Sample records for accurate wlan positioning

  1. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  2. Received Signal Strength Recovery in Green WLAN Indoor Positioning System Using Singular Value Thresholding

    PubMed Central

    Ma, Lin; Xu, Yubin

    2015-01-01

    Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977

  3. Kalman filter with a linear state model for PDR+WLAN positioning and its application to assisting a particle filter

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Nurminen, Henri; Piché, Robert

    2015-12-01

    Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.

  4. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  5. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  6. Cmos spdt switch for wlan applications

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.

    2015-04-01

    WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.

  7. Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies.

    PubMed

    Zentai, Norbert; Fiocchi, Serena; Parazzini, Marta; Trunk, Attila; Juhász, Péter; Ravazzani, Paolo; Hernádi, István; Thuróczy, György

    2015-01-01

    This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin.

  8. Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies

    PubMed Central

    Parazzini, Marta; Trunk, Attila; Juhász, Péter; Hernádi, István; Thuróczy, György

    2015-01-01

    This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin. PMID:26180791

  9. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    PubMed Central

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  10. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    PubMed

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  11. Determination of the duty cycle of WLAN for realistic radio frequency electromagnetic field exposure assessment.

    PubMed

    Joseph, Wout; Pareit, Daan; Vermeeren, Günter; Naudts, Dries; Verloock, Leen; Martens, Luc; Moerman, Ingrid

    2013-01-01

    Wireless Local Area Networks (WLANs) are commonly deployed in various environments. The WLAN data packets are not transmitted continuously but often worst-case exposure of WLAN is assessed, assuming 100% activity and leading to huge overestimations. Actual duty cycles of WLAN are thus of importance for time-averaging of exposure when checking compliance with international guidelines on limiting adverse health effects. In this paper, duty cycles of WLAN using Wi-Fi technology are determined for exposure assessment on large scale at 179 locations for different environments and activities (file transfer, video streaming, audio, surfing on the internet, etc.). The median duty cycle equals 1.4% and the 95th percentile is 10.4% (standard deviation SD = 6.4%). Largest duty cycles are observed in urban and industrial environments. For actual applications, the theoretical upper limit for the WLAN duty cycle is 69.8% and 94.7% for maximum and minimum physical data rate, respectively. For lower data rates, higher duty cycles will occur. Although counterintuitive at first sight, poor WLAN connections result in higher possible exposures. File transfer at maximum data rate results in median duty cycles of 47.6% (SD = 16%), while it results in median values of 91.5% (SD = 18%) at minimum data rate. Surfing and audio streaming are less intensively using the wireless medium and therefore have median duty cycles lower than 3.2% (SD = 0.5-7.5%). For a specific example, overestimations up to a factor 8 for electric fields occur, when considering 100% activity compared to realistic duty cycles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    NASA Astrophysics Data System (ADS)

    Naik, Udaykumar; Bapat, Vishram N.

    2017-08-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  13. 802.11ac WLAN MIMO radio-over-fiber distributed antenna system for in-building networks based on multicore fiber

    NASA Astrophysics Data System (ADS)

    Morant, Maria; Llorente, Roberto

    2017-01-01

    In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).

  14. A highly linear power amplifier for WLAN

    NASA Astrophysics Data System (ADS)

    Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang

    2016-02-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).

  15. Fragility issues of medical video streaming over 802.11e-WLAN m-health environments.

    PubMed

    Tan, Yow-Yiong Edwin; Philip, Nada; Istepanian, Robert H

    2006-01-01

    This paper presents some of the fragility issues of a medical video streaming over 802.11e-WLAN in m-health applications. In particular, we present a medical channel-adaptive fair allocation (MCAFA) scheme for enhanced QoS support for IEEE 802.11 (WLAN), as a modification for the standard 802.11e enhanced distributed coordination function (EDCF) is proposed for enhanced medical data performance. The medical channel-adaptive fair allocation (MCAFA) proposed extends the EDCF, by halving the contention window (CW) after zeta consecutive successful transmissions to reduce the collision probability when channel is busy. Simulation results show that MCAFA outperforms EDCF in-terms of overall performance relevant to the requirements of high throughput of medical data and video streaming traffic in 3G/WLAN wireless environments.

  16. Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network.

    PubMed

    Cha, Yong Dae; Yoon, Gilwon

    2009-11-01

    A ubiquitous health monitoring system for multiple users was developed based on a ZigBee and wireless local area network (WLAN) dual-network. A compact biosignal monitoring unit (BMU) for measuring electrocardiogram (ECG), photoplethysmogram (PPG), and temperature was also developed. A single 8-bit microcontroller operated the BMU including most of digital filtering and wireless communication. The BMU with its case was reduced to 55 x 35 x 15 mm and 33 g. In routine use, vital signs of 6 bytes/sec (heart rate, temperature, pulse transit time) per each user were transmitted through a ZigBee module even though all the real-time data were recorded in a secure digital memory of the BMU. In an emergency or when need arises, a channel of a particular user was switched to another ZigBee module, called the emergency module, that sent all ECG and PPG waveforms in real time. Each emergency ZigBee module handled up to a few users. Data from multiple users were wirelessly received by the ZigBee receiver modules in a controller called ZigBee-WLAN gateway, where the ZigBee modules were connected to a WLAN module. This WLAN module sent all data wirelessly to a monitoring center. Operating the dual modes of ZigBee/WLAN utilized an advantage of ZigBee by handling multiple users with minimum power consumption, and overcame the ZigBee limitation of low data rate. This dual-network system for LAN is economically competitive and reliable.

  17. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  18. SEMICONDUCTOR INTEGRATED CIRCUITS: A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth

    NASA Astrophysics Data System (ADS)

    Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang

    2010-05-01

    A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.

  19. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength

    PubMed Central

    Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei

    2015-01-01

    Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274

  20. A signal strength priority based position estimation for mobile platforms

    NASA Astrophysics Data System (ADS)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  1. Exploiting Spatial Channel Occupancy Information in WLANs

    DTIC Science & Technology

    2014-05-15

    transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a

  2. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  3. Solar-Powered Airplane with Cameras and WLAN

    NASA Technical Reports Server (NTRS)

    Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.; hide

    2004-01-01

    An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.

  4. An FEC Adaptive Multicast MAC Protocol for Providing Reliability in WLANs

    NASA Astrophysics Data System (ADS)

    Basalamah, Anas; Sato, Takuro

    For wireless multicast applications like multimedia conferencing, voice over IP and video/audio streaming, a reliable transmission of packets within short delivery delay is needed. Moreover, reliability is crucial to the performance of error intolerant applications like file transfer, distributed computing, chat and whiteboard sharing. Forward Error Correction (FEC) is frequently used in wireless multicast to enhance Packet Error Rate (PER) performance, but cannot assure full reliability unless coupled with Automatic Repeat Request forming what is knows as Hybrid-ARQ. While reliable FEC can be deployed at different levels of the protocol stack, it cannot be deployed on the MAC layer of the unreliable IEEE802.11 WLAN due to its inability to exchange ACKs with multiple recipients. In this paper, we propose a Multicast MAC protocol that enhances WLAN reliability by using Adaptive FEC and study it's performance through mathematical analysis and simulation. Our results show that our protocol can deliver high reliability and throughput performance.

  5. Exposure assessment of microwave ovens and impact on total exposure in WLANs

    PubMed Central

    Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc

    2016-01-01

    In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787

  6. Accurate positioning based on acoustic and optical sensors

    NASA Astrophysics Data System (ADS)

    Cai, Kerong; Deng, Jiahao; Guo, Hualing

    2009-11-01

    Unattended laser target designator (ULTD) was designed to partly take the place of conventional LTDs for accurate positioning and laser marking. Analyzed the precision, accuracy and errors of acoustic sensor array, the requirements of laser generator, and the technology of image analysis and tracking, the major system modules were determined. The target's classification, velocity and position can be measured by sensors, and then coded laser beam will be emitted intelligently to mark the excellent position at the excellent time. The conclusion shows that, ULTD can not only avoid security threats, be deployed massively, and accomplish battle damage assessment (BDA), but also be fit for information-based warfare.

  7. Performance Analysis of Grey-World-based Feature Detection and Matching for Mobile Positioning Systems

    NASA Astrophysics Data System (ADS)

    Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha

    2014-11-01

    This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.

  8. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications

    NASA Astrophysics Data System (ADS)

    Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.

    2016-12-01

    A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.

  9. Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.

    PubMed

    Park, Juyoung; Kang, Kyungtae

    2014-09-01

    Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.

  10. Accurate positioning of long, flexible ARM's (Articulated Robotic Manipulator)

    NASA Technical Reports Server (NTRS)

    Malachowski, Michael J.

    1988-01-01

    An articulated robotic manipulator (ARM) system is being designed for space applications. Work being done on a concept utilizing an infinitely stiff laser beam for position reference is summarized. The laser beam is projected along the segments of the ARM, and the position is sensed by the beam rider modules (BRM) mounted on the distal ends of the segments. The BRM concept is the heart of the system. It utilizes a combination of lateral displacements and rotational and distance measurement sensors. These determine the relative position of the two ends of the segments with respect to each other in six degrees of freedom. The BRM measurement devices contain microprocessor controlled data acquisition and active positioning components. An indirect adaptive controller is used to accurately control the position of the ARM.

  11. Power Saving Control for Battery-Powered Portable WLAN APs

    NASA Astrophysics Data System (ADS)

    Ogawa, Masakatsu; Hiraguri, Takefumi

    This paper proposes a power saving control function for battery-powered portable wireless LAN (WLAN) access points (APs) to extend the battery life. The IEEE802.11 standard does not support power saving control for APs. To enable a sleep state for an AP, the AP forces the stations (STAs) to refrain from transmitting frames using the network allocation vector (NAV) while the AP is sleeping. Thus the sleep state for the AP can be employed without causing frame loss at the STAs. Numerical analysis and computer simulation reveal that the newly proposed control technique conserves power compared to the conventional control.

  12. Intelligent navigation and accurate positioning of an assist robot in indoor environments

    NASA Astrophysics Data System (ADS)

    Hua, Bin; Rama, Endri; Capi, Genci; Jindai, Mitsuru; Tsuri, Yosuke

    2017-12-01

    Intact robot's navigation and accurate positioning in indoor environments are still challenging tasks. Especially in robot applications, assisting disabled and/or elderly people in museums/art gallery environments. In this paper, we present a human-like navigation method, where the neural networks control the wheelchair robot to reach the goal location safely, by imitating the supervisor's motions, and positioning in the intended location. In a museum similar environment, the mobile robot starts navigation from various positions, and uses a low-cost camera to track the target picture, and a laser range finder to make a safe navigation. Results show that the neural controller with the Conjugate Gradient Backpropagation training algorithm gives a robust response to guide the mobile robot accurately to the goal position.

  13. Improvement in the workflow efficiency of treating non-emergency outpatients by using a WLAN-based real-time location system in a level I trauma center.

    PubMed

    Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph

    2013-01-01

    Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking.

  14. Improvement in the workflow efficiency of treating non-emergency outpatients by using a WLAN-based real-time location system in a level I trauma center

    PubMed Central

    Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph

    2013-01-01

    Background Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. Objective To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Methods Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. Results/discussion 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). Conclusions WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking. PMID:23676246

  15. Design of WLAN microstrip antenna for 5.17 - 5.835 GHz

    NASA Astrophysics Data System (ADS)

    Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian

    2017-04-01

    This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.

  16. Accurate ocean bottom seismometer positioning method inspired by multilateration technique

    USGS Publications Warehouse

    Benazzouz, Omar; Pinheiro, Luis M.; Matias, Luis M. A.; Afilhado, Alexandra; Herold, Daniel; Haines, Seth S.

    2018-01-01

    The positioning of ocean bottom seismometers (OBS) is a key step in the processing flow of OBS data, especially in the case of self popup types of OBS instruments. The use of first arrivals from airgun shots, rather than relying on the acoustic transponders mounted in the OBS, is becoming a trend and generally leads to more accurate positioning due to the statistics from a large number of shots. In this paper, a linearization of the OBS positioning problem via the multilateration technique is discussed. The discussed linear solution solves jointly for the average water layer velocity and the OBS position using only shot locations and first arrival times as input data.

  17. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  18. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  19. Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions

    PubMed Central

    Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954

  20. Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.

  1. Accurate beacon positioning method for satellite-to-ground optical communication.

    PubMed

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  2. A highly linear baseband Gm—C filter for WLAN application

    NASA Astrophysics Data System (ADS)

    Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen

    2011-09-01

    A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.

  3. Accurate 3D Positioning for a Mobile Platform in Non-Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion.

    PubMed

    Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas

    2018-01-04

    In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.

  4. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.

    PubMed

    Syed, Avez; Aldhaheri, Rabah W

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

  5. Self-Expression on Social Media: Do Tweets Present Accurate and Positive Portraits of Impulsivity, Self-Esteem, and Attachment Style?

    PubMed

    Orehek, Edward; Human, Lauren J

    2017-01-01

    Self-expression values are at an all-time high, and people are increasingly relying upon social media platforms to express themselves positively and accurately. We examined whether self-expression on the social media platform Twitter elicits positive and accurate social perceptions. Eleven perceivers rated 128 individuals (targets; total dyadic impressions = 1,408) on their impulsivity, self-esteem, and attachment style, based solely on the information provided in targets' 10 most recent tweets. Targets were on average perceived normatively and with distinctive self-other agreement, indicating both positive and accurate social perceptions. There were also individual differences in how positively and accurately targets were perceived, which exploratory analyses indicated may be partially driven by differential word usage, such as the use of positive emotion words and self- versus other-focus. This study demonstrates that self-expression on social media can elicit both positive and accurate perceptions and begins to shed light on how to curate such perceptions.

  6. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    PubMed Central

    Syed, Avez; Aldhaheri, Rabah W.

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  7. ASSESSMENT OF PUBLIC EXPOSURE FORM WLANS IN THE WEST BANK-PALESTINE.

    PubMed

    Lahham, Adnan; Sharabati, Afifeh; ALMasri, Hussein

    2017-11-01

    A total of 271 measurements were conducted at 69 different sites including homes, hospitals, educational institutions and other public places to assess the exposure to radiofrequency emission from wireless local area networks (WLANs). Measurements were conducted at different distances from 40 to 10 m from the access points (APs) in real life conditions using Narda SRM-3000 selective radiation meter. Three measurements modes were considered at 1 m distance from the AP which are transmit mode, idle mode, and from the client card (laptop computer). All measurements were conducted indoor in the West Bank environment. Power density levels from WLAN systems were found to vary from 0.001 to ~1.9 μW cm-2 with an average of 0.12 μW cm-2. Maximum value found was in university environment, while the minimum was found in schools. For one measurement case where the AP was 20 cm far while transmitting large files, the measured power density reached a value of ~4.5 μW cm-2. This value is however 221 times below the general public exposure limit recommended by the International Commission on Non-Ionizing Radiation Protection, which was not exceeded in any case. Measurements of power density at 1 m around the laptop resulted in less exposure than the AP in both transmit and idle modes as well. Specific absorption rate for the head of the laptop user was estimated and found to vary from 0.1 to 2 mW/kg. The frequency distribution of measured power densities follows a log-normal distribution which is generally typical in the assessment of exposure resulting from sources of radiofrequency emissions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. WLAN Positioning Methods and Supporting Learning Technologies for Mobile Platforms

    ERIC Educational Resources Information Center

    Melkonyan, Arsen

    2013-01-01

    Location technologies constitute an essential component of systems design for autonomous operations and control. The Global Positioning System (GPS) works well in outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of…

  9. Design control system of telescope force actuators based on WLAN

    NASA Astrophysics Data System (ADS)

    Shuai, Xiaoying; Zhang, Zhenchao

    2010-05-01

    With the development of the technology of autocontrol, telescope, computer, network and communication, the control system of the modern large and extra lager telescope become more and more complicated, especially application of active optics. Large telescope based on active optics maybe contain enormous force actuators. This is a challenge to traditional control system based on wired networks, which result in difficult-to-manage, occupy signification space and lack of system flexibility. Wireless network can resolve these disadvantages of wired network. Presented control system of telescope force actuators based on WLAN (WFCS), designed the control system framework of WFCS. To improve the performance of real-time, we developed software of force actuators control system in Linux. Finally, this paper discussed improvement of WFCS real-time, conceived maybe improvement in the future.

  10. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    NASA Astrophysics Data System (ADS)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  11. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  12. Accurate core position control in polymer optical waveguides using the Mosquito method for three-dimensional optical wiring

    NASA Astrophysics Data System (ADS)

    Date, Kumi; Ishigure, Takaaki

    2017-02-01

    Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.

  13. Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application

    NASA Astrophysics Data System (ADS)

    Rawat, Sanyog; Sharma, K. K.

    2016-04-01

    This paper presents the design and performance of a modified pentagonal patch antenna with defective ground plane. A pentagonal slot is inserted in the pentagonal patch and slot loaded ground through optimized dimensions is used in the antenna to resonate it at dual frequency. The geometry operates at two resonant frequencies (2.5 GHz and 5.58 GHz) and offers impedance bandwidth of 864 MHz and 554 MHz in the two bands of interest. The proposed antenna covers the lower band (2.45 to 2.484/2.495 to 2.695 GHz) and upper band (5.15 to 5.825 GHz/5.25 to 5.85 GHz) allocated for Wi-Max and WLAN communication systems.

  14. Symmetric/Asymmetrical SIRs Dual-Band BPF Design for WLAN Applications

    NASA Astrophysics Data System (ADS)

    Ho, Min-Hua; Ho, Hao-Hung; Chen, Mingchih

    This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.

  15. Physical layer simulation study for the coexistence of WLAN standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlader, M. K.; Keiger, C.; Ewing, P. D.

    This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less

  16. SEMICONDUCTOR INTEGRATED CIRCUITS 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    NASA Astrophysics Data System (ADS)

    Yu, Sun; Niansong, Mei; Bo, Lu; Yumei, Huang; Zhiliang, Hong

    2010-10-01

    A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of—113 dBc @ 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOMT) of the VCO is -192.6 dBc/Hz.

  17. Validation of a new noniterative method for accurate position determination of a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter

    2000-05-01

    The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.

  18. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    NASA Astrophysics Data System (ADS)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  19. Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

    PubMed Central

    Alshami, Iyad Husni; Sahibuddin, Shamsul; Firdaus, Firdaus

    2017-01-01

    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices. PMID:28783047

  20. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  1. Patient-specific distal radius locking plate for fixation and accurate 3D positioning in corrective osteotomy.

    PubMed

    Dobbe, J G G; Vroemen, J C; Strackee, S D; Streekstra, G J

    2014-11-01

    Preoperative three-dimensional planning methods have been described extensively. However, transferring the virtual plan to the patient is often challenging. In this report, we describe the management of a severely malunited distal radius fracture using a patient-specific plate for accurate spatial positioning and fixation. Twenty months postoperatively the patient shows almost painless reconstruction and a nearly normal range of motion.

  2. The obturator oblique and iliac oblique/outlet views predict most accurately the adequate position of an anterior column acetabular screw.

    PubMed

    Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David

    2018-06-08

    Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.

  3. Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo

    2016-11-01

    A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.

  4. Accurate electron gun-positioning mechanism for electron beam-mapping of large cross-section magnetic surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, F. S. B.; Middleton, F.; Colchin, R. J.; Million, D.

    1989-04-01

    A method of accurately supporting and positioning an electron source inside a large cross-sectional area magnetic field which provides very low electron beam occlusion is reported. The application of electrical discharge machining to the fabrication of a 1-m truss support structure has provided an extremely long, rigid and mechanically strong electron gun support. Reproducible electron gun positioning to within 1 mm has been achieved at any location within a 1×0.6-m2 area. The extremely thin sections of the support truss (≤1.5 mm) have kept the electron beam occlusion to less than 3 mm. The support and drive mechanism have been designed and fabricated at the University of Wisconsin for application to the mapping of the magnetic surface structure of the Advanced Toroidal Facility torsatron1 at the Oak Ridge National Laboratory.

  5. Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN

    NASA Astrophysics Data System (ADS)

    Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.

    2015-11-01

    Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.

  6. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  7. Importance of accurate diagnosis in benign paroxysmal positional vertigo (BPPV) therapy.

    PubMed

    Maslovara, Siniša; Vešligaj, Tihana; Butković Soldo, Silva; Pajić-Penavić, Ivana; Maslovara, Karmela; Mirošević Zubonja, Tea; Soldo, Anamarija

    2014-08-01

    To determine the importance of accurate topological diagnostics of the otolith and the differentiation of certain clinical forms of benign paroxysmal positional vertigo (BPPV). A prospective study was conducted at the County General Hospital Vukovar in the period from January 2011 till January 2012. A total of 81 patients with BPPV, 59 females (72.84%) and 22 (27.16%) males (p less than 0.001), mean age 60.1 (± 12.1) were examined. The diagnosis was confirmed and documented by videonystagmography (VNG). The disability due to disease and risk of falling were monitored by filling in the Dizziness Handicap Inventory (DHI) and Activities-specific Balance Confidence Scale (ABC) questionnaires at the beginning and at the end of the repositioning treatment. In 79 (97.3%) patients posterior semicircular canal was affected, and in a small number of patients, two (2.47%) the lateral one. After the repositioning procedures were performed, there was a significant reduction or complete elimination of symptoms in the majority of subjects, 76 (93.82%). The median total DHI sum amounted to 50.5 (± 22.2) at the beginning and 20.4 (± 18.5) at the end of the study (p less than 0.00). Similarly, the results of ABC questionnaires at the beginning of the study demonstrated a result of 59.2% (± 22.4%), and at the end of the treatment the average result of examinees was significantly higher, 84.9% (± 15.2%) (p less than 0.00). Although a subjectively positive Dix-Hallpike or a "supine roll" test is sufficient for the diagnosis of BPPV, it is necessary perform the VNG as well in order to precisely determine the exact localization of the otolith, so that an appropriate repositioning procedure can be applied.

  8. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  9. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    PubMed

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  10. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications

    PubMed Central

    Behzadi, Kobra; Baghelani, Masoud

    2013-01-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504

  11. A novel method for accurate patterning and positioning of biological cells

    NASA Astrophysics Data System (ADS)

    Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana

    2007-05-01

    The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.

  12. An Indoor Positioning Technique Based on a Feed-Forward Artificial Neural Network Using Levenberg-Marquardt Learning Method

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Gholami, A.; Azimi, S.

    2017-09-01

    This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  13. Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.

    PubMed

    Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D

    2015-12-01

    A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Accurate decisions in an uncertain world: collective cognition increases true positives while decreasing false positives.

    PubMed

    Wolf, Max; Kurvers, Ralf H J M; Ward, Ashley J W; Krause, Stefan; Krause, Jens

    2013-04-07

    In a wide range of contexts, including predator avoidance, medical decision-making and security screening, decision accuracy is fundamentally constrained by the trade-off between true and false positives. Increased true positives are possible only at the cost of increased false positives; conversely, decreased false positives are associated with decreased true positives. We use an integrated theoretical and experimental approach to show that a group of decision-makers can overcome this basic limitation. Using a mathematical model, we show that a simple quorum decision rule enables individuals in groups to simultaneously increase true positives and decrease false positives. The results from a predator-detection experiment that we performed with humans are in line with these predictions: (i) after observing the choices of the other group members, individuals both increase true positives and decrease false positives, (ii) this effect gets stronger as group size increases, (iii) individuals use a quorum threshold set between the average true- and false-positive rates of the other group members, and (iv) individuals adjust their quorum adaptively to the performance of the group. Our results have broad implications for our understanding of the ecology and evolution of group-living animals and lend themselves for applications in the human domain such as the design of improved screening methods in medical, forensic, security and business applications.

  15. Accurate decisions in an uncertain world: collective cognition increases true positives while decreasing false positives

    PubMed Central

    Wolf, Max; Kurvers, Ralf H. J. M.; Ward, Ashley J. W.; Krause, Stefan; Krause, Jens

    2013-01-01

    In a wide range of contexts, including predator avoidance, medical decision-making and security screening, decision accuracy is fundamentally constrained by the trade-off between true and false positives. Increased true positives are possible only at the cost of increased false positives; conversely, decreased false positives are associated with decreased true positives. We use an integrated theoretical and experimental approach to show that a group of decision-makers can overcome this basic limitation. Using a mathematical model, we show that a simple quorum decision rule enables individuals in groups to simultaneously increase true positives and decrease false positives. The results from a predator-detection experiment that we performed with humans are in line with these predictions: (i) after observing the choices of the other group members, individuals both increase true positives and decrease false positives, (ii) this effect gets stronger as group size increases, (iii) individuals use a quorum threshold set between the average true- and false-positive rates of the other group members, and (iv) individuals adjust their quorum adaptively to the performance of the group. Our results have broad implications for our understanding of the ecology and evolution of group-living animals and lend themselves for applications in the human domain such as the design of improved screening methods in medical, forensic, security and business applications. PMID:23407830

  16. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  17. Design and fabrication of pHEMT MMIC switches for IEEE 802.11.a/b/g WLAN applications

    NASA Astrophysics Data System (ADS)

    Mun, Jae Kyoung; Ji, Hong Gu; Ahn, Hyokyun; Kim, Haecheon; Park, Chong-Ook

    2005-08-01

    In this paper, we propose a channel structure for a promising switch pHEMT with excellent isolation characteristics based on the distribution of electric field intensity beneath the Schottky contact in the transistor. Using the proposed device channel structure, SPST and SPDT switches were designed and fabricated, applicable to 2.4 GHz and 5.8 GHz WLAN systems. We discuss the relationship between dc characteristics and switch parameters in this paper in detail. The developed SPST switch exhibits a low insertion loss of 0.26 dB and a high isolation of 34.3 dB with a control voltage of 0 V/-3 V at 5.8 GHz. The SPDT also shows a good performance of 0.85 dB insertion loss and 31.5 dB isolation under the same conditions. The measured power-handling capability at 2.4 GHz reveals that the SPDT has an output power of 27 dBm at the 1 dB compression point and a third-order intercept point of more than 46 dBm.

  18. CMOS analog baseband circuitry for an IEEE 802.11 b/g/n WLAN transceiver

    NASA Astrophysics Data System (ADS)

    Zheng, Gong; Xiaojie, Chu; Qianqian, Lei; Min, Lin; Yin, Shi

    2012-11-01

    An analog baseband circuit for a direct conversion wireless local area network (WLAN) transceiver in a standard 0.13-μm CMOS occupying 1.26 mm2 is presented. The circuit consists of active-RC receiver (RX) 4th order elliptic lowpass filters(LPFs), transmit (PGAs) with DC offset cancellation (DCOC) servo loops, and on-chip output buffers. The RX baseband gain can be programmed in the range of -11 to 49 dB in 2 dB steps with 50-30.2 nV/√Hz input referred noise (IRN) and a 21 to -41 dBm in-band 3rd order interception point (IIP3). The RX/TX LPF cutoff frequencies can be switched between 5 MHz, 10 MHz, and 20 MHz to fulfill the multimode 802.11b/g/n requirements. The TX baseband gain of the I/Q paths are tuned separately from -1.6 to 0.9 dB in 0.1 dB steps to calibrate TX I/Q gain mismatches. By using an identical integrator based elliptic filter synthesis method together with global compensation applied to the LPF capacitor array, the power consumption of the RX LPF is considerably reduced and the proposed chip draws 26.8 mA/8 mA by the RX/TX baseband paths from a 1.2 V supply.

  19. Using GPS To Teach More Than Accurate Positions.

    ERIC Educational Resources Information Center

    Johnson, Marie C.; Guth, Peter L.

    2002-01-01

    Undergraduate science majors need practice in critical thinking, quantitative analysis, and judging whether their calculated answers are physically reasonable. Develops exercises using handheld Global Positioning System (GPS) receivers. Reinforces students' abilities to think quantitatively, make realistic "back of the envelope"…

  20. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  1. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures.

    PubMed

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L

    2013-04-21

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.

  2. Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures

    PubMed Central

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L.

    2013-01-01

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate. PMID:23628883

  3. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, D; Malhotra, H; French, S

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the cameramore » to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  4. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  5. Lunar, Cislunar, Near/Farside Laser Retroreflectors for the Accurate: Positioning of Landers/Rovers/Hoppers/Orbiters, Commercial Georeferencing, Test of Relativistic Gravity, and Metrics of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Currie, D.; Ciocci, E.; Contessa, S.; Delle Monache, G.; March, R.; Martini, M.; Mondaini, C.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Bianco, G.; Vittori, R.; Chandler, J.; Murphy, T.; Maiello, M.; Petrassi, M.; Lomastro, A.

    2017-10-01

    We developed next-generation lunar, cislunar, near/farside laser retroreflectors for the improved/accurate: Positioning of landers/rovers/hoppers/orbiters, commercial georeferencing, test of relativistic gravity, and metrics of the lunar interior.

  6. Positive position control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Gumusel, L.

    1989-01-01

    The present, simple and accurate position-control algorithm, which is applicable to fast-moving and lightly damped robot arms, is based on the positive position feedback (PPF) strategy and relies solely on position sensors to monitor joint angles of robotic arms to furnish stable position control. The optimized tuned filters, in the form of a set of difference equations, manipulate position signals for robotic system performance. Attention is given to comparisons between this PPF-algorithm controller's experimentally ascertained performance characteristics and those of a conventional proportional controller.

  7. Localization Grid for Accurate Positioning Onboard a Carrier

    DTIC Science & Technology

    2017-06-30

    the fi r t I 00 reads. It is clear that the RSSI measurement varies significantly over the different reads. It hould also be noted that, fo r the...yield a complete characterization of RSSI with respect to di stance and tag direction. By fi tting equation ( l .5) to the experimental data for di...For each observation in tant t, we feed the ML estimates of the instantaneous reader position as a fi fi [ " T T ]T h " T measurement to the Kalman

  8. Accurate Identification of ALK Positive Lung Carcinoma Patients: Novel FDA-Cleared Automated Fluorescence In Situ Hybridization Scanning System and Ultrasensitive Immunohistochemistry

    PubMed Central

    Conde, Esther; Suárez-Gauthier, Ana; Benito, Amparo; Garrido, Pilar; García-Campelo, Rosario; Biscuola, Michele; Paz-Ares, Luis; Hardisson, David; de Castro, Javier; Camacho, M. Carmen; Rodriguez-Abreu, Delvys; Abdulkader, Ihab; Ramirez, Josep; Reguart, Noemí; Salido, Marta; Pijuán, Lara; Arriola, Edurne; Sanz, Julián; Folgueras, Victoria; Villanueva, Noemí; Gómez-Román, Javier; Hidalgo, Manuel; López-Ríos, Fernando

    2014-01-01

    Background Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples. Methods Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview's automated scanning system. Results All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively. Conclusions The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations. PMID:25248157

  9. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures.

    PubMed

    Brahme, Anders; Nyman, Peter; Skatt, Björn

    2008-05-01

    A four-dimensional (4D) laser camera (LC) has been developed for accurate patient imaging in diagnostic and therapeutic radiology. A complementary metal-oxide semiconductor camera images the intersection of a scanned fan shaped laser beam with the surface of the patient and allows real time recording of movements in a three-dimensional (3D) or four-dimensional (4D) format (3D +time). The LC system was first designed as an accurate patient setup tool during diagnostic and therapeutic applications but was found to be of much wider applicability as a general 4D photon "tag" for the surface of the patient in different clinical procedures. It is presently used as a 3D or 4D optical benchmark or tag for accurate delineation of the patient surface as demonstrated for patient auto setup, breathing and heart motion detection. Furthermore, its future potential applications in gating, adaptive therapy, 3D or 4D image fusion between most imaging modalities and image processing are discussed. It is shown that the LC system has a geometrical resolution of about 0, 1 mm and that the rigid body repositioning accuracy is about 0, 5 mm below 20 mm displacements, 1 mm below 40 mm and better than 2 mm at 70 mm. This indicates a slight need for repeated repositioning when the initial error is larger than about 50 mm. The positioning accuracy with standard patient setup procedures for prostate cancer at Karolinska was found to be about 5-6 mm when independently measured using the LC system. The system was found valuable for positron emission tomography-computed tomography (PET-CT) in vivo tumor and dose delivery imaging where it potentially may allow effective correction for breathing artifacts in 4D PET-CT and image fusion with lymph node atlases for accurate target volume definition in oncology. With a LC system in all imaging and radiation therapy rooms, auto setup during repeated diagnostic and therapeutic procedures may save around 5 min per session, increase accuracy and allow

  10. Rapid and Accurate Diagnosis Based on Real-Time PCR Cycle Threshold Value for the Identification of Campylobacter jejuni, astA Gene-Positive Escherichia coli, and eae Gene-Positive E. coli.

    PubMed

    Kawase, Jun; Asakura, Hiroshi; Kurosaki, Morito; Oshiro, Hitoshi; Etoh, Yoshiki; Ikeda, Tetsuya; Watahiki, Masanori; Kameyama, Mitsuhiro; Hayashi, Fumi; Kawakami, Yuta; Murakami, Yoshiko; Tsunomori, Yoshie

    2018-01-23

    We previously developed a multiplex real-time PCR assay (Rapid Foodborne Bacterial Screening 24 ver.5, [RFBS24 ver.5]) for simultaneous detection of 24 foodborne bacterial targets. Here, to overcome the discrepancy of the results from RFBS24 ver.5 and bacterial culture methods (BC), we analyzed 246 human clinical samples from 49 gastroenteritis outbreaks using RFBS24 ver.5 and evaluated the correlation between the cycle threshold (CT) value of RFBS24 ver.5 and the BC results. The results showed that the RFBS24 ver.5 was more sensitive than BC for Campylobacter jejuni and Escherichia coli harboring astA or eae, with positive predictive values (PPV) of 45.5-87.0% and a kappa coefficient (KC) of 0.60-0.92, respectively. The CTs were significantly different between BC-positive and -negative samples (p < 0.01). All RFBS24 ver.5-positive samples were BC-positive under the lower confidence interval (CI) limit of 95% or 99% for the CT of the BC-negative samples. We set the 95% or 99% CI lower limit to the determination CT (d-CT) to discriminate for assured BC-positive results (d-CTs: 27.42-30.86), and subsequently the PPVs (94.7%-100.0%) and KCs (0.89-0.95) of the 3 targets were increased. Together, we concluded that the implication of a d-CT-based approach would be a valuable tool for rapid and accurate diagnoses using the RFBS24 ver.5 system.

  11. Method for accurately positioning a device at a desired area of interest

    DOEpatents

    Jones, Gary D.; Houston, Jack E.; Gillen, Kenneth T.

    2000-01-01

    A method for positioning a first device utilizing a surface having a viewing translation stage, the surface being movable between a first position where the viewing stage is in operational alignment with a first device and a second position where the viewing stage is in operational alignment with a second device. The movable surface is placed in the first position and an image is produced with the first device of an identifiable characteristic of a calibration object on the viewing stage. The moveable surface is then placed in the second position and only the second device is moved until an image of the identifiable characteristic in the second device matches the image from the first device. The calibration object is then replaced on the stage of the surface with a test object, and the viewing translation stage is adjusted until the second device images the area of interest. The surface is then moved to the first position where the test object is scanned with the first device to image the area of interest. An alternative embodiment where the devices move is also disclosed.

  12. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  13. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  14. nuMap: A Web Platform for Accurate Prediction of Nucleosome Positioning

    PubMed Central

    Alharbi, Bader A.; Alshammari, Thamir H.; Felton, Nathan L.; Zhurkin, Victor B.; Cui, Feng

    2014-01-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  15. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    PubMed

    Tuerk, Andreas; Wiktorin, Gregor; Güler, Serhat

    2017-05-01

    Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare"), a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC) Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  16. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  17. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  18. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  19. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  20. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  1. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. I. Measurement of positive radical ions using porphyrin standard reference materials.

    PubMed

    Griffiths, Nia W; Wyatt, Mark F; Kean, Suzanna D; Graham, Andrew E; Stein, Bridget K; Brenton, A Gareth

    2010-06-15

    A method for the accurate mass measurement of positive radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. Initial use of a conjugated oligomeric calibration material was rejected in favour of a series of meso-tetraalkyl/tetraalkylaryl-functionalised porphyrins, from which the two calibrants required for a particular accurate mass measurement were chosen. While all measurements of monoisotopic species were within +/-5 ppm, and the method was rigorously validated using chemometrics, mean values of five measurements were used for extra confidence in the generation of potential elemental formulae. Potential difficulties encountered when measuring compounds containing multi-isotopic elements are discussed, where the monoisotopic peak is no longer the lowest mass peak, and a simple mass-correction solution can be applied. The method requires no significant expertise to implement, but care and attention is required to obtain valid measurements. The method is operationally simple and will prove useful to the analytical chemistry community. Copyright (c) 2010 John Wiley & Sons, Ltd.

  2. Happy but overconfident: positive affect leads to inaccurate metacomprehension.

    PubMed

    Prinz, Anja; Bergmann, Viktoria; Wittwer, Jörg

    2018-05-14

    When learning from text, it is important that learners not only comprehend the information provided but also accurately monitor and judge their comprehension, which is known as metacomprehension accuracy. To investigate the role of a learner's affective state for text comprehension and metacomprehension accuracy, we conducted an experiment with N = 103 university students in whom we induced positive, negative, or neutral affect. Positive affect resulted in poorer text comprehension than neutral affect. Positive affect also led to overconfident predictions, whereas negative and neutral affect were both associated with quite accurate predictions. Independent of affect, postdictions were rather underconfident. The results suggest that positive affect bears processing disadvantages for achieving deep comprehension and adequate prediction accuracy. Given that postdictions were more accurate, practice tests might represent an effective instructional method to help learners in a positive affective state to accurately judge their text comprehension.

  3. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    PubMed

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  4. Three dimensional indoor positioning based on visible light with Gaussian mixture sigma-point particle filter technique

    NASA Astrophysics Data System (ADS)

    Gu, Wenjun; Zhang, Weizhi; Wang, Jin; Amini Kashani, M. R.; Kavehrad, Mohsen

    2015-01-01

    Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.

  5. Accurate aircraft wind measurements using the global positioning system (GPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  6. The Role of Wireless Computing Technology in the Design of Schools.

    ERIC Educational Resources Information Center

    Nair, Prakash

    2003-01-01

    After briefly describing the educational advantages of wireless networks using mobile computers, discusses the technical, operational, financial aspects of wireless local area networks (WLAN). Provides examples of school facilities designed for the use of WLAN. Includes a glossary of WLAN-related terms. (Contains 12 references.)

  7. Influence of accurate and inaccurate 'split-time' feedback upon 10-mile time trial cycling performance.

    PubMed

    Wilson, Mathew G; Lane, Andy M; Beedie, Chris J; Farooq, Abdulaziz

    2012-01-01

    The objective of the study is to examine the impact of accurate and inaccurate 'split-time' feedback upon a 10-mile time trial (TT) performance and to quantify power output into a practically meaningful unit of variation. Seven well-trained cyclists completed four randomised bouts of a 10-mile TT on a SRM™ cycle ergometer. TTs were performed with (1) accurate performance feedback, (2) without performance feedback, (3) and (4) false negative and false positive 'split-time' feedback showing performance 5% slower or 5% faster than actual performance. There were no significant differences in completion time, average power output, heart rate or blood lactate between the four feedback conditions. There were significantly lower (p < 0.001) average [Formula: see text] (ml min(-1)) and [Formula: see text] (l min(-1)) scores in the false positive (3,485 ± 596; 119 ± 33) and accurate (3,471 ± 513; 117 ± 22) feedback conditions compared to the false negative (3,753 ± 410; 127 ± 27) and blind (3,772 ± 378; 124 ± 21) feedback conditions. Cyclists spent a greater amount of time in a '20 watt zone' 10 W either side of average power in the negative feedback condition (fastest) than the accurate feedback (slowest) condition (39.3 vs. 32.2%, p < 0.05). There were no significant differences in the 10-mile TT performance time between accurate and inaccurate feedback conditions, despite significantly lower average [Formula: see text] and [Formula: see text] scores in the false positive and accurate feedback conditions. Additionally, cycling with a small variation in power output (10 W either side of average power) produced the fastest TT. Further psycho-physiological research should examine the mechanism(s) why lower [Formula: see text] and [Formula: see text] scores are observed when cycling in a false positive or accurate feedback condition compared to a false negative or blind feedback condition.

  8. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A new sensor system for accurate and precise determination of sediment dynamics and position.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Hoey, Trevor; Sventek, Joseph; Hodge, Rebecca

    2014-05-01

    Sediment transport processes control many significant geomorphological changes. Consequently, sediment transport dynamics are studied across a wide range of scales leading to application of a variety of conceptually different mathematical descriptions (models) and data acquisition techniques (sensing). For river sediment transport processes both Eulerian and Lagrangian formulations are used. Data are gathered using a very wide range of sensing techniques that are not always compatible with the conceptual formulation applied. We are concerned with small to medium sediment grain-scale motion in gravel-bed rivers, and other coarse-grained environments, and: a) are developing a customised environmental sensor capable of providing coherent data that reliably record the motion; and, b) provide a mathematical framework in which these data can be analysed and interpreted, this being compatible with current stochastic approaches to sediment transport theory. Here we present results from three different aspects of the above developmental process. Firstly, we present a requirement analysis for the sensor based on the state of the art of the existing technologies. We focus on the factors that enhance data coherence and representativeness, extending the common practice for optimization which is based exclusively on electronics/computing related criteria. This analysis leads to formalization of a method that permits accurate control on the physical properties of the sensor using contemporary rapid prototyping techniques [Maniatis et al. 2013]. Secondly the first results are presented from a series of entrainment experiments in a 5 x 0.8 m flume in which a prototype sensor was deployed to monitor entrainment dynamics under increasing flow conditions (0.037 m3.s-1). The sensor was enclosed in an idealized spherical case (111 mm diameter) and placed on a constructed bed of hemispheres of the same diameter. We measured 3-axial inertial acceleration (as a measure of flow stress

  10. Electromagnetic Interference of Wireless Local Area Network on Electrocardiogram Monitoring System: A Case Report

    PubMed Central

    Chung, Seungmin; Yi, Joohee

    2013-01-01

    Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696

  11. Accurate Structural Correlations from Maximum Likelihood Superpositions

    PubMed Central

    Theobald, Douglas L; Wuttke, Deborah S

    2008-01-01

    The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091

  12. 30 CFR 57.19009 - Position indicator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Position indicator. 57.19009 Section 57.19009 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Hoists § 57.19009 Position indicator. An accurate and reliable indicator of the position of the cage...

  13. 30 CFR 56.19009 - Position indicator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Position indicator. 56.19009 Section 56.19009 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 56.19009 Position indicator. An accurate and reliable indicator of the position of the cage, skip...

  14. 30 CFR 57.19009 - Position indicator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Position indicator. 57.19009 Section 57.19009 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Hoists § 57.19009 Position indicator. An accurate and reliable indicator of the position of the cage...

  15. 30 CFR 56.19009 - Position indicator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Position indicator. 56.19009 Section 56.19009 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 56.19009 Position indicator. An accurate and reliable indicator of the position of the cage, skip...

  16. Extragalactic radio sources - Accurate positions from very-long-baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Rogers, A. E. E.; Counselman, C. C., III; Hinteregger, H. F.; Knight, C. A.; Robertson, D. S.; Shapiro, I. I.; Whitney, A. R.; Clark, T. A.

    1973-01-01

    Relative positions for 12 extragalactic radio sources have been determined via wide-band very-long-baseline interferometry (wavelength of about 3.8 cm). The standard error, based on consistency between results from widely separated periods of observation, appears to be no more than 0.1 sec for each coordinate of the seven sources that were well observed during two or more periods. The uncertainties in the coordinates determined for the other five sources are larger, but in no case exceed 0.5 sec.

  17. Beam rider for an Articulated Robot Manipulator (ARM) accurate positioning of long flexible manipulators

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.

    1990-01-01

    Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.

  18. ACCURATE OH MASER POSITIONS FROM THE SPLASH PILOT REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hai-Hua; Shen, Zhi-Qiang; Walsh, Andrew J.

    2016-12-01

    We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centers previously identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) pilot region, between Galactic longitudes of 334° and 344° and Galactic latitudes of −2° and +2°. Supplementing our data with data from the MAGMO (Mapping the Galactic Magnetic field through OH masers) survey, we find maser emission toward 175 of the 196 target fields. We conclude that about half of the 21 nondetections were due to intrinsic variability. Due to the superiormore » sensitivity of the followup ATCA observations, and the ability to resolve nearby sources into separate sites, we have identified 215 OH maser sites toward the 175 fields with detections. Among these 215 OH maser sites, 111 are new detections. After comparing the positions of these 215 maser sites to the literature, we identify 122 (57%) sites associated with evolved stars (one of which is a planetary nebula), 64 (30%) with star formation, two sites with supernova remnants, and 27 (13%) of unknown origin. The infrared colors of evolved star sites with symmetric maser profiles tend to be redder than those of evolved star sites with asymmetric maser profiles, which may indicate that symmetric sources are generally at an earlier evolutionary stage.« less

  19. Simultaneous, accurate measurement of the 3D position and orientation of single molecules

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2012-01-01

    Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640

  20. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  1. Volpe Center Acoustics Facility time-space-position-information system differential global positioning system user's guide, version 1.2

    DOT National Transportation Integrated Search

    2000-07-01

    This document is a users guide for the VolpeCenter AcousticsFacilitys(VCAF)Time-Space-Position-Information : (TSPI) System. The VCAF TSPI system is a differential global positioning system (dGPS) which may be utilized : for highly accurate vehi...

  2. CRANE POSITIONING APPARATUS

    DOEpatents

    Landsiedel, F.W.; Wolff, H.

    1960-06-28

    An apparatus is described for automatically accomplishing the final accurate horizontal positioning of a crane after the latter has been placed to within 1/8 in. of its selected position. For this purpose there is provided a tiltable member on the crane mast for lowering into contact with a stationary probe. Misalignment of the tiltable member, with respect to the probe as the member is lowered, causes tilting of the latter to actuate appropriate switches that energize motors for bringing the mast into proper position. When properly aligned the member is not tilted and a central switch is actuated to indicate the final alignment of the crane.

  3. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  4. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  5. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  6. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  7. How accurately can other people infer your thoughts-And does culture matter?

    PubMed

    Valanides, Constantinos; Sheppard, Elizabeth; Mitchell, Peter

    2017-01-01

    This research investigated how accurately people infer what others are thinking after observing a brief sample of their behaviour and whether culture/similarity is a relevant factor. Target participants (14 British and 14 Mediterraneans) were cued to think about either positive or negative events they had experienced. Subsequently, perceiver participants (16 British and 16 Mediterraneans) watched videos of the targets thinking about these things. Perceivers (both groups) were significantly accurate in judging when targets had been cued to think of something positive versus something negative, indicating notable inferential ability. Additionally, Mediterranean perceivers were better than British perceivers in making such inferences, irrespective of nationality of the targets, something that was statistically accounted for by corresponding group differences in levels of independently measured collectivism. The results point to the need for further research to investigate the possibility that being reared in a collectivist culture fosters ability in interpreting others' behaviour.

  8. How accurately can other people infer your thoughts—And does culture matter?

    PubMed Central

    Valanides, Constantinos; Sheppard, Elizabeth; Mitchell, Peter

    2017-01-01

    This research investigated how accurately people infer what others are thinking after observing a brief sample of their behaviour and whether culture/similarity is a relevant factor. Target participants (14 British and 14 Mediterraneans) were cued to think about either positive or negative events they had experienced. Subsequently, perceiver participants (16 British and 16 Mediterraneans) watched videos of the targets thinking about these things. Perceivers (both groups) were significantly accurate in judging when targets had been cued to think of something positive versus something negative, indicating notable inferential ability. Additionally, Mediterranean perceivers were better than British perceivers in making such inferences, irrespective of nationality of the targets, something that was statistically accounted for by corresponding group differences in levels of independently measured collectivism. The results point to the need for further research to investigate the possibility that being reared in a collectivist culture fosters ability in interpreting others’ behaviour. PMID:29112972

  9. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  10. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.

    PubMed

    Allgower, C E; Schreuder, A N; Farr, J B; Mascia, A E

    2007-03-01

    Protons beams deliver targeted radiation doses with greater precision than is possible with electrons or megavoltage X-ray photons, but to retain this advantage, patient positioning systems at proton clinics must meet tighter accuracy requirements. For this and other reasons, robots were incorporated into the treatment room systems at MPRI. The Midwest Proton Radiotherapy Institute (MPRI) is the first radiotherapy facility in the United States to use commercial robots with six degrees of freedom for patient positioning, rather than a traditional bed with four degrees of freedom. This paper outlines the ways in which robots are used at MPRI and attempts to distil insights from the experience of treating over 200 radiotherapy patients with a robotic system from February 2004 to late 2006. The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position. Copyright 2006 John Wiley & Sons, Ltd.

  11. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    PubMed Central

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  12. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time.

    PubMed

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-02-10

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people's activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of "smart clothing" system.

  13. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  14. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  15. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  16. Constrained optimization for position calibration of an NMR field camera.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Accurate radio and optical positions for the radio star HD 36705 (AB Doradus)

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Batty, Michael J.; Peters, W. L.; Gulkis, S.

    1988-01-01

    Arc-second position measurements of the active star HD 36705 (AB Dor) and of the variable radio source found nearby are presented. These measurements show that the radio source is clearly identified with HD 36705 and not with the nearby red-dwarf star Rst 137B.

  18. Positioning performance of a maglev fine positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages ofmore » maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.« less

  19. Intraformation positioning system

    NASA Astrophysics Data System (ADS)

    Sheldon, Stuart; Zadzora, Timothy

    1996-05-01

    The IntraFormation Positioning System is a networked relative navigation system currently being developed for rendezvous, join-up, and formation flight of Air Force helicopters and fixed wing aircraft in instrument meteorological conditions. The system is designed to be integrated into existing aircraft and will display relative positions of all aircraft within a formation, as well as the relative positions of other formations participating in coordinated missions. The system uses a Global Positioning System receiver integrated with the aircraft Inertial Navigation System to generate accurate aircraft position and velocity data. These data are transmitted over a data link to all participating aircraft and displayed as graphic symbols at the relative range and bearing to own aircraft on a situational awareness display format similar to a radar plan position indicator. Flight guidance computation is based on the difference between a desired formation slot position and current aircraft position relative to the formation lead aircraft. This information is presented on the flight director display allowing the pilot to null out position errors. The system is being developed for the Air Force Special Operations Command; however, it is applicable to all aircraft desiring improved formation situational awareness and formation flight coordination.

  20. Next Generation Information Systems Architectures

    DTIC Science & Technology

    2008-07-01

    constraint, accessories such as bulk data storage, radio cards , and batteries also need to be accommodated. Some applications would require the...exhibition demonstrated a number of WLAN applications on an existing smartphone handset by using a WLAN card inserted into the SD card slot.4 Another...that only loose coupling is implemented. There are also less integrated methods, such as using a GPRS/WLAN PC card in a PC or PDA to allow it to use

  1. A 3.2-GHz fully integrated low-phase noise CMOS VCO with self-biasing current source for the IEEE 802.11a/hiperLAN WLAN standard

    NASA Astrophysics Data System (ADS)

    Quemada, C.; Adin, I.; Bistue, G.; Berenguer, R.; Mendizabal, J.

    2005-06-01

    A 3.3V, fully integrated 3.2-GHz voltage-controlled oscillator (VCO) is designed in a 0.18μm CMOS technology for the IEE 802.11a/HiperLAN WLAN standard for the UNII band from 5.15 to 5.35 GHz. The VCO is tunable between 2.85 GHz and 3.31 GHz. NMOS architecture with self-biasing current of the tank source is chosen. A startup circuit has been employed to avoid zero initial current. Current variation is lower than 1% for voltage supply variations of 10%. The use of a self-biasing current source in the tank provides a greater safety in the transconductance value and allows running along more extreme point operation The designed VCO displays a phase noise and output power of -98dBc/Hz (at 100 KHz offset frequency) and 0dBm respectively. This phase noise has been obtained with inductors of 2.2nH and quality factor of 12 at 3.2 GHz, and P-N junction varactors whose quality factor is estimated to exceed 40 at 3.2 GHz. These passive components have been fabricated, measured and modeled previously. The core of the VCO consumes 33mW DC power.

  2. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  3. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  4. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  5. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  6. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  7. Accurate computation of survival statistics in genome-wide studies.

    PubMed

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J; Upfal, Eli

    2015-05-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations.

  8. Accurate Computation of Survival Statistics in Genome-Wide Studies

    PubMed Central

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J.; Upfal, Eli

    2015-01-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations. PMID:25950620

  9. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  10. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  11. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused onmore » achieving a dual band operation.« less

  12. RFID-based vehicle positioning and its applications in connected vehicles.

    PubMed

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang

    2014-03-04

    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control.

  13. Piezoresistive position microsensors with ppm-accuracy

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav

    2015-05-01

    In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.

  14. PHOTOELECTRIC CONTROL FOR TAPE POSITIONING

    DOEpatents

    Woody, J.W. Jr.

    1961-07-25

    A control system is described for producing control impulses which may be used to start, stop, and position a magnetic tape with respect to a transducer, and to locate discrete areas on the tape. Means are provided for positive identification of data blocks, exact positioning of the tape under the magnetic head, drive in either direction, accurate skip-over of imperfect regions of the tape, stopping the tape if equipment malfunction results in a failure to detect the block-identifying signals, and starting and stopping those parts of the tape between of the tape drive clutches.

  15. Self-calibrating solar position sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxey, Lonnie Curt

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated bymore » the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.« less

  16. Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Lainey, V.; Le Maistre, S.; Marty, J. C.; Dehant, V.; Pätzold, M.; Van Hoolst, T.; Häusler, B.

    2008-05-01

    The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20-25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.

  17. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection

    PubMed Central

    Addante, Richard, J.; Ranganath, Charan; Yonelinas, Andrew, P.

    2012-01-01

    Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [Late Positive Component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails. PMID:22548808

  18. RFID-Based Vehicle Positioning and Its Applications in Connected Vehicles

    PubMed Central

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang

    2014-01-01

    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control. PMID:24599188

  19. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  20. Apparatus for continuous, fast, and precise measurements of position and velocity of a small spherical particle

    NASA Technical Reports Server (NTRS)

    Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.

    1983-01-01

    The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.

  1. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    ERIC Educational Resources Information Center

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  2. Realization of a CORDIC-Based Plug-In Accelerometer Module for PSG System in Head Position Monitoring for OSAS Patients

    PubMed Central

    Chou, Wen-Cheng; Shiao, Tsu-Hui; Shiao, Guang-Ming; Luo, Chin-Shan

    2017-01-01

    Overnight polysomnography (PSG) is currently the standard diagnostic procedure for obstructive sleep apnea (OSA). It has been known that monitoring of head position in sleep is crucial not only for the diagnosis (positional sleep apnea) but also for the management of OSA (positional therapy). However, there are no sensor systems available clinically to hook up with PSG for accurate head position monitoring. In this paper, an accelerometer-based sensing system for accurate head position monitoring is developed and realized. The core CORDIC- (COordinate Rotation DIgital Computer-) based tilting sensing algorithm is realized in the system to quickly and accurately convert accelerometer raw data into the desired head position tilting angles. The system can hook up with PSG devices for diagnosis to have head position information integrated with other PSG-monitored signals. It has been applied in an IRB test in Taipei Veterans General Hospital and has been proved that it can meet the medical needs of accurate head position monitoring for PSG diagnosis. PMID:29065608

  3. A robust recognition and accurate locating method for circular coded diagonal target

    NASA Astrophysics Data System (ADS)

    Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin

    2017-10-01

    As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.

  4. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  5. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  6. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  7. Detection of negative and positive audience behaviours by socially anxious subjects.

    PubMed

    Veljaca, K A; Rapee, R M

    1998-03-01

    Nineteen subjects high in social anxiety and 20 subjects low in social anxiety were asked to give a 5-min speech in front of three audience members. Audience members were trained to provide indicators of positive evaluation (e.g., smiles) and negative evaluation (e.g. frowns) at irregular intervals during the speech. Subjects were instructed to indicate, by depressing one of two buttons, when they detected either positive or negative behaviours. Results indicated that subjects high in social anxiety were both more accurate at, and had a more liberal criterion for, detecting negative audience behaviours while subjects low in social anxiety were more accurate at detecting positive audience behaviours.

  8. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  9. The Brave New World of Wireless Technologies: A Primer for Educators.

    ERIC Educational Resources Information Center

    Boerner, Gerald L.

    2002-01-01

    Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)

  10. Differentiation of 13 positive emotions by appraisals.

    PubMed

    Tong, Eddie M W

    2015-01-01

    This research examined how strongly appraisals can differentiate positive emotions and how they differentiate positive emotions. Thirteen positive emotions were examined, namely, amusement, awe, challenge, compassion, contentment, gratitude, hope, interest, joy, pride, relief, romantic love and serenity. Participants from Singapore and the USA recalled an experience of each emotion and thereafter rated their appraisals of the experience. In general, the appraisals accurately classified the positive emotions at rates above chance levels, and the appraisal-emotion relationships conformed to predictions. Also, the appraisals were largely judged by participants as relevant to their positive emotion experiences, and the appraisal-emotion relationships were largely consistent across the two countries.

  11. Accurate Arabic Script Language/Dialect Classification

    DTIC Science & Technology

    2014-01-01

    Army Research Laboratory Accurate Arabic Script Language/Dialect Classification by Stephen C. Tratz ARL-TR-6761 January 2014 Approved for public...1197 ARL-TR-6761 January 2014 Accurate Arabic Script Language/Dialect Classification Stephen C. Tratz Computational and Information Sciences...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 January 2014 Final Accurate Arabic Script Language/Dialect Classification

  12. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  13. Translation position determination in ptychographic coherent diffraction imaging.

    PubMed

    Zhang, Fucai; Peterson, Isaac; Vila-Comamala, Joan; Diaz, Ana; Berenguer, Felisa; Bean, Richard; Chen, Bo; Menzel, Andreas; Robinson, Ian K; Rodenburg, John M

    2013-06-03

    Accurate knowledge of translation positions is essential in ptychography to achieve a good image quality and the diffraction limited resolution. We propose a method to retrieve and correct position errors during the image reconstruction iterations. Sub-pixel position accuracy after refinement is shown to be achievable within several tens of iterations. Simulation and experimental results for both optical and X-ray wavelengths are given. The method improves both the quality of the retrieved object image and relaxes the position accuracy requirement while acquiring the diffraction patterns.

  14. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    PubMed

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  15. Hydrogen atoms can be located accurately and precisely by x-ray crystallography

    PubMed Central

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-01-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545

  16. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  17. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  18. Secure Wireless Networking at Simon Fraser University.

    ERIC Educational Resources Information Center

    Johnson, Worth

    2003-01-01

    Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)

  19. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  20. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  1. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  2. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  3. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  4. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  5. Estimating Accurate Relative Spacecraft Angular Position from DSN VLBI Phases Using X-Band Telemetry or DOR Tones

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Majid, Walid

    2009-01-01

    At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.

  6. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less

  7. Measuring Global Position Using the Sun

    ERIC Educational Resources Information Center

    Murphy, Evan; Hughes, Stephen

    2014-01-01

    The determination of latitude and longitude on Earth has always been of interest to explorers and cartographers alike. Accurate positional information is often needed for rescue purposes in locations where satellite navigational systems are inoperable. The activity described in this paper demonstrates a simple procedure to determine latitude and…

  8. Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System

    NASA Astrophysics Data System (ADS)

    Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao

    This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.

  9. Development and positioning reliability of a TMS coil holder for headache research.

    PubMed

    Chronicle, Edward P; Pearson, A Jane; Matthews, Cheryl

    2005-01-01

    Accurate and reproducible coil positioning is important for headache research using transcranial magnetic stimulation protocols. We aimed to design a transcranial magnetic stimulation coil holder and demonstrate reliability of test-retest coil positioning. A coil holder was developed and manufactured according to three principles of stability, durability, and three-dimensional positional accuracy. Reliability of coil positioning was assessed by stimulating over the motor cortex of four neurologically normal subjects and recording finger muscle responses, both at a test phase and a retest phase several hours later. In all four subjects, repositioning of the transcranial magnetic stimulation coil solely on the basis of coil holder coordinates was accurate to within 2 mm. The coil holder demonstrated good test-retest reliability of coil positioning, and is thus a promising tool for transcranial magnetic stimulation-based headache research, particularly studies of prophylactic drug effect where several laboratory visits with identical coil positioning are necessary.

  10. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  11. Which Clinician Questions Elicit Accurate Disclosure of Antiretroviral Non-adherence When Talking to Patients?

    PubMed

    Callon, Wynne; Saha, Somnath; Korthuis, P Todd; Wilson, Ira B; Moore, Richard D; Cohn, Jonathan; Beach, Mary Catherine

    2016-05-01

    This study evaluated how clinicians assess antiretroviral (ARV) adherence in clinical encounters, and which questions elicit accurate responses. We conducted conversation analysis of audio-recorded encounters between 34 providers and 58 patients reporting ARV non-adherence in post-encounter interviews. Among 42 visits where adherence status was unknown by providers, 4 providers did not discuss ARVs (10 %), 6 discussed ARVs but did not elicit non-adherence disclosure (14 %), and 32 discussed ARVs which prompted disclosure (76 %). Questions were classified as: (1) clarification of medication ("Are you still taking the Combivir?"); (2) broad ("How's it going with your meds?"); (3) positively-framed ("Are you taking your medications regularly?"); (4) negatively-framed ("Have you missed any doses?"). Clinicians asked 75 ARV-related questions: 23 clarification, 12 broad, 17 positively-framed, and 23 negatively-framed. Negatively-framed questions were 3.8 times more likely to elicit accurate disclosure than all other question types (p < 0.0001). Providers can improve disclosure probability by asking directly about missed doses.

  12. Spontaneous Group Learning in Ambient Learning Environments

    NASA Astrophysics Data System (ADS)

    Bick, Markus; Jughardt, Achim; Pawlowski, Jan M.; Veith, Patrick

    Spontaneous Group Learning is a concept to form and facilitate face-to-face, ad-hoc learning groups in collaborative settings. We show how to use Ambient Intelligence to identify, support, and initiate group processes. Learners' positions are determined by widely used technologies, e.g., Bluetooth and WLAN. As a second step, learners' positions, tasks, and interests are visualized. Finally, a group process is initiated supported by relevant documents and services. Our solution is a starting point to develop new didactical solutions for collaborative processes.

  13. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  14. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  15. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  16. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  17. Eyeball Position in Facial Approximation: Accuracy of Methods for Predicting Globe Positioning in Lateral View.

    PubMed

    Zednikova Mala, Pavla; Veleminska, Jana

    2018-01-01

    This study measured the accuracy of traditional and validated newly proposed methods for globe positioning in lateral view. Eighty lateral head cephalograms of adult subjects from Central Europe were taken, and the actual and predicted dimensions were compared. The anteroposterior eyeball position was estimated as the most accurate method based on the proportion of the orbital height (SEE = 1.9 mm) and was followed by the "tangent to the iris method" showing SEE = 2.4 mm. The traditional "tangent to the cornea method" underestimated the eyeball projection by SEE = 5.8 mm. Concerning the superoinferior eyeball position, the results showed a deviation from a central to a more superior position by 0.3 mm, on average, and the traditional method of central positioning of the globe could not be rejected as inaccurate (SEE = 0.3 mm). Based on regression analyzes or proportionality of the orbital height, the SEE = 2.1 mm. © 2017 American Academy of Forensic Sciences.

  18. Ultrasound as a Screening Tool for Central Venous Catheter Positioning and Exclusion of Pneumothorax.

    PubMed

    Amir, Rabia; Knio, Ziyad O; Mahmood, Feroze; Oren-Grinberg, Achikam; Leibowitz, Akiva; Bose, Ruma; Shaefi, Shahzad; Mitchell, John D; Ahmed, Muneeb; Bardia, Amit; Talmor, Daniel; Matyal, Robina

    2017-07-01

    Although real-time ultrasound guidance during central venous catheter insertion has become a standard of care, postinsertion chest radiograph remains the gold standard to confirm central venous catheter tip position and rule out associated lung complications like pneumothorax. We hypothesize that a combination of transthoracic echocardiography and lung ultrasound is noninferior to chest radiograph when used to accurately assess central venous catheter positioning and screen for pneumothorax. All operating rooms and surgical and trauma ICUs at the institution. Single-center, prospective noninferiority study. Patients receiving ultrasound-guided subclavian or internal jugular central venous catheters. During ultrasound-guided central venous catheter placement, correct positioning of central venous catheter was accomplished by real-time visualization of the guide wire and positive right atrial swirl sign using the subcostal four-chamber view. After insertion, pneumothorax was ruled out by the presence of lung sliding and seashore sign on M-mode. Data analysis was done for 137 patients. Chest radiograph ruled out pneumothorax in 137 of 137 patients (100%). Lung ultrasound was performed in 123 of 137 patients and successfully screened for pneumothorax in 123 of 123 (100%). Chest radiograph approximated accurate catheter tip position in 136 of 137 patients (99.3%). Adequate subcostal four-chamber views could not be obtained in 13 patients. Accurate positioning of central venous catheter with ultrasound was then confirmed in 121 of 124 patients (97.6%) as described previously. Transthoracic echocardiography and lung ultrasound are noninferior to chest x-ray for screening of pneumothorax and accurate central venous catheter positioning. Thus, the point of care use of ultrasound can reduce central venous catheter insertion to use time, exposure to radiation, and improve patient safety.

  19. Exploring Processes and Outcomes of Wireless Internet in Higher Education: A Case Study of a University's Early Experience

    ERIC Educational Resources Information Center

    Lee, Lisa

    2007-01-01

    Many universities in the UK have recently started offering their staff and students free wireless Internet access through Wireless Local Area Network (WLAN) technologies, such as Wi-Fi. Based on a small empirical study of WLAN deployment in a university setting, the article explores adoption processes of the new technology by both the organisation…

  20. The status of accurately locating forest inventory and analysis plots using the Global Positioning System

    Treesearch

    Michael Hoppus; Andrew Lister

    2007-01-01

    Historically, field crews used Global Positioning System (GPS) coordinates to establish and relocate plots, as well as document their general location. During the past 5 years, the increase in Geographic Information System (GIS) capabilities and in customer requests to use the spatial relationships between Forest Inventory and Analysis (FIA) plot data and other GIS...

  1. Accurate indel prediction using paired-end short reads

    PubMed Central

    2013-01-01

    Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375

  2. Sentence-position effects on children's perception and production of English third person singular -s.

    PubMed

    Sundara, Megha; Demuth, Katherine; Kuhl, Patricia K

    2011-02-01

    Two-year-olds produce third person singular -s more accurately on verbs in sentence-final position as compared with verbs in sentence-medial position. This study was designed to determine whether these sentence-position effects can be explained by perceptual factors. For this purpose, the authors compared 22- and 27-month-olds' perception and elicited production of third person singular -s in sentence-medial versus-final position. The authors assessed perception by measuring looking/listening times to a 1-screen display of a cartoon paired with a grammatical versus an ungrammatical sentence (e.g., She eats now vs. She eat now). Children at both ages demonstrated sensitivity to the presence/absence of this inflectional morpheme in sentence-final, but not sentence-medial, position. Children were also more accurate at producing third person singular -s sentence finally, and production accuracy was predicted by vocabulary measures as well as by performance on the perception task. These results indicate that children's more accurate production of third person singular -s in sentence-final position cannot be explained by articulatory factors alone but that perceptual factors play an important role in accounting for early patterns of production. The findings also indicate that perception and production of inflectional morphemes may be more closely related than previously thought.

  3. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  4. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nbmore » crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.« less

  5. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  6. Does ultrasonography accurately diagnose acute cholecystitis? Improving diagnostic accuracy based on a review at a regional hospital

    PubMed Central

    Hwang, Hamish; Marsh, Ian; Doyle, Jason

    2014-01-01

    Background Acute cholecystitis is one of the most common diseases requiring emergency surgery. Ultrasonography is an accurate test for cholelithiasis but has a high false-negative rate for acute cholecystitis. The Murphy sign and laboratory tests performed independently are also not particularly accurate. This study was designed to review the accuracy of ultrasonography for diagnosing acute cholecystitis in a regional hospital. Methods We studied all emergency cholecystectomies performed over a 1-year period. All imaging studies were reviewed by a single radiologist, and all pathology was reviewed by a single pathologist. The reviewers were blinded to each other’s results. Results A total of 107 patients required an emergency cholecystectomy in the study period; 83 of them underwent ultrasonography. Interradiologist agreement was 92% for ultrasonography. For cholelithiasis, ultrasonography had 100% sensitivity, 18% specificity, 81% positive predictive value (PPV) and 100% negative predictive value (NPV). For acute cholecystitis, it had 54% sensitivity, 81% specificity, 85% PPV and 47% NPV. All patients had chronic cholecystitis and 67% had acute cholecystitis on histology. When combined with positive Murphy sign and elevated neutrophil count, an ultrasound showing cholelithiasis or acute cholecystitis yielded a sensitivity of 74%, specificity of 62%, PPV of 80% and NPV of 53% for the diagnosis of acute cholecystitis. Conclusion Ultrasonography alone has a high rate of false-negative studies for acute cholecystitis. However, a higher rate of accurate diagnosis can be achieved using a triad of positive Murphy sign, elevated neutrophil count and an ultrasound showing cholelithiasis or cholecystitis. PMID:24869607

  7. Developing Electronic Health Record Algorithms That Accurately Identify Patients With Systemic Lupus Erythematosus.

    PubMed

    Barnado, April; Casey, Carolyn; Carroll, Robert J; Wheless, Lee; Denny, Joshua C; Crofford, Leslie J

    2017-05-01

    To study systemic lupus erythematosus (SLE) in the electronic health record (EHR), we must accurately identify patients with SLE. Our objective was to develop and validate novel EHR algorithms that use International Classification of Diseases, Ninth Revision (ICD-9), Clinical Modification codes, laboratory testing, and medications to identify SLE patients. We used Vanderbilt's Synthetic Derivative, a de-identified version of the EHR, with 2.5 million subjects. We selected all individuals with at least 1 SLE ICD-9 code (710.0), yielding 5,959 individuals. To create a training set, 200 subjects were randomly selected for chart review. A subject was defined as a case if diagnosed with SLE by a rheumatologist, nephrologist, or dermatologist. Positive predictive values (PPVs) and sensitivity were calculated for combinations of code counts of the SLE ICD-9 code, a positive antinuclear antibody (ANA), ever use of medications, and a keyword of "lupus" in the problem list. The algorithms with the highest PPV were each internally validated using a random set of 100 individuals from the remaining 5,759 subjects. The algorithm with the highest PPV at 95% in the training set and 91% in the validation set was 3 or more counts of the SLE ICD-9 code, ANA positive (≥1:40), and ever use of both disease-modifying antirheumatic drugs and steroids, while excluding individuals with systemic sclerosis and dermatomyositis ICD-9 codes. We developed and validated the first EHR algorithm that incorporates laboratory values and medications with the SLE ICD-9 code to identify patients with SLE accurately. © 2016, American College of Rheumatology.

  8. A hybrid stochastic approach for self-location of wireless sensors in indoor environments.

    PubMed

    Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro

    2009-01-01

    Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.

  9. Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks

    PubMed Central

    Richter, Philipp; Toledano-Ayala, Manuel

    2015-01-01

    Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996

  10. Potential for Personal Digital Assistant interference with implantable cardiac devices.

    PubMed

    Tri, Jeffrey L; Trusty, Jane M; Hayes, David L

    2004-12-01

    To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.

  11. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  12. Supplementary biochemical tests useful for the differentiation of oxidase positive staphylococci.

    PubMed

    Stepanović, Srdjan; Dakić, Ivana; Hauschild, Tomasz; Vuković, Dragana; Morrison, Donald; Jezek, Petr; Cirković, Ivana; Petrás, Petr

    2007-06-01

    Differentiation of the oxidase positive staphylococci, Staphylococcus sciuri, Staphylococcus lentus, Staphylococcus vitulinus and Staphylococcus fleurettii, based on tributyrin, urease, caseinase, gelatinase and DNase activity is described. These tests may be used for preliminary identification of oxidase positive isolates of staphylococci resulting in more accurate identification of these species.

  13. Spectroscopic confirmation of the optical identification of X-ray sources used to determine accurate positions for the anomalous X-ray pulsars 1E 2259+58.6 and 4U 0142+61

    NASA Astrophysics Data System (ADS)

    van den Berg, M.; Verbunt, F.

    2001-03-01

    Optical spectra show that two proposed counterparts for X-ray sources detected near 1E 2259+58.6 are late G stars, and a proposed counterpart for a source near 4U 0142+61 is a dMe star. The X-ray luminosities are as expected for such stars. We thus confirm the optical identification of the three X-ray objects, and thereby the correctness of the accurate positions for 1E 2259+58.6 and 4U 0142+61 based on them. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  14. Geodetic analysis of disputed accurate qibla direction

    NASA Astrophysics Data System (ADS)

    Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah

    2018-04-01

    Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.

  15. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  16. Accurate sub-millimetre rest frequencies for HOCO+ and DOCO+ ions

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Lattanzi, V.; Laas, J.; Spezzano, S.; Giuliano, B. M.; Prudenzano, D.; Endres, C.; Sipilä, O.; Caselli, P.

    2017-06-01

    Context. HOCO+ is a polar molecule that represents a useful proxy for its parent molecule CO2, which is not directly observable in the cold interstellar medium. This cation has been detected towards several lines of sight, including massive star forming regions, protostars, and cold cores. Despite the obvious astrochemical relevance, protonated CO2 and its deuterated variant, DOCO+, still lack an accurate spectroscopic characterisation. Aims: The aim of this work is to extend the study of the ground-state pure rotational spectra of HOCO+ and DOCO+ well into the sub-millimetre region. Methods: Ground-state transitions have been recorded in the laboratory using a frequency-modulation absorption spectrometer equipped with a free-space glow-discharge cell. The ions were produced in a low-density, magnetically confined plasma generated in a suitable gas mixture. The ground-state spectra of HOCO+ and DOCO+ have been investigated in the 213-967 GHz frequency range; 94 new rotational transitions have been detected. Additionally, 46 line positions taken from the literature have been accurately remeasured. Results: The newly measured lines have significantly enlarged the available data sets for HOCO+ and DOCO+, thus enabling the determination of highly accurate rotational and centrifugal distortion parameters. Our analysis shows that all HOCO+ lines with Ka ≥ 3 are perturbed by a ro-vibrational interaction that couples the ground state with the v5 = 1 vibrationally excited state. This resonance has been explicitly treated in the analysis in order to obtain molecular constants with clear physical meaning. Conclusions: The improved sets of spectroscopic parameters provide enhanced lists of very accurate sub-millimetre rest frequencies of HOCO+ and DOCO+ for astrophysical applications. These new data challenge a recent tentative identification of DOCO+ towards a pre-stellar core. Supplementary tables are only available at the CDS via anonymous ftp to http

  17. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  18. Marine C2 in Support of HA/DR: Observations and Critical Assessments Following Super-Typhoon Haiyan

    DTIC Science & Technology

    2014-06-01

    farm (Figure 1), established Internet access over commercial satellite service 6 (Figure 2), and configured a wireless local area network ( WLAN ...included support for a larger diameter wireless local area network ( WLAN ), providing greater freedom of movement for users accessing the GATR...emerging commercial capabilities, both communications systems and handheld/user-access devices involves the establishment of a synergistic application

  19. Analysis and Design of Complex Networks

    DTIC Science & Technology

    2014-12-02

    systems. 08-NOV-10, . : , Barlas Oguz, Venkat Anantharam. Long range dependent Markov chains with applications , Information Theory and Applications ...JUL-12, . : , Michael Krishnan, Ehsan Haghani, Avideh Zakhor. Packet Length Adaptation in WLANs with Hidden Nodes and Time-Varying Channels, IEEE... WLAN networks with multi-antenna beam-forming nodes. VII. Use of busy/idle signals for discovering optimum AP association VIII

  20. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. II. Measurement of negative radical ions using porphyrin and fullerene standard reference materials.

    PubMed

    Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2010-10-30

    A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  2. Starbugs: focal plane fiber positioning technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Heijmans, Jeroen; Saunders, Ian; Brzeski, Jurek; Saunders, Will; Muller, Rolf; Haynes, Roger; Gilbert, James

    2010-07-01

    We report on the technological achievements of our latest Starbug prototypes and their implications for smart focal plane fiber positioning applications for wide-field astronomy. The Starbugs are innovative self-motile miniature robotic devices that can simultaneously and independently position fibers or payloads over a field plate located at the telescope's focal plane. The Starbugs concept overcomes many of the limitations associated with the traditional 'pick and place' positioners where a robot places fixed buttons onto the field plate. The new Starbug prototypes use piezoelectric actuators and have the following features: (i) new 'lift-and-step' method (discrete step) for accurate positioning over different surfaces; and (ii) operate in an inverted hanging position underneath a transparent field plate, removing the need for fibercable retractors. In this paper, we present aspects of the Starbug prototypes, including the theoretical model, mechanical design, experimental setup, algorithms, performance and applications for astronomical instrumentation.

  3. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  4. Latest Developments on Obtaining Accurate Measurements with Pitot Tubes in ZPG Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Nagib, Hassan; Vinuesa, Ricardo

    2013-11-01

    Ability of available Pitot tube corrections to provide accurate mean velocity profiles in ZPG boundary layers is re-examined following the recent work by Bailey et al. Measurements by Bailey et al., carried out with probes of diameters ranging from 0.2 to 1.89 mm, together with new data taken with larger diameters up to 12.82 mm, show deviations with respect to available high-quality datasets and hot-wire measurements in the same Reynolds number range. These deviations are significant in the buffer region around y+ = 30 - 40 , and lead to disagreement in the von Kármán coefficient κ extracted from profiles. New forms for shear, near-wall and turbulence corrections are proposed, highlighting the importance of the latest one. Improved agreement in mean velocity profiles is obtained with new forms, where shear and near-wall corrections contribute with around 85%, and remaining 15% of the total correction comes from turbulence correction. Finally, available algorithms to correct wall position in profile measurements of wall-bounded flows are tested, using as benchmark the corrected Pitot measurements with artificially simulated probe shifts and blockage effects. We develop a new scheme, κB - Musker, which is able to accurately locate wall position.

  5. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  6. Positivity-preserving dual time stepping schemes for gas dynamics

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  7. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ...-core thermocouples at different elevations and radial positions throughout the reactor core to enable... different elevations and radial positions throughout the reactor core to enable NPP operators to accurately... NPPs with in-core thermocouples at different elevations and radial positions throughout the reactor...

  8. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  9. False Positives in Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Leuquire, Jacob; Kasper, David; Jang-Condell, Hannah; Kar, Aman; Sorber, Rebecca; Suhaimi, Afiq; KELT (Kilodegree Extremely Little Telescope)

    2018-06-01

    Our team at the University of Wyoming uses a 0.6 m telescope at RBO (Red Buttes Observatory) to help confirm results on potential exoplanet candidates from low resolution, wide field surveys shared by the KELT (Kilodegree Extremely Little Telescope) team. False positives are common in this work. We carry out transit photometry, and this method comes with special types of false positives. The most common false positive seen at the confirmation level is an EB (eclipsing binary). Low resolution images are great in detecting multiple sources for photometric dips in light curves, but they lack the precision to decipher single targets at an accurate level. For example, target star KC18C030621 needed RBO’s photometric precision to determine there was a nearby EB causing exoplanet type light curves. Identifying false positives with our telescope is important work because it helps eliminate the waste of time taken by more expensive telescopes trying to rule out negative candidate stars. It also furthers the identification of other types of photometric events, like eclipsing binaries, so they can be studied on their own.

  10. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages.

  11. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision

  12. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  13. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  14. Rapid Observations of Short-Duration Gamma-Ray Bursts: Accurate Positions Hold the Key to the Progenitor Population

    NASA Astrophysics Data System (ADS)

    Berger, Edo

    2017-09-01

    Only 1/4 of all short GRBs are localized to sub-arcsecond accuracy, required for unambiguous host and redshift identifications, determination of the burst environment (disk, bulge, halo, IGM), and assessment of natal kicks. These properties determine the identity and ages of the progenitors, and the GRB explosion physics. Thus, much of our knowledge depends on a handful of events, which are moreover biased to high density environments by virtue of optical/radio detections. Here we propose to double the fraction of events with sub-arcsecond positions, and overcome the density bias, using rapid Chandra observations of bursts with only Swift/XRT positions. Swift data will guarantee Chandra detections at <4 days, and follow-up work will delineate the burst/host properties.

  15. Experimental Evaluation of UWB Indoor Positioning for Sport Postures

    PubMed Central

    Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli

    2018-01-01

    Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267

  16. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    NASA Astrophysics Data System (ADS)

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  17. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code.

    PubMed

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-21

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  18. Serial position functions in general knowledge.

    PubMed

    Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M

    2015-11-01

    Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age; animals and weight; basketball players and height; countries and area; and planets and diameter. In all cases, a serial position function was observed: People were more accurate to order the youngest and oldest actors, the lightest and heaviest animals, the shortest and tallest basketball players, the smallest and largest countries, and the smallest and largest planets, relative to intermediate items. The results support an explanation of serial position functions based on relative distinctiveness, which predicts that serial position functions will be observed whenever a set of items can be sensibly ordered along a particular dimension. The serial position function arises because the first and last items enjoy a benefit of having no competitors on 1 side and therefore have enhanced distinctiveness relative to mid-dimension items, which suffer by having many competitors on both sides. (c) 2015 APA, all rights reserved).

  19. Forensic Carving of Network Packets and Associated Data Structures

    DTIC Science & Technology

    2011-01-01

    establishment of prior connection activity and services used; identification of other systems present on the system’s LAN or WLAN; geolocation of the...identification of other systems present on the system?s LAN or WLAN; geolocation of the host computer system; and cross-drive analysis. We show that network...Finally, our work in geolocation was assisted by geo- location databases created by companies such as Google (Google Mobile, 2011) and Skyhook

  20. Sentence-Position Effects on Children's Perception and Production of English Third Person Singular "-s"

    ERIC Educational Resources Information Center

    Sundara, Megha; Demuth, Katherine; Kuhl, Patricia K.

    2011-01-01

    Purpose: Two-year-olds produce third person singular "-s" more accurately on verbs in sentence-final position as compared with verbs in sentence-medial position. This study was designed to determine whether these sentence-position effects can be explained by perceptual factors. Method: For this purpose, the authors compared 22- and 27-month-olds'…

  1. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  2. How accurate is our clinical prediction of "minimal prostate cancer"?

    PubMed

    Leibovici, Dan; Shikanov, Sergey; Gofrit, Ofer N; Zagaja, Gregory P; Shilo, Yaniv; Shalhav, Arieh L

    2013-07-01

    Recommendations for active surveillance versus immediate treatment for low risk prostate cancer are based on biopsy and clinical data, assuming that a low volume of well-differentiated carcinoma will be associated with a low progression risk. However, the accuracy of clinical prediction of minimal prostate cancer (MPC) is unclear. To define preoperative predictors for MPC in prostatectomy specimens and to examine the accuracy of such prediction. Data collected on 1526 consecutive radical prostatectomy patients operated in a single center between 2003 and 2008 included: age, body mass index, preoperative prostate-specific antigen level, biopsy Gleason score, clinical stage, percentage of positive biopsy cores, and maximal core length (MCL) involvement. MPC was defined as < 5% of prostate volume involvement with organ-confined Gleason score < or = 6. Univariate and multivariate logistic regression analyses were used to define independent predictors of minimal disease. Classification and Regression Tree (CART) analysis was used to define cutoff values for the predictors and measure the accuracy of prediction. MPC was found in 241 patients (15.8%). Clinical stage, biopsy Gleason's score, percent of positive biopsy cores, and maximal involved core length were associated with minimal disease (OR 0.42, 0.1, 0.92, and 0.9, respectively). Independent predictors of MPC included: biopsy Gleason score, percent of positive cores and MCL (OR 0.21, 095 and 0.95, respectively). CART showed that when the MCL exceeded 11.5%, the likelihood of MPC was 3.8%. Conversely, when applying the most favorable preoperative conditions (Gleason < or = 6, < 20% positive cores, MCL < or = 11.5%) the chance of minimal disease was 41%. Biopsy Gleason score, the percent of positive cores and MCL are independently associated with MPC. While preoperative prediction of significant prostate cancer was accurate, clinical prediction of MPC was incorrect 59% of the time. Caution is necessary when

  3. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  4. Neural Network for Positioning Space Station Solar Arrays

    NASA Technical Reports Server (NTRS)

    Graham, Ronald E.; Lin, Paul P.

    1994-01-01

    As a shuttle approaches the Space Station Freedom for a rendezvous, the shuttle's reaction control jet firings pose a risk of excessive plume impingement loads on Freedom solar arrays. The current solution to this problem, in which the arrays are locked in a feathered position prior to the approach, may be neither accurate nor robust, and is also expensive. An alternative solution is proposed here: the active control of Freedom's beta gimbals during the approach, positioning the arrays dynamically in such a way that they remain feathered relative to the shuttle jet most likely to cause an impingement load. An artificial neural network is proposed as a means of determining the gimbal angles that would drive plume angle of attack to zero. Such a network would be both accurate and robust, and could be less expensive to implement than the current solution. A network was trained via backpropagation, and results, which compare favorably to the current solution as well as to some other alternatives, are presented. Other training options are currently being evaluated.

  5. A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments

    PubMed Central

    Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro

    2009-01-01

    Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided. PMID:22412334

  6. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    PubMed Central

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine–pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism. PMID:26791911

  7. Using Multiple Barometers to Detect the Floor Location of Smart Phones with Built-in Barometric Sensors for Indoor Positioning

    PubMed Central

    Xia, Hao; Wang, Xiaogang; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2015-01-01

    Following the popularity of smart phones and the development of mobile Internet, the demands for accurate indoor positioning have grown rapidly in recent years. Previous indoor positioning methods focused on plane locations on a floor and did not provide accurate floor positioning. In this paper, we propose a method that uses multiple barometers as references for the floor positioning of smart phones with built-in barometric sensors. Some related studies used barometric formula to investigate the altitude of mobile devices and compared the altitude with the height of the floors in a building to obtain the floor number. These studies assume that the accurate height of each floor is known, which is not always the case. They also did not consider the difference in the barometric-pressure pattern at different floors, which may lead to errors in the altitude computation. Our method does not require knowledge of the accurate heights of buildings and stories. It is robust and less sensitive to factors such as temperature and humidity and considers the difference in the barometric-pressure change trends at different floors. We performed a series of experiments to validate the effectiveness of this method. The results are encouraging. PMID:25835189

  8. A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.

    PubMed

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.

  9. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... In the Matter of Accurate NDE & Docket: 150-00017, General Inspection, LLC Broussard, Louisiana... an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28, 2011, the NRC and Accurate NDE...

  10. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service.

  11. Integrated packaging of 2D MOEMS mirrors with optical position feedback

    NASA Astrophysics Data System (ADS)

    Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.

    2015-02-01

    Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.

  12. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  13. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  14. Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique?

    PubMed

    Citak, Mustafa; Suero, Eduardo M; Citak, Musa; Dunbar, Nicholas J; Branch, Sharon H; Conditt, Michael A; Banks, Scott A; Pearle, Andrew D

    2013-08-01

    Robotic-assisted unicompartmental knee arthroplasty (UKA) with rigid bone fixation "can significantly improve implant placement and leg alignment. The aim of this cadaveric study was to determine whether the use of robotic systems with dynamic bone tracking would provide more accurate UKA implant positioning compared to the conventional manual technique. Three-dimensional CT-based preoperative plans were created to determine the desired position and orientation for the tibial and femoral components. For each pair of cadaver knees, UKA was performed using traditional instrumentation on the left side and using a haptic robotic system on the right side. Postoperative CT scans were obtained and 3D-to-3D iterative closest point registration was performed. Implant position and orientation were compared to the preoperative plan. Surgical RMS errors for femoral component placement were within 1.9 mm and 3.7° in all directions of the planned implant position for the robotic group, while RMS errors for the manual group were within 5.4mm and 10.2°. Average RMS errors for tibial component placement were within 1.4mm and 5.0° in all directions for the robotic group; while, for the manual group, RMS errors were within 5.7 mm and 19.2°. UKA was more precise using a semiactive robotic system with dynamic bone tracking technology compared to the manual technique. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Collective irrationality and positive feedback.

    PubMed

    Nicolis, Stamatios C; Zabzina, Natalia; Latty, Tanya; Sumpter, David J T

    2011-04-26

    Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  16. Beam position monitor engineering

    NASA Astrophysics Data System (ADS)

    Smith, Stephen R.

    1997-01-01

    The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.

  17. Use of Global Positioning System for the capture of environmental data.

    DOT National Transportation Integrated Search

    1995-01-01

    The purpose of this study was to determine the feasibility of using the Global Positioning System (GPS), composed of 24 NAVSTAR satellites emitting individually coded radio signals with accurate timing and ephemeris information, to capture environmen...

  18. Residential Mobility, Self-Concept, and Positive Affect in Social Interactions

    PubMed Central

    Oishi, Shigehiro; Lun, Janetta; Sherman, Gary D.

    2008-01-01

    The present research examined (a) the link between personal history of residential mobility and the self-concept and (b) the implications of such a link for positive affect in social interactions. Study 1 showed that the personal self was more central to the self-definition of frequent movers than to that of nonmovers, whereas the collective self was more central to the self-definition of nonmovers than to that of frequent movers. Results from a laboratory and a 2-week event sampling study (Studies 2 and 3) demonstrated that frequent movers felt happier when an interaction partner accurately perceived their personal selves, whereas nonmovers felt happier when a partner accurately perceived their collective selves. These findings present the first direct evidence on how personal history of residential mobility is linked to important individual differences in the self and positive affect in social interactions. PMID:17605594

  19. Residential mobility, self-concept, and positive affect in social interactions.

    PubMed

    Oishi, Shigehiro; Lun, Janetta; Sherman, Gary D

    2007-07-01

    The present research examined (a) the link between personal history of residential mobility and the self-concept and (b) the implications of such a link for positive affect in social interactions. Study 1 showed that the personal self was more central to the self-definition of frequent movers than to that of nonmovers, whereas the collective self was more central to the self-definition of nonmovers than to that of frequent movers. Results from a laboratory and a 2-week event sampling study (Studies 2 and 3) demonstrated that frequent movers felt happier when an interaction partner accurately perceived their personal selves, whereas nonmovers felt happier when a partner accurately perceived their collective selves. These findings present the first direct evidence on how personal history of residential mobility is linked to important individual differences in the self and positive affect in social interactions. Copyright 2007 APA, all rights reserved.

  20. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  1. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor); hide

    2015-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  2. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor); hide

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  3. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  4. On the more accurate channel model and positioning based on time-of-arrival for visible light localization

    NASA Astrophysics Data System (ADS)

    Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed

    2017-01-01

    This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.

  5. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    PubMed

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  6. Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens

    PubMed Central

    Reynolds, Sheila M.; Bilmes, Jeff A.; Noble, William Stafford

    2010-01-01

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  7. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  8. Sensorless position estimator applied to nonlinear IPMC model

    NASA Astrophysics Data System (ADS)

    Bernat, Jakub; Kolota, Jakub

    2016-11-01

    This paper addresses the issue of estimating position for an ionic polymer metal composite (IPMC) known as electro active polymer (EAP). The key step is the construction of a sensorless mode considering only current feedback. This work takes into account nonlinearities caused by electrochemical effects in the material. Owing to the recent observer design technique, the authors obtained both Lyapunov function based estimation law as well as sliding mode observer. To accomplish the observer design, the IPMC model was identified through a series of experiments. The research comprises time domain measurements. The identification process was completed by means of geometric scaling of three test samples. In the proposed design, the estimated position accurately tracks the polymer position, which is illustrated by the experiments.

  9. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  10. An Autonomous Distributed Fault-Tolerant Local Positioning System

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  11. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  12. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  13. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  14. Performance Evaluation of Real-Time Precise Point Positioning Method

    NASA Astrophysics Data System (ADS)

    Alcay, Salih; Turgut, Muzeyyen

    2017-12-01

    Post-Processed Precise Point Positioning (PPP) is a well-known zero-difference positioning method which provides accurate and precise results. After the experimental tests, IGS Real Time Service (RTS) officially provided real time orbit and clock products for the GNSS community that allows real-time (RT) PPP applications. Different software packages can be used for RT-PPP. In this study, in order to evaluate the performance of RT-PPP, 3 IGS stations are used. Results, obtained by using BKG Ntrip Client (BNC) Software v2.12, are examined in terms of both accuracy and precision.

  15. An online x-ray based position validation system for prostate hypofractionated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Sankar, E-mail: Sankar.Arumugam@sswahs.nsw.gov.au; Xing, Aitang; Sidhom, Mark

    Purpose: Accurate positioning of the target volume during treatment is paramount for stereotactic body radiation therapy (SBRT). In this work, the authors present the development of an in-house software tool to verify target position with an Elekta-Synergy linear accelerator using kV planar images acquired during treatment delivery. Methods: In-house software, SeedTracker, was developed in MATLAB to perform the following three functions: 1. predict intended seed positions in a planar view perpendicular to any gantry angle, simulating a portal imaging device, from the 3D seed co-ordinates derived from the treatment planning system; 2. autosegment seed positions in kV planar images; andmore » 3. report the position shift based on the seed positions in the projection images. The performance of SeedTracker was verified using a CIRS humanoid phantom (CIRS, VA, USA) implanted with three Civco gold seed markers (Civco, IA, USA) in the prostate. The true positive rate of autosegmentation (TPR{sub seg}) and the accuracy of the software in alerting the user when the isocenter position was outside the tolerance (TPR{sub trig}) were studied. Two-dimensional and 3D static position offsets introduced to the humanoid phantom and 3D dynamic offsets introduced to a gel phantom containing gold seeds were used for evaluation of the system. Results: SeedTracker showed a TPR{sub seg} of 100% in the humanoid phantom for projection images acquired at all angles except in the ranges of 80°–100° and 260°–280° where seeds are obscured by anatomy. This resulted in a TPR{sub trig} of 88% over the entire treatment range for considered 3D static offsets introduced to the phantom. For 2D static offsets where the position offsets were only introduced in the anterior–posterior and lateral directions, the TPR{sub trig} of SeedTracker was limited by both seed detectability and positional offset. SeedTracker showed a false positive trigger in the projection angle range between 130°–170

  16. How complete and accurate is meningococcal disease notification?

    PubMed

    Breen, E; Ghebrehewet, S; Regan, M; Thomson, A P J

    2004-12-01

    Effective public health control of meningococcal disease (meningococcal meningitis and septicaemia) is dependent on complete, accurate and speedy notification. Using capture-recapture techniques this study assesses the completeness, accuracy and timeliness of meningococcal notification in a health authority. The completeness of meningococcal disease notification was 94.8% (95% confidence interval 93.2% to 96.2%); 91.2% of cases in 2001 were notified within 24 hours of diagnosis, but 28.0% of notifications in 2001 were false positives. Clinical staff need to be aware of the public health implications of a notification of meningococcal disease, and of failure of, or delay in notification. Incomplete or delayed notification not only leads to inaccurate data collection but also means that important public health measures may not be taken. A clinical diagnosis of meningococcal disease should be carefully considered between the clinician and the consultant in communicable disease control (CCDC). Otherwise, prophylaxis may be given unnecessarily, disease incidence inflated, and the benefits of control measures underestimated. Consultants in communicable disease control (CCDCs), in conjunction with clinical staff, should de-notify meningococcal disease if the diagnosis changes.

  17. PGI Bracket Positioner: A Novel Combination of Reverse Bracket Tweezer and Positioning Gauze.

    PubMed

    Singh, Sombir; Verma, Sanjeev; Bhupali, Nameksh Raj; Singh, Satinder Pal

    2018-01-01

    The accurate bracket positioning is essential for the expression of the bracket system that affects the treatment outcome considerably and is also essential for good functional occlusion as well as facial esthetics. The proper alignment cannot be achieved without proper bracket positioning. Thus, the brackets positioning devices are an integral part of orthodontic armamentarium. Here, we present a new innovation that provides a unique combination of reverse bracket tweezer and positioner and hence is very helpful in precise vertical positioning of brackets with increased efficiency.

  18. Accurate and ergonomic method of registration for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Henderson, Jaimie M.; Bucholz, Richard D.

    1994-05-01

    There has been considerable interest in the development of frameless stereotaxy based upon scalp mounted fiducials. In practice we have experienced difficulty in relating markers to the image data sets in our series of 25 frameless cases, as well as inaccuracy due to scalp movement and the size of the markers. We have developed an alternative system for accurately and conveniently achieving surgical registration for image-guided neurosurgery based on alignment and matching of patient forehead contours. The system consists of a laser contour digitizer which is used in the operating room to acquire forehead contours, editing software for extracting contours from patient image data sets, and a contour-match algorithm for aligning the two contours and performing data set registration. The contour digitizer is tracked by a camera array which relates its position with respect to light emitting diodes placed on the head clamp. Once registered, surgical instrument can be tracked throughout the procedure. Contours can be extracted from either CT or MRI image datasets. The system has proven to be robust in the laboratory setting. Overall error of registration is 1 - 2 millimeters in routine use. Image to patient registration can therefore be achieved quite easily and accurately, without the need for fixation of external markers to the skull, or manually finding markers on the scalp and image datasets. The system is unobtrusive and imposes little additional effort on the neurosurgeon, broadening the appeal of image-guided surgery.

  19. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  20. Rapid and accurate estimation of release conditions in the javelin throw.

    PubMed

    Hubbard, M; Alaways, L W

    1989-01-01

    We have developed a system to measure initial conditions in the javelin throw rapidly enough to be used by the thrower for feedback in performance improvement. The system consists of three subsystems whose main tasks are: (A) acquisition of automatically digitized high speed (200 Hz) video x, y position data for the first 0.1-0.2 s of the javelin flight after release (B) estimation of five javelin release conditions from the x, y position data and (C) graphical presentation to the thrower of these release conditions and a simulation of the subsequent flight together with optimal conditions and flight for the sam release velocity. The estimation scheme relies on a simulation model and is at least an order of magnitude more accurate than previously reported measurements of javelin release conditions. The system provides, for the first time ever in any throwing event, the ability to critique nearly instantly in a precise, quantitative manner the crucial factors in the throw which determine the range. This should be expected to much greater control and consistency of throwing variables by athletes who use system and could even lead to an evolution of new throwing techniques.

  1. Are the memories of older adults positively biased?

    PubMed

    Fernandes, Myra; Ross, Michael; Wiegand, Melanie; Schryer, Emily

    2008-06-01

    There is disagreement in the literature about whether a "positivity effect" in memory performance exists in older adults. To assess the generalizability of the effect, the authors examined memory for autobiographical, picture, and word information in a group of younger (17-29 years old) and older (60-84 years old) adults. For the autobiographical memory task, the authors asked participants to produce 4 positive, 4 negative, and 4 neutral recent autobiographical memories and to recall these a week later. For the picture and word tasks, participants studied photos or words of different valences (positive, negative, neutral) and later remembered them on a free-recall test. The authors found significant correlations in memory performance, across task material, for recall of both positive and neutral valence autobiographical events, pictures, and words. When the authors examined accurate memories, they failed to find consistent evidence, across the different types of material, of a positivity effect in either age group. However, the false memory findings offer more consistent support for a positivity effect in older adults. During recall of all 3 types of material, older participants recalled more false positive than false negative memories.

  2. The Global Positioning System

    USGS Publications Warehouse

    ,

    1999-01-01

    The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.

  3. Point of Care Ultrasound Accurately Distinguishes Inflammatory from Noninflammatory Disease in Patients Presenting with Abdominal Pain and Diarrhea

    PubMed Central

    Novak, Kerri L.; Jacob, Deepti; Kaplan, Gilaad G.; Boyce, Emma; Ghosh, Subrata; Ma, Irene; Lu, Cathy; Wilson, Stephanie; Panaccione, Remo

    2016-01-01

    Background. Approaches to distinguish inflammatory bowel disease (IBD) from noninflammatory disease that are noninvasive, accurate, and readily available are desirable. Such approaches may decrease time to diagnosis and better utilize limited endoscopic resources. The aim of this study was to evaluate the diagnostic accuracy for gastroenterologist performed point of care ultrasound (POCUS) in the detection of luminal inflammation relative to gold standard ileocolonoscopy. Methods. A prospective, single-center study was conducted on convenience sample of patients presenting with symptoms of diarrhea and/or abdominal pain. Patients were offered POCUS prior to having ileocolonoscopy. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence intervals (CI), as well as likelihood ratios, were calculated. Results. Fifty-eight patients were included in this study. The overall sensitivity, specificity, PPV, and NPV were 80%, 97.8%, 88.9%, and 95.7%, respectively, with positive and negative likelihood ratios (LR) of 36.8 and 0.20. Conclusion. POCUS can accurately be performed at the bedside to detect transmural inflammation of the intestine. This noninvasive approach may serve to expedite diagnosis, improve allocation of endoscopic resources, and facilitate initiation of appropriate medical therapy. PMID:27446838

  4. Design of a positioning system for a holographic otoscope

    NASA Astrophysics Data System (ADS)

    Dobrev, I.; Flores Moreno, J. M.; Furlong, C.; Harrington, E. J.; Rosowski, J. J.; Scarpino, C.

    2010-08-01

    Current ear examination procedures provide mostly qualitative information which results in insufficient or erroneous description of the patient's hearing. Much more quantitative and accurate results can be achieved with a holographic otoscope system currently under development. Various ways of accurate positioning and stabilization of the system in real-life conditions are being investigated by this project in an attempt to bring this new technology to the hospitals and clinics, in order to improve the quality of the treatments and operations of the human ear. The project is focused at developing a mechatronic system capable of positioning the holographic otoscope to the patient's ear and maintaining its relative orientation during the examination. The system will be able to be guided by the examiner, but it will maintain the chosen position automatically. To achieve that, various trajectories are being measured for existing otoscopes being guided by doctors in real medical conditions. Based on that, various kinematic configurations are to be synthesized and their stability and accuracy will be simulated and optimized with FEA. For simplification, the mechanism will contain no actuators, but only adjustable friction elements in a haptic feedback control system. This renders the positioning system safe and easily applicable to current examination rooms. Other means of stabilization of the system are being investigated such as custom designed packaging of all of the otoscope subsystems, interferometrically compensating for the heartbeat induced vibration of the tympanic membrane as well as methods for monitoring and active response to the motion of the patient's head.

  5. Design of band-notched antenna with DG-CEBG

    NASA Astrophysics Data System (ADS)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2018-01-01

    Ultra-wideband (UWB) disc monopole antenna with crescent shaped slot for double band-notched features is presented. Planned antenna discards worldwide interoperability for microwave access (WiMAX) band (3.3-3.6 GHz) and wireless local area network (WLAN) band (5-6 GHz). Defected ground compact electromagnetic band gap (DG-CEBG) designs are used to accomplish band notches in WiMAX and WLAN bands. Defected ground planes are utilised to achieve compactness in electromagnetic band gap (EBG) structures. The proposed WiMAX and WLAN DG-CEBG designs show a compactness of around 46% and 50%, respectively, over mushroom EBG structures. Parametric analyses of DG-CEBG design factors are carried out to control the notched frequencies. Stepwise notch transition from upper to lower frequencies is presented with incremental inductance augmentation. The proposed antenna is made-up on low-cost FR-4 substrate of complete extents as (42 × 50 × 1.6) mm3.Fabricated sample antenna shows excellent consistency in simulated and measured outcomes.

  6. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    NASA Astrophysics Data System (ADS)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  7. Fostering accurate HIV/AIDS knowledge among unmarried youths in Cameroon: do family environment and peers matter?

    PubMed

    Tsala Dimbuene, Zacharie; Kuate Defo, Barthelemy

    2011-05-19

    respondents reported accurate knowledge about HIV transmission routes and prevention strategies. Findings showed that the role of family environment as source of accurate HIV knowledge transmission routes and prevention strategies is of paramount significance; however, families have been poorly integrated in the design and implementation of the first generation of HIV interventions. There is an urgent need that policymakers work together with families to improve the efficiency of these interventions. Peer influences is likely controversial because of the double positive effect of peer-to-peer communication on both accurate and inaccurate knowledge of HIV transmission routes.

  8. Emotionally positive stimuli facilitate lexical decisions-an ERP study.

    PubMed

    Kissler, Johanna; Koessler, Susanne

    2011-03-01

    The influence of briefly presented positive and negative emotional pictures on lexical decisions on positive, negative and neutral words or pseudowords was investigated. Behavioural reactions were the fastest following all positive stimuli and most accurate for positive words. Stimulus-locked ERPs revealed enhanced early posterior and late parietal attention effects following positive pictures. A small neural affective priming effect was reflected by P3 modulation, indicating more attention allocation to affectively incongruent prime-target pairs. N400 was insensitive to emotion. Response-locked ERPs revealed an early fronto-central negativity from 480ms before reactions to positive words. It was generated in both fronto-central and extra-striate visual areas, demonstrating a contribution of perceptual and, notably, motor preparation processes. Thus, no behavioural and little neural evidence for congruency-driven affective priming with emotional pictures was found, but positive stimuli generally facilitated lexical decisions, not only enhancing perception, but also acting rapidly on response preparation and by-passing full semantic analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  10. A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint

    PubMed Central

    Zou, Jiaheng

    2018-01-01

    With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m. PMID:29494542

  11. A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.

    PubMed

    Wang, Yan; Li, Xin; Zou, Jiaheng

    2018-03-01

    With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.

  12. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A.; King, Robert D.

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  13. Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.

    2017-12-01

    As computational astrophysics comes under pressure to become a precision science, there is an increasing need to move to high accuracy schemes for computational astrophysics. The algorithmic needs of computational astrophysics are indeed very special. The methods need to be robust and preserve the positivity of density and pressure. Relativistic flows should remain sub-luminal. These requirements place additional pressures on a computational astrophysics code, which are usually not felt by a traditional fluid dynamics code. Hence the need for a specialized review. The focus here is on weighted essentially non-oscillatory (WENO) schemes, discontinuous Galerkin (DG) schemes and PNPM schemes. WENO schemes are higher order extensions of traditional second order finite volume schemes. At third order, they are most similar to piecewise parabolic method schemes, which are also included. DG schemes evolve all the moments of the solution, with the result that they are more accurate than WENO schemes. PNPM schemes occupy a compromise position between WENO and DG schemes. They evolve an Nth order spatial polynomial, while reconstructing higher order terms up to Mth order. As a result, the timestep can be larger. Time-dependent astrophysical codes need to be accurate in space and time with the result that the spatial and temporal accuracies must be matched. This is realized with the help of strong stability preserving Runge-Kutta schemes and ADER (Arbitrary DERivative in space and time) schemes, both of which are also described. The emphasis of this review is on computer-implementable ideas, not necessarily on the underlying theory.

  14. Deriving a geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.

    1988-01-01

    With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.

  15. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    PubMed

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Precise positioning with sparse radio tracking: How LRO-LOLA and GRAIL enable future lunar exploration

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S. J.; Barker, M. K.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2017-12-01

    Two recent NASA missions to the Moon, the Lunar Reconnaissance Orbiter (LRO) and the Gravity Recovery and Interior Laboratory (GRAIL), have obtained highly accurate information about the lunar shape and gravity field. These global geodetic datasets resolve long-standing issues with mission planning; the tidal lock of the Moon long prevented collection of accurate gravity measurements over the farside, and deteriorated precise positioning of topographic data. We describe key datasets and results from the LRO and GRAIL mission that are directly relevant to future lunar missions. SmallSat and CubeSat missions especially would benefit from these recent improvements, as they are typically more resource-constrained. Even with limited radio tracking data, accurate knowledge of topography and gravity enables precise orbit determination (OD) (e.g., limiting the scope of geolocation and co-registration tasks) and long-term predictions of altitude (e.g., dramatically reducing uncertainties in impact time). With one S-band tracking pass per day, LRO OD now routinely achieves total position knowledge better than 10 meters and radial position knowledge around 0.5 meter. Other tracking data, such as Laser Ranging from Earth-based SLR stations, can further support OD. We also show how altimetry can be used to substantially improve orbit reconstruction with the accurate topographic maps now available from Lunar Orbiter Laser Altimeter (LOLA) data. We present new results with SELENE extended mission and LRO orbits processed with direct altimetry measurements. With even a simple laser altimeter onboard, high-quality OD can be achieved for future missions because of the datasets acquired by LRO and GRAIL, without the need for regular radio contact. Onboard processing of altimetric ranges would bring high-quality real-time position knowledge to support autonomous operation. We also describe why optical ranging transponders are ideal payloads for future lunar missions, as they can

  17. Forward and correctional OFDM-based visible light positioning

    NASA Astrophysics Data System (ADS)

    Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng

    2017-09-01

    Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.

  18. Muver, a computational framework for accurately calling accumulated mutations.

    PubMed

    Burkholder, Adam B; Lujan, Scott A; Lavender, Christopher A; Grimm, Sara A; Kunkel, Thomas A; Fargo, David C

    2018-05-09

    Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.

  19. Accurate mass measurement: terminology and treatment of data.

    PubMed

    Brenton, A Gareth; Godfrey, A Ruth

    2010-11-01

    High-resolution mass spectrometry has become ever more accessible with improvements in instrumentation, such as modern FT-ICR and Orbitrap mass spectrometers. This has resulted in an increase in the number of articles submitted for publication quoting accurate mass data. There is a plethora of terms related to accurate mass analysis that are in current usage, many employed incorrectly or inconsistently. This article is based on a set of notes prepared by the authors for research students and staff in our laboratories as a guide to the correct terminology and basic statistical procedures to apply in relation to mass measurement, particularly for accurate mass measurement. It elaborates on the editorial by Gross in 1994 regarding the use of accurate masses for structure confirmation. We have presented and defined the main terms in use with reference to the International Union of Pure and Applied Chemistry (IUPAC) recommendations for nomenclature and symbolism for mass spectrometry. The correct use of statistics and treatment of data is illustrated as a guide to new and existing mass spectrometry users with a series of examples as well as statistical methods to compare different experimental methods and datasets. Copyright © 2010. Published by Elsevier Inc.

  20. Relativity in the Global Positioning System.

    PubMed

    Ashby, Neil

    2003-01-01

    The Global Positioning System (GPS) uses accurate, stable atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without carefully accounting for numerous relativistic effects, the system would not work. This paper discusses the conceptual basis, founded on special and general relativity, for navigation using GPS. Relativistic principles and effects which must be considered include the constancy of the speed of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency shifts, and relativity of synchronization. Experimental tests of relativity obtained with a GPS receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps arising from satellite orbit adjustments have been identified as relativistic effects. These will be explained and some interesting applications of GPS will be discussed.

  1. School-Based Programs for Facilitating Positive Attitudes Toward the Elderly.

    ERIC Educational Resources Information Center

    Baranowski, Marc; Schilmoeller, Gary

    This paper describes techniques for bringing the elderly and topics related to aging to children into school settings. Through the participation of older adults in the schools and the inclusion of materials on aging in school curricula, students can develop positive and accurate views of aging and the aged. The first technique discussed is…

  2. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  3. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  4. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  5. Information infrastructure for emergency medical services.

    PubMed

    Orthner, Helmuth; Mishra, Ninad; Terndrup, Thomas; Acker, Joseph; Grimes, Gary; Gemmill, Jill; Battles, Marcie

    2005-01-01

    The pre-hospital emergency medical and public safety information environment is nearing a threshold of significant change. The change is driven in part by several emerging technologies such as secure, high-speed wireless communication in the local and wide area networks (wLAN, 3G), Geographic Information Systems (GIS), Global Positioning Systems (GPS), and powerful handheld computing and communication services, that are of sufficient utility to be more widely adopted. We propose a conceptual model to enable improved clinical decision making in the pre-hospital environment using these change agents.

  6. Perceived Physician-informed Weight Status Predicts Accurate Weight Self-Perception and Weight Self-Regulation in Low-income, African American Women.

    PubMed

    Harris, Charlie L; Strayhorn, Gregory; Moore, Sandra; Goldman, Brian; Martin, Michelle Y

    2016-01-01

    Obese African American women under-appraise their body mass index (BMI) classification and report fewer weight loss attempts than women who accurately appraise their weight status. This cross-sectional study examined whether physician-informed weight status could predict weight self-perception and weight self-regulation strategies in obese women. A convenience sample of 118 low-income women completed a survey assessing demographic characteristics, comorbidities, weight self-perception, and weight self-regulation strategies. BMI was calculated during nurse triage. Binary logistic regression models were performed to test hypotheses. The odds of obese accurate appraisers having been informed about their weight status were six times greater than those of under-appraisers. The odds of those using an "approach" self-regulation strategy having been physician-informed were four times greater compared with those using an "avoidance" strategy. Physicians are uniquely positioned to influence accurate weight self-perception and adaptive weight self-regulation strategies in underserved women, reducing their risk for obesity-related morbidity.

  7. High accuracy-nationwide differential global positioning system test and analysis : phase II report

    DOT National Transportation Integrated Search

    2005-07-01

    The High Accuracy-Nationwide Differential Global Positioning System (HA-NDGPS) program focused on the development of compression and broadcast techniques to provide users over a large area wit very accurate radio navigation solutions. The goal was ac...

  8. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  9. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    NASA Astrophysics Data System (ADS)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  10. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    PubMed

    Prinsloo, Jaco; Malekian, Reza

    2016-06-04

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  11. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    PubMed Central

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  12. Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography.

    PubMed

    Hernández-Montes, Maria del Socorro; Pérez-López, Carlos; Santoyo, Fernando Mendoza

    2007-01-01

    3-D pulsed digital holography is a noninvasive optical method used to measure the depth position of breast tumor tissue immersed in a semisolid gel model. A master gel without inhomogeneities is set to resonate at an 810 Hz frequency; then, an identically prepared gel with an inhomogeneity is interrogated with the same resonant frequency in the original setup. Comparatively, and using only an out-of-plane sensitive setup, gel surface displacement can be measured, evidencing an internal inhomogeneity. However, the depth position cannot be measured accurately, since the out-of-plane component has the contribution of in-plane surface displacements. With the information gathered, three sensitivity vectors can be obtained to separate contributions from x, y, and z vibration displacement components, individual displacement maps for the three orthogonal axes can be built, and the inhomogeneity's depth position can be accurately measured. Then, the displacement normal to the gel surface is used to find the depth profile and its cross section. Results from the optical data obtained are compared and correlated to the inhomogeneity's physically measured position. Depth position is found with an error smaller than 1%. The inhomogeneity and its position within the gel can be accurately found, making the method a promising noninvasive alternative to study mammary tumors.

  13. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    PubMed

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  14. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR

    PubMed Central

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping

    2017-01-01

    ABSTRACT Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers (nuc and mecA) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli, MSSA, and other mecA-positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. PMID:28724560

  15. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS.

    PubMed

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Hoppel, Charles L

    2017-04-01

    While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position

    PubMed Central

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y.; Tor, Yitzhak; Cooperman, Barry S.

    2017-01-01

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix. PMID:28850078

  17. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    PubMed

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y; Tor, Yitzhak; Cooperman, Barry S

    2017-08-29

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.

  18. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  19. Calibrating GPS With TWSTFT For Accurate Time Transfer

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting 577 CALIBRATING GPS WITH TWSTFT FOR ACCURATE TIME TRANSFER Z. Jiang1 and...primary time transfer techniques are GPS and TWSTFT (Two-Way Satellite Time and Frequency Transfer, TW for short). 83% of UTC time links are...Calibrating GPS With TWSTFT For Accurate Time Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  20. Mental models accurately predict emotion transitions.

    PubMed

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  1. Mental models accurately predict emotion transitions

    PubMed Central

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  2. Identification of 4th intercostal space using sternal notch to xiphoid length for accurate electrocardiogram lead placement.

    PubMed

    Day, Kevin; Oliva, Isabel; Krupinski, Elizabeth; Marcus, Frank

    2015-01-01

    Precordial ECG lead placement is difficult in obese patients with increased chest wall soft tissues due to inaccurate palpation of the intercostal spaces. We investigated whether the length of the sternum (distance between the sternal notch and xiphoid process) can accurately predict the location of the 4th intercostal space, which is the traditional location for V1 lead position. Fifty-five consecutive adult chest computed tomography examinations were reviewed for measurements. The sternal notch to right 4th intercostal space distance was 67% of the sternal notch to xiphoid process length with an overall correlation of r=0.600 (p<0.001). The above measurement may be utilized to locate the 4th intercostal space for accurate placement of the precordial electrodes in adults in whom the 4th intercostal space cannot be found by physical exam. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Using machine learning and surface reconstruction to accurately differentiate different trajectories of mood and energy dysregulation in youth.

    PubMed

    Versace, Amelia; Sharma, Vinod; Bertocci, Michele A; Bebko, Genna; Iyengar, Satish; Dwojak, Amanda; Bonar, Lisa; Perlman, Susan B; Schirda, Claudiu; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Frazier, Thomas W; Arnold, L Eugene; Fristad, Mary A; Youngstrom, Eric A; Horwitz, Sarah M; Findling, Robert L; Phillips, Mary L

    2017-01-01

    Difficulty regulating positive mood and energy is a feature that cuts across different pediatric psychiatric disorders. Yet, little is known regarding the neural mechanisms underlying different developmental trajectories of positive mood and energy regulation in youth. Recent studies indicate that machine learning techniques can help elucidate the role of neuroimaging measures in classifying individual subjects by specific symptom trajectory. Cortical thickness measures were extracted in sixty-eight anatomical regions covering the entire brain in 115 participants from the Longitudinal Assessment of Manic Symptoms (LAMS) study and 31 healthy comparison youth (12.5 y/o;-Male/Female = 15/16;-IQ = 104;-Right/Left handedness = 24/5). Using a combination of trajectories analyses, surface reconstruction, and machine learning techniques, the present study aims to identify the extent to which measures of cortical thickness can accurately distinguish youth with higher (n = 18) from those with lower (n = 34) trajectories of manic-like behaviors in a large sample of LAMS youth (n = 115; 13.6 y/o; M/F = 68/47, IQ = 100.1, R/L = 108/7). Machine learning analyses revealed that widespread cortical thickening in portions of the left dorsolateral prefrontal cortex, right inferior and middle temporal gyrus, bilateral precuneus, and bilateral paracentral gyri and cortical thinning in portions of the right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, and right parahippocampal gyrus accurately differentiate (Area Under Curve = 0.89;p = 0.03) youth with different (higher vs lower) trajectories of positive mood and energy dysregulation over a period up to 5years, as measured by the Parent General Behavior Inventory-10 Item Mania Scale. Our findings suggest that specific patterns of cortical thickness may reflect transdiagnostic neural mechanisms associated with different temporal trajectories of positive mood and energy dysregulation in youth. This approach has

  4. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  5. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    PubMed

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    NASA Astrophysics Data System (ADS)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  7. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering.

    PubMed

    Luo, Junhai; Fu, Liang

    2017-06-09

    With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  8. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  9. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  10. Fostering accurate HIV/AIDS knowledge among unmarried youths in Cameroon: Do family environment and peers matter?

    PubMed Central

    2011-01-01

    /programmes in sub-Saharan Africa. Indeed, few respondents reported accurate knowledge about HIV transmission routes and prevention strategies. Findings showed that the role of family environment as source of accurate HIV knowledge transmission routes and prevention strategies is of paramount significance; however, families have been poorly integrated in the design and implementation of the first generation of HIV interventions. There is an urgent need that policymakers work together with families to improve the efficiency of these interventions. Peer influences is likely controversial because of the double positive effect of peer-to-peer communication on both accurate and inaccurate knowledge of HIV transmission routes. PMID:21595931

  11. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    PubMed Central

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  12. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  13. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-05-25

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  14. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  15. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  16. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  17. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease?

    PubMed Central

    Visser, P; Scheltens, P; Verhey, F

    2005-01-01

    Background: Drugs effective in Alzheimer-type dementia have been tested in subjects with mild cognitive impairment (MCI) because these are supposed to have Alzheimer's disease in the predementia stage. Objectives: To investigate whether MCI criteria used in these drug trials can accurately diagnose subjects with predementia Alzheimer's disease. Methods: MCI criteria of the Gal-Int 11 study, InDDEx study, ADCS memory impairment study, ampakine CX 516 study, piracetam study, and Merck rofecoxib study were applied retrospectively in a cohort of 150 non-demented subjects from a memory clinic. Forty two had progressed to Alzheimer type dementia during a five year follow up period and were considered to have predementia Alzheimer's disease at baseline. Outcome measures were the odds ratio, sensitivity, specificity, and positive and negative predictive value. Results: The odds ratio of the MCI criteria for predementia Alzheimer's disease varied between 0.84 and 11. Sensitivity varied between 0.46 and 0.83 and positive predictive value between 0.43 and 0.76. None of the criteria combined a high sensitivity with a high positive predictive value. Exclusion criteria for depression led to an increase in positive predictive value and specificity at the cost of sensitivity. In subjects older than 65 years the positive predictive value was higher than in younger subjects. Conclusions: The diagnostic accuracy of MCI criteria used in trials for predementia Alzheimer's disease is low to moderate. Their use may lead to inclusion of many patients who do not have predementia Alzheimer's disease or to exclusion of many who do. Subjects with moderately severe depression should not be excluded from trials in order not to reduce the sensitivity. PMID:16170074

  18. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  20. Positive attitudes towards psychiatry among Chinese medical students.

    PubMed

    Williams, Joshua A; Liu, Ni; Afzal, Khalid; Cooper, Brian; Sherer, Renslow; Morgan, Ivy; Dong, Hongmei

    2014-02-01

    Increasingly positive attitudes have been reported among young people in China towards mental illness, but little is known about Chinese medical students' attitudes towards psychiatry, psychiatric services and patients. We administered a bilingual survey to Wuhan University medical students in the final years of their clinical training. Primary outcomes were composite scores on a 21-item attitudes toward psychiatry (ATP) survey and the number of correct responses to diagnostic questions following a series of three clinical case vignettes. Mean composite score on the ATP items was 78/105 (SD = 9.6), representing overall positive attitudes among the students. Female gender and having learned about more psychiatric disorders were positively associated with a higher mean ATP score and remained so after adjustment for relevant covariates. Chinese medical students reported positive attitudes towards psychiatry, openness with regard to psychiatric services, and respect for psychiatric patients. Learning about a broad spectrum of psychiatric diagnoses and greater clinical contact with patients may improve overall attitudes of Chinese medical students towards psychiatry and their ability to make accurate diagnoses.

  1. Motivation enhances control of positive and negative emotional distractions.

    PubMed

    Walsh, Amy T; Carmel, David; Harper, David; Grimshaw, Gina M

    2018-01-03

    Using cognitive control to ignore distractions is essential for successfully achieving our goals. In emotionally-neutral contexts, motivation can reduce interference from irrelevant stimuli by enhancing cognitive control. However, attention is commonly biased towards emotional stimuli, making them potent distractors. Can motivation aid control of emotional distractions, and does it do so similarly for positive and negative stimuli? Here, we examined how task motivation influences control of distraction from positive, negative, and neutral scenes. Participants completed a simple perceptual task while attempting to ignore task-irrelevant images. One group received monetary reward for fast and accurate task performance; another (control) group did not. Overall, both negative (mutilation) and positive (erotic) images caused greater slowing of responses than neutral images of people, but emotional distraction was reduced with reward. Crucially, despite the different motivational directions associated with negative and positive stimuli, reward reduced negative and positive distraction equally. Our findings suggest that motivation may encourage the use of a sustained proactive control strategy that can effectively reduce the impact of emotional distraction.

  2. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  3. Association between sleep position and early motor development.

    PubMed

    Majnemer, Annette; Barr, Ronald G

    2006-11-01

    To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.

  4. Accurate determination of the geoid undulation N

    NASA Astrophysics Data System (ADS)

    Lambrou, E.; Pantazis, G.; Balodimos, D. D.

    2003-04-01

    This work is related to the activities of the CERGOP Study Group Geodynamics of the Balkan Peninsula, presents a method for the determination of the variation ΔN and, indirectly, of the geoid undulation N with an accuracy of a few millimeters. It is based on the determination of the components xi, eta of the deflection of the vertical using modern geodetic instruments (digital total station and GPS receiver). An analysis of the method is given. Accuracy of the order of 0.01arcsec in the estimated values of the astronomical coordinates Φ and Δ is achieved. The result of applying the proposed method in an area around Athens is presented. In this test application, a system is used which takes advantage of the capabilities of modern geodetic instruments. The GPS receiver permits the determination of the geodetic coordinates at a chosen reference system and, in addition, provides accurate timing information. The astronomical observations are performed through a digital total station with electronic registering of angles and time. The required accuracy of the values of the coordinates is achieved in about four hours of fieldwork. In addition, the instrumentation is lightweight, easily transportable and can be setup in the field very quickly. Combined with a stream-lined data reduction procedure and the use of up-to-date astrometric data, the values of the components xi, eta of the deflection of the vertical and, eventually, the changes ΔN of the geoid undulation are determined easily and accurately. In conclusion, this work demonstrates that it is quite feasible to create an accurate map of the geoid undulation, especially in areas that present large geoid variations and other methods are not capable to give accurate and reliable results.

  5. Direct demodulation method for heavy atom position determination in protein crystallography

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Liu, Zhong-Chuan; Liu, Peng; Dong, Yu-Hui

    2013-01-01

    The first step of phasing in any de novo protein structure determination using isomorphous replacement (IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here, the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom position determination and facilitate the de novo structure determination of proteins.

  6. A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications

    PubMed Central

    Barcelo, Marc; Vicario, Jose Lopez

    2017-01-01

    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications. PMID:28829386

  7. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    PubMed

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    PubMed Central

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  9. Does the Friel Anaerobic Threshold Test Accurately Detect Heart Rate Deflection in Trained Cyclists?

    PubMed

    Yuen, Willie K; Schreiner, Shad R; Hoover, Donald L; Loudon, Janice K; Billinger, Sandra A

    The Friel Anaerobic Threshold Test (FATT) has been used to determine anaerobic threshold (AT). The FATT suggests AT occurs near the heart rate deflection point (HRDP) at a rating of perceived exertion (RPE) of 17. The primary purpose of this study was to determine 1) whether the HRDP could be determined using the FATT, 2) examine differences between HRVT and HR that coincided Borg's rating of perceived exertion (RPE) of 17, and 3) if riding position (hoods or aero) would influence performance. Fourteen male cyclists (30.4 ± 7.41years of age; 151.8 ± 60.4 cycled miles/week) participated in the study. Each subject performed the FATT on two occasions within one week. The findings of this study suggest that the FATT can determine HRDP in trained cyclists while riding in the hoods position but not the aero position. No significant difference was found between the hoods and aero position for HRVT as measured by the metabolic cart. Our data suggest that HR at an RPE of 15 more accurately reflects the HRVT than the RPE of 17. A low, non-significant correlation was found for both the hoods and aero (0.41 and 0.44, respectively; p > 0.20) for the HR at RPE of 17. The findings of this study suggest that the FATT can determine HRDP in trained cyclists. However, HRDP was identified in the cyclists preferred riding position. When performing the FATT, HRVT at an RPE of 15 should be used to estimate VT over the suggested RPE of 17.

  10. Flexibility in Visual Working Memory: Accurate Change Detection in the Face of Irrelevant Variations in Position

    PubMed Central

    Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.

    2012-01-01

    Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933

  11. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.

    PubMed

    Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.

  12. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera

    PubMed Central

    Clausner, Tommy; Dalal, Sarang S.; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D. Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position. PMID:28559791

  13. Positioning challenges in reconfigurable semi-autonomous robotic NDE inspection

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Dobie, Gordon; Summan, Rahul; Mackenzie, Liam; Hensman, James; Worden, Keith; Hayward, Gordon

    2010-03-01

    This paper describes work conducted into mobile, wireless, semi-autonomous NDE inspection robots developed at The University of Strathclyde as part of the UK Research Centre for Non Destructive Evaluation (RCNDE). The inspection vehicles can incorporate a number of different NDE payloads including ultrasonic, eddy current, visual and magnetic based payloads, and have been developed to try and improve NDE inspection techniques in challenging inspection areas (for example oil, gas, and nuclear structures). A significant research challenge remains in the accurate positioning and guidance of such vehicles for real inspection tasks. Employing both relative and absolute position measurements, we discuss a number of approaches to position estimation including Kalman and particle filtering. Using probabilistic approaches enables a common mathematical framework to be employed for both positioning and data fusion from different NDE sensors. In this fashion the uncertainties in both position and defect identification and classification can be dealt with using a consistent approach. A number of practical constraints and considerations to different precision positioning techniques are discussed, along with NDE applications and the potential for improved inspection capabilities by utilising the inherent reconfigurable capabilities of the inspection vehicles.

  14. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  15. Accurate orbit determination strategies for the tracking and data relay satellites

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Bolvin, D. T.; Lorah, J. M.; Lee, T.; Doll, C. E.

    1995-01-01

    The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for tracking and communications support of low Earth-orbiting satellites. TDRSS has the operational capability of providing 85% coverage for TDRSS-user spacecraft. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for each TDRS. The ground-based BRTS transponders are tracked as if they were TDRSS-user spacecraft. Since the positions of the BRTS transponders are known, their radiometric tracking measurements can be used to provide a well-determined ephemeris for the TDRS spacecraft. For high-accuracy orbit determination of a TDRSS user, such as the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft, high-accuracy TDRS orbits are required. This paper reports on successive refinements in improved techniques and procedures leading to more accurate TDRS orbit determination strategies using the Goddard Trajectory Determination System (GTDS). These strategies range from the standard operational solution using only the BRTS tracking measurements to a sophisticated iterative process involving several successive simultaneous solutions for multiple TDRSs and a TDRSS-user spacecraft. Results are presented for GTDS-generated TDRS ephemerides produced in simultaneous solutions with the TOPEX/Poseidon spacecraft. Strategies with different user spacecraft, as well as schemes for recovering accurate TDRS orbits following a TDRS maneuver, are also presented. In addition, a comprehensive assessment and evaluation of alternative strategies for TDRS orbit determination, excluding BRTS tracking measurements, are presented.

  16. Methods for calculating the electrode position Jacobian for impedance imaging.

    PubMed

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  17. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  18. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  19. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  20. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  1. National Athletic Trainers' Association Position Statement: Anabolic-Androgenic Steroids

    PubMed Central

    Kersey, Robert D.; Elliot, Diane L.; Goldberg, Linn; Kanayama, Gen; Leone, James E.; Pavlovich, Mike; Pope, Harrison G.

    2012-01-01

    This NATA position statement was developed by the NATA Research & Education Foundation. Objective This manuscript summarizes the best available scholarly evidence related to anabolic-androgenic steroids (AAS) as a reference for health care professionals, including athletic trainers, educators, and interested others. Background Health care professionals associated with sports or exercise should understand and be prepared to educate others about AAS. These synthetic, testosterone-based derivatives are widely abused by athletes and nonathletes to gain athletic performance advantages, develop their physiques, and improve their body image. Although AAS can be ergogenic, their abuse may lead to numerous negative health effects. Recommendations Abusers of AAS often rely on questionable information sources. Sports medicine professionals can therefore serve an important role by providing accurate, reliable information. The recommendations provide health care professionals with a current and accurate synopsis of the AAS-related research. PMID:23068595

  2. Proactive AP Selection Method Considering the Radio Interference Environment

    NASA Astrophysics Data System (ADS)

    Taenaka, Yuzo; Kashihara, Shigeru; Tsukamoto, Kazuya; Yamaguchi, Suguru; Oie, Yuji

    In the near future, wireless local area networks (WLANs) will overlap to provide continuous coverage over a wide area. In such ubiquitous WLANs, a mobile node (MN) moving freely between multiple access points (APs) requires not only permanent access to the Internet but also continuous communication quality during handover. In order to satisfy these requirements, an MN needs to (1) select an AP with better performance and (2) execute a handover seamlessly. To satisfy requirement (2), we proposed a seamless handover method in a previous study. Moreover, in order to achieve (1), the Received Signal Strength Indicator (RSSI) is usually employed to measure wireless link quality in a WLAN system. However, in a real environment, especially if APs are densely situated, it is difficult to always select an AP with better performance based on only the RSSI. This is because the RSSI alone cannot detect the degradation of communication quality due to radio interference. Moreover, it is important that AP selection is completed only on an MN, because we can assume that, in ubiquitous WLANs, various organizations or operators will manage APs. Hence, we cannot modify the APs for AP selection. To overcome these difficulties, in the present paper, we propose and implement a proactive AP selection method considering wireless link condition based on the number of frame retransmissions in addition to the RSSI. In the evaluation, we show that the proposed AP selection method can appropriately select an AP with good wireless link quality, i.e., high RSSI and low radio interference.

  3. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum.

    PubMed

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, >17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  5. Does debulking of enlarged positive lymph nodes improve survival in different gynaecological cancers?

    PubMed

    Somashekhar, S P

    2015-08-01

    Lymph-node-positive gynaecological cancers remain a pharmacotherapeutic challenge, and patients with lymph-node-positive gynaecological cancers have poor survival. The purpose of this review is to determine whether a survival advantage arises from surgical debulking of enlarged positive lymph nodes in different types of gynaecological cancers. Information from studies published on the survival benefits from debulking lymph nodes in gynaecological cancers was investigated. Pertaining to therapeutic lymphadenectomy, survival benefit can be analysed in two ways, direct survival benefit following therapeutic lymphadenectomy of bulky positive metastatic lymph nodes and indirect survival benefit, which results after a sequela of systematic lymphadenectomy, proper, accurate staging of disease and stage migration and tailor-made adjuvant treatment. The direct hypothesis of therapeutic lymphadenectomy and survival benefit has been prospected in cervical cancers and vulval cancers and in post-chemotherapy residual paraarotic nodal mass in germ cell ovarian cancer. The indirect survival benefit of therapeutic paraarotic lymphadenectomy in high-risk endometrial cancers and advanced epithelial ovarian cancers needs to be tested in randomized controlled trials. More randomized controlled trials are required to investigate this research question. Further, indirect benefit due to tailor-made adjuvant treatment, secondary to accurate staging achieved as a sequela of systematic lymphadenectomy, needs to be analysed in future trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasetsmore » having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds

  7. Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.

    PubMed

    Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing

    2018-06-01

    Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Fast and accurate mock catalogue generation for low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Blake, Chris; Beutler, Florian; Kazin, Eyal; Marin, Felipe

    2016-06-01

    We present an accurate and fast framework for generating mock catalogues including low-mass haloes, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realizations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate-mass galaxies in 1012 M⊙ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k ≤ 0.15 h Mpc-1, and with only 3-per cent error for k ≤ 0.2 h Mpc-1. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.

  9. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  10. Achieving perceptually-accurate aural telepresence

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.

    Immersive multimedia requires not only realistic visual imagery but also a perceptually-accurate aural experience. A sound field may be presented simultaneously to a listener via a loudspeaker rendering system using the direct sound from acoustic sources as well as a simulation or "auralization" of room acoustics. Beginning with classical Wave-Field Synthesis (WFS), improvements are made to correct for asymmetries in loudspeaker array geometry. Presented is a new Spatially-Equalized WFS (SE-WFS) technique to maintain the energy-time balance of a simulated room by equalizing the reproduced spectrum at the listener for a distribution of possible source angles. Each reproduced source or reflection is filtered according to its incidence angle to the listener. An SE-WFS loudspeaker array of arbitrary geometry reproduces the sound field of a room with correct spectral and temporal balance, compared with classically-processed WFS systems. Localization accuracy of human listeners in SE-WFS sound fields is quantified by psychoacoustical testing. At a loudspeaker spacing of 0.17 m (equivalent to an aliasing cutoff frequency of 1 kHz), SE-WFS exhibits a localization blur of 3 degrees, nearly equal to real point sources. Increasing the loudspeaker spacing to 0.68 m (for a cutoff frequency of 170 Hz) results in a blur of less than 5 degrees. In contrast, stereophonic reproduction is less accurate with a blur of 7 degrees. The ventriloquist effect is psychometrically investigated to determine the effect of an intentional directional incongruence between audio and video stimuli. Subjects were presented with prerecorded full-spectrum speech and motion video of a talker's head as well as broadband noise bursts with a static image. The video image was displaced from the audio stimulus in azimuth by varying amounts, and the perceived auditory location measured. A strong bias was detectable for small angular discrepancies between audio and video stimuli for separations of less than 8

  11. Estimating the spatial position of marine mammals based on digital camera recordings

    PubMed Central

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-01-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  12. Low-dimensional, morphologically accurate models of subthreshold membrane potential

    PubMed Central

    Kellems, Anthony R.; Roos, Derrick; Xiao, Nan; Cox, Steven J.

    2009-01-01

    The accurate simulation of a neuron’s ability to integrate distributed synaptic input typically requires the simultaneous solution of tens of thousands of ordinary differential equations. For, in order to understand how a cell distinguishes between input patterns we apparently need a model that is biophysically accurate down to the space scale of a single spine, i.e., 1 μm. We argue here that one can retain this highly detailed input structure while dramatically reducing the overall system dimension if one is content to accurately reproduce the associated membrane potential at a small number of places, e.g., at the site of action potential initiation, under subthreshold stimulation. The latter hypothesis permits us to approximate the active cell model with an associated quasi-active model, which in turn we reduce by both time-domain (Balanced Truncation) and frequency-domain (ℋ2 approximation of the transfer function) methods. We apply and contrast these methods on a suite of typical cells, achieving up to four orders of magnitude in dimension reduction and an associated speed-up in the simulation of dendritic democratization and resonance. We also append a threshold mechanism and indicate that this reduction has the potential to deliver an accurate quasi-integrate and fire model. PMID:19172386

  13. Accurate Fall Detection in a Top View Privacy Preserving Configuration.

    PubMed

    Ricciuti, Manola; Spinsante, Susanna; Gambi, Ennio

    2018-05-29

    Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.

  14. Liberal or conservative? Gender, identity, and perception of historical religious positions.

    PubMed

    Bensko, N L; Canetto, S S; Sugar, J A; Viney, W

    1995-11-01

    Conservatism is often assumed to imply a continuity of values and positions between past and present. Previous research has demonstrated, however, that there are discontinuities between historical and contemporary political conservatism and that modern political conservatives endorse programs and legislation once regarded as liberal. Testing whether the same pattern may hold for religious conservatism was the purpose of this research. Perceptions of conservative positions in Christian history were assessed among young adults (N = 221). Results showed that individuals who identified themselves as conservatives were less likely to recognize past conservative positions on religious issues than individuals who identified themselves as liberals. These findings were not accounted for by lack of knowledge about religious history on the part of conservatives. Furthermore, women were more likely than men to accurately identify conservative and liberal positions of the past. The findings suggest that religious conservatism, like political conservatism, does not necessarily involve a continuity of positions between past and present.

  15. The Dorsal Visual System Predicts Future and Remembers Past Eye Position

    PubMed Central

    Morris, Adam P.; Bremmer, Frank; Krekelberg, Bart

    2016-01-01

    Eye movements are essential to primate vision but introduce potentially disruptive displacements of the retinal image. To maintain stable vision, the brain is thought to rely on neurons that carry both visual signals and information about the current direction of gaze in their firing rates. We have shown previously that these neurons provide an accurate representation of eye position during fixation, but whether they are updated fast enough during saccadic eye movements to support real-time vision remains controversial. Here we show that not only do these neurons carry a fast and accurate eye-position signal, but also that they support in parallel a range of time-lagged variants, including predictive and post dictive signals. We recorded extracellular activity in four areas of the macaque dorsal visual cortex during a saccade task, including the lateral and ventral intraparietal areas (LIP, VIP), and the middle temporal (MT) and medial superior temporal (MST) areas. As reported previously, neurons showed tonic eye-position-related activity during fixation. In addition, they showed a variety of transient changes in activity around the time of saccades, including relative suppression, enhancement, and pre-saccadic bursts for one saccade direction over another. We show that a hypothetical neuron that pools this rich population activity through a weighted sum can produce an output that mimics the true spatiotemporal dynamics of the eye. Further, with different pooling weights, this downstream eye position signal (EPS) could be updated long before (<100 ms) or after (<200 ms) an eye movement. The results suggest a flexible coding scheme in which downstream computations have access to past, current, and future eye positions simultaneously, providing a basis for visual stability and delay-free visually-guided behavior. PMID:26941617

  16. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  17. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  18. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  19. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  20. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  1. An electromechanical, patient positioning system for head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  2. Fast and accurate computation of projected two-point functions

    NASA Astrophysics Data System (ADS)

    Grasshorn Gebhardt, Henry S.; Jeong, Donghui

    2018-01-01

    We present the two-point function from the fast and accurate spherical Bessel transformation (2-FAST) algorithmOur code is available at https://github.com/hsgg/twoFAST. for a fast and accurate computation of integrals involving one or two spherical Bessel functions. These types of integrals occur when projecting the galaxy power spectrum P (k ) onto the configuration space, ξℓν(r ), or spherical harmonic space, Cℓ(χ ,χ'). First, we employ the FFTLog transformation of the power spectrum to divide the calculation into P (k )-dependent coefficients and P (k )-independent integrations of basis functions multiplied by spherical Bessel functions. We find analytical expressions for the latter integrals in terms of special functions, for which recursion provides a fast and accurate evaluation. The algorithm, therefore, circumvents direct integration of highly oscillating spherical Bessel functions.

  3. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  4. Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2017-06-01

    Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.

  5. Issues in identifying germ tube positive yeasts by conventional methods.

    PubMed

    Yazdanpanah, Atta; Khaithir, Tzar Mohd Nizam

    2014-01-01

    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details. © 2013 Wiley Periodicals, Inc.

  6. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  7. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  8. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study.

    PubMed

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-07-07

    To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ(2) test. A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the negative predictive

  9. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study

    PubMed Central

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-01-01

    AIM: To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. METHODS: We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ2 test. RESULTS: A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the

  10. A simple method to accurately position Port-A-Cath without the aid of intraoperative fluoroscopy or other localizing devices.

    PubMed

    Horng, Huann-Cheng; Yuan, Chiou-Chung; Chao, Kuan-Chong; Cheng, Ming-Huei; Wang, Peng-Hui

    2007-06-01

    To evaluate the efficacy and acceptability of the Port-A-Cath (PAC) insertion method with (conventional group as II) and without (modified group as I) the aid of intraoperative fluoroscopy or other localizing devices. A total of 158 women with various kinds of gynecological cancers warranting PAC insertion (n = 86 in group I and n = 72 in group II, respectively) were evaluated. Data for analyses included patient age, main disease, dislocation site, surgical time, complications, and catheter outcome. There was no statistical difference between the two groups in terms of age, main disease, complications, and the experiencing of patent catheters. However, appropriate positioning (100% in group I, and 82% in group II) in the superior vena cava (SVC) showed statistical differences between the two groups (P = 0.001). In addition, the surgical time in group I was statistically shorter than that in group II (P < 0.001). The modified method for inserting the PAC offered the following benefits: including avoiding X-ray exposure for both the operator and the patient, defining the appropriate position in the SVC, and less surgical time. (c) 2007 Wiley-Liss, Inc.

  11. Determination of the position of nucleus cochlear implant electrodes in the inner ear.

    PubMed

    Skinner, M W; Ketten, D R; Vannier, M W; Gates, G A; Yoffie, R L; Kalender, W A

    1994-09-01

    Accurate determination of intracochlear electrode position in patients with cochlear implants could provide a basis for detecting migration of the implant and could aid in the selection of stimulation parameters for sound processor programming. New computer algorithms for submillimeter resolution and 3-D reconstruction from spiral computed tomographic (CT) scans now make it possible to accurately determine the position of implanted electrodes within the cochlear canal. The accuracy of these algorithms was tested using an electrode array placed in a phantom model. Measurements of electrode length and interelectrode distance from spiral CT scan reconstructions were in close agreement with those from stereo microscopy. Although apparent electrode width was increased on CT scans due to partial volume averaging, a correction factor was developed for measurements from conventional radiographs and an expanded CT absorption value scale added to detect the presence of platinum electrodes and wires. The length of the cochlear canal was calculated from preoperative spiral CT scans for one patient, and the length of insertion of the electrode array was calculated from her postoperative spiral CT scans. The cross-sectional position of electrodes in relation to the outer bony wall and modiolus was measured and plotted as a function of distance with the electrode width correction applied.

  12. Performance of Creatinine and Cystatin C GFR Estimating Equations in an HIV-positive population on Antiretrovirals

    PubMed Central

    INKER, Lesley A; WYATT, Christina; CREAMER, Rebecca; HELLINGER, James; HOTTA, Matthew; LEPPO, Maia; LEVEY, Andrew S; OKPARAVERO, Aghogho; GRAHAM, Hiba; SAVAGE, Karen; SCHMID, Christopher H; TIGHIOUART, Hocine; WALLACH, Fran; KRISHNASAMI, Zipporah

    2013-01-01

    Objective To evaluate the performance of CKD-EPI creatinine, cystatin C and creatinine-cystatin C estimating equations in HIV-positive patients. Methods We evaluated the performance of the MDRD Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012 and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared to GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. Results Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV-viral load. Mean (SD) measured GFR (mGFR) was 87 (26) ml/min/1.73m2. All CKD-EPI equations performed better than the MDRD Study equation. All three CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. Conclusions The CKD-EPI cystatin C equation does not appear to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study. PMID:22842844

  13. Mass spectrometry-based protein identification with accurate statistical significance assignment.

    PubMed

    Alves, Gelio; Yu, Yi-Kuo

    2015-03-01

    Assigning statistical significance accurately has become increasingly important as metadata of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of metadata at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry-based proteomics, even though accurate statistics for peptide identification can now be achieved, accurate protein level statistics remain challenging. We have constructed a protein ID method that combines peptide evidences of a candidate protein based on a rigorous formula derived earlier; in this formula the database P-value of every peptide is weighted, prior to the final combination, according to the number of proteins it maps to. We have also shown that this protein ID method provides accurate protein level E-value, eliminating the need of using empirical post-processing methods for type-I error control. Using a known protein mixture, we find that this protein ID method, when combined with the Sorić formula, yields accurate values for the proportion of false discoveries. In terms of retrieval efficacy, the results from our method are comparable with other methods tested. The source code, implemented in C++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  14. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  15. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available

  16. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  17. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  18. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  19. Wireless local area network in a prehospital environment.

    PubMed

    Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F

    2004-08-31

    Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management.

  20. Towards smart environments using smart objects.

    PubMed

    Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli

    2011-01-01

    Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.

  1. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  2. Predicting Likelihood of Having Four or More Positive Nodes in Patient With Sentinel Lymph Node-Positive Breast Cancer: A Nomogram Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Bulent; Gur, Akif Serhat; Beriwal, Sushil

    2009-11-15

    Purpose: Katz suggested a nomogram for predicting having four or more positive nodes in sentinel lymph node (SLN)-positive breast cancer patients. The findings from this formula might influence adjuvant radiotherapy decisions. Our goal was to validate the accuracy of the Katz nomogram. Methods and Materials: We reviewed the records of 309 patients with breast cancer who had undergone completion axillary lymph node dissection. The factors associated with the likelihood of having four or more positive axillary nodes were evaluated in patients with one to three positive SLNs. The nomogram developed by Katz was applied to our data set. The areamore » under the curve of the corresponding receiver operating characteristics curve was calculated for the nomogram. Results: Of the 309 patients, 80 (25.9%) had four or more positive axillary lymph nodes. On multivariate analysis, the number of positive SLNs (p < .0001), overall metastasis size (p = .019), primary tumor size (p = .0001), and extracapsular extension (p = .01) were significant factors predicting for four or more positive nodes. For patients with <5% probability, 90.3% had fewer than four positive nodes and 9.7% had four or more positive nodes. The negative predictive value was 91.7%, and sensitivity was 80%. The nomogram was accurate and discriminating (area under the curve, .801). Conclusion: The probability of four or more involved nodes is significantly greater in patients who have an increased number of positive SLNs, increased overall metastasis size, increased tumor size, and extracapsular extension. The Katz nomogram was validated in our patients. This nomogram will be helpful to clinicians making adjuvant treatment recommendations to their patients.« less

  3. Next Generation Vehicle Positioning and Simulation Solutions : Using GPS and Advanced Simulation Tools to Improve Highway Safety

    DOT National Transportation Integrated Search

    2013-06-03

    "Integrated Global Positioning System and Inertial Navigation Unit (GPS/INU) Simulator for Enhanced Traffic Safety," is a project awarded to Ohio State University to integrate different simulation models to accurately study the relationship between v...

  4. The Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0, real-time PCR assay accurately quantifies hepatitis C virus genotype 4 RNA.

    PubMed

    Chevaliez, Stéphane; Bouvier-Alias, Magali; Rodriguez, Christophe; Soulier, Alexandre; Poveda, Jean-Dominique; Pawlotsky, Jean-Michel

    2013-04-01

    Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify HCV RNA in a large series of patients infected with different subtypes of HCV genotype 4. Group A comprised 122 patients with chronic HCV genotype 4 infection, and group B comprised 4 patients with HCV genotype 4 in whom HCV RNA was undetectable using the CAP/CTM HCV. Each specimen was tested with the third-generation branched DNA (bDNA) assay, CAP/CTM HCV, and CAP/CTM HCV v2.0. The HCV RNA level was lower in CAP/CTM HCV than in bDNA in 76.2% of cases, regardless of the HCV genotype 4 subtype. In contrast, the correlation between bDNA and CAP/CTM HCV v2.0 values was excellent. CAP/CTM HCV v2.0 accurately quantified HCV RNA levels in the presence of an A-to-T substitution at position 165 alone or combined with a G-to-A substitution at position 145 of the 5' untranslated region of HCV genome. In conclusion, CAP/CTM HCV v2.0 accurately quantifies HCV RNA in genotype 4 clinical specimens, regardless of the subtype, and can be confidently used in clinical trials and clinical practice with this genotype.

  5. Mark Tracking: Position/orientation measurements using 4-circle mark and its tracking experiments

    NASA Technical Reports Server (NTRS)

    Kanda, Shinji; Okabayashi, Keijyu; Maruyama, Tsugito; Uchiyama, Takashi

    1994-01-01

    Future space robots require position and orientation tracking with visual feedback control to track and capture floating objects and satellites. We developed a four-circle mark that is useful for this purpose. With this mark, four geometric center positions as feature points can be extracted from the mark by simple image processing. We also developed a position and orientation measurement method that uses the four feature points in our mark. The mark gave good enough image measurement accuracy to let space robots approach and contact objects. A visual feedback control system using this mark enabled a robot arm to track a target object accurately. The control system was able to tolerate a time delay of 2 seconds.

  6. Ptosis assessment spectacles: a new method of measuring lid position and movement in children.

    PubMed

    Khandwala, Mona; Dey, Sarju; Harcourt, Cassie; Wood, Clive; Jones, Carole A

    2011-01-01

    Accurate assessment of eyelid position and movement is vital in planning the surgical correction of ptosis. Conventional measurements taken using a millimeter ruler are considered the gold standard, although in young children this can be a difficult procedure. The authors have designed ptosis assessment spectacles with a measuring millimeter scale marked on the center of the lens to facilitate accurate assessment of eyelid position and function in children. The purpose of the study was to assess the accuracy and reproducibility of eyelid measurement using these ptosis assessment spectacles. Fifty-two children aged 2-12 years were recruited in this study. Each child underwent 2 sets of measurements. The first was undertaken by an ophthalmologist in the conventional manner using a ruler, and the second set made with ptosis assessment spectacles. On each occasion the palpebral aperture, skin crease, and levator function were recorded in millimeters. A verbal analog scale was used to assess parent satisfaction with each method. Clinically acceptable reproducibility was shown with the ruler and the spectacles for all measurements: palpebral aperture, skin crease, and levator function. Parents significantly preferred the glasses for measurement, as compared with the ruler (p < 0.05). The spectacles are as accurate as conventional methods of measurement, but are easier to use. Children tolerate these spectacles well, and most parents preferred them to the ruler.

  7. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  8. Accurate Filtering of Privacy-Sensitive Information in Raw Genomic Data.

    PubMed

    Decouchant, Jérémie; Fernandes, Maria; Völp, Marcus; Couto, Francisco M; Esteves-Veríssimo, Paulo

    2018-04-13

    Sequencing thousands of human genomes has enabled breakthroughs in many areas, among them precision medicine, the study of rare diseases, and forensics. However, mass collection of such sensitive data entails enormous risks if not protected to the highest standards. In this article, we follow the position and argue that post-alignment privacy is not enough and that data should be automatically protected as early as possible in the genomics workflow, ideally immediately after the data is produced. We show that a previous approach for filtering short reads cannot extend to long reads and present a novel filtering approach that classifies raw genomic data (i.e., whose location and content is not yet determined) into privacy-sensitive (i.e., more affected by a successful privacy attack) and non-privacy-sensitive information. Such a classification allows the fine-grained and automated adjustment of protective measures to mitigate the possible consequences of exposure, in particular when relying on public clouds. We present the first filter that can be indistinctly applied to reads of any length, i.e., making it usable with any recent or future sequencing technologies. The filter is accurate, in the sense that it detects all known sensitive nucleotides except those located in highly variable regions (less than 10 nucleotides remain undetected per genome instead of 100,000 in previous works). It has far less false positives than previously known methods (10% instead of 60%) and can detect sensitive nucleotides despite sequencing errors (86% detected instead of 56% with 2% of mutations). Finally, practical experiments demonstrate high performance, both in terms of throughput and memory consumption. Copyright © 2018. Published by Elsevier Inc.

  9. Photoelectric scanning-based method for positioning omnidirectional automatic guided vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Zhe; Yang, Linghui; Zhang, Yunzhi; Guo, Yin; Ren, Yongjie; Lin, Jiarui; Zhu, Jigui

    2016-03-01

    Automatic guided vehicle (AGV) as a kind of mobile robot has been widely used in many applications. For better adapting to the complex working environment, more and more AGVs are designed to be omnidirectional by being equipped with Mecanum wheels for increasing their flexibility and maneuverability. However, as the AGV with this kind of wheels suffers from the position errors mainly because of the frequent slipping property, how to measure its position accurately in real time is an extremely important issue. Among the ways of achieving it, the photoelectric scanning methodology based on angle measurement is efficient. Hence, we propose a feasible method to ameliorate the positioning process, which mainly integrates four photoelectric receivers and one laser transmitter. To verify the practicality and accuracy, actual experiments and computer simulations have been conducted. In the simulation, the theoretical positioning error is less than 0.28 mm in a 10 m×10 m space. In the actual experiment, the performances about the stability, accuracy, and dynamic capability of this method were inspected. It demonstrates that the system works well and the performance of the position measurement is high enough to fulfill the mainstream tasks.

  10. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  11. Are Registration of Disease Codes for Adult Anaphylaxis Accurate in the Emergency Department?

    PubMed Central

    Choi, Byungho; Lee, Hyeji

    2018-01-01

    Purpose There has been active research on anaphylaxis, but many study subjects are limited to patients registered with anaphylaxis codes. However, anaphylaxis codes tend to be underused. The aim of this study was to investigate the accuracy of anaphylaxis code registration and the clinical characteristics of accurate and inaccurate anaphylaxis registration in anaphylactic patients. Methods This retrospective study evaluated the medical records of adult patients who visited the university hospital emergency department between 2012 and 2016. The study subjects were divided into the groups with accurate and inaccurate anaphylaxis codes registered under anaphylaxis and other allergy-related codes and symptom-related codes, respectively. Results Among 211,486 patients, 618 (0.29%) had anaphylaxis. Of these, 161 and 457 were assigned to the accurate and inaccurate coding groups, respectively. The average age, transportation to the emergency department, past anaphylaxis history, cancer history, and the cause of anaphylaxis differed between the 2 groups. Cutaneous symptom manifested more frequently in the inaccurate coding group, while cardiovascular and neurologic symptoms were more frequently observed in the accurate group. Severe symptoms and non-alert consciousness were more common in the accurate group. Oxygen supply, intubation, and epinephrine were more commonly used as treatments for anaphylaxis in the accurate group. Anaphylactic patients with cardiovascular symptoms, severe symptoms, and epinephrine use were more likely to be accurately registered with anaphylaxis disease codes. Conclusions In case of anaphylaxis, more patients were registered inaccurately under other allergy-related codes and symptom-related codes rather than accurately under anaphylaxis disease codes. Cardiovascular symptoms, severe symptoms, and epinephrine treatment were factors associated with accurate registration with anaphylaxis disease codes in patients with anaphylaxis. PMID:29411554

  12. Seeing and Being Seen: Predictors of Accurate Perceptions about Classmates’ Relationships

    PubMed Central

    Neal, Jennifer Watling; Neal, Zachary P.; Cappella, Elise

    2015-01-01

    This study examines predictors of observer accuracy (i.e. seeing) and target accuracy (i.e. being seen) in perceptions of classmates’ relationships in a predominantly African American sample of 420 second through fourth graders (ages 7 – 11). Girls, children in higher grades, and children in smaller classrooms were more accurate observers. Targets (i.e. pairs of children) were more accurately observed when they occurred in smaller classrooms of higher grades and involved same-sex, high-popularity, and similar-popularity children. Moreover, relationships between pairs of girls were more accurately observed than relationships between pairs of boys. As a set, these findings suggest the importance of both observer and target characteristics for children’s accurate perceptions of classroom relationships. Moreover, the substantial variation in observer accuracy and target accuracy has methodological implications for both peer-reported assessments of classroom relationships and the use of stochastic actor-based models to understand peer selection and socialization processes. PMID:26347582

  13. Bone orientation and position estimation errors using Cosserat point elements and least squares methods: Application to gait.

    PubMed

    Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon

    2017-09-06

    The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  15. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  16. Self-position estimation using terrain shadows for precise planetary landing

    NASA Astrophysics Data System (ADS)

    Kuga, Tomoki; Kojima, Hirohisa

    2018-07-01

    In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.

  17. Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…

  18. Accurate donor electron wave functions from a multivalley effective mass theory.

    NASA Astrophysics Data System (ADS)

    Pendo, Luke; Hu, Xuedong

    Multivalley effective mass (MEM) theories combine physical intuition with a marginal need for computational resources, but they tend to be insensitive to variations in the wavefunction. However, recent papers suggest full Bloch functions and suitable central cell donor potential corrections are essential to replicating qualitative and quantitative features of the wavefunction. In this talk, we consider a variational MEM method that can accurately predict both spectrum and wavefunction of isolated phosphorus donors. As per Gamble et. al, we employ a truncated series representation of the Bloch function with a tetrahedrally symmetric central cell correction. We use a dynamic dielectric constant, a feature commonly seen in tight-binding methods. Uniquely, we use a freely extensible basis of either all Slater- or all Gaussian-type functions. With a large basis able to capture the influence of higher energy eigenstates, this method is well positioned to consider the influence of external perturbations, such as electric field or applied strain, on the charge density. This work is supported by the US Army Research Office (W911NF1210609).

  19. Highly accurate nephelometric titrimetry.

    PubMed

    Zhan, Xiancheng; Li, Chengrong; Li, Zhiyi; Yang, Xiucen; Zhong, Shuguang; Yi, Tao

    2004-02-01

    A method that accurately indicates the end-point of precipitation reactions by the measurement of the relative intensity of the scattered light in the titrate is presented. A new nephelometric titrator with an internal nephelometric sensor has been devised. The work of the titrator including the sensor and change in the turbidity of the titrate and intensity of the scattered light are described. The accuracy of the nephelometric titrimetry is discussed theoretically. The titration of NaCl with AgNO(3) serves as a model. A relative error as well as deviation is within 0.2% under the experimental conditions. The applicability of the titrimetry in pharmaceutical analyses, for example, phenytoin sodium and procaine hydrochloride, is generally illustrated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  20. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data.

    PubMed

    Rochefort, Christian M; Verma, Aman D; Eguale, Tewodros; Lee, Todd C; Buckeridge, David L

    2015-01-01

    Venous thromboembolisms (VTEs), which include deep vein thrombosis (DVT) and pulmonary embolism (PE), are associated with significant mortality, morbidity, and cost in hospitalized patients. To evaluate the success of preventive measures, accurate and efficient methods for monitoring VTE rates are needed. Therefore, we sought to determine the accuracy of statistical natural language processing (NLP) for identifying DVT and PE from electronic health record data. We randomly sampled 2000 narrative radiology reports from patients with a suspected DVT/PE in Montreal (Canada) between 2008 and 2012. We manually identified DVT/PE within each report, which served as our reference standard. Using a bag-of-words approach, we trained 10 alternative support vector machine (SVM) models predicting DVT, and 10 predicting PE. SVM training and testing was performed with nested 10-fold cross-validation, and the average accuracy of each model was measured and compared. On manual review, 324 (16.2%) reports were DVT-positive and 154 (7.7%) were PE-positive. The best DVT model achieved an average sensitivity of 0.80 (95% CI 0.76 to 0.85), specificity of 0.98 (98% CI 0.97 to 0.99), positive predictive value (PPV) of 0.89 (95% CI 0.85 to 0.93), and an area under the curve (AUC) of 0.98 (95% CI 0.97 to 0.99). The best PE model achieved sensitivity of 0.79 (95% CI 0.73 to 0.85), specificity of 0.99 (95% CI 0.98 to 0.99), PPV of 0.84 (95% CI 0.75 to 0.92), and AUC of 0.99 (95% CI 0.98 to 1.00). Statistical NLP can accurately identify VTE from narrative radiology reports. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  1. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data

    PubMed Central

    Rochefort, Christian M; Verma, Aman D; Eguale, Tewodros; Lee, Todd C; Buckeridge, David L

    2015-01-01

    Background Venous thromboembolisms (VTEs), which include deep vein thrombosis (DVT) and pulmonary embolism (PE), are associated with significant mortality, morbidity, and cost in hospitalized patients. To evaluate the success of preventive measures, accurate and efficient methods for monitoring VTE rates are needed. Therefore, we sought to determine the accuracy of statistical natural language processing (NLP) for identifying DVT and PE from electronic health record data. Methods We randomly sampled 2000 narrative radiology reports from patients with a suspected DVT/PE in Montreal (Canada) between 2008 and 2012. We manually identified DVT/PE within each report, which served as our reference standard. Using a bag-of-words approach, we trained 10 alternative support vector machine (SVM) models predicting DVT, and 10 predicting PE. SVM training and testing was performed with nested 10-fold cross-validation, and the average accuracy of each model was measured and compared. Results On manual review, 324 (16.2%) reports were DVT-positive and 154 (7.7%) were PE-positive. The best DVT model achieved an average sensitivity of 0.80 (95% CI 0.76 to 0.85), specificity of 0.98 (98% CI 0.97 to 0.99), positive predictive value (PPV) of 0.89 (95% CI 0.85 to 0.93), and an area under the curve (AUC) of 0.98 (95% CI 0.97 to 0.99). The best PE model achieved sensitivity of 0.79 (95% CI 0.73 to 0.85), specificity of 0.99 (95% CI 0.98 to 0.99), PPV of 0.84 (95% CI 0.75 to 0.92), and AUC of 0.99 (95% CI 0.98 to 1.00). Conclusions Statistical NLP can accurately identify VTE from narrative radiology reports. PMID:25332356

  2. Accurate vehicle classification including motorcycles using piezoelectric sensors.

    DOT National Transportation Integrated Search

    2013-03-01

    State and federal departments of transportation are charged with classifying vehicles and monitoring mileage traveled. Accurate data reporting enables suitable roadway design for safety and capacity. Vehicle classifiers currently employ inductive loo...

  3. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    NASA Astrophysics Data System (ADS)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  4. Measurement of LHCD antenna position in Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Ambulkar, K. K.; Sharma, P. K.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Kulkarni, S. V.

    2010-02-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  5. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.

    DTIC Science & Technology

    1987-06-01

    C. POWER CONDITIONER SIMULATION Accurate modeling of power conditioning and commutation in brushless dc motors requires explicit definition of the...Study of a Brushless DC Motor Power Conditioner for a Cruise Missile Fin Control Actuator, Master’s Thesis, Naval Postgraduate School, Monterey, Ca...DESIGN FOR A BRUSHLESS DC MOTOR POSITION SERVO by Vincent S. Rossitto June 1987 Thesis Advisor: Alex Gerba, Jr. Approved for public release

  6. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  7. High accurate time system of the Low Latitude Meridian Circle.

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Feng; Li, Zhiming

    In order to obtain the high accurate time signal for the Low Latitude Meridian Circle (LLMC), a new GPS accurate time system is developed which include GPS, 1 MC frequency source and self-made clock system. The second signal of GPS is synchronously used in the clock system and information can be collected by a computer automatically. The difficulty of the cancellation of the time keeper can be overcomed by using this system.

  8. Real-time endovascular guidewire position simulation using shortest path algorithms.

    PubMed

    Schafer, Sebastian; Singh, Vikas; Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Hoffmann, Kenneth R

    2009-11-01

    Treatment of vascular disease often involves endovascular interventions which use the vascular system for delivering treatment devices via a previously inserted guidewire to the diseased site. Previous studies show relative reproducibility of guidewire position after insertion, indicating that the guidewire position is constrained and could be represented by an energy minimization approach. Such representation would support the surgeon's decision process in guidewire selection. In this paper, we determine the guidewire position using a k-level graph based on 3D vessel information. Guidewire properties are incorporated into the graph as edge weights given by the local bending energy related to the local bending angle. The optimal path through this weighted directed graph is determined using a shortest path algorithm. Volumetric data of two different internal carotid artery phantoms (Ø 3.5-4.6 mm) was acquired. Two guidewires (Ø 0.33 mm) of different material properties (stainless steel, plastic-coated steel core) were inserted into the phantoms. The average RMS distance between actual and simulated guidewire positions varies from 0.9 mm (plastic coated) to 1.3 mm (stainless steel); the computation time to determine the position was <2s. The results indicate that the proposed technique yields reproducible and accurate guidewire positions within a short, clinically relevant time frame. These calculated positions may be useful in facilitating neurovascular interventions.

  9. Positioning in Time and Space - Cost-Effective Exterior Orientation for Airborne Archaeological Photographs

    NASA Astrophysics Data System (ADS)

    Verhoeven, G.; Wieser, M.; Briese, C.; Doneus, M.

    2013-07-01

    Since manned, airborne aerial reconnaissance for archaeological purposes is often characterised by more-or-less random photographing of archaeological features on the Earth, the exact position and orientation of the camera during image acquisition becomes very important in an effective inventorying and interpretation workflow of these aerial photographs. Although the positioning is generally achieved by simultaneously logging the flight path or directly recording the camera's position with a GNSS receiver, this approach does not allow to record the necessary roll, pitch and yaw angles of the camera. The latter are essential elements for the complete exterior orientation of the camera, which allows - together with the inner orientation of the camera - to accurately define the portion of the Earth recorded in the photograph. This paper proposes a cost-effective, accurate and precise GNSS/IMU solution (image position: 2.5 m and orientation: 2°, both at 1σ) to record all essential exterior orientation parameters for the direct georeferencing of the images. After the introduction of the utilised hardware, this paper presents the developed software that allows recording and estimating these parameters. Furthermore, this direct georeferencing information can be embedded into the image's metadata. Subsequently, the first results of the estimation of the mounting calibration (i.e. the misalignment between the camera and GNSS/IMU coordinate frame) are provided. Furthermore, a comparison with a dedicated commercial photographic GNSS/IMU solution will prove the superiority of the introduced solution. Finally, an outlook on future tests and improvements finalises this article.

  10. A 3-Year Study of Predictive Factors for Positive and Negative Appendicectomies.

    PubMed

    Chang, Dwayne T S; Maluda, Melissa; Lee, Lisa; Premaratne, Chandrasiri; Khamhing, Srisongham

    2018-03-06

    Early and accurate identification or exclusion of acute appendicitis is the key to avoid the morbidity of delayed treatment for true appendicitis or unnecessary appendicectomy, respectively. We aim (i) to identify potential predictive factors for positive and negative appendicectomies; and (ii) to analyse the use of ultrasound scans (US) and computed tomography (CT) scans for acute appendicitis. All appendicectomies that took place at our hospital from the 1st of January 2013 to the 31st of December 2015 were retrospectively recorded. Test results of potential predictive factors of acute appendicitis were recorded. Statistical analysis was performed using Fisher exact test, logistic regression analysis, sensitivity, specificity, and positive and negative predictive values calculation. 208 patients were included in this study. 184 patients had histologically proven acute appendicitis. The other 24 patients had either nonappendicitis pathology or normal appendix. Logistic regression analysis showed statistically significant associations between appendicitis and white cell count, neutrophil count, C-reactive protein, and bilirubin. Neutrophil count was the test with the highest sensitivity and negative predictive values, whereas bilirubin was the test with the highest specificity and positive predictive values (PPV). US and CT scans had high sensitivity and PPV for diagnosing appendicitis. No single test was sufficient to diagnose or exclude acute appendicitis by itself. Combining tests with high sensitivity (abnormal neutrophil count, and US and CT scans) and high specificity (raised bilirubin) may predict acute appendicitis more accurately.

  11. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  12. Radiofrequency exposure from wireless LANs utilizing Wi-Fi technology.

    PubMed

    Foster, Kenneth R

    2007-03-01

    This survey measured radiofrequency (RF) fields from wireless local area networks (WLANs) using Wi-Fi technology against a background of RF fields in the environment over the frequency range 75 MHz-3 GHz. A total of 356 measurements were conducted at 55 sites (including private residences, commercial spaces, health care and educational institutions, and other public spaces) in four countries (U.S., France, Germany, Sweden). Measurements were conducted under conditions that would result in the higher end of exposures from such systems. Where possible, measurements were conducted in public spaces as close as practical to the Wi-Fi access points. Additional measurements were conducted at a distance of approximately 1 m from a laptop while it was uploading and downloading large files to the WLAN. This distance was chosen to allow a useful comparison of fields in the far-field of the antenna in the laptop, and give a representative measure of the exposure that a bystander might receive from the laptop. The exposure to the user, particularly if the antenna of the client card were placed against his or her body, would require different measurement techniques beyond the scope of this study. In all cases, the measured Wi-Fi signal levels were very far below international exposure limits (IEEE C95.1-2005 and ICNIRP) and in nearly all cases far below other RF signals in the same environments. An discusses technical aspects of the IEEE 802.11 standard on which WLANs operate that are relevant to determining the levels of RF energy exposure from WLANs. Important limiting factors are the low operating power of client cards and access points, and the low duty cycle of transmission that normally characterizes their operation.

  13. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    PubMed

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  14. 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras

    PubMed Central

    Aguilera, Teodoro

    2017-01-01

    This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211

  15. Point Positioning Service for Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2014-12-01

    In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales

  16. Investigation on the pinch point position in heat exchangers

    NASA Astrophysics Data System (ADS)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  17. Prognostic Utility of the 21-Gene Assay in Hormone Receptor–Positive Operable Breast Cancer Compared With Classical Clinicopathologic Features

    PubMed Central

    Goldstein, Lori J.; Gray, Robert; Badve, Sunil; Childs, Barrett H.; Yoshizawa, Carl; Rowley, Steve; Shak, Steven; Baehner, Frederick L.; Ravdin, Peter M.; Davidson, Nancy E.; Sledge, George W.; Perez, Edith A.; Shulman, Lawrence N.; Martino, Silvana; Sparano, Joseph A.

    2008-01-01

    Purpose Adjuvant! is a standardized validated decision aid that projects outcomes in operable breast cancer based on classical clinicopathologic features and therapy. Genomic classifiers offer the potential to more accurately identify individuals who benefit from chemotherapy than clinicopathologic features. Patients and Methods A sample of 465 patients with hormone receptor (HR) –positive breast cancer with zero to three positive axillary nodes who did (n = 99) or did not have recurrence after chemohormonal therapy had tumor tissue evaluated using a 21-gene assay. Histologic grade and HR expression were evaluated locally and in a central laboratory. Results Recurrence Score (RS) was a highly significant predictor of recurrence, including node-negative and node-positive disease (P < .001 for both) and when adjusted for other clinical variables. RS also predicted recurrence more accurately than clinical variables when integrated by an algorithm modeled after Adjuvant! that was adjusted to 5-year outcomes. The 5-year recurrence rate was only 5% or less for the estimated 46% of patients who have a low RS (< 18). Conclusion The 21-gene assay was a more accurate predictor of relapse than standard clinical features for individual patients with HR-positive operable breast cancer treated with chemohormonal therapy and provides information that is complementary to features typically used in anatomic staging, such as tumor size and lymph node involvement. The 21-gene assay may be used to select low-risk patients for abbreviated chemotherapy regimens similar to those used in our study or high-risk patients for more aggressive regimens or clinical trials evaluating novel treatments. PMID:18678838

  18. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features.

    PubMed

    Goldstein, Lori J; Gray, Robert; Badve, Sunil; Childs, Barrett H; Yoshizawa, Carl; Rowley, Steve; Shak, Steven; Baehner, Frederick L; Ravdin, Peter M; Davidson, Nancy E; Sledge, George W; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Sparano, Joseph A

    2008-09-01

    Adjuvant! is a standardized validated decision aid that projects outcomes in operable breast cancer based on classical clinicopathologic features and therapy. Genomic classifiers offer the potential to more accurately identify individuals who benefit from chemotherapy than clinicopathologic features. A sample of 465 patients with hormone receptor (HR) -positive breast cancer with zero to three positive axillary nodes who did (n = 99) or did not have recurrence after chemohormonal therapy had tumor tissue evaluated using a 21-gene assay. Histologic grade and HR expression were evaluated locally and in a central laboratory. Recurrence Score (RS) was a highly significant predictor of recurrence, including node-negative and node-positive disease (P < .001 for both) and when adjusted for other clinical variables. RS also predicted recurrence more accurately than clinical variables when integrated by an algorithm modeled after Adjuvant! that was adjusted to 5-year outcomes. The 5-year recurrence rate was only 5% or less for the estimated 46% of patients who have a low RS (< 18). The 21-gene assay was a more accurate predictor of relapse than standard clinical features for individual patients with HR-positive operable breast cancer treated with chemohormonal therapy and provides information that is complementary to features typically used in anatomic staging, such as tumor size and lymph node involvement. The 21-gene assay may be used to select low-risk patients for abbreviated chemotherapy regimens similar to those used in our study or high-risk patients for more aggressive regimens or clinical trials evaluating novel treatments.

  19. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts Seasonal allergic rhinitis known as hay fever is ... hay fever symptoms, it is important to monitor pollen counts so you can limit your exposure on days ...

  20. [Study on Accurately Controlling Discharge Energy Method Used in External Defibrillator].

    PubMed

    Song, Biao; Wang, Jianfei; Jin, Lian; Wu, Xiaomei

    2016-01-01

    This paper introduces a new method which controls discharge energy accurately. It is achieved by calculating target voltage based on transthoracic impedance and accurately controlling charging voltage and discharge pulse width. A new defibrillator is designed and programmed using this method. The test results show that this method is valid and applicable to all kinds of external defibrillators.

  1. New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and

    Science.gov Websites

    Guiding Business Decisions | News | NREL New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and Guiding Business Decisions News Release: New Solar PV Tool Accurately Calculates ; said Dirk Jordan, engineer and solar PV researcher at NREL. "We spent years building consensus in

  2. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  3. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    PubMed Central

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855

  4. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners.

    PubMed

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-04-11

    Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.

  5. Positive affect, intuition, and feelings of meaning.

    PubMed

    Hicks, Joshua A; Cicero, David C; Trent, Jason; Burton, Chad M; King, Laura A

    2010-06-01

    Subjective rationality, or the feeling of meaning, was identified by William James (1893) as a central aspect of the non-sensory fringe of consciousness. Three studies examined the interaction of positive affect (PA) and individual differences in intuitive information processing in predicting feelings of meaning for various stimuli and life events. In Study 1 (N = 352), PA and intuition interacted to predict understanding for ambiguous quotes and abstract artwork. In Study 2 (N = 211), similar interactions were found for feelings of meaning for fans after their football team lost a conference championship game and for individuals not directly affected by Hurricane Katrina in events surrounding the hurricane. In Study 3 (N = 41), induced PA interacted with individual differences in intuition in predicting accuracy for coherence judgments for loosely related linguistic triads. Intuitive individuals in the positive mood condition recognized coherent triads more accurately than did other participants. Results are discussed in terms of the role of individual differences in intuitive information processing in the relationship of PA to cognition. (c) 2010 APA, all rights reserved).

  6. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-03-11

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  7. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  8. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  9. Discrete sensors distribution for accurate plantar pressure analyses.

    PubMed

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  11. Multi-Stage Target Tracking with Drift Correction and Position Prediction

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ren, Keyan; Hou, Yibin

    2018-04-01

    Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.

  12. Nucleosome positioning from tiling microarray data.

    PubMed

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-07-01

    The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5-10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA.

  13. Wireless local area network in a prehospital environment

    PubMed Central

    Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F

    2004-01-01

    Background Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. Methods We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. Results The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Conclusions Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management. PMID:15339336

  14. Results of the long range position-determining system tests. [Field Army system

    NASA Technical Reports Server (NTRS)

    Rhode, F. W.

    1973-01-01

    The long range position-determining system (LRPDS) has been developed by the Corps of Engineers to provide the Field Army with a rapid and accurate positioning capability. The LRPDS consists of an airborne reference position set (RPS), up to 30 ground based positioning sets (PS), and a position computing central (PCC). The PCC calculates the position of each PS based on the range change information provided by each Set. The positions can be relayed back to the PS again via RPS. Each PS unit contains a double oven precise crystal oscillator. The RPS contains a Hewlett-Packard cesium beam standard. Frequency drifts and off-sets of the crystal oscillators are taken in account in the data reduction process. A field test program was initiated in November 1972. A total of 54 flights were made which included six flights for equipment testing and 48 flights utilizing the field test data reduction program. The four general types of PS layouts used were: short range; medium range; long range; tactical configuration. The overall RMS radial error of the unknown positions varied from about 2.3 meters for the short range to about 15 meters for the long range. The corresponding elevation RMS errors vary from about 12 meters to 37 meters.

  15. Research on the precise positioning of customers in large data environment

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; He, Lili

    2018-04-01

    Customer positioning has always been a problem that enterprises focus on. In this paper, FCM clustering algorithm is used to cluster customer groups. However, due to the traditional FCM clustering algorithm, which is susceptible to the influence of the initial clustering center and easy to fall into the local optimal problem, the short board of FCM is solved by the gray optimization algorithm (GWO) to achieve efficient and accurate handling of a large number of retailer data.

  16. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB

    PubMed Central

    Sugiman-Marangos, Seiji N.; Weiss, Yoni M.; Junop, Murray S.

    2016-01-01

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing. PMID:27044084

  17. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  18. Improvement of CD-SEM mark position measurement accuracy

    NASA Astrophysics Data System (ADS)

    Kasa, Kentaro; Fukuhara, Kazuya

    2014-04-01

    CD-SEM is now attracting attention as a tool that can accurately measure positional error of device patterns. However, the measurement accuracy can get worse due to pattern asymmetry as in the case of image based overlay (IBO) and diffraction based overlay (DBO). For IBO and DBO, a way of correcting the inaccuracy arising from measurement patterns was suggested. For CD-SEM, although a way of correcting CD bias was proposed, it has not been argued how to correct the inaccuracy arising from pattern asymmetry using CD-SEM. In this study we will propose how to quantify and correct the measurement inaccuracy affected by pattern asymmetry.

  19. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians.

    PubMed

    Ntaios, G; Gioulekas, F; Papavasileiou, V; Strbian, D; Michel, P

    2016-11-01

    ASTRAL, SEDAN and DRAGON scores are three well-validated scores for stroke outcome prediction. Whether these scores predict stroke outcome more accurately compared with physicians interested in stroke was investigated. Physicians interested in stroke were invited to an online anonymous survey to provide outcome estimates in randomly allocated structured scenarios of recent real-life stroke patients. Their estimates were compared to scores' predictions in the same scenarios. An estimate was considered accurate if it was within 95% confidence intervals of actual outcome. In all, 244 participants from 32 different countries responded assessing 720 real scenarios and 2636 outcomes. The majority of physicians' estimates were inaccurate (1422/2636, 53.9%). 400 (56.8%) of physicians' estimates about the percentage probability of 3-month modified Rankin score (mRS) > 2 were accurate compared with 609 (86.5%) of ASTRAL score estimates (P < 0.0001). 394 (61.2%) of physicians' estimates about the percentage probability of post-thrombolysis symptomatic intracranial haemorrhage were accurate compared with 583 (90.5%) of SEDAN score estimates (P < 0.0001). 160 (24.8%) of physicians' estimates about post-thrombolysis 3-month percentage probability of mRS 0-2 were accurate compared with 240 (37.3%) DRAGON score estimates (P < 0.0001). 260 (40.4%) of physicians' estimates about the percentage probability of post-thrombolysis mRS 5-6 were accurate compared with 518 (80.4%) DRAGON score estimates (P < 0.0001). ASTRAL, DRAGON and SEDAN scores predict outcome of acute ischaemic stroke patients with higher accuracy compared to physicians interested in stroke. © 2016 EAN.

  20. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  1. Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter

    PubMed Central

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-01

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036

  2. Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.

    PubMed

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-24

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.

  3. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    NASA Astrophysics Data System (ADS)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  4. Accurate lithography simulation model based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  5. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient.

    PubMed

    Barlow, Andrew L; Macleod, Alasdair; Noppen, Samuel; Sanderson, Jeremy; Guérin, Christopher J

    2010-12-01

    One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy.

  6. 48 CFR 552.215-72 - Price Adjustment-Failure To Provide Accurate Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Price Adjustment-Failure... Provisions and Clauses 552.215-72 Price Adjustment—Failure To Provide Accurate Information. As prescribed in 515.408(d), insert the following clause: Price Adjustment—Failure To Provide Accurate Information (AUG...

  7. Accurate evaluation of fast threshold voltage shift for SiC MOS devices under various gate bias stress conditions

    NASA Astrophysics Data System (ADS)

    Sometani, Mitsuru; Okamoto, Mitsuo; Hatakeyama, Tetsuo; Iwahashi, Yohei; Hayashi, Mariko; Okamoto, Dai; Yano, Hiroshi; Harada, Shinsuke; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-04-01

    We investigated methods of measuring the threshold voltage (V th) shift of 4H-silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) under positive DC, negative DC, and AC gate bias stresses. A fast measurement method for V th shift under both positive and negative DC stresses revealed the existence of an extremely large V th shift in the short-stress-time region. We then examined the effect of fast V th shifts on drain current (I d) changes within a pulse under AC operation. The fast V th shifts were suppressed by nitridation. However, the I d change within one pulse occurred even in commercially available SiC MOSFETs. The correlation between I d changes within one pulse and V th shifts measured by a conventional method is weak. Thus, a fast and in situ measurement method is indispensable for the accurate evaluation of I d changes under AC operation.

  8. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  9. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    NASA Astrophysics Data System (ADS)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-06-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.

  10. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    PubMed Central

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  11. Accurate forced-choice recognition without awareness of memory retrieval.

    PubMed

    Voss, Joel L; Baym, Carol L; Paller, Ken A

    2008-06-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.

  12. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  13. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  14. Multidimensional gas chromatography in combination with accurate mass, tandem mass spectrometry, and element-specific detection for identification of sulfur compounds in tobacco smoke.

    PubMed

    Ochiai, Nobuo; Mitsui, Kazuhisa; Sasamoto, Kikuo; Yoshimura, Yuta; David, Frank; Sandra, Pat

    2014-09-05

    A method is developed for identification of sulfur compounds in tobacco smoke extract. The method is based on large volume injection (LVI) of 10μL of tobacco smoke extract followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography (GC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electron ionization (EI) and positive chemical ionization (PCI), with parallel sulfur chemiluminescence detection (SCD). In order to identify each individual sulfur compound, sequential heart-cuts of 28 sulfur fractions from (1)D GC to (2)D GC were performed with the three MS detection modes (SCD/EI-TOF-MS, SCD/PCI-TOF-MS, and SCD/PCI-Q-TOF-MS). Thirty sulfur compounds were positively identified by MS library search, linear retention indices (LRI), molecular mass determination using PCI accurate mass spectra, formula calculation using EI and PCI accurate mass spectra, and structure elucidation using collision activated dissociation (CAD) of the protonated molecule. Additionally, 11 molecular formulas were obtained for unknown sulfur compounds. The determined values of the identified and unknown sulfur compounds were in the range of 10-740ngmg total particulate matter (TPM) (RSD: 1.2-12%, n=3). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A resampling strategy based on bootstrap to reduce the effect of large blunders in GPS absolute positioning

    NASA Astrophysics Data System (ADS)

    Angrisano, Antonio; Maratea, Antonio; Gaglione, Salvatore

    2018-01-01

    In the absence of obstacles, a GPS device is generally able to provide continuous and accurate estimates of position, while in urban scenarios buildings can generate multipath and echo-only phenomena that severely affect the continuity and the accuracy of the provided estimates. Receiver autonomous integrity monitoring (RAIM) techniques are able to reduce the negative consequences of large blunders in urban scenarios, but require both a good redundancy and a low contamination to be effective. In this paper a resampling strategy based on bootstrap is proposed as an alternative to RAIM, in order to estimate accurately position in case of low redundancy and multiple blunders: starting with the pseudorange measurement model, at each epoch the available measurements are bootstrapped—that is random sampled with replacement—and the generated a posteriori empirical distribution is exploited to derive the final position. Compared to standard bootstrap, in this paper the sampling probabilities are not uniform, but vary according to an indicator of the measurement quality. The proposed method has been compared with two different RAIM techniques on a data set collected in critical conditions, resulting in a clear improvement on all considered figures of merit.

  16. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  17. Scanning mass spectrometry with integrated constant distance positioning

    NASA Astrophysics Data System (ADS)

    Li, Nan; Eckhard, Kathrin; Aßmann, Jens; Hagen, Volker; Otto, Horst; Chen, Xingxing; Schuhmann, Wolfgang; Muhler, Martin

    2006-08-01

    Scanning mass spectrometry is of growing importance for the characterization of catalytically active surfaces. The instrument presented here is capable of measuring catalytic activity spatially resolved by means of two concentric capillaries. The outer one is used for cofeeding reactants such as ethene and hydrogen to the sample surface, whereas the inner one is pumping off the product mixture as inlet to a quadrupole mass spectrometer. Three-dimensional measurements under stagnant-point flow conditions become possible based on a home-built capillary positioning unit. Step-motor driven positioning stages exhibiting a minimum step width of 2.5μm̸half step are used for the x, y positioning, and the step motor in z direction has a resolution of 1μm̸half step. The system is additionally equipped with a feedback loop for following the topography of the sample throughout scanning. Hence, the obtained catalytic data are unimpaired by signal changes caused by the morphology of the investigated structure. For distance control the argon ion current is used originating from externally fed argon diffusing into the confined space between the accurately positioned capillaries and the sample surface. A well-defined microchannel flow field with 400μm wide channels and 200μm wide mounds was chosen to evaluate the developed method. The catalytic activity of a Pt catalyst deposited on glassy carbon was successfully visualized in constant probe to sample distance. Simultaneously, the topography of the sample was recorded derived from the z positioning of the capillaries.

  18. Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits

    PubMed Central

    Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat

    2007-01-01

    The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078

  19. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.

    PubMed

    Heskes, Tom; Eisinga, Rob; Breitling, Rainer

    2014-11-21

    The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .

  20. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures

    PubMed Central

    Freitas, Tracey Allen K.; Li, Po-E; Scholz, Matthew B.; Chain, Patrick S. G.

    2015-01-01

    A major challenge in the field of shotgun metagenomics is the accurate identification of organisms present within a microbial community, based on classification of short sequence reads. Though existing microbial community profiling methods have attempted to rapidly classify the millions of reads output from modern sequencers, the combination of incomplete databases, similarity among otherwise divergent genomes, errors and biases in sequencing technologies, and the large volumes of sequencing data required for metagenome sequencing has led to unacceptably high false discovery rates (FDR). Here, we present the application of a novel, gene-independent and signature-based metagenomic taxonomic profiling method with significantly and consistently smaller FDR than any other available method. Our algorithm circumvents false positives using a series of non-redundant signature databases and examines Genomic Origins Through Taxonomic CHAllenge (GOTTCHA). GOTTCHA was tested and validated on 20 synthetic and mock datasets ranging in community composition and complexity, was applied successfully to data generated from spiked environmental and clinical samples, and robustly demonstrates superior performance compared with other available tools. PMID:25765641

  1. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  2. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    NASA Astrophysics Data System (ADS)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  3. Improvement of Vehicle Positioning Using Car-to-Car Communications in Consideration of Communication Delay

    NASA Astrophysics Data System (ADS)

    Hontani, Hidekata; Higuchi, Yuya

    In this article, we propose a vehicle positioning method that can estimate positions of cars even in areas where the GPS is not available. For the estimation, each car measures the relative distance to a car running in front, communicates the measurements with other cars, and uses the received measurements for estimating its position. In order to estimate the position even if the measurements are received with time-delay, we employed the time-delay tolerant Kalman filtering. For sharing the measurements, it is assumed that a car-to-car communication system is used. Then, the measurements sent from farther cars are received with larger time-delay. It follows that the accuracy of the estimates of farther cars become worse. Hence, the proposed method manages only the states of nearby cars to reduce computing effort. The authors simulated the proposed filtering method and found that the proposed method estimates the positions of nearby cars as accurate as the distributed Kalman filtering.

  4. Can cancer researchers accurately judge whether preclinical reports will reproduce?

    PubMed Central

    Mandel, David R.; Kimmelman, Jonathan

    2017-01-01

    There is vigorous debate about the reproducibility of research findings in cancer biology. Whether scientists can accurately assess which experiments will reproduce original findings is important to determining the pace at which science self-corrects. We collected forecasts from basic and preclinical cancer researchers on the first 6 replication studies conducted by the Reproducibility Project: Cancer Biology (RP:CB) to assess the accuracy of expert judgments on specific replication outcomes. On average, researchers forecasted a 75% probability of replicating the statistical significance and a 50% probability of replicating the effect size, yet none of these studies successfully replicated on either criterion (for the 5 studies with results reported). Accuracy was related to expertise: experts with higher h-indices were more accurate, whereas experts with more topic-specific expertise were less accurate. Our findings suggest that experts, especially those with specialized knowledge, were overconfident about the RP:CB replicating individual experiments within published reports; researcher optimism likely reflects a combination of overestimating the validity of original studies and underestimating the difficulties of repeating their methodologies. PMID:28662052

  5. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  6. Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks

    NASA Astrophysics Data System (ADS)

    Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min

    2015-10-01

    Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.

  7. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  8. Inflatable bladder provides accurate calibration of pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J.

    1965-01-01

    Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.

  9. On-field mounting position estimation of a lidar sensor

    NASA Astrophysics Data System (ADS)

    Khan, Owes; Bergelt, René; Hardt, Wolfram

    2017-10-01

    In order to retrieve a highly accurate view of their environment, autonomous cars are often equipped with LiDAR sensors. These sensors deliver a three dimensional point cloud in their own co-ordinate frame, where the origin is the sensor itself. However, the common co-ordinate system required by HAD (Highly Autonomous Driving) software systems has its origin at the center of the vehicle's rear axle. Thus, a transformation of the acquired point clouds to car co-ordinates is necessary, and thereby the determination of the exact mounting position of the LiDAR system in car coordinates is required. Unfortunately, directly measuring this position is a time-consuming and error-prone task. Therefore, different approaches have been suggested for its estimation which mostly require an exhaustive test-setup and are again time-consuming to prepare. When preparing a high number of LiDAR mounted test vehicles for data acquisition, most approaches fall short due to time or money constraints. In this paper we propose an approach for mounting position estimation which features an easy execution and setup, thus making it feasible for on-field calibration.

  10. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    NASA Astrophysics Data System (ADS)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  11. Accurate where it counts: Empathic accuracy on conflict and no-conflict days.

    PubMed

    Lazarus, Gal; Bar-Kalifa, Eran; Rafaeli, Eshkol

    2018-03-01

    When we are accurate regarding our partners' negative moods, are we seen as more responsive (and do we see them as such) as a function of the presence/absence of conflict? In 2 daily diary studies, empathic accuracy (EA) was assessed by comparing targets' daily negative moods with perceivers' inferences of these moods. We hypothesized that conflict will be associated with reductions in perceived partner responsiveness (PPR) for both parties; that on no-conflict days, EA will be positively associated with both parties' PPR; that on conflict days, this positive association will be stronger for targets but will become negative for perceivers; and that regardless of conflict, overestimation (vs. underestimation) of negative moods will be tied with higher PPR for targets but with lower PPR for perceivers. Thirty-six (Sample 1) and 77 (Sample 2) committed couples completed daily diaries (for 21 or 35 days, respectively). We utilized multilevel polynomial regression with response surface analyses, a sophisticated approach for studying multisource data of this sort (Edwards & Parry, 1993). Results partially supported our hypotheses: conflict was tied to reduced PPR; on no-conflict days, EA was not consistently predictive of target or perceiver PPR; on conflict days, EA predicted increased target PPR but decreased perceiver PPR; finally, overestimation predicted increased target PPR on no-conflict days and decreased perceiver PPR regardless of conflict. These results highlight the double-edged effects of EA on conflict days, and the importance of investigating dyadic EA in a context-sensitive approach. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  13. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  14. Negative and Positive Association Rules Mining from Text Using Frequent and Infrequent Itemsets

    PubMed Central

    Mahmood, Sajid; Shahbaz, Muhammad; Guergachi, Aziz

    2014-01-01

    Association rule mining research typically focuses on positive association rules (PARs), generated from frequently occurring itemsets. However, in recent years, there has been a significant research focused on finding interesting infrequent itemsets leading to the discovery of negative association rules (NARs). The discovery of infrequent itemsets is far more difficult than their counterparts, that is, frequent itemsets. These problems include infrequent itemsets discovery and generation of accurate NARs, and their huge number as compared with positive association rules. In medical science, for example, one is interested in factors which can either adjudicate the presence of a disease or write-off of its possibility. The vivid positive symptoms are often obvious; however, negative symptoms are subtler and more difficult to recognize and diagnose. In this paper, we propose an algorithm for discovering positive and negative association rules among frequent and infrequent itemsets. We identify associations among medications, symptoms, and laboratory results using state-of-the-art data mining technology. PMID:24955429

  15. Human leader and robot follower team: correcting leader's position from follower's heading

    NASA Astrophysics Data System (ADS)

    Borenstein, Johann; Thomas, David; Sights, Brandon; Ojeda, Lauro; Bankole, Peter; Fellars, Donald

    2010-04-01

    In multi-agent scenarios, there can be a disparity in the quality of position estimation amongst the various agents. Here, we consider the case of two agents - a leader and a follower - following the same path, in which the follower has a significantly better estimate of position and heading. This may be applicable to many situations, such as a robotic "mule" following a soldier. Another example is that of a convoy, in which only one vehicle (not necessarily the leading one) is instrumented with precision navigation instruments while all other vehicles use lower-precision instruments. We present an algorithm, called Follower-derived Heading Correction (FDHC), which substantially improves estimates of the leader's heading and, subsequently, position. Specifically, FHDC produces a very accurate estimate of heading errors caused by slow-changing errors (e.g., those caused by drift in gyros) of the leader's navigation system and corrects those errors.

  16. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  17. Ensemble positive unlabeled learning for disease gene identification.

    PubMed

    Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong

    2014-01-01

    An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.

  18. Treating knee pain: history taking and accurate diagnoses.

    PubMed

    Barratt, Julian

    2010-07-01

    Prompt and effective diagnosis and treatment for common knee problems depend on practitioners' ability to distinguish between traumatic and inflammatory knee conditions. This article aims to enable practitioners to make accurate assessments, carry out knee examinations and undertake selected special tests as necessary before discharging or referring patients.

  19. Foresight begins with FMEA. Delivering accurate risk assessments.

    PubMed

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  20. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.