dlodlo, Z. B.
A fluid clutch utilising an Electro-Rheological (ER) suspension provides a controlled torque coupling between input and output through the control of the applied electric field. If the input is driven at constant speed the device can be considered as an ER torque actuator and thus be used to drive robot links or other mechanisms requiring precise positioning. Such an ER torque actuator can replace a DC servo-motor in robotic applications with the benefits of low time constant and smooth output torque unaffected by cogging (i.e. variation in torque of a DC motor as the magnetic reluctance of the armature-stator path changes with rotation). Although the ER actuator has many benefits, it suffers from a non-linear and time varying relationship between input voltage and output torque. These undesirable characteristics can be mitigated by providing a local closed loop controller around the system. The design of such a controller requires a knowledge of the relationship between the applied voltage and output torque; i.e. the transfer function of the actuator. This transfer function has been determined by observing the response of an ER torque actuator in the frequency domain. It is shown that a linear transfer function model reasonable represents the actuator behaviour, that the actuator is a stable second order system and that the time constant of the clutch studied is sufficiently short to hold considerable promise for robotic applications. Furthermore, the maximum torque capability is shown to be sufficient for many medium scale industrial robots.
Accurate and efficient calculation of discrete correlation functions and power spectra
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Liu, J. M.; Zhu, W. D.
2015-07-01
Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate
Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. )
1990-06-01
Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.
Modulation transfer function measurement technique for small-pixel detectors
NASA Technical Reports Server (NTRS)
Marchywka, Mike; Socker, Dennis G.
1992-01-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.
An extended set of yeast-based functional assays accurately identifies human disease mutations.
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E; Vidal, Marc; Andrews, Brenda J; Boone, Charles; Dolinski, Kara; Roth, Frederick P
2016-05-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
An extended set of yeast-based functional assays accurately identifies human disease mutations
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.
2016-01-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
Calbo, Joaquín; Ortí, Enrique; Sancho-García, Juan C; Aragó, Juan
2015-03-10
In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems. PMID:26579747
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
Density functional theory for protein transfer free energy.
Mills, Eric A; Plotkin, Steven S
2013-10-24
We cast the problem of protein transfer free energy within the formalism of density functional theory (DFT), treating the protein as a source of external potential that acts upon the solvent. Solvent excluded volume, solvent-accessible surface area, and temperature dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified "back of the envelope" models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5 to 10 kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged interactions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective interaction potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy δg shows significant entropy: d(δg)/dT ≈ 20 kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion interactions and an "impeded-solvation" repulsive force at larger distances. PMID:23944753
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Kim, Ye-seul; Park, Hye-Suk; Lee, Young-Jin; Kim, Hee-Joung
2015-03-01
Image evaluation is necessary in digital radiography (DR) which is widely used in medical imaging. Among parameters of image evaluation, modulation transfer function (MTF) is the important factor in the field of medical imaging and necessary to obtain detective quantum efficiency (DQE) which represents overall performance of the detector signal-to-noise ratio. However, the accurate measurement of MTF is still not easy because of geometric effect, electric noise, quantum noise, and truncation error. Therefore, in order to improve accuracy of MTF, four experimental methods were tested in this study such as changing the tube current, applying smoothing method in edge spread function (ESF), adjusting line spread function (LSF) range, and changing tube angle. Our results showed that MTF's fluctuation was decreased by high tube current and smoothing method. However, tube current should not exceed detector saturation and smoothing in ESF causes a distortion in ESF and MTF. In addition, decreasing LSF range diminished fluctuation and the number of sampling in MTF and high tube angle generates degradation in MTF. Based on these results, excessively low tube current and the smoothing method should be avoided. Also, optimal range of LSF considering reduction of fluctuation and the number of sampling in MTF was necessary and precise tube angle is essential to obtain an accurate MTF. In conclusion, our results demonstrated that accurate MTF can be acquired.
A method for the accurate and smooth approximation of standard thermodynamic functions
NASA Astrophysics Data System (ADS)
Coufal, O.
2013-01-01
A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are
NASA Astrophysics Data System (ADS)
Balabin, Roman M.; Lomakina, Ekaterina I.
2009-08-01
Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2015-03-01
Modulation transfer function (MTF) can be used to evaluate the imaging performance of on-board optical remote sensing sensors, as well as recover and restore images to improve imaging quality. Laboratory measurement approaches for MTF have achieved high precision. However, they are not yet suitable for on-board measurement. In this paper, a new five-step approach to calculate MTF of space optical remote sensing sensors is proposed. First, a pixel motion model is used to extract the conditional sub-frame images. Second, a mathematical morphology algorithm and a correlation-homomorphic filter algorithm are used to eliminate noise and enhance sub-frame image. Third, an image partial differentiation determines the accurate position of edge points. Fourth, a model optical function is used to build a high-resolution edge spread function. Finally, MTF is calculated by derivation and Fourier transform. The experiment shows that the assessment method of MTF is superior to others. PMID:25836841
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji
2005-09-01
An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.
Modulation transfer function technique for real time radioscopic system characterization
Tobin, K.W. ); Brenizer, J.S. ); Mait, J.N. )
1989-12-01
At the University of Virginia neutron radiography facility, a modulation transfer function technique has been developed that can easily predict and compare the resolving characteristics of the real time system and the individual system components. We desired a simple method by which new system components could be analyzed to determine their image transfer characteristics and to estimate how they would affect the composite system during data acquisition. The method employed measures a small set of constant system parameters related to data collected across a cadmium cut-edge aperture. The effects of system noise and spatial variance on the measured data are reduced so that a representation of the true signal can be obtained for analysis. Resolution parameters for the total neutron radiography system and for the individual system components are reported.
Modulation transfer function technique for real time radioscopic system characterization.
Tobin, K W; Brenizer, J S; Mait, J N
1989-12-01
At the University of Virginia neutron radiography facility, a modulation transfer function technique has been developed that can easily predict and compare the resolving characteristics of the real time system and the individual system components. We desired a simple method by which new system components could be analyzed to determine their image transfer characteristics and to estimate how they would affect the composite system during data acquisition. The method employed measures a small set of constant system parameters related to data collected across a cadmium cut-edge aperture. The effects of system noise and spatial variance on the measured data are reduced so that a representation of the true signal can be obtained for analysis. Resolution parameters for the total neutron radiography system and for the individual system components are reported. PMID:20555991
Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation
Zhang, Gang; Mendez, Blanca Lopez; Sedgwick, Garry G.; Nilsson, Jakob
2016-01-01
The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore–microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore–microtubule interactions is debated. Here we show that two distinct pools of BubR1/Bub3 exist at kinetochores and we uncouple these with defined BubR1/Bub3 mutants to address their function. The major kinetochore pool of BubR1/Bub3 is dependent on direct Bub1/Bub3 binding and is required for chromosome alignment but not for the SAC. A distinct pool of BubR1/Bub3 localizes by directly binding to phosphorylated MELT repeats on the outer kinetochore protein KNL1. When we prevent the direct binding of BubR1/Bub3 to KNL1 the checkpoint is weakened because BubR1/Bub3 is not incorporated into checkpoint complexes efficiently. In conclusion, kinetochore localization supports both known functions of BubR1/Bub3. PMID:27457023
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985
NASA Astrophysics Data System (ADS)
Teipen, Brian Thomas
2000-12-01
Over the years, several optical and opto-electronic systems have been invented in order to reproduce or improve an ability to image a physical scene. Optical imaging (vision) delivers the capability to collect an enormous amount of information about the surrounding environment. The quality of any imaging system can be conveniently defined by the amount of information that is ultimately gathered. Information transfer is the fundamental process of imaging systems and often can be described in terms of linear systems. Conveniently, transfer functions common to linear systems theory (communications theory) can be adopted to accurately describe optical information transfer in imaging systems. In this dissertation, we report on the advancements of two areas of optical imaging. Firstly, we present a new measurement process involving pseudo-random spatial patterns generated with a liquid crystal display (LCD) that allows convenient determination of the spatial- frequency transfer function commonly known as the modulation transfer function (MTF) of digital imaging systems. We present horizontal and vertical MTF measurements for color and monochrome charge-coupled device (CCD) video systems, common to machine vision and robotic vision applications. Results are found to agree with previously applied methods of measuring imaging resolution, while increasing the speed, adaptability, and convenience of the measurement. Secondly, we present three-dimensional (3-D) shape measurements from a new experimental method using polarization-encoded spatial patterns. The measurement technique is an active method of vision using projected patterns from a LCD projector. Part of the polarization-encoded pattern, a sub-pattern that is a pseudo-random code, is dedicated to solve the difficult problem of measuring the absolute height of an object with edge discontinuities. This technique conveniently allows lost fringe-order information of the classic synthetic-fringe pattern to be regained.
Shen, Yan; Lou, Shuqin; Wang, Xin
2014-03-20
The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461
NASA Astrophysics Data System (ADS)
Trujillo Bueno, J.; Fabiani Bendicho, P.
1995-12-01
Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel
X-ray modulation transfer functions of photostimulable phosphor image plates and scanners
Seely, John F.; Holland, Glenn E.; Hudson, Lawrence T.; Henins, Albert
2008-11-01
The modulation transfer functions of two types of photostimulable phosphor image plates were determined in the 10 keV to 50 keV x-ray energy range using a resolution test pattern with up to 10 line pairs per mm (LP/mm) and a wavelength dispersive x-ray spectrometer. Techniques were developed for correcting for the partial transmittance of the high energy x rays through the lead bars of the resolution test pattern, and the modulation transfer function (MTF) was determined from the measured change in contrast with LP/mm values. The MTF was convolved with the slit function of the image plate scanner, and the resulting point spread functions (PSFs) were in good agreement with the observed shapes and widths of x-ray spectral lines and with the PSF derived from edge spread functions. The shapes and the full width at half-maximum (FWHM) values of the PSF curves of the Fuji Superior Resolution (SR) and Fuji Maximum Sensitivity (MS) image plate detectors, consisting of the image plate and the scanner, determined by the three methods gave consistent results: The SR PSF is Gaussian with 0.13 mm FWHM, and the MS PSF is Lorentzian with 0.19 mm FWHM. These techniques result in the accurate determination of the spatial resolution achievable using image plate and scanner combinations and enable the optimization of spatial resolution for x-ray spectroscopy and radiography.
Accurate hydrogen bond energies within the density functional tight binding method.
Domínguez, A; Niehaus, T A; Frauenheim, T
2015-04-01
The density-functional-based tight-binding (DFTB) approach has been recently extended by incorporating one-center exchange-like terms in the expansion of the multicenter integrals. This goes beyond the Mulliken approximation and leads to a scheme which treats in a self-consistent way the fluctuations of the whole dual density matrix and not only its diagonal elements (Mulliken charges). To date, only the performance of this new formalism to reproduce excited-state properties has been assessed (Domínguez et al. J. Chem. Theory Comput., 2013, 9, 4901-4914). Here we study the effect of our corrections on the computation of hydrogen bond energies for water clusters and water-containing systems. The limitations of traditional DFTB to reproduce hydrogen bonds has been acknowledged often. We compare our results for a set of 22 small water clusters and water-containing systems as well as for five water hexadecamers to those obtained with the DFTB3 method. Additionally, we combine our extension with a third-order energy expansion in the charge fluctuations. Our results show that the new formalisms significantly improve upon original DFTB. PMID:25763597
Jiang, Bin; Guo, Hua
2016-08-01
In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed. PMID:27436348
On identifying transfer functions and state equations for linear systems.
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Chen, C. F.; Huang, C. J.
1972-01-01
Two methods are established for identifying constant-coefficient, C to the 2n power type of noise-free linear systems if the time response data of the input-output or of all states are known. 2n response data are required to identify an nth-order transfer function or state equation for an unknown linear system. The order of the unknown system can be identified by checking a sequence of determinants. The Z transform and its inversion are mainly used.
Modulation transfer function of a trapezoidal pixel array detector
NASA Astrophysics Data System (ADS)
Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao
2016-01-01
The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.
Two-dimensional modulation transfer function: a new perspective.
Marom, Emanuel; Milgrom, Benjamin; Konforti, Naim
2010-12-10
One-dimensional templates, such as the U.S. Air Force resolution target or the circular spoke target, are commonly used for the characterization of imaging systems via the modulation transfer function response. It is shown in this paper that one needs a new family of templates for a true characterization of imaging systems that acquire two-dimensional (2D) high-density images or handle 2D information, such as 2D bar code detection and identification. The contrast provided by the newly defined 2D templates is the "true" contrast of the acquired image that the electronic processors are challenged with. PMID:21151231
Two-dimensional modulation transfer functions of image scanning systems.
Simonds, R M
1981-02-15
Image data processing based on optical scanning and digital reconstruction frequently ignores artifacts produced by the scanning process itself. Characterization of these artifacts by measurement of system modulation transfer function (MTF) using the traditional knife-edge scan technique produces only one section of the 2-D MTF, and interpretation of this as representative of the complete MTF may yield misleading re A theoretical analysis is presented which allows reconstruction of the complete 2-D MTF from a sequence of knife-edge measurements, and an experimental example is shown for the case of a vidicon camera based scanning system. PMID:20309166
Modulation transfer function measurement technique for image sensor arrays
NASA Astrophysics Data System (ADS)
Jin, Hui; Jiang, Huilin; Zhang, XiaoHui
2010-08-01
A new technique is demonstrated for measurement of modulation transfer function (MTF) on image sensor arrays. Fourier analysis of a low frequency bar target pattern is used to extract MTF at odd harmonics of a target pattern frequency up to and beyond Nyquist. The technique is particularly useful for linear image arrays (either conventional linescan or time-delay- integration devices) where conventional slanted-edge technique is not always applicable. The technique is well suited to simple implementation and can provide live presentation of the MTF curve, which helps to ensure optimal alignment conditions are achieved. Detailed analysis of the technique and demonstration of experimental results are presented.
Transfer function modeling of damping mechanisms in distributed parameter models
NASA Technical Reports Server (NTRS)
Slater, J. C.; Inman, D. J.
1994-01-01
This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.
Analysis of diagnostic calorimeter data by the transfer function technique
NASA Astrophysics Data System (ADS)
Delogu, R. S.; Poggi, C.; Pimazzoni, A.; Rossi, G.; Serianni, G.
2016-02-01
This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.
Analysis of diagnostic calorimeter data by the transfer function technique.
Delogu, R S; Poggi, C; Pimazzoni, A; Rossi, G; Serianni, G
2016-02-01
This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing. PMID:26932104
LANDSAT-4 thematic mapper Modulation Transfer Function (MTF) evaluation
NASA Technical Reports Server (NTRS)
Schowengerdt, R. (Principal Investigator)
1983-01-01
A power spectrum (PS) analysis technique was used to compare thematic mapper (TM) A and P-tape data for a Washington, DC scene in two orthogonal directions, along scan and along track. The resulting effective modulation transfer functions (MTF) between the A and P data are repeatable from area to area and consistent with theoretical expectations. The average x-direction (along scan) MTF calculated with the PS technique is compared to the MTF of the cubic convolution resampling function used to create P data from A data. The two curves are nearly identical, indicating that the major factor affecting the image quality of P data relative to A data is the cubic convolution resampling.
Modulation transfer function measurement technique for small-pixel detectors.
Marchywka, M; Socker, D G
1992-12-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-microm-pixel CCD. Pixel response functions are derived from the MTF results. PMID:20802584
Off-Axis Nulling Transfer Function Measurement: A First Assessment
NASA Technical Reports Server (NTRS)
Vedova, G. Dalla; Menut, J.-L.; Millour, F.; Petrov, R.; Cassaing, F.; Danchi, W. C.; Jacquinod, S.; Lhome, E.; Lopez, B.; Lozi, J.; Marcotto, A.; Parisot, J.; Reess, J.-M.
2013-01-01
We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp -4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results.
Transferred interbacterial antagonism genes augment eukaryotic innate immune function
Chou, Seemay; Daugherty, Matthew D.; Peterson, S. Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L.; Fritz-Laylin, Lillian K.; Ferrin, Michael A.; Harding, Brittany N.; Jacobs-Wagner, Christine; Yang, X. Frank; Vollmer, Waldemar; Malik, Harmit S.
2015-01-01
Horizontal gene transfer (HGT) allows organisms to rapidly acquire adaptive traits1. Though documented instances of HGT from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option2. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce anti-bacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system (T6SS)3. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years via purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the etiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for facile co-option by eukaryotic innate immune systems. PMID:25470067
Komatsu, Hiroaki; Westerman, Jan; Snoek, Gerry T; Taraschi, Theodore F; Janes, Nathan
2003-12-30
Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process. PMID:14729069
Function Transfer in Human Operant Experiments: The Role of Stimulus Pairings
ERIC Educational Resources Information Center
Tonneau, Francois; Gonzalez, Carmen
2004-01-01
Although function transfer often has been studied in complex operant procedures (such as matching to sample), whether operant reinforcement actually produces function transfer in such settings has not been established. The present experiments, with high school students as subjects, suggest that stimulus pairings can promote function transfer in…
On-orbit modulation transfer function characterization of terra MODIS using the moon
NASA Astrophysics Data System (ADS)
Wang, Zhipeng; Choi, Taeyoung; Xiong, Xiaoxiong
2011-10-01
The on-orbit Modulation Transfer Function (MTF) of MODIS instrument can be accurately measured by its on-board SpectroRadiometirc Calibration Assembly (SRCA). For other Earth observing instruments without calibrators similar to SRCA, the sharp edge of moon provides a reasonable high-contrast target for their on-orbit MTF characterization. In this paper, we propose a procedure to measure MODIS on-orbit MTF from the moon image. For Terra MODIS, lunar calibration was performed nearly every month since its launch in 2000. For each lunar calibration, the images of the moon from multiple scans are taken and traced across the right edge to form an edge spread function (ESF). The ESF is used to calculate a line spread function (LSF) through differentiation. The MTF in along-scan direction is then derived through the Fourier Transform of the LSF. The same procedure can also be applied to MTF calculation in along-track direction. The results are compared with SRCA measured MTF, and the long-term trending of both MTF agrees. Lunar MTF characterization appears noisier mainly because of the non-uniformity of the moon surface and moderate spatial resolution of the moon image, which makes it difficult to accurately locate the circular lunar edge in sub-pixel level. Improvement of the current method is discussed in the end.
Modulation transfer function of infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Höglund, L.; Luong, E. M.
2015-09-01
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.
Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles.
Brevet, David; Hocine, Ouahiba; Delalande, Anthony; Raehm, Laurence; Charnay, Clarence; Midoux, Patrick; Durand, Jean-Olivier; Pichon, Chantal
2014-08-25
Mesoporous silica nanoparticles (MSN) were functionalized with aminopropyltriethoxysilane (MSN-NH2) then L-histidine (MSN-His) for pDNA delivery in cells and in vivo. The complexation of pDNA with MSN-NH2 and MSN-His was first studied with gel shift assay. pDNA complexed with MSN-His was better protected from DNase degradation than with MSN-NH2. An improvement of the transfection efficiency in cells was observed with MSN-His/pDNA compared to MSN-NH2/pDNA, which could be explained by a better internalization of MSN-His. The improvement of the transfection efficiency with MSN-His was also observed for gene transfer in Achilles tendons in vivo. PMID:24853464
LANDSAT-4 Thematic Mapper Modulation Transfer Function (MTF) evaluation
NASA Technical Reports Server (NTRS)
Schowengerdt, R. (Principal Investigator)
1985-01-01
The Modulation Transfer Function (MTF) for thematic mapping (TM) bands 3, 4, 5 and 7 is reliably estimated with the San Mateo Bridge target in the 12/31/82 scene. These results are to be compared with those from the 8/12/83 scene. Bands 1, 2 and 6 are to be analyzed with a different target possessing greater contrast. This may be possible with the underflight data comparison currently underway. The registration of this data to the TM image of 8/12/83 for a region arround the Stockton sewage pond east of San Francisco has begun. This particular approach has the advantage that the full two-dimensional MFT will be measured instead of the MFT in only one azimuth as reported.
Modulation-transfer-function analysis for sampled image systems
NASA Technical Reports Server (NTRS)
Park, S. K.; Kaczynski, M.-A.; Schowengerdt, R.
1984-01-01
Sampling generally causes the response of a digital imaging system to be locally shift-variant and not directly amenable to Modulation Transfer Function (MTF) analysis. However, this paper demonstrates that a meaningful system response can be calculated by averaging over an ensemble of point-source system inputs to yield an MTF which accounts for the combined effects of image formation, sampling, and image reconstruction. As an illustration, the MTF of the Landsat MSS system is analyzed to reveal an average effective instantaneous field of view which is significantly larger than the commonly accepted value, particularly in the along-track direction where undersampling contributes markedly to an MTF reduction and resultant increase in image blur.
Modulation transfer function of antenna-coupled infrared detector arrays.
Boreman, G D; Dogariu, A; Christodoulou, C; Kotter, D
1996-11-01
Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's. PMID:21127627
Modulation transfer function of antenna-coupled infrared detector arrays
NASA Astrophysics Data System (ADS)
Boreman, Glenn D.; Dogariu, Aristide; Christodoulou, Christos; Kotter, Dale
1996-11-01
Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 mu m. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.
Head-related transfer function database and its analyses
NASA Astrophysics Data System (ADS)
Xie, Bosun; Zhong, Xiaoli; Rao, Dan; Liang, Zhiqiang
2007-06-01
Based on the measurements from 52 Chinese subjects (26 males and 26 females), a high-spatial-resolution head-related transfer function (HRTF) database with corresponding anthropometric parameters is established. By using the database, cues relating to sound source localization, including interaural time difference (ITD), interaural level difference (ILD), and spectral features introduced by pinna, are analyzed. Moreover, the statistical relationship between ITD and anthropometric parameters is estimated. It is proved that the mean values of maximum ITD for male and female are significantly different, so are those for Chinese and western subjects. The difference in ITD is due to the difference in individual anthropometric parameters. It is further proved that the spectral features introduced by pinna strongly depend on individual; while at high frequencies (f ⩾ 5.5 kHz), HRTFs are left-right asymmetric. This work is instructive and helpful for the research on binaural hearing and applications on virtual auditory in future.
Bai, Fang; Liao, Sha; Gu, Junfeng; Jiang, Hualiang; Wang, Xicheng; Li, Honglin
2015-04-27
Metalloproteins, particularly zinc metalloproteins, are promising therapeutic targets, and recent efforts have focused on the identification of potent and selective inhibitors of these proteins. However, the ability of current drug discovery and design technologies, such as molecular docking and molecular dynamics simulations, to probe metal-ligand interactions remains limited because of their complicated coordination geometries and rough treatment in current force fields. Herein we introduce a robust, multiobjective optimization algorithm-driven metalloprotein-specific docking program named MpSDock, which runs on a scheme similar to consensus scoring consisting of a force-field-based scoring function and a knowledge-based scoring function. For this purpose, in this study, an effective knowledge-based zinc metalloprotein-specific scoring function based on the inverse Boltzmann law was designed and optimized using a dynamic sampling and iteration optimization strategy. This optimization strategy can dynamically sample and regenerate decoy poses used in each iteration step of refining the scoring function, thus dramatically improving both the effectiveness of the exploration of the binding conformational space and the sensitivity of the ranking of the native binding poses. To validate the zinc metalloprotein-specific scoring function and its special built-in docking program, denoted MpSDockZn, an extensive comparison was performed against six universal, popular docking programs: Glide XP mode, Glide SP mode, Gold, AutoDock, AutoDock4Zn, and EADock DSS. The zinc metalloprotein-specific knowledge-based scoring function exhibited prominent performance in accurately describing the geometries and interactions of the coordination bonds between the zinc ions and chelating agents of the ligands. In addition, MpSDockZn had a competitive ability to sample and identify native binding poses with a higher success rate than the other six docking programs. PMID:25746437
Himalayan sediment fluxes and the floodplain transfer function
NASA Astrophysics Data System (ADS)
Lupker, Maarten; Lavé, Jérôme; France-Lanord, Christian; Blard, Pierre Henri
2013-04-01
Erosion produces sediments and thereby redistributes mass at the Earth surface. A better understanding of these erosion processes can be gained by studying the products of erosion, i.e. the nature, magnitude and variability of sediment fluxes. On continents, rivers are the main conveyer belts that transport these sediments from source to sink. Owing to the integrative nature of river networks, a downstream river reach can be used to infer erosion processes that occur in upstream catchments. However on large spatial scales, sediment transport processes may affect the sedimentary signal so that the quantification of upstream erosion may not be straightforward. This is especially the case for continental scale basins: sediment sources are separated from sedimentary basins by large alluvial floodplains, where sediments are transported over hundreds to thousands of kilometers. The floodplain transfer function needs to be understood whenever modern river sediments or sedimentary archives are used to reconstruct present and past erosion processes. In this contribution we discuss the magnitude of sediment fluxes from the Himalayan system using sediment gauging and cosmogenic nuclide data and address to what extent sediment transport may bias these estimates. The central part of the Himalayan range is drained by two major rivers, the Ganga and Brahmaputra that convey the products of Himalayan erosion over an extensive floodplain and ultimately to the Indian Ocean. This transfer may bias erosion rates derived from gauged sediment fluxes as part of the sediment flux is trapped in the subsiding foreland basin. This storage term remains however limited and can be quantified using a geochemical budget approach [1]. Floodplain transfer may also affect cosmogenic nuclide derived sediment budgets as sediments may accumulate nuclides during transport which will increase the overall nuclide concentration and hence lead to under-estimate denudation rates. By comparing cosmogenic
Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-28
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
NASA Astrophysics Data System (ADS)
Zhao, P. W.; Song, L. S.; Sun, B.; Geissel, H.; Meng, J.
2012-12-01
The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass measurement performed with the storage ring mass spectrometry at Gesellschaft für Schwerionenforschung (GSI) [Chen , Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2012.03.002 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this contribution as well.
NASA Astrophysics Data System (ADS)
Kafri, H. Q.; Khuri, S. A.; Sayfy, A.
2016-03-01
In this paper, a novel approach is introduced for the solution of the non-linear Troesch's boundary value problem. The underlying strategy is based on Green's functions and fixed-point iterations, including Picard's and Krasnoselskii-Mann's schemes. The resulting numerical solutions are compared with both the analytical solutions and numerical solutions that exist in the literature. Convergence of the iterative schemes is proved via manipulation of the contraction principle. It is observed that the method handles the boundary layer very efficiently, reduces lengthy calculations, provides rapid convergence, and yields accurate results particularly for large eigenvalues. Indeed, to our knowledge, this is the first time that this problem is solved successfully for very large eigenvalues, actually the rate of convergence increases as the magnitude of the eigenvalues increases.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Tegge, Arne; Leiber-Sauheitl, Katharina; Tiemeyer, Bärbel; Veldhuizen, Ab; Freibauer, Annette
2014-05-01
At the point scale, many studies on greenhouse gas (GHG) emissions from peatlands are focused on developing accurate transfer functions that relate the amount of GHG emissions to site characteristics, like water table depth, vegetation and physical and chemical soil properties. Given that for a specific peatland environment such a 'point-scale' transfer function is uniquely defined, it can be spatially applied when the necessary spatial information about the function parameters is available. Assuming the point-scale transfer function was developed on an annual time scale, the spatially-variable average site conditions of one year (e.g. annual mean water table depth) can be translated into a regional estimate of the total GHG budget. When the conditions of the system change, e.g. due to rewetting measures or different climatic conditions, changes of the regional GHG budget can be estimated by applying the point-scale transfer function to the new site conditions. Here, we discuss the behavior of the GHG budget variability against changes of the spatial water table depth distribution. The latter is obtained from spatially-distributed process-based hydrological modeling using the hydrological modeling framework SIMGRO (Alterra Wageningen). The interaction of groundwater, unsaturated zone and surface water fluxes was modeled for a peatland area of 200 ha (Großes Moor, Gifhorn, Germany) using spatial information on vegetation, peat layer thickness, hydraulic properties, surface water system, system boundary conditions and a laser-scan digital elevation model (DEM) as well as measured water level time series as calibration input. Based on the water level data from various hydrological scenarios, GHG budgets were estimated. Results demonstrate that the analysis of the GHG budgets as a function of different mean regional water table depths provides insights into the behavior of the regional GHG budget for the study area. The resulting curves can be called 'regional
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Cheng, Chuanfu; Teng, Shuyun; Chen, Xiaoyi; Xu, Zhizhan
2007-09-01
A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, m. The average analog of the m samplings output by the Boxcar enhances the signal-to-noise ratio by √{m}, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/√{m}. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique.
Frequency domain transfer function identification using the computer program SYSFIT
Trudnowski, D.J.
1992-12-01
Because the primary application of SYSFIT for BPA involves studying power system dynamics, this investigation was geared toward simulating the effects that might be encountered in studying electromechanical oscillations in power systems. Although the intended focus of this work is power system oscillations, the studies are sufficiently genetic that the results can be applied to many types of oscillatory systems with closely-spaced modes. In general, there are two possible ways of solving the optimization problem. One is to use a least-squares optimization function and to write the system in such a form that the problem becomes one of linear least-squares. The solution can then be obtained using a standard least-squares technique. The other method involves using a search method to obtain the optimal model. This method allows considerably more freedom in forming the optimization function and model, but it requires an initial guess of the system parameters. SYSFIT employs this second approach. Detailed investigations were conducted into three main areas: (1) fitting to exact frequency response data of a linear system; (2) fitting to the discrete Fourier transformation of noisy data; and (3) fitting to multi-path systems. The first area consisted of investigating the effects of alternative optimization cost function options; using different optimization search methods; incorrect model order, missing response data; closely-spaced poles; and closely-spaced pole-zero pairs. Within the second area, different noise colorations and levels were studied. In the third area, methods were investigated for improving fitting results by incorporating more than one system path. The following is a list of guidelines and properties developed from the study for fitting a transfer function to the frequency response of a system using optimization search methods.
Zhou, Ning; Huang, Zhenyu; Dosiek, Luke; Trudnowski, Daniel J.; Pierre, John W.
2009-07-30
Power system mode shapes are key indication of how dynamic components participate in low-frequency oscillations. Traditionally, mode shapes are calculated from a linearized dynamic model. For large-scale power systems, obtaining accu-rate dynamic models is very difficult. Therefore, measurement-based mode shape estimation methods have certain advantages, especially for the application of real-time small signal stability monitoring. In this paper, a measurement-based mode shape iden-tification method is proposed. The general relationship between transfer function (TF) and mode shape is derived. As an example, a least square (LS) method is implemented to estimate mode shape using an autoregressive exogenous (ARX) model. The per-formance of the proposed method is evaluated by Monte-Carlo studies using simulation data from a 17-machine model. The re-sults indicate the validity of the proposed method in estimating mode shapes with reasonably good accuracy
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Arruda, Marianne; Kistler, Doris J.; Wightman, Frederic L.
1993-01-01
The paper investigates the accuracy of localization by inexperienced listeners of the direction (azimuth and elevation) of wideband noisebursts presented in the free-field or over headphones, with headphone stimuli being synthesized using head-related transfer functions (HRTFs) from a representative subject of Wightman and Kistler (1989). Many subjects showed high rates of front-back and up-down confusions that increased significantly for virtual sources compared to the free-field stimuli. When confusions were resolved, localization of virtual sources was quite accurate and comparable to the free-field sources for 12 out of 16 subjects. The results of this study suggest that, while the interaural cues to horizontal location are robust, the spectral cues considered important for resolving location along a particular cone-of-confusion are distorted by a synthesis process that uses nonindividualized HRTFs.
Separation of presampling and postsampling modulation transfer functions in infrared sensor systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Olson, Jeffrey T.; O'Shea, Patrick D.; Hodgkin, Van A.; Jacobs, Eddie L.
2006-05-01
New methods of measuring the modulation transfer function (MTF) of electro-optical sensor systems are investigated. These methods are designed to allow the separation and extraction of presampling and postsampling components from the total system MTF. The presampling MTF includes all the effects prior to the sampling stage of the imaging process, such as optical blur and detector shape. The postsampling MTF includes all the effects after sampling, such as interpolation filters and display characteristics. Simulation and laboratory measurements are used to assess the utility of these techniques. Knowledge of these components and inclusion into sensor models, such as the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's NVThermIP, will allow more accurate modeling and complete characterization of sensor performance.
Research in the modulation transfer function (MTF) measurement of InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Xu, Zhonghua; Fang, Jiaxiong
2012-10-01
The Modulation Transfer Function (MTF) of an opto-electrical device is defined as the ratio of the system output modulation to the input modulation, which describes the performance of the imaging system in the Fourier domain. Accurate measurement of the MTF is often obtained by analyzing the high-quality image of a special target reproduced by the optical system with known MTF. To evaluate the MTF of short-wave infrared InGaAs focal plane arrays (FPAs), we develop a laboratory system with high precision and automation based on the slit scan method. An 8*1 linear InGaAs FPAs is then measured by this test set-up for the first time to evaluate the MTF of each pixel at room temperature. The results show a good MTF repeatability and uniformity of the 8*1 InGaAs FPAs. The relationship between the MTF and illumination is also discussed.
NASA Astrophysics Data System (ADS)
Burks, Stephen D.; Haefner, David P.; Burks, Thomas J.
2015-05-01
Accurate Signal Intensity Transfer Functions (SITF) measurements are necessary to determine the calibration factor in the 3D noise calculation of an electro-optical imaging system. The typical means for measuring a sensor's SITF is to place the sensor in a flooded field environment at a distance that is relatively close to the aperture of the emitter. Unfortunately, this arrangement has the potential to allow for additional contributions to the SITF in the form of scattering or stray light if the optics are not designed properly in the system under test. Engineers at the US Army Night Vision and Electronic Sensors Directorate are working to determine a means of evaluating the contribution due to scatting or stray light.
Eibauer, Matthias; Hoffmann, Christian; Plitzko, Jürgen M; Baumeister, Wolfgang; Nickell, Stephan; Engelhardt, Harald
2012-12-01
Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å. PMID:23000705
Shah, Rupal; Breeze, John; Chand, Mohit; Stockton, Peter
2016-06-01
The index of orthognathic functional treatment need (IOFTN) is a newly-proposed system to help to prioritise patients for orthognathic treatment. The five categories are similar to those used in orthodontics, but include additional parameters such as sleep apnoea and facial asymmetry. The aim of this audit was to validate the index and find out the potential future implications, should such a system ever be adopted by commissioners. We calculated the IOFTN category of 100 consecutive patients who had orthognathic surgery between 2010-14 using clinical notes, photographs, study models, and radiographs, and determined the number in categories 4 or 5, analogous to the current indications for orthodontic treatment within the NHS. Sufficient clinical information was available to categorise 59/100 patients, and 56 of the 59 (95%) were in either category 4 or 5. All three of the remaining patients (in categories 1-3) who were operated on were treated because of the anticipated favourable impact on their quality of life. The IOFTN has been proposed for use in future commissioning of orthognathic services within the NHS, and this study has confirmed its efficacy in prioritising treatment accurately, with 95% of patients being in categories 4 or 5. We recommend that the orthognathic treatment index be adapted to include additional psychosocial assessment so that patients who fall into the lower functional categories are not automatically excluded from this potentially life-changing treatment. PMID:26935212
NASA Astrophysics Data System (ADS)
Jiménez-Teja, Y.; Benítez, N.; Molino, A.; Fernandes, C. A. C.
2015-10-01
Photometric redshifts, which have become the cornerstone of several of the largest astronomical surveys like PanStarrs, DES, J-PAS and LSST, require precise measurements of galaxy photometry in different bands using a consistent physical aperture. This is not trivial, due to the variation in the shape and width of the point spread function (PSF) introduced by wavelength differences, instrument positions and atmospheric conditions. Current methods to correct for this effect rely on a detailed knowledge of PSF characteristics as a function of the survey coordinates, which can be difficult due to the relative paucity of stars tracking the PSF behaviour. Here we show that it is possible to measure accurate, consistent multicolour photometry without knowing the shape of the PSF. The Chebyshev-Fourier functions (CHEFs) can fit the observed profile of each object and produce high signal-to-noise integrated flux measurements unaffected by the PSF. These total fluxes, which encompass all the galaxy populations, are much more useful for galaxy evolution studies than aperture photometry. We compare the total magnitudes and colours obtained using our software to traditional photometry with SEXTRACTOR, using real data from the COSMOS survey and the Hubble Ultra-Deep Field (HUDF). We also apply the CHEF technique to the recently published eXtreme Deep Field (XDF) and compare the results to those from COLORPRO on the HUDF. We produce a photometric catalogue with 35 732 sources (10 823 with signal-to-noise ratio ≥5), reaching a photometric redshift precision of 2 per cent due to the extraordinary depth and wavelength coverage of the eXtreme Deep Field images.
Zapata, Julián; Lopez, Ricardo; Herrero, Paula; Ferreira, Vicente
2012-11-30
An automated headspace in-tube extraction (ITEX) method combined with multiple headspace extraction (MHE) has been developed to provide simultaneously information about the accurate wine content in 20 relevant aroma compounds and about their relative transfer rates to the headspace and hence about the relative strength of their interactions with the matrix. In the method, 5 μL (for alcohols, acetates and carbonyl alcohols) or 200 μL (for ethyl esters) of wine sample were introduced in a 2 mL vial, heated at 35°C and extracted with 32 (for alcohols, acetates and carbonyl alcohols) or 16 (for ethyl esters) 0.5 mL pumping strokes in four consecutive extraction and analysis cycles. The application of the classical theory of Multiple Extractions makes it possible to obtain a highly reliable estimate of the total amount of volatile compound present in the sample and a second parameter, β, which is simply the proportion of volatile not transferred to the trap in one extraction cycle, but that seems to be a reliable indicator of the actual volatility of the compound in that particular wine. A study with 20 wines of different types and 1 synthetic sample has revealed the existence of significant differences in the relative volatility of 15 out of 20 odorants. Differences are particularly intense for acetaldehyde and other carbonyls, but are also notable for alcohols and long chain fatty acid ethyl esters. It is expected that these differences, linked likely to sulphur dioxide and some unknown specific compositional aspects of the wine matrix, can be responsible for relevant sensory changes, and may even be the cause explaining why the same aroma composition can produce different aroma perceptions in two different wines. PMID:23102525
Measurement of the modulation transfer function of paper.
Rogers, G L
1998-11-01
In recent years there has been a renewed interest in modeling the halftone microstructure to better control the colors produced in a halftone image. Diffusion of light within the paper has a significant effect on the halftone color; this effect is known as optical dot gain or the Yule-Neilsen effect. Because of diffusion, a photon may exit the paper from a different region of the halftone microstructure than that into which it entered the paper. To account rigorously for this effect requires knowledge of the paper's point-spread function or, equivalently, the paper's modulation transfer function (MTF). A new technique for measuring the MTF of paper-the series-expansion bar-target technique-is introduced. The method uses a bar target, but the analysis more closely resembles that of the edge-gradient technique. In the series-expansion method, bar-target image data are expanded into a Fourier series, and the paper's MTF is given by the series-expansion coefficients. It differs from the typical bar-target analysis in that the typical method plots the amplitude of the fundamental frequency component for several targets of varying frequency, whereas the series-expansion method plots the amplitude of the fundamental and its harmonics for a single target. Two possible techniques for measuring the MTF with the bar-target series-expansion method are considered. In the first, the image of the bar target is projected onto the paper, and in the second, the bar target is placed directly on the paper, in close contact. PMID:18301552
Abstracting Attribute Space for Transfer Function Exploration and Design.
Maciejewski, Ross; Jang, Yun; Woo, Insoo; Jänicke, Heike; Gaither, Kelly P; Ebert, David S
2013-01-01
Currently, user centered transfer function design begins with the user interacting with a one or two-dimensional histogram of the volumetric attribute space. The attribute space is visualized as a function of the number of voxels, allowing the user to explore the data in terms of the attribute size/magnitude. However, such visualizations provide the user with no information on the relationship between various attribute spaces (e.g., density, temperature, pressure, x, y, z) within the multivariate data. In this work, we propose a modification to the attribute space visualization in which the user is no longer presented with the magnitude of the attribute; instead, the user is presented with an information metric detailing the relationship between attributes of the multivariate volumetric data. In this way, the user can guide their exploration based on the relationship between the attribute magnitude and user selected attribute information as opposed to being constrained by only visualizing the magnitude of the attribute. We refer to this modification to the traditional histogram widget as an abstract attribute space representation. Our system utilizes common one and two-dimensional histogram widgets where the bins of the abstract attribute space now correspond to an attribute relationship in terms of the mean, standard deviation, entropy, or skewness. In this manner, we exploit the relationships and correlations present in the underlying data with respect to the dimension(s) under examination. These relationships are often times key to insight and allow us to guide attribute discovery as opposed to automatic extraction schemes which try to calculate and extract distinct attributes a priori. In this way, our system aids in the knowledge discovery of the interaction of properties within volumetric data. PMID:22508900
Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.
Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E
2015-12-01
Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density. PMID:26683412
NASA Astrophysics Data System (ADS)
Kelbert, A.; Blum, C.
2015-12-01
Magnetotelluric Transfer Functions (MT TFs) represent most of the information about Earth electrical conductivity found in the raw electromagnetic data, providing inputs for further inversion and interpretation. To be useful for scientific interpretation, they must also contain carefully recorded metadata. Making these data available in a discoverable and citable fashion would provide the most benefit to the scientific community, but such a development requires that the metadata is not only present in the file but is also searchable. The most commonly used MT TF format to date, the historical Society of Exploration Geophysicists Electromagnetic Data Interchange Standard 1987 (EDI), no longer supports some of the needs of modern magnetotellurics, most notably accurate error bars recording. Moreover, the inherent heterogeneity of EDI's and other historic MT TF formats has mostly kept the community away from healthy data sharing practices. Recently, the MT team at Oregon State University in collaboration with IRIS Data Management Center developed a new, XML-based format for MT transfer functions, and an online system for long-term storage, discovery and sharing of MT TF data worldwide (IRIS SPUD; www.iris.edu/spud/emtf). The system provides a query page where all of the MT transfer functions collected within the USArray MT experiment and other field campaigns can be searched for and downloaded; an automatic on-the-fly conversion to the historic EDI format is also included. To facilitate conversion to the new, more comprehensive and sustainable, XML format for MT TFs, and to streamline inclusion of historic data into the online database, we developed a set of open source format conversion tools, which can be used for rotation of MT TFs as well as a general XML <-> EDI converter (https://seiscode.iris.washington.edu/projects/emtf-fcu). Here, we report on the newly established collaboration between the USGS Geomagnetism Program and the Oregon State University to gather
Source effects in mid-latitude geomagnetic transfer functions
NASA Astrophysics Data System (ADS)
Araya Vargas, Jaime; Ritter, Oliver
2016-01-01
Analysis of more than 10 yr of vertical magnetic transfer function (VTF) estimates obtained at 12 mid-latitude sites, located in different continents and tectonic settings, reveals significant temporal variations for a period range between approximately 250 and 2000 s. The most ubiquitous pattern is a seasonal modulation of the VTF element that relates the vertical to the horizontal north-south magnetic components (Tx), which shows a high peak around the June solstice (and a low peak around the December solstice) regardless of the location of the site. To quantify the influence of this source effect on the amplitude of VTFs, we modelled the temporal variations of VTFs using a function with dependence on season and magnetic activity indexes. The model shows that differences between VTF estimates obtained at seasonal peaks can reach 0.08 of Tx absolute values and that the effect increases with latitude and period. Seasonal variations are observed also in the VTF component relating vertical to horizontal east-west magnetic components (Ty), but here the pattern with respect to the geographic distribution is less clear. In addition to seasonal trends, we observe long-term modulations correlating with the 11-yr solar cycle at some sites. The influence of these external source effects should be taken into account, before attempting a geological interpretation of the VTFs. It can be misleading, for example, to combine or compare VTFs obtained from long-period geomagnetic data acquired at different seasons or years. An effective method to estimate and remove these source effects from VTFs is by comparison with temporal variations of VTFs from synchronously recorded data at sites located at similar latitude (<5° of difference) and longitude (<10° of difference). Source effects in temporal variations of VTFs can be identified as those patterns that exhibit similar amplitudes and significant correlation with the geomagnetic activity at all compared sites. We also provide a
Identification of boiler inlet transfer functions and estimation of system parameters
NASA Technical Reports Server (NTRS)
Miles, J. H.
1972-01-01
An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function of the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.
NASA Astrophysics Data System (ADS)
Ivashkov, D.; Batranin, A.; Mamyrbayev, T.
2016-01-01
In this paper presampled modulation transfer function of the 2D images obtained on the Phoenix Nanotom scanner was investigated with different measurement set-ups. Three parameters were chosen to investigate their influence on modulation transfer function: source- detector distance, tube current and binning mode. A simple method for modulation transfer function determination of digital imaging detectors from edge images was applied. The following results were achieved and briefly discussed: modulation transfer function improves with increase of the source-detector distance, slightly improves with increase of the current and remains constant for different binning modes. All measurements were carried out in University of Applied Sciences Upper Austria at Wels campus.
Is There a Linear Building Transfer Function for Small Excitation?
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Heaton, T. H.
2003-12-01
application of linear transfer functions timely.
2010-01-01
Background There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians. Methods/Design A cross-sectional study of Indigenous Australian adults (target n = 600, 50% male) across 4 sites: Top End, Northern Territory; Central Australia; Far North Queensland and Western Australia. The reference measure of glomerular filtration rate was the plasma disappearance rate of iohexol over 4 hours. We will compare the accuracy of the following glomerular filtration rate measures with the reference measure: Modification of Diet in Renal Disease 4-variable formula, Chronic Kidney Disease Epidemiology Collaboration equation, Cockcroft-Gault formula and cystatin C- derived estimates. Detailed assessment of body build and composition was performed using anthropometric measurements, skinfold thicknesses, bioelectrical impedance and a sub-study used dual-energy X-ray absorptiometry. A
Assessing the transferability of ecosystem service production estimates and functions
Estimates of ecosystem service (ES) production, and their responses to stressors or policy actions, may be obtained by direct measurement, other empirical studies, or modeling. Direct measurement is costly and often impractical, and thus many studies transfer ES production estim...
Transfer Function Calibration Using AN a2 Star
NASA Astrophysics Data System (ADS)
Lupie, Olivia
1996-07-01
This proposal acquires FGS TRANS mode scans on asingle star (HD89309) for use in the reference star transfer scanlibrary. These reference scans are crucial calibrations used in theanalysis of the transfer scans of multiple systems.The binary has been studied by Otto Franz and is a puresingle star. This star has been selected to replace areference star which has subsequently shown indications ofduplicity.