Sample records for accurately measured total

  1. Pelvic orientation for total hip arthroplasty in lateral decubitus: can it be accurately measured?

    PubMed

    Sykes, Alice M; Hill, Janet C; Orr, John F; Gill, Harinderjit S; Salazar, Jose J; Humphreys, Lee D; Beverland, David E

    2016-05-16

    During total hip arthroplasty (THA), accurately predicting acetabular cup orientation remains a key challenge, in great part because of uncertainty about pelvic orientation. This pilot study aimed to develop and validate a technique to measure pelvic orientation; establish its accuracy in the location of anatomical landmarks and subsequently; investigate if limb movement during a simulated surgical procedure alters pelvic orientation. The developed technique measured 3-D orientation of an isolated Sawbone pelvis, it was then implemented to measure pelvic orientation in lateral decubitus with post-THA patients (n = 20) using a motion capture system. Orientation of the isolated Sawbone pelvis was accurately measured, demonstrated by high correlations with angular data from a coordinate measurement machine; R-squared values close to 1 for all pelvic axes. When applied to volunteer subjects, largest movements occurred about the longitudinal pelvic axis; internal and external pelvic rotation. Rotations about the anteroposterior axis, which directly affect inclination angles, showed >75% of participants had movement within ±5° of neutral, 0°. The technique accurately measured orientation of the isolated bony pelvis. This was not the case in a simulated theatre environment. Soft tissue landmarks were difficult to palpate repeatedly. These findings have direct clinical relevance, landmark registration in lateral decubitus is a potential source of error, contributing here to large ranges in measured movement. Surgeons must be aware that present techniques using bony landmarks to reference pelvic orientation for cup implantation, both computer-based and mechanical, may not be sufficiently accurate.

  2. An accurate and rapid radiographic method of determining total lung capacity

    PubMed Central

    Reger, R. B.; Young, A.; Morgan, W. K. C.

    1972-01-01

    The accuracy and reliability of Barnhard's radiographic method of determining total lung capacity have been confirmed by several groups of investigators. Despite its simplicity and general reliability, it has several shortcomings, especially when used in large-scale epidemiological surveys. Of these, the most serious is related to film technique; thus, when the cardiac and diaphragmatic shadows are poorly defined, the appropriate measurements cannot be made accurately. A further drawback involves the time needed to measure the segments and to perform the necessary calculations. We therefore set out to develop an abbreviated and simpler radiographic method for determining total lung capacity. This uses a step-wise multiple regression model which allows total lung capacity to be derived as follows: posteroanterior and lateral films are divided into the standard sections as described in the text, the width, depth, and height of sections 1 and 4 are measured in centimetres, finally the necessary derivations and substitutions are made and applied to the formula Ŷ = −1·41148 + (0·00479 X1) + (0·00097 X4), where Ŷ is the total lung capacity. In our hands this method has provided a simple, rapid, and acceptable method of determining total lung capacity. PMID:5034594

  3. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors.

    PubMed

    Rothfuss, Michael A; Unadkat, Jignesh V; Gimbel, Michael L; Mickle, Marlin H; Sejdić, Ervin

    2017-03-01

    Totally implantable wireless ultrasonic blood flowmeters provide direct-access chronic vessel monitoring in hard-to-reach places without using wired bedside monitors or imaging equipment. Although wireless implantable Doppler devices are accurate for most applications, device size and implant lifetime remain vastly underdeveloped. We review past and current approaches to miniaturization and implant lifetime extension for wireless implantable Doppler devices and propose approaches to reduce device size and maximize implant lifetime for the next generation of devices. Additionally, we review current and past approaches to accurate blood flow measurements. This review points toward relying on increased levels of monolithic customization and integration to reduce size. Meanwhile, recommendations to maximize implant lifetime should include alternative sources of power, such as transcutaneous wireless power, that stand to extend lifetime indefinitely. Coupling together the results will pave the way for ultra-miniaturized totally implantable wireless blood flow monitors for truly chronic implantation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  9. Trends in total column ozone measurements

    NASA Technical Reports Server (NTRS)

    Rowland, F. S.; Angell, J.; Attmannspacher, W.; Bloomfield, P.; Bojkov, R. D.; Harris, N.; Komhyr, W.; Mcfarland, M.; Mcpeters, R.; Stolarski, R. S.

    1989-01-01

    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record.

  10. Total Cross Sections as a Surrogate for Neutron Capture: An Opportunity to Accurately Constrain (n,γ) Cross Sections for Nuclides Beyond the Reach of Direct Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, Paul E.

    2014-03-05

    There are many (n,γ) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,γ) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of 151Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent 151Sm (n,γ)more » measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ~20 years ago as having (n,γ) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.« less

  11. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  12. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  13. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  14. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  15. The need for accurate total cholesterol measurement. Recommended analytical goals, current state of reliability, and guidelines for better determinations.

    PubMed

    Naito, H K

    1989-03-01

    We have approached a dawn of a new era in detection, evaluation, treatment, and monitoring of individuals with elevated blood cholesterol levels who are at increased risk for CHD. The NHLBI's National Cholesterol Education Program will be the major force underlying this national awareness program, which is dependent on the clinical laboratories providing reliable data. Precision or reproducibility of results is not a problem for most of the laboratories, but accuracy is a major concern. Both the manufacturers and laboratorians need to standardize the measurement for cholesterol so that the accuracy base is traceable to the NCCLS NRS/CHOL. The manufacturers need to adopt a uniform policy that will ensure that the values assigned to calibration, quality control, and quality assurance or survey materials are accurate and traceable to the NCCLS/CHOL. Since, at present, there are some limitations of these materials caused by matrix effects, laboratories are encouraged to use the CDC-NHLBI National Reference Laboratory Network to evaluate and monitor their ability to measure patient blood cholesterol levels accurately. Major areas of analytical problems are identified and general, as well as specific, recommendations are provided to help ensure reliable measurement of cholesterol in patient specimens.

  16. Older patients can accurately recall their preoperative health status six weeks following total hip arthroplasty.

    PubMed

    Marsh, Jackie; Bryant, Dianne; MacDonald, Steven J

    2009-12-01

    In clinical trials, use of patient recall data would be beneficial when the collection of baseline data is impossible, such as in trauma situations. We investigated the ability of older patients to accurately recall their preoperative quality of life, function, and general health status at six weeks following total hip arthroplasty. We randomized consecutive patients who were fifty-five years of age or older into two groups. At each assessment, patients completed self-report questionnaires (at four weeks preoperatively, on the day of surgery, and at six weeks and three months postoperatively for Group 1 and at six weeks and three months postoperatively for Group 2). At six weeks postoperatively, all patients completed the questionnaires on the basis of their recollection of their preoperative health status. We evaluated the validity and reliability of recall ratings, the degree of error in recall ratings, and the effects of the use of recall data on power and sample size requirements. A total of 174 patients (mean age, seventy-one years) who were undergoing either primary or revision total hip arthroplasty were randomized and included in the analysis (118 patients were in Group 1 and fifty-six were in Group 2). Agreement between actual and recalled data was excellent for disease-specific questionnaires (intraclass correlation coefficient, 0.86, 0.87, and 0.88) and moderate for generic health measures (intraclass correlation coefficient, 0.48, 0.58, and 0.60). Increased error associated with recalled ratings compared with actual ratings necessitates minimal increases in sample size or results in small decreases in power. Patients undergoing total hip arthroplasty can accurately recall their preoperative health status at six weeks postoperatively.

  17. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  18. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas

    2018-06-01

    Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.

  19. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector.

    PubMed

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A; Kadam, Sudarshan S; Deshpande, Deepak D

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx ™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be -1.3%, 1.9%, -0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a

  20. Accurate mass measurement: terminology and treatment of data.

    PubMed

    Brenton, A Gareth; Godfrey, A Ruth

    2010-11-01

    High-resolution mass spectrometry has become ever more accessible with improvements in instrumentation, such as modern FT-ICR and Orbitrap mass spectrometers. This has resulted in an increase in the number of articles submitted for publication quoting accurate mass data. There is a plethora of terms related to accurate mass analysis that are in current usage, many employed incorrectly or inconsistently. This article is based on a set of notes prepared by the authors for research students and staff in our laboratories as a guide to the correct terminology and basic statistical procedures to apply in relation to mass measurement, particularly for accurate mass measurement. It elaborates on the editorial by Gross in 1994 regarding the use of accurate masses for structure confirmation. We have presented and defined the main terms in use with reference to the International Union of Pure and Applied Chemistry (IUPAC) recommendations for nomenclature and symbolism for mass spectrometry. The correct use of statistics and treatment of data is illustrated as a guide to new and existing mass spectrometry users with a series of examples as well as statistical methods to compare different experimental methods and datasets. Copyright © 2010. Published by Elsevier Inc.

  1. Evaluation of a modified method to measure total starch in animal feeds

    USDA-ARS?s Scientific Manuscript database

    The AOAC method 996.11 has been recognized as an accurate, repeatable, and efficient method to measure total starch in animal feeds. However, analyzing starch using the AOAC method can be expensive and associated with technical challenges. The objective of this study was to determine if an alternati...

  2. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  3. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector

    PubMed Central

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A.; Kadam, Sudarshan S.; Deshpande, Deepak D.

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show

  4. Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Bruns, Donald G.

    2018-04-01

    Precise star positions near the Sun were measured during the 21 August 2017 total solar eclipse in order to measure their gravitational deflections. The equipment, procedures, and analysis are described in detail. A portable refractor, a CCD camera, and a computerized mount were set up in Wyoming. Detailed calibrations were necessary to improve accuracy and precision. Nighttime measurements taken just before the eclipse provided cubic optical distortion corrections. Calibrations based on star field images 7.4° on both sides of the Sun taken during totality gave linear and quadratic plate constants. A total of 45 images of the sky surrounding the Sun were acquired during the middle part of totality, with an integrated exposure of 22 s. The deflection analysis depended on accurate star positions from the USNO’s UCAC5 star catalog. The final result was a deflection coefficient L  =  1.7512 arcsec, in perfect agreement with the theoretical value, with an uncertainty of only 3%.

  5. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  6. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  7. Accurate reconstruction of hyperspectral images from compressive sensing measurements

    NASA Astrophysics Data System (ADS)

    Greer, John B.; Flake, J. C.

    2013-05-01

    The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.

  8. Accurately measuring the height of (real) forest trees

    Treesearch

    Don C. Bragg

    2014-01-01

    Quick and accurate tree height measurement has always been a goal of foresters. The techniques and technology to measure height were developed long ago—even the earliest textbooks on mensuration showcased hypsometers (e.g., Schlich 1895, Mlodziansky 1898, Schenck 1905, Graves 1906), and approaches to refine these sometimes remarkable tools appeared in the first issues...

  9. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  10. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m-3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m-3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  11. Is computed tomography an accurate and reliable method for measuring total knee arthroplasty component rotation?

    PubMed

    Figueroa, José; Guarachi, Juan Pablo; Matas, José; Arnander, Magnus; Orrego, Mario

    2016-04-01

    Computed tomography (CT) is widely used to assess component rotation in patients with poor results after total knee arthroplasty (TKA). The purpose of this study was to simultaneously determine the accuracy and reliability of CT in measuring TKA component rotation. TKA components were implanted in dry-bone models and assigned to two groups. The first group (n = 7) had variable femoral component rotations, and the second group (n = 6) had variable tibial tray rotations. CT images were then used to assess component rotation. Accuracy of CT rotational assessment was determined by mean difference, in degrees, between implanted component rotation and CT-measured rotation. Intraclass correlation coefficient (ICC) was applied to determine intra-observer and inter-observer reliability. Femoral component accuracy showed a mean difference of 2.5° and the tibial tray a mean difference of 3.2°. There was good intra- and inter-observer reliability for both components, with a femoral ICC of 0.8 and 0.76, and tibial ICC of 0.68 and 0.65, respectively. CT rotational assessment accuracy can differ from true component rotation by approximately 3° for each component. It does, however, have good inter- and intra-observer reliability.

  12. Latest Developments on Obtaining Accurate Measurements with Pitot Tubes in ZPG Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Nagib, Hassan; Vinuesa, Ricardo

    2013-11-01

    Ability of available Pitot tube corrections to provide accurate mean velocity profiles in ZPG boundary layers is re-examined following the recent work by Bailey et al. Measurements by Bailey et al., carried out with probes of diameters ranging from 0.2 to 1.89 mm, together with new data taken with larger diameters up to 12.82 mm, show deviations with respect to available high-quality datasets and hot-wire measurements in the same Reynolds number range. These deviations are significant in the buffer region around y+ = 30 - 40 , and lead to disagreement in the von Kármán coefficient κ extracted from profiles. New forms for shear, near-wall and turbulence corrections are proposed, highlighting the importance of the latest one. Improved agreement in mean velocity profiles is obtained with new forms, where shear and near-wall corrections contribute with around 85%, and remaining 15% of the total correction comes from turbulence correction. Finally, available algorithms to correct wall position in profile measurements of wall-bounded flows are tested, using as benchmark the corrected Pitot measurements with artificially simulated probe shifts and blockage effects. We develop a new scheme, κB - Musker, which is able to accurately locate wall position.

  13. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  14. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  15. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens.

    PubMed

    Larson, Jeffrey S; Goodman, Laurie J; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C; Cook, Jennifer W; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D B; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J; Whitcomb, Jeannette M

    2010-06-28

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7-10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH).

  17. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  18. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    PubMed

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  19. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  20. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark®) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens

    PubMed Central

    Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.

    2010-01-01

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530

  1. Total x-ray power measurements in the Sandia LIGA program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Michael E.; Ting, Aili

    2005-08-01

    Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different frommore » the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power

  2. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  3. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity

  4. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  5. Measuring human remains in the field: Grid technique, total station, or MicroScribe?

    PubMed

    Sládek, Vladimír; Galeta, Patrik; Sosna, Daniel

    2012-09-10

    Although three-dimensional (3D) coordinates for human intra-skeletal landmarks are among the most important data that anthropologists have to record in the field, little is known about the reliability of various measuring techniques. We compared the reliability of three techniques used for 3D measurement of human remain in the field: grid technique (GT), total station (TS), and MicroScribe (MS). We measured 365 field osteometric points on 12 skeletal sequences excavated at the Late Medieval/Early Modern churchyard in Všeruby, Czech Republic. We compared intra-observer, inter-observer, and inter-technique variation using mean difference (MD), mean absolute difference (MAD), standard deviation of difference (SDD), and limits of agreement (LA). All three measuring techniques can be used when accepted error ranges can be measured in centimeters. When a range of accepted error measurable in millimeters is needed, MS offers the best solution. TS can achieve the same reliability as does MS, but only when the laser beam is accurately pointed into the center of the prism. When the prism is not accurately oriented, TS produces unreliable data. TS is more sensitive to initialization than is MS. GT measures human skeleton with acceptable reliability for general purposes but insufficiently when highly accurate skeletal data are needed. We observed high inter-technique variation, indicating that just one technique should be used when spatial data from one individual are recorded. Subadults are measured with slightly lower error than are adults. The effect of maximum excavated skeletal length has little practical significance in field recording. When MS is not available, we offer practical suggestions that can help to increase reliability when measuring human skeleton in the field. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Gap-Balancing versus Measured Resection Technique in Total Knee Arthroplasty: A Comparison Study.

    PubMed

    Churchill, Jessica L; Khlopas, Anton; Sultan, Assem A; Harwin, Steven F; Mont, Michael A

    2018-01-01

    Proper femoral component alignment in the axial plane during total knee arthroplasty (TKA) depends on accurate bone cuts and soft tissue balancing. Two methods that are used to achieve this are "measured resection" and "gap balancing." However, a controversy exists as to which method is more accurate and leads to better outcomes. Therefore, the purpose of this study was to evaluate: (1) implant survivorship, (2) patient outcomes, (3) complications, and (4) radiographic analysis comparing patients who underwent TKA with either gap-balancing or measured resection techniques. A total of 214 consecutive patients (221 knees) underwent primary TKA by a single surgeon between 2011 and 2012. Component alignment was achieved by using measured resection in 116 knees and gap balancing was used in 105 knees. The patients had a mean age of 66 years (range, 44-86 years) and a mean body mass index of 32 kg/m 2 (range, 22-52 kg/m 2 ). Patient range-of-motion (ROM) and Knee Society (KS) function and pain scores, and radiographic assessment, were assessed preoperatively and postoperatively at ∼6 weeks, 3 months, 1 year, and then annually. The mean follow-up time was 3 years. A Kaplan-Meier's analysis was performed to calculate the survivorship. The aseptic survivorship was 98% in both the measured resection and gap-balancing groups. The mean ROM was not significantly different between the measured resection and gap-balancing groups (123 vs. 123 degrees, p  = 0.990). There were no significant differences between the two groups in terms of the KS function scores (86 vs. 85 points, p  = 0.829) or the KS pain scores (93 vs. 92 points, p  = 0.425). Otherwise, the radiographic evaluation at latest follow-up did not demonstrate any evidence of progressive radiolucencies or loosening, of any prosthesis. The results of this study found that at a mean follow-up of 3 years, both the measured resection and gap-balancing techniques achieved excellent survivorship and

  7. Accurate Measurements of the Local Deuterium Abundance from HST Spectra

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1996-01-01

    An accurate measurement of the primordial value of D/H would provide a critical test of nucleosynthesis models for the early universe and the baryon density. I briefly summarize the ongoing HST observations of the interstellar H and D Lyman-alpha absorption for lines of sight to nearby stars and comment on recent reports of extragalactic D/H measurements.

  8. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  9. A randomized trial to identify accurate and cost-effective fidelity measurement methods for cognitive-behavioral therapy: project FACTS study protocol.

    PubMed

    Beidas, Rinad S; Maclean, Johanna Catherine; Fishman, Jessica; Dorsey, Shannon; Schoenwald, Sonja K; Mandell, David S; Shea, Judy A; McLeod, Bryce D; French, Michael T; Hogue, Aaron; Adams, Danielle R; Lieberman, Adina; Becker-Haimes, Emily M; Marcus, Steven C

    2016-09-15

    This randomized trial will compare three methods of assessing fidelity to cognitive-behavioral therapy (CBT) for youth to identify the most accurate and cost-effective method. The three methods include self-report (i.e., therapist completes a self-report measure on the CBT interventions used in session while circumventing some of the typical barriers to self-report), chart-stimulated recall (i.e., therapist reports on the CBT interventions used in session via an interview with a trained rater, and with the chart to assist him/her) and behavioral rehearsal (i.e., therapist demonstrates the CBT interventions used in session via a role-play with a trained rater). Direct observation will be used as the gold-standard comparison for each of the three methods. This trial will recruit 135 therapists in approximately 12 community agencies in the City of Philadelphia. Therapists will be randomized to one of the three conditions. Each therapist will provide data from three unique sessions, for a total of 405 sessions. All sessions will be audio-recorded and coded using the Therapy Process Observational Coding System for Child Psychotherapy-Revised Strategies scale. This will enable comparison of each measurement approach to direct observation of therapist session behavior to determine which most accurately assesses fidelity. Cost data associated with each method will be gathered. To gather stakeholder perspectives of each measurement method, we will use purposive sampling to recruit 12 therapists from each condition (total of 36 therapists) and 12 supervisors to participate in semi-structured qualitative interviews. Results will provide needed information on how to accurately and cost-effectively measure therapist fidelity to CBT for youth, as well as important information about stakeholder perspectives with regard to each measurement method. Findings will inform fidelity measurement practices in future implementation studies as well as in clinical practice. NCT02820623

  10. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    PubMed

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The

  11. Reliable and accurate extraction of Hamaker constants from surface force measurements.

    PubMed

    Miklavcic, S J

    2018-08-15

    A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Summer 2015 measurements of total OH reactivity at a UK coastal site

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, R.; Cryer, D. R.; Whalley, L. K.; Ingham, T.; Crilley, L.; Kramer, L. J.; Reeves, C.; Forster, G.; Oram, D.; Bandy, B.; Reed, C.; Lee, J. D.; Bloss, W.; Heard, D. E.

    2015-12-01

    The hydroxyl radical (OH) plays a central role in the day time oxidative removal of pollutants and greenhouse gases in the atmosphere. It is essential that all production and loss pathways of OH are understood and included in computer models in order to accurately predict OH concentrations for a range of environments, and in turn the rate of production of secondary products, for example ozone and organic aerosol. Direct measurement of total OH reactivity, the pseudo first order rate coefficient for OH loss by reaction with its sinks, is a very useful tool to test how complete our knowledge is of OH loss pathways. Comparison with values of total OH reactivity calculated by computer models using concentrations of simultaneously measured OH 'sinks' and unmeasured intermediates enables environments to be identified where there are unidentified 'missing' OH sinks. Total OH reactivity was measured using the laser flash photolysis combined with time-resolved laser-induced fluorescence technique during the ICOZA (Integrated Chemistry of OZone in the Atmosphere) campaign in July 2015 at the Weybourne Atmospheric Observatory (WAO), Norfolk, UK. Air masses sampled ranged from polluted air from the UK or Europe containing processed urban emissions to very clean air of marine origin. Data for measured and calculated OH reactivity will be presented in addition to a discussion of the magnitude of the 'missing' OH sink determined for each type of air mass.

  13. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  14. Measurement of total body calcium in osteoporotic patients treated with salmon calcitonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzi, I.; Thompson, K.; Cohn, S.H.

    1981-01-01

    In the past, the evaluation of therapies for osteoporosis has been limited by the lack of a suitable quantitative end point. The introduction of the technique of in vivo total body neutron activation analysis (TBNAA) has made possible the precise and accurate measurement of total body calcium (TBCa). Since almost 99 percent of TBCa is in the skeleton, TBNAA gives a direct measurement of skeletal mass. Thus, changes in skeletal mass serve as an objective criterion in the evaluation of the efficacy of the therapy in osteoporosis. Studies performed at Brookhaven National Laboratory and elsewhere have reported the use ofmore » calcitonin (CT) in the treatment of primary osteoporosis and related conditions in a limited number of patients. The physiological effects of CT as an inhibitor of bone resorption has been the rationale of its use. The results of a randomized, controlled, 2 year therapeutical trial of CT in a group of postmenopausal osteoporotic women are presented in this report.« less

  15. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  16. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  17. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  18. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  19. Toward more accurate loss tangent measurements in reentrant cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  20. Measuring Solar Coronal Magnetism during the Total Solar Eclipse of 2017

    NASA Astrophysics Data System (ADS)

    Gibson, K. L.; Tomczyk, S.

    2017-12-01

    The total solar eclipse on August 21, 2017 provided a notable opportunity to measure the solar corona at specific emission wavelengths to gain information about coronal magnetic fields. Solar magnetic fields are intimately related to the generation of space weather and its effects on the earth, and the infrared imaging and polarization information collected on coronal emission lines here will enhance the scientific value of several other ongoing experiments, as well as benefit the astrophysics and upper atmosphere communities. Coronal measurements were collected during the 2 minute and 24 second totality period from Casper Mountain, WY. Computer-controlled telescopes automatically inserted four different narrow band pass filters to capture images in the visible range on a 4D PolCam, and in the infrared range on the FLIR 8501c camera. Each band pass filter selects a specific wavelength range that corresponds to a known coronal emission line possessing magnetic sensitivity. The 4D PolCam incorporated a novel grid of linear polarizers precisely aligned with the micron scale pixels. This allowed for direct measurement of the degree of linear polarization in a very small instrument with no external moving parts as is typically required. The FLIR offers short exposure times to freeze motion and output accurate thermal measurements. This allowed a new observation of the sun's corona using thermo infrared technology.

  1. A method of treating the non-grey error in total emittance measurements

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.; Henninger, J. H.

    1971-01-01

    In techniques for the rapid determination of total emittance, the sample is generally exposed to surroundings that are at a different temperature than the sample's surface. When the infrared spectral reflectance of the surface is spectrally selective, these techniques introduce an error into the total emittance values. Surfaces of aluminum overcoated with oxides of various thicknesses fall into this class. Because they are often used as temperature control coatings on satellites, their emittances must be accurately known. The magnitude of the error was calculated for Alzak and silicon oxide-coated aluminum and was shown to be dependent on the thickness of the oxide coating. The results demonstrate that, because the magnitude of the error is thickness-dependent, it is generally impossible or impractical to eliminate it by calibrating the measuring device.

  2. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  3. A gravimetric method for the measurement of total spontaneous activity in rats.

    PubMed

    Biesiadecki, B J; Brand, P H; Koch, L G; Britton, S L

    1999-10-01

    Currently available methods for the measurement of spontaneous activity of laboratory animals require expensive, specialized equipment and may not be suitable for use in low light conditions with nocturnal species. We developed a gravimetric method that uses common laboratory equipment to quantify the total spontaneous activity of rats and is suitable for use in the dark. The rat in its home cage is placed on a top-loading electronic balance interfaced to a computer. Movements are recorded by the balance as changes in weight and transmitted to the computer at 10 Hz. Data are analyzed on-line to derive the absolute value of the difference in weight between consecutive samples, and the one-second average of the absolute values is calculated. The averages are written to file for off-line analysis and summed over the desired observation period to provide a measure of total spontaneous activity. The results of in vitro experiments demonstrated that: 1) recorded weight changes were not influenced by position of the weight on the bottom of the cage, 2) values recorded from a series of weight changes were not significantly different from the calculated values, 3) the constantly decreasing force exerted by a swinging pendulum placed on the balance was accurately recorded, 4) the measurement of activity was not influenced by the evaporation of a fluid such as urine, and 5) the method can detect differences in the activity of sleeping and waking rats over a 10-min period, as well as during 4-hr intervals recorded during active (night-time) and inactive (daytime) periods. These results demonstrate that this method provides an inexpensive, accurate, and noninvasive method to quantitate the spontaneous activity of small animals.

  4. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  5. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  6. Comparison of biuret and refractometry methods for the serum total proteins measurement in ruminants.

    PubMed

    Katsoulos, Panagiotis D; Athanasiou, Labrini V; Karatzia, Maria A; Giadinis, Nektarios; Karatzias, Harilaos; Boscos, Constantin; Polizopoulou, Zoe S

    2017-12-01

    Determination of serum total protein concentration is commonly performed by the biuret method. Refractometric measurement is a faster and less expensive alternative but its accuracy has not been determined in ruminants. The purpose of the study was to compare the serum total protein concentrations in cattle, sheep, and goats measured by the biuret method with those obtained by refractometry. Serum total protein concentration was determined in 120 cattle, 67 sheep, and 58 goat blood samples refractometrically and with the biuret method. The data were analyzed with a paired samples t-test, and Passing and Bablok regression equations and Bland and Altman plots were generated. There was a strong linear relationship between the total protein values determined with the refractometer and the biuret method in cattle, sheep, and goats. The statistical accuracy, which represents a bias correction factor that measures the deviation of the best-fit line from the 45° line through the origin, was 90.63% for cattle, 93.05% for sheep, and 91.76% for goats. The mean protein values determined with the refractometer were significantly lower than those measured with the biuret method in cattle and goats (P < .05) but not in sheep (P > .05). The evaluated refractometer was sufficiently accurate for the determination of serum total proteins in cattle, sheep, and goats, although it cannot be used interchangeably with the biuret method. The RIs should be corrected for negative bias based on the created equations. © 2017 American Society for Veterinary Clinical Pathology.

  7. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  8. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  9. Tomosynthesis can facilitate accurate measurement of joint space width under the condition of the oblique incidence of X-rays in patients with rheumatoid arthritis.

    PubMed

    Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu

    2016-06-01

    Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.

  10. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  11. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  12. Measurement of the Total Cross Section of Uranium-Uranium Collisions at √{sNN} = 192 . 8 GeV

    NASA Astrophysics Data System (ADS)

    Baltz, A. J.; Fischer, W.; Blaskiewicz, M.; Gassner, D.; Drees, K. A.; Luo, Y.; Minty, M.; Thieberger, P.; Wilinski, M.; Pshenichnov, I. A.

    2014-03-01

    The total cross section of Uranium-Uranium at √{sNN} = 192 . 8 GeV has been measured to be 515 +/-13stat +/-22sys barn, which agrees with the calculated theoretical value of 487.3 barn within experimental error. That this total cross section is more than an order of magnitude larger than the geometric ion-ion cross section is primarily due to Bound-Free Pair Production (BFPP) and Electro-Magnetic Dissociation (EMD). Nearly all beam losses were due to geometric, BFPP and EMD collisions. This allowed the determination of the total cross section from the measured beam loss rates and luminosity. The beam loss rate is calculated from a time-dependent measurement of the total beam intensity. The luminosity is measured via the detection of neutron pairs in time-coincidence in the Zero Degree Calorimeters. Apart from a general interest in verifying the calculations experimentally, an accurate prediction of the losses created in the heavy ion collisions is of practical interest for the LHC, where collision products have the potential to quench cryogenically cooled magnets.

  13. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  14. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  15. Object strength--an accurate measure for small objects that is insensitive to partial volume effects.

    PubMed

    Tofts, P S; Silver, N C; Barker, G J; Gass, A

    2005-07-01

    There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.

  16. Reference measurement procedure for total glycerides by isotope dilution GC-MS.

    PubMed

    Edwards, Selvin H; Stribling, Shelton L; Pyatt, Susan D; Kimberly, Mary M

    2012-04-01

    The CDC's Lipid Standardization Program established the chromotropic acid (CA) reference measurement procedure (RMP) as the accuracy base for standardization and metrological traceability for triglyceride testing. The CA RMP has several disadvantages, including lack of ruggedness. It uses obsolete instrumentation and hazardous reagents. To overcome these problems the CDC developed an isotope dilution GC-MS (ID-GC-MS) RMP for total glycerides in serum. We diluted serum samples with Tris-HCl buffer solution and spiked 200-μL aliquots with [(13)C(3)]-glycerol. These samples were incubated and hydrolyzed under basic conditions. The samples were dried, derivatized with acetic anhydride and pyridine, extracted with ethyl acetate, and analyzed by ID-GC-MS. Linearity, imprecision, and accuracy were evaluated by analyzing calibrator solutions, 10 serum pools, and a standard reference material (SRM 1951b). The calibration response was linear for the range of calibrator concentrations examined (0-1.24 mmol/L) with a slope and intercept of 0.717 (95% CI, 0.7123-0.7225) and 0.3122 (95% CI, 0.3096-0.3140), respectively. The limit of detection was 14.8 μmol/L. The mean %CV for the sample set (serum pools and SRM) was 1.2%. The mean %bias from NIST isotope dilution MS values for SRM 1951b was 0.7%. This ID-GC-MS RMP has the specificity and ruggedness to accurately quantify total glycerides in the serum pools used in the CDC's Lipid Standardization Program and demonstrates sufficiently acceptable agreement with the NIST primary RMP for total glyceride measurement.

  17. Radiometer for accurate (+ or - 1%) measurement of solar irradiance equal to 10,000 solar constants

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1981-01-01

    The 10,000 solar constant radiometer was developed for the accurate (+ or - 1%) measurement of the irradiance produced in the image formed by a parabolic reflector or by a multiple mirror solar installation. This radiometer is water cooled, weighs about 1 kg, and is 5 cm (2 in.) in diameter by 10 cm (4 in.) long. A sting is provided for mounting the radiometer in the solar installation capable of measuring irradiances as high as 20,000 solar constants, the instrument is self calibrating. Its accuracy depends on the accurate determination of the cavity aperture, and absorptivity of the cavity, and accurate electrical measurements. The spectral response is flat over the entire spectrum from far UV to far IR. The radiometer responds to a measurement within 99.7% of the final value within 8 s. During a measurement of the 10,000 solar constant irradiance, the temperature rise of the water is about 20 C. The radiometer has perfect cosine response up to 60 deg off the radiometer axis.

  18. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  19. Is self-reported height or arm span a more accurate alternative measure of height?

    PubMed

    Brown, Jean K; Feng, Jui-Ying; Knapp, Thomas R

    2002-11-01

    The purpose of this study was to determine whether self-reported height or arm span is the more accurate alternative measure of height. A sample of 409 people between the ages of 19 and 67 (M = 35.0) participated in this anthropometric study. Height, self-reported height, and arm span were measured by 82 nursing research students. Mean differences from criterion measures were 0.17 cm for the measuring rules, 0.47 cm for arm span, and 0.85 cm and 0.87 cm for heights. Test-retest reliability was r = .997 for both height and arm span. The relationships of height to self-reported height and arm span were r = .97 and .90, respectively. Mean absolute differences were 1.80 cm and 4.29 cm, respectively. These findings support the practice of using self-reported height as an alternative measure of measured height in clinical settings, but arm span is an accurate alternative when neither measured height nor self-reported height is obtainable.

  20. Accurate and reproducible measurements of RhoA activation in small samples of primary cells.

    PubMed

    Nini, Lylia; Dagnino, Lina

    2010-03-01

    Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Treesearch

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  2. Total inpatient treatment costs in patients with severe burns: towards a more accurate reimbursement model.

    PubMed

    Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria

    2015-01-01

    Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.

  3. A method for measuring total thiaminase activity in fish tissues

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.

    2005-01-01

    An accurate, quantitative, and rapid method for the measurement of thiaminase activity in fish samples is required to provide sufficient information to characterize the role of dietary thiaminase in the onset of thiamine deficiency in Great Lakes salmonines. A radiometric method that uses 14C-thiamine was optimized for substrate and co-substrate (nicotinic acid) concentrations, incubation time, and sample dilution. Total thiaminase activity was successfully determined in extracts of selected Great Lakes fishes and invertebrates. Samples included whole-body and selected tissues of forage fishes. Positive control material prepared from frozen alewives Alosa pseudoharengus collected in Lake Michigan enhanced the development and application of the method. The method allowed improved discrimination of thiaminolytic activity among forage fish species and their tissues. The temperature dependence of the thiaminase activity observed in crude extracts of Lake Michigan alewives followed a Q10 = 2 relationship for the 1-37??C temperature range, which is consistent with the bacterial-derived thiaminase I protein. ?? Copyright by the American Fisheries Society 2005.

  4. Advantages of measuring the Q Stokes parameter in addition to the total radiance I in the detection of absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Stamnes, Snorre; Fan, Yongzhen; Chen, Nan; Li, Wei; Tanikawa, Tomonori; Lin, Zhenyi; Liu, Xu; Burton, Sharon; Omar, Ali; Stamnes, Jakob J.; Cairns, Brian; Stamnes, Knut

    2018-05-01

    A simple but novel study was conducted to investigate whether an imager-type spectroradiometer instrument like MODIS, currently flying on board the Aqua and Terra satellites, or MERIS, which flew on board Envisat, could detect absorbing aerosols if they could measure the Q Stokes parameter in addition to the total radiance I, that is if they could also measure the linear polarization of the light. Accurate radiative transfer calculations were used to train a fast neural network forward model, which together with a simple statistical optimal estimation scheme was used to retrieve three aerosol parameters: aerosol optical depth at 869 nm, optical depth fraction of fine mode (absorbing) aerosols at 869 nm, and aerosol vertical location. The aerosols were assumed to be bimodal, each with a lognormal size distribution, located either between 0 and 2 km or between 2 and 4 km in the Earth's atmosphere. From simulated data with 3% random Gaussian measurement noise added for each Stokes parameter, it was found that by itself the total radiance I at the nine MODIS VIS channels was generally insufficient to accurately retrieve all three aerosol parameters (˜ 15% to 37% successful), but that together with the Q Stokes component it was possible to retrieve values of aerosol optical depth at 869 nm to ± 0.03, single-scattering albedo at 869 nm to ± 0.04, and vertical location in ˜ 65% of the cases. This proof-of-concept retrieval algorithm uses neural networks to overcome the computational burdens of using vector radiative transfer to accurately simulate top-of-atmosphere (TOA) total and polarized radiances, enabling optimal estimation techniques to exploit information from multiple channels. Therefore such an algorithm could, in concept, be readily implemented for operational retrieval of aerosol and ocean products from moderate or hyperspectral spectroradiometers.

  5. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    PubMed

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  6. Hospital-Based Acute Care After Total Hip and Knee Arthroplasty: Implications for Quality Measurement.

    PubMed

    Trimba, Roman; Laughlin, Richard T; Krishnamurthy, Anil; Ross, Joseph S; Fox, Justin P

    2016-03-01

    Although hospital readmissions are being adopted as a quality measure after total hip or knee arthroplasty, they may fail accurately capture the patient's postdischarge experience. We studied 272,853 discharges from 517 hospitals to determine hospital emergency department (ED) visit and readmission rates. The hospital-level, 30-day, risk-standardized ED visit (median = 5.6% [2.4%-13.7%]) and hospital readmission (5.0% [2.6%-9.2%]) rates were similar and varied widely. A hospital's risk-standardized ED visit rate did not correlate with its readmission rate (r = -0.03, P = .50). If ED visits were included in a broader "readmission" measure, 246 (47.6%) hospitals would change perceived performance groups. Including ED visits in a broader, hospital-based, acute care measure may be warranted to better describe postdischarge health care utilization. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.

    PubMed

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.

  8. Measurements of total OH reactivity during PROPHET-AMOS 2016

    NASA Astrophysics Data System (ADS)

    Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.

    2017-12-01

    As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.

  9. Accurate fluid force measurement based on control surface integration

    NASA Astrophysics Data System (ADS)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  10. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinrich, Martin, E-mail: mh.seris@gmail.com; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456; Kluska, Sven

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given onmore » how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.« less

  11. Improved Segmented-Flow Tracer-Monitored Titration for Automated Measurement of Total Alkalinity in Seawater

    NASA Astrophysics Data System (ADS)

    Spaulding, R. S.; Hales, B.; Beck, J. C.; Degrandpre, M. D.

    2008-12-01

    The four measurable inorganic carbon parameters commonly measured as part of oceanic carbon cycle studies are total dissolved inorganic carbon (DIC), total alkalinity (AT), hydrogen ion concentration (pH) and partial pressure of CO2 (pCO2). AT determination is critical for anthropogenic CO2 inventory calculations and for quantifying CaCO3 saturation. Additionally, measurement of AT in combination with one other carbonate parameter can be used to describe the inorganic carbon equilibria. Current methods for measuring AT require calibrated volumetric flasks and burettes, gravimetry, or precise flow measurements. These methods also require analysis times of ˜15 min and sample volumes of ˜200 mL, and sample introduction is not automated, resulting in labor-intensive measurements and low temporal resolution. The Tracer Monitored Titration (TMT) system was previously developed at the University of Montana for AT measurements. The TMT is not dependent on accurate gravimetric, volumetric or flow rate measurements because it relies on a pH-sensitive indicator (tracer) to track the amount of titrant added to the sample. Sample and a titrant-indicator mixture are mechanically stirred in an optical flow cell and pH is calculated using the indicator equilibrium constant and the spectrophotometrically determined concentrations of the acid and base forms of the indicator. AT is then determined using these data in a non-linear least squares regression of the AT mass and proton balances. The precision and accuracy of the TMT are 2 and 4 micromol per kg in 16 min using 110-mL of sample. The TMT is dependent on complete mixing of titrant with the sample and accurate absorbance measurements. We have developed the segmented-flow TMT (SF- TMT) to improve on these aspects and decrease sample analysis time. The TMT uses segmented flow instead of active mixing and a white LED instead of a tungsten-halogen light source. Air is added to the liquid flow stream, producing segments of liquid

  12. Measurement of shot noise in magnetic tunnel junction and its utilization for accurate system calibration

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Kubota, H.; Yakushiji, K.; Fukushima, A.; Yuasa, S.

    2017-11-01

    This work presents a technique to calibrate the spin torque oscillator (STO) measurement system by utilizing the whiteness of shot noise. The raw shot noise spectrum in a magnetic tunnel junction based STO in the microwave frequency range is obtained by first subtracting the baseline noise, and then excluding the field dependent mag-noise components reflecting the thermally excited spin wave resonances. As the shot noise is guaranteed to be completely white, the total gain of the signal path should be proportional to the shot noise spectrum obtained by the above procedure, which allows for an accurate gain calibration of the system and a quantitative determination of each noise power. The power spectral density of the shot noise as a function of bias voltage obtained by this technique was compared with a theoretical calculation, which showed excellent agreement when the Fano factor was assumed to be 0.99.

  13. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    NASA Astrophysics Data System (ADS)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  14. Optical Coherence Tomography Accurately Measures Corneal Power Change From Laser Refractive Surgery

    PubMed Central

    McNabb, Ryan P.; Farsiu, Sina; Stinnett, Sandra S.; Izatt, Joseph A.; Kuo, Anthony N.

    2014-01-01

    Purpose To determine the ability of motion corrected optical coherence tomography (OCT) to measure the corneal refractive power change due to laser in situ keratomileusis (LASIK). Design Evaluation of a diagnostic test or technology in a cohort. Subjects 70 eyes from 37 subjects undergoing LASIK were measured preoperatively. 39 eyes from 22 subjects were measured postoperatively and completed the study. Methods Consecutive patients undergoing LASIK at the Duke Eye Center who consented to participate were imaged with Placido-ring topography, Scheimpflug photography and OCT on the day of their surgery. Patients were then reimaged with the same imaging systems at the post-operative month 3 visit. Change in pre- to post-operative corneal refractive power as measured by each of the imaging modalities was compared to the pre- to post-operative change in manifest refraction using t-test with generalized estimating equations. Main Outcome Measures Corneal refractive power change due to LASIK as measured by Placido-ring topography, Scheimpflug Photography, and OCT compared to the manifest refraction change vertexed to the corneal plane. The change in manifest refraction should correspond to the change in the corneal refractive power from LASIK and was considered the reference measurement. Results In 22 returning post-LASIK individuals (39 eyes), we found no significant difference between the clinically measured pre to post LASIK change in manifest refraction and both Scheimpflug photography (p = 0.714) and OCT (p = 0.216). In contrast, keratometry values from Placido-ring topography were found to be significantly different from the measured refractive change (p < 0.001). Additionally, of the three imaging modalities, OCT recorded the smallest mean absolute difference from the reference measurement with the least amount of variability. Conclusion Motion corrected OCT more accurately measures the change in corneal refractive power due to laser refractive surgery than

  15. Importance of accurate measurements in nutrition research: dietary flavonoids as a case study

    USDA-ARS?s Scientific Manuscript database

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  16. A method to account for the temperature sensitivity of TCCON total column measurements

    NASA Astrophysics Data System (ADS)

    Niebling, Sabrina G.; Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) consists of ground-based Fourier Transform Spectrometer (FTS) systems all around the world. It achieves better than 0.25% precision and accuracy for total column measurements of CO2 [Wunch et al. (2011)]. In recent years, the TCCON data processing and retrieval software (GGG) has been improved to achieve better and better results (e. g. ghost correction, improved a priori profiles, more accurate spectroscopy). However, a small error is also introduced by the insufficent knowledge of the true temperature profile in the atmosphere above the individual instruments. This knowledge is crucial to retrieve highly precise gas concentrations. In the current version of the retrieval software, we use six-hourly NCEP reanalysis data to produce one temperature profile at local noon for each measurement day. For sites in the mid latitudes which can have a large diurnal variation of the temperature in the lowermost kilometers of the atmosphere, this approach can lead to small errors in the final gas concentration of the total column. Here, we present and describe a method to account for the temperature sensitivity of the total column measurements. We exploit the fact that H2O is most abundant in the lowermost kilometers of the atmosphere where the largest diurnal temperature variations occur. We use single H2O absorption lines with different temperature sensitivities to gain information about the temperature variations over the course of the day. This information is used to apply a posteriori correction of the retrieved gas concentration of total column. In addition, we show that the a posteriori temperature correction is effective by applying it to data from Lamont, Oklahoma, USA (36,6°N and 97,5°W). We chose this site because regular radiosonde launches with a time resolution of six hours provide detailed information of the real temperature in the atmosphere and allow us to test the effectiveness of our correction. References

  17. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. II. Measurement of negative radical ions using porphyrin and fullerene standard reference materials.

    PubMed

    Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2010-10-30

    A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  18. FAMBE-pH: A Fast and Accurate Method to Compute the Total Solvation Free Energies of Proteins

    PubMed Central

    Vorobjev, Yury N.; Vila, Jorge A.

    2009-01-01

    A fast and accurate method to compute the total solvation free energies of proteins as a function of pH is presented. The method makes use of a combination of approaches, some of which have already appeared in the literature; (i) the Poisson equation is solved with an optimized fast adaptive multigrid boundary element (FAMBE) method; (ii) the electrostatic free energies of the ionizable sites are calculated for their neutral and charged states by using a detailed model of atomic charges; (iii) a set of optimal atomic radii is used to define a precise dielectric surface interface; (iv) a multilevel adaptive tessellation of this dielectric surface interface is achieved by using multisized boundary elements; and (v) 1:1 salt effects are included. The equilibrium proton binding/release is calculated with the Tanford–Schellman integral if the proteins contain more than ∼20–25 ionizable groups; for a smaller number of ionizable groups, the ionization partition function is calculated directly. The FAMBE method is tested as a function of pH (FAMBE-pH) with three proteins, namely, bovine pancreatic trypsin inhibitor (BPTI), hen egg white lysozyme (HEWL), and bovine pancreatic ribonuclease A (RNaseA). The results are (a) the FAMBE-pH method reproduces the observed pKa's of the ionizable groups of these proteins within an average absolute value of 0.4 pK units and a maximum error of 1.2 pK units and (b) comparison of the calculated total pH-dependent solvation free energy for BPTI, between the exact calculation of the ionization partition function and the Tanford–Schellman integral method, shows agreement within 1.2 kcal/mol. These results indicate that calculation of total solvation free energies with the FAMBE-pH method can provide an accurate prediction of protein conformational stability at a given fixed pH and, if coupled with molecular mechanics or molecular dynamics methods, can also be used for more realistic studies of protein folding, unfolding, and dynamics

  19. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  20. Airmass dependence of the Dobson total ozone measurements

    NASA Technical Reports Server (NTRS)

    Degorska, M.; Rajewska-Wiech, B.

    1994-01-01

    For many years the airmass dependence of total ozone measurements at Belsk has been observed to vary noticeably from one day to another. Series of AD wavelength pairs measurements taken out to high airmass were analyzed and compared with the two parameter stray light model presented by Basher. The analysis extended to the series of CD measurements indicates the role of atmospheric attenuation in appearing the airmass dependence. The minor noon decline of total ozone has been observed in the CD measurement series similarly as in those of the AD wavelength pairs. Such errors may seriously affect the accuracy of CD measurements at high latitude stations and the observations derived in winter at middle latitude stations.

  1. Validation of a novel high-sensitivity radioimmunoassay procedure for measurement of total thyroxine concentration in psittacine birds and snakes.

    PubMed

    Greenacre, C B; Young, D W; Behrend, E N; Wilson, G H

    2001-11-01

    To validate a novel high-sensitivity radioimmunoassay (RIA) procedure developed to accurately measure the relatively low serum total thyroxine (T4) concentrations of birds and reptiles and to establish initial reference ranges forT4 concentration in selected species of psittacine birds and snakes. 56 healthy nonmolting adult psittacine birds representing 6 species and 42 captive snakes representing 4 species. A solid-phase RIA designed to measure free T4 concentrations in dialysates of human serum samples was used without dialysis to evaluate total T4 concentration in treated samples obtained from birds and reptiles. Serum T4 binding components were removed to allow assay of undialyzed samples. Assay validation was assessed by determining recovery of expected amounts of T4 in treated samples that were serially diluted or to which T4 was added. Intra- and interassay coefficient of variation (CV) was determined. Mean recovery of T4 added at 4 concentrations ranged from 84.9 to 115.0% and 95.8 to 119.4% in snakes and birds, respectively. Intra- and interassay CV was 3.8 and 11.3%, respectively. Serum total T4 concentrations for 5 species of birds ranged from 2.02 to 768 nmol/L but ranged from 3.17 to 142 nmol/L for blue-fronted Amazon parrots; concentrations ranged from 0.21 to 6.06 nmol/L for the 4 species of snakes. This new RIA method provides a commercially available, accurate, and sensitive method for measurement of the relatively low serum T4 concentrations of birds and snakes. Initial ranges for the species evaluated were established.

  2. Toward Accurate Measurement of Participation: Rethinking the Conceptualization and Operationalization of Participatory Evaluation

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve

    2009-01-01

    While participatory evaluation (PE) constitutes an important trend in the field of evaluation, its ontology has not been systematically analyzed. As a result, the concept of PE is ambiguous and inadequately theorized. Furthermore, no existing instrument accurately measures stakeholder participation. First, this article attempts to overcome these…

  3. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  4. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  5. Accurate Measurement of the Optical Constants for Organic and Organophosphorous Liquid Layers and Drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.

    We present accurate measurements for the determination of the optical constants for a series of organic liquids, including organophosphorous compounds. Bulk liquids are rarely encountered in the environment, but more commonly are present as droplets of liquids or thin layers on various substrates. Providing reference spectra to account for the plethora of morphological conditions that may be encountered under different scenarios is a challenge. An alternative approach is to provide the complex optical constants, n and k, which can be used to model the optical phenomena in media and at interfaces, minimizing the need for a vast number of laboratorymore » measurements. In this work, we present improved protocols for measuring the optical constants for a series of liquids that span the range from 7800 to 400 cm-1. The broad spectral range means that one needs to account for both the strong and weak spectral features that are encountered, all of which can be useful for detection, depending on the scenario. To span this dynamic range, both long and short cells are required for accurate measurements. The protocols are presented along with experimental and modeling results for thin layers of silicone oil on aluminum.« less

  6. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    PubMed

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can

  7. Rapid, accurate, and direct determination of total lycopene content in tomato paste

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Anese, M.; Luterotti, S.; Dadarlat, D.; Gibkes, J.; Lubbers, M.

    2003-01-01

    Lycopene that imparts red color to the tomato fruit is the most potent antioxidant among carotenes, an important nutrient and also used as a color ingredient in many food formulations. Since cooked and processed foods derived from tomatoes were shown to provide optimal lycopene boost, products such as paste, puree, juice, etc. are nowadays gaining popularity as dietary sources. The analysis of lycopene in tomato paste (partially dehydrated product prepared by vacuum concentrating tomato juice) is carried out using either high pressure liquid chromatography (HPLC), spectrophotometry, or by evaluating the color. The instability of lycopene during processes of extraction, etc., handling, and disposal of organic solvents makes the preparation of a sample for the analysis a delicate task. Despite a recognized need for accurate and rapid assessment of lycopene in tomato products no such method is available at present. The study described here focuses on a direct determination of a total lycopene content in different tomato pastes by means of the laser optothermal window (LOW) method at 502 nm. The concentration of lycopene in tomato paste ranged between 25 and 150 mg per 100 g product; the results are in excellent agreement with those obtained by spectrophotometry. The time needed to complete LOW analysis is very short, so that decomposition of pigment and the formation of artifacts are minimized. Preliminary results indicate a good degree of reproducibility making the LOW method suitable for routine assays of lycopene content in tomato paste.

  8. Temperature and Slant Path Effects in Dobson and Brewer Total Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Peter, T.; Groebner, J.; Stuebi, R.

    2009-12-01

    There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these datasets is of utmost importance if changes in TOZ of few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percent between mid-latitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments are co-located since 1998, providing a unique dataset of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross-section are calculated for each operational Brewer spectrophotometers at Arosa by using different high and low resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information of the primary standard instruments are used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely these differences increase using the spectral data of Burrows (1999). This finding illustrates, that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross-sections measured by different internationally leading laboratories.

  9. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    NASA Astrophysics Data System (ADS)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  10. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  11. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. © The Author(s) 2015.

  12. Measuring the value of accurate link prediction for network seeding.

    PubMed

    Wei, Yijin; Spencer, Gwen

    2017-01-01

    The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.

  13. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  14. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  15. Accurate, safe, and rapid method of intraoperative tumor identification for totally laparoscopic distal gastrectomy: injection of mixed fluid of sodium hyaluronate and patent blue.

    PubMed

    Nakagawa, Masatoshi; Ehara, Kazuhisa; Ueno, Masaki; Tanaka, Tsuyoshi; Kaida, Sachiko; Udagawa, Harushi

    2014-04-01

    In totally laparoscopic distal gastrectomy, determining the resection line with safe proximal margins is often difficult, particularly for tumors located in a relatively upper area. This is because, in contrast to open surgery, identifying lesions by palpating or opening the stomach is essentially impossible. This study introduces a useful method of tumor identification that is accurate, safe, and rapid. On the operation day, after inducing general anesthesia, a mixture of sodium hyaluronate and patent blue is injected into the submucosal layer of the proximal margin. When resecting stomach, all marker spots should be on the resected side. In all cases, the proximal margin is examined histologically by using frozen sections during the operation. From October 2009 to September 2011, a prospective study that evaluated this method was performed. A total of 34 patients who underwent totally laparoscopic distal gastrectomy were enrolled in this study. Approximately 5 min was required to complete the procedure. Proximal margins were negative in all cases, and the mean ± standard deviation length of the proximal margin was 23.5 ± 12.8 mm. No side effects, such as allergy, were encountered. As a method of tumor identification for totally laparoscopic distal gastrectomy, this procedure appears accurate, safe, and rapid.

  16. A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Wang, Qiyu; Wang, Shuo; Ling, Shigang; Zheng, Jieyun; Yu, Xiqian; Li, Hong

    2018-04-01

    The post mortem electrochemical analysis, including charge-discharge and electrochemical impedance spectroscopy (EIS) measurements, are critical steps for revealing the failure mechanisms of commercial lithium-ion batteries (LIBs). These post measurements usually require the reassembling of coin-cell with electrode which is often double-side-coated in commercial LIBs. It is difficult to use such double-side-coated electrode to perform accurate electrochemical measurements because the back side of the electrode is coated with active materials, rather than single-side-coated electrode that is often used in coin-cell measurements. In this study, we report a facile tape-covering sample preparation method, which can effectively suppress the influence of back side of the double-side-coated electrodes on capacity and EIS measurements in coin-cells. By tape-covering the unwanted side, the areal capacity of the desired investigated side of the electrode has been accurately measured with an experimental error of about 0.5% at various current densities, and accurate EIS measurements and analysis have been conducted as well.

  17. Handcrafted cuff manometers do not accurately measure endotracheal tube cuff pressure

    PubMed Central

    Annoni, Raquel; de Almeida, Antonio Evanir

    2015-01-01

    Objective To test the agreement between two handcrafted devices and a cuff-specific manometer. Methods The agreement between two handcrafted devices adapted to measure tracheal tube cuff pressure and a cuff-specific manometer was tested on 79 subjects. The cuff pressure was measured with a commercial manometer and with two handcrafted devices (HD) assembled with aneroid sphygmomanometers (HD1 and HD2). The data were compared using Wilcoxon and Spearman tests, the intraclass correlation coefficient (ICC) and limit-of-agreement analysis. Results Cuff pressures assessed with handcrafted devices were significantly different from commercial device measurements (pressures were higher when measured with HD1 and lower with HD2). The ICCs between the commercial device and HD1 and HD2 were excellent (ICC = 0.8 p < 0.001) and good (ICC = 0.66, p < 0.001), respectively. However, the Bland- Altman plots showed wide limits of agreement between HD1 and HD2 and the commercial device. Conclusion The handcrafted manometers do not provide accurate cuff pressure measurements when compared to a cuff-specific device and should not be used to replace the commercial cuff manometers in mechanically ventilated patients. PMID:26376160

  18. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  19. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  20. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    PubMed

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  1. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  2. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1988-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide or Hoechst 33258 is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as halodeoxy-uridine (HdU), more specifically bromodeoxyuridine (BrdU) is used as a probe for the measurement of HdU or BrdU uptake by the cells as a measure of DNA synthesis.

  3. Finding the most accurate method to measure head circumference for fetal weight estimation.

    PubMed

    Schmidt, Ulrike; Temerinac, Dunja; Bildstein, Katharina; Tuschy, Benjamin; Mayer, Jade; Sütterlin, Marc; Siemer, Jörn; Kehl, Sven

    2014-07-01

    Accurate measurement of fetal head biometry is important for fetal weight estimation (FWE) and is therefore an important prognostic parameter for neonatal morbidity and mortality and a valuable tool for determining the further obstetric management. Measurement of the head circumference (HC) in particular is employed in many commonly used weight equations. The aim of the present study was to find the most accurate method to measure head circumference for fetal weight estimation. This prospective study included 481 term pregnancies. Inclusion criteria were a singleton pregnancy and ultrasound examination with complete fetal biometric parameters within 3 days of delivery, and an absence of structural or chromosomal malformations. Different methods were used for ultrasound measurement of the HC (ellipse-traced, ellipse-calculated, and circle-calculated). As a reference method, HC was also determined using a measuring tape immediately after birth. FWE was carried out with Hadlock formulas, including either HC or biparietal diameter (BPD), and differences were compared using percentage error (PE), absolute percentage error (APE), limits of agreement (LOA), and cumulative distribution. The ellipse-traced method showed the best results for FWE among all of the ultrasound methods assessed. It had the lowest median APE and the narrowest LOA. With regard to the cumulative distribution, it included the largest number of cases at a discrepancy level of ±10%. The accuracy of BPD was similar to that of the ellipse-traced method when it was used instead of HC for weight estimation. Differences between the three techniques for calculating HC were small but significant. For clinical use, the ellipse-traced method should be recommended. However, when BPD is used instead of HC for FWE, the accuracy is similar to that of the ellipse-traced method. The BPD might therefore be a good alternative to head measurements in estimating fetal weight. Copyright © 2014 Elsevier Ireland Ltd. All

  4. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimi, Soufiene; Beigang, René; Klier, Jens

    2016-07-11

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wetmore » spray in the painting process.« less

  5. Extrinsic labeling method may not accurately measure Fe absorption from cooked pinto beans (Phaseolus vulgaris): comparison of extrinsic and intrinsic labeling of beans.

    PubMed

    Jin, Fuxia; Cheng, Zhiqiang; Rutzke, Michael A; Welch, Ross M; Glahn, Raymond P

    2008-08-27

    Isotopic labeling of food has been widely used for the measurement of Fe absorption in determining requirements and evaluating the factors involved in Fe bioavailability. An extrinsic labeling technique will not accurately predict the total Fe absorption from foods unless complete isotopic exchange takes place between an extrinsically added isotope label and the intrinsic Fe of the food. We examined isotopic exchange in the case of both white beans and colored beans (Phaseolus vulgaris) with an in vitro digestion model. There are significant differences in (58)Fe/(56)Fe ratios between the sample digest supernatant and the pellet of extrinsically labeled pinto bean. The white bean digest shows significantly better equilibration of the extrinsic (58)Fe with the intrinsic (56)Fe. In contrast to the extrinsically labeled samples, both white and red beans labeled intrinsically with (58)Fe demonstrated consistent ratios of (58)Fe/(56)Fe in the bean meal, digest, supernatant, and pellet. It is possible that the polyphenolics in the bean seed coat may bind Fe and thus interfere with extrinsic labeling of the bean meals. These observations raise questions on the accuracy of studies that used extrinsic tags to measure Fe absorption from beans. Intrinsic labeling appears necessary to accurately measure Fe bioavailability from beans.

  6. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study.

    PubMed

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-21

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  7. Simplified enzymatic high-performance anion exchange chromatographic determination of total fructans in food and pet food-limitations and measurement uncertainty.

    PubMed

    Stöber, Paul; Bénet, Sylvie; Hischenhuber, Claudia

    2004-04-21

    A simplified method to determine total fructans in food and pet food has been developed and validated. It follows the principle of AOAC method 997.08, i.e., high-performance anion exchange chromatographic (HPAEC) determination of total fructose released from fructans (F(f)) and total glucose released from fructans (G(f)) after enzymatic fructan hydrolysis. Unlike AOAC method 997.08, calculation of total fructans is based on the determination of F(f) alone. This is motivated by the inherent difficulty to accurately determine low amounts of G(f) since many food and pet food products contain other sources of total glucose (e.g., starch and sucrose). In this case, a correction factor g can be used (1.05 by default) to take into account the theoretical contribution of G(f). At levels >5% of total fructans and in commercial fructan ingredients, both F(f) and G(f) can and should be accurately determined; hence, no correction factor g is required. The method is suitable to quantify total fructans in various food and pet food products at concentrations >or=0.2% providing that the product does not contain other significant sources of total fructose such as free fructose or sucrose. Recovery rates in commercial fructan ingredients and in selected food and pet food ranged from 97 to 102%. As part of a measurement uncertainty estimation study, individual contributions to the total uncertainty (u) of the total fructan content were identified and quantified by using the validation data available. As a result, a correlation between the sucrose content and the total uncertainty of the total fructan content was established allowing us to define a limit of quantitation as a function of the sucrose content. One can conclude that this method is limited to food products where the sucrose content does not exceed about three times the total fructan content. Despite this limitation, which is inherent to any total fructan method based on the same approach, this procedure represents an

  8. Total photoproduction cross section measurement at HERA energies

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; Landon, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, H.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Áçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1993-01-01

    We present first results on the total photoproduction cross section measurement with the H1 detector at HERA. The data were extracted from low Q2 collisions of 26.7 GeV electrons with 820 GeV protons. The γp total cross section has been measured by two independent methods in the γp center of mass energy range from 90 to 290 GeV. For an average center of mass energy of 195 GeV a value of σtot (γp) = 159 +/- 7 (stat.) +/- 20 (syst.) μb was obtained. Supported by the Swedish Natural Science Research Council.

  9. Temperature and slant path effects in Dobson and Brewer total ozone measurements

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Peter, T.; GröBner, J.; Stübi, R.

    2009-12-01

    There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these data sets is of utmost importance if changes in TOZ of a few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of a few percent between midlatitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments have been colocated since 1998, providing a unique data set of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross section is calculated for each operational Brewer spectrophotometers at Arosa by using different high- and low-resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information on the primary standard instruments is used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely, these differences increase when using the spectral data of Burrows et al. (1999). This finding illustrates that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross sections measured by different internationally leading laboratories.

  10. A comparison between patient recall and concurrent measurement of preoperative quality of life outcome in total hip arthroplasty.

    PubMed

    Howell, Jonathan; Xu, Min; Duncan, Clive P; Masri, Bassam A; Garbuz, Donald S

    2008-09-01

    The objective is to evaluate the reliability of patients' recall of preoperative pain and function during the immediate postoperation period after total hip arthroplasty. A prospective cohort of 104 patients completed a survey about their quality of life before operation, and recalled preoperative status at 3 days, 6 weeks, and 12 weeks after operation. Quality of life was measured by the Western Ontario and McMaster University Osteoarthritis Index, the Oxford-12 hip score, and the 12-item Short-Form score. The intraclass correlation coefficient and Spearman correlation coefficient were used to compare preoperative quality of life scores to the scores recalled. The reliability of recall remained high up to 3 months postoperation. Patients are able to accurately recall their preoperative function for up to 3 months after total hip arthroplasty.

  11. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  12. Measurement of pelvic osteolytic lesions in follow-up studies after total hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose G.; Totterman, Saara; O'Keefe, Regis; Looney, R. John

    2006-03-01

    Previous studies have demonstrated the plausibility of using volumetric computerized tomography to provide an accurate representation and measurement of volume for pelvic osteolytic lesions following total hip joint replacement. These studies have been performed manually (or computed-assisted) by expert radiologists with the disadvantage of poor reproducibility of the experiment. The purpose of this work is to minimize the effect of user interaction in these experiments by introducing Laplacian level set methods in the volume segmentation process and using temporal articulated registration in order to follow the evolution of a lesion over time. Laplacian level set methods reduce the inter and intra-observer variability by attaching the segmented contour to edges defined in the image while keeping smoothness. The registration process allows the information of the lesion from the first visit to be used in the segmentation process of the current visit. This work compares the automated results on 7 volunteers versus the volume measured manually. Results have shown that the proposed technique is able to track osteolytic lesions and detect changes in volume over time. Intra-reader and inter-observer variabilities were reduced.

  13. Emissions of methane in Europe inferred by total column measurements

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Deutscher, N. M.; Hase, F.; Notholt, J.; Sussmann, R.; Toon, G. C.; Warneke, T.

    2017-12-01

    Atmospheric total column measurements have been used to infer emissions of methane in urban centres around the world. These measurements have been shown to be useful for verifying city-scale bottom-up inventories, and they can provide both timely and sub-annual emission information. We will present our analysis of atmospheric total column measurements of methane and carbon monoxide to infer annual and seasonal regional emissions of methane within Europe using five long-running atmospheric observatories. These observatories are part of the Total Carbon Column Observing Network, part of a global network that has been carefully designed to measure these gases on a consistent scale. Our inferred emissions will then be used to evaluate gridded emissions inventories in the region.

  14. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  15. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  16. Brewer spectrometer total ozone column measurements in Sodankylä

    NASA Astrophysics Data System (ADS)

    Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko

    2016-06-01

    Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.

  17. Error in total ozone measurements arising from aerosol attenuation

    NASA Technical Reports Server (NTRS)

    Thomas, R. W. L.; Basher, R. E.

    1979-01-01

    A generalized least squares method for deducing both total ozone and aerosol extinction spectrum parameters from Dobson spectrophotometer measurements was developed. An error analysis applied to this system indicates that there is little advantage to additional measurements once a sufficient number of line pairs have been employed to solve for the selected detail in the attenuation model. It is shown that when there is a predominance of small particles (less than about 0.35 microns in diameter) the total ozone from the standard AD system is too high by about one percent. When larger particles are present the derived total ozone may be an overestimate or an underestimate but serious errors occur only for narrow polydispersions.

  18. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  19. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  20. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  1. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  2. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  3. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error.

    PubMed

    Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean

    2013-02-28

    Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs

  4. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. I. Measurement of positive radical ions using porphyrin standard reference materials.

    PubMed

    Griffiths, Nia W; Wyatt, Mark F; Kean, Suzanna D; Graham, Andrew E; Stein, Bridget K; Brenton, A Gareth

    2010-06-15

    A method for the accurate mass measurement of positive radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. Initial use of a conjugated oligomeric calibration material was rejected in favour of a series of meso-tetraalkyl/tetraalkylaryl-functionalised porphyrins, from which the two calibrants required for a particular accurate mass measurement were chosen. While all measurements of monoisotopic species were within +/-5 ppm, and the method was rigorously validated using chemometrics, mean values of five measurements were used for extra confidence in the generation of potential elemental formulae. Potential difficulties encountered when measuring compounds containing multi-isotopic elements are discussed, where the monoisotopic peak is no longer the lowest mass peak, and a simple mass-correction solution can be applied. The method requires no significant expertise to implement, but care and attention is required to obtain valid measurements. The method is operationally simple and will prove useful to the analytical chemistry community. Copyright (c) 2010 John Wiley & Sons, Ltd.

  5. Need total sulfur content? Use chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less

  6. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.

    PubMed

    Sakai, C; Takeda, S N; Daimon, H

    2013-07-01

    We have developed the new in situ electrical-conductivity measurement system which can be operated in ultrahigh vacuum (UHV) with accurate temperature measurement down to 20 K. This system is mainly composed of a new sample-holder fixing mechanism, a new movable conductivity-measurement mechanism, a cryostat, and two receptors for sample- and four-probe holders. Sample-holder is pushed strongly against the receptor, which is connected to a cryostat, by using this new sample-holder fixing mechanism to obtain high thermal conductivity. Test pieces on the sample-holders have been cooled down to about 20 K using this fixing mechanism, although they were cooled down to only about 60 K without this mechanism. Four probes are able to be touched to a sample surface using this new movable conductivity-measurement mechanism for measuring electrical conductivity after making film on substrates or obtaining clean surfaces by cleavage, flashing, and so on. Accurate temperature measurement is possible since the sample can be transferred with a thermocouple and∕or diode being attached directly to the sample. A single crystal of Bi-based copper oxide high-Tc superconductor (HTSC) was cleaved in UHV to obtain clean surface, and its superconducting critical temperature has been successfully measured in situ. The importance of in situ measurement of resistance in UHV was demonstrated for this HTSC before and after cesium (Cs) adsorption on its surface. The Tc onset increase and the Tc offset decrease by Cs adsorption were observed.

  7. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.

    PubMed

    Klotz, Dino; Grave, Daniel A; Rothschild, Avner

    2017-08-09

    The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, η t , defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of η t by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine η t , but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of η t because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the η t values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of η t values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for

  8. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  9. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  10. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    PubMed

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. A dye binding method for measurement of total protein in microalgae.

    PubMed

    Servaites, Jerome C; Faeth, Julia L; Sidhu, Sukh S

    2012-02-01

    Protein is a large component of the standing biomass of algae. The total protein content of algae is difficult to measure because of the problems encountered in extracting all of the protein from the cells. Here we modified an existing protein assay to measure total protein in microalgae cells that involves little or no extraction of protein from the cells. Aliquots of fresh or pretreated cells were spotted onto filter paper strips. After drying, the strips were stained in a 0.1% (w/v) solution of the protein stain Coomassie Brilliant Blue R-250 for 16 to 24 h and then destained. The stained protein spots were cut out from the paper, and dye was eluted in 1% (w/v) sodium dodecyl sulfate (SDS). Absorbance at 600 nm was directly proportional to protein concentration. Cells that were recalcitrant to taking up the dye could be either heated at 80°C for 10 min in 1% SDS or briefly sonicated for 3 min to facilitate penetration of the dye into the cells. Total protein measured in Chlorella vulgaris using this method compared closely with that measured using the total N method. Total protein concentrations were measured successfully in 12 algal species using this dye binding method. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  13. The use of visible-channel data from NOAA satellites to measure total ozone amount over Antarctica

    NASA Technical Reports Server (NTRS)

    Boime, Robert D.; Warren, Steven G.; Gruber, Arnold

    1994-01-01

    Accurate, detailed maps of total ozone were not available until the launch of the Total Ozone Mapping Spectrometer (TOMS) in late 1978. However, the Scanning Radiometer (SR), an instrument on board the NOAA series satellites during the 1970s, had a visible channel that overlapped closely with the Chappuis absorption band of ozone. We are investigating whether data from the SR can be used to map Antarctic ozone prior to 1978. The method is being developed with 1980s data from the Advanced Very High Resolution Radiometer (AVHRR), which succeeded the SR on the NOAA polar-orbiting satellites. Visible-derived total ozone maps can then be compared able on the NOAA satellites, which precludes the use of a differential absorption technique to measure ozone. Consequently, our method works exclusively over scenes whose albedos are large and unvarying, i.e. scenes that contain ice sheets and/or uniform cloud-cover. Initial comparisons of time series for October-December 1987 at locations in East Antarctica show that the visible absorption by ozone in measurable and that the technique may be usable for the 1970s, but with much less accuracy than TOMS. This initial test assumes that clouds, snow, and ice all reflect the same percentage of visible light towards the satellite, regardless of satellite position or environmental conditions. This assumption is our greatest source of error. To improve the accuracy of ozone retrievals, realistic anisotropic reflectance factors are needed, which are strongly influenced by cloud and snow surface features.

  14. Small total dose measurement system for SDS-1

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi

    2009-11-01

    The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data on ionization effects in space. A compact, total dose measurement system for the small satellite (SDS-1) was developed based on the previous system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is quite smaller than the sensor for SOHLA-1, which is presented in the last year. The sensor is 8 mm wide×3 mm high×19 mm long and weighs approximately 4 g with 500 mm its wire harness. Eight pin LCC RADFET and temperature sensor are arranged on it. Seven sensors are arranged on some components inside the SDS-1. One of the sensors is arranged on a printed board in advanced microprocessing in-ORBIT experiment equipment (AMI). The AMI demonstrate 320 MIPS microprocessor and DC-DC converter for space. The absorbed dose at the points where the sensors are arranged was evaluated before flight and will be compared with resulting flight data.

  15. Method to make accurate concentration and isotopic measurements for small gas samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  16. Self-Interaction Chromatography of mAbs: Accurate Measurement of Dead Volumes.

    PubMed

    Hedberg, S H M; Heng, J Y Y; Williams, D R; Liddell, J M

    2015-12-01

    Measurement of the second virial coefficient B22 for proteins using self-interaction chromatography (SIC) is becoming an increasingly important technique for studying their solution behaviour. In common with all physicochemical chromatographic methods, measuring the dead volume of the SIC packed column is crucial for accurate retention data; this paper examines best practise for dead volume determination. SIC type experiments using catalase, BSA, lysozyme and a mAb as model systems are reported, as well as a number of dead column measurements. It was observed that lysozyme and mAb interacted specifically with Toyopearl AF-Formyl dead columns depending upon pH and [NaCl], invalidating their dead volume usage. Toyopearl AF-Amino packed dead columns showed no such problems and acted as suitable dead columns without any solution condition dependency. Dead volume determinations using dextran MW standards with protein immobilised SIC columns provided dead volume estimates close to those obtained using Toyopearl AF-Amino dead columns. It is concluded that specific interactions between proteins, including mAbs, and select SIC support phases can compromise the use of some standard approaches for estimating the dead volume of SIC columns. Two other methods were shown to provide good estimates for the dead volume.

  17. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  18. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  19. High frequent total station measurements for the monitoring of bridge vibrations

    NASA Astrophysics Data System (ADS)

    Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena

    2017-03-01

    Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.

  20. Measurement of total organic concentration in water

    NASA Technical Reports Server (NTRS)

    Winkler, E.

    1978-01-01

    Instrument for determining total organic concentration in water uses no corrosive reagents or gases. Instead continuous ultraviolet photolysis process converts organic compounds to carbon dioxide (CO2). CO2 electrode is used to measure CO2 content. Only reagent necessary is oxygen, generated in situ by electrolyzing some water. In addition to application in aerospace industry, system has potential uses in pollution monitoring and in laboratory analyses.

  1. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  2. UAV multirotor platform for accurate turbulence measurements in the atmosphere

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Wilhelm, Lionel; Sin, Kevin Edgar; Hofer, Matthias; Porté-Agel, Fernando

    2017-04-01

    One of the most challenging tasks in atmospheric field studies for wind energy is to obtain accurate turbulence measurements at any location inside the region of interest for a wind farm study. This volume would ideally include from several hundred meters to several kilometers around it and from ground height to the top of the boundary layer. An array of meteorological masts equipped with several sonic anemometers to cover all points of interest would be the best in terms of accuracy and data availability, but it is an obviously unfeasible solution. On the other hand, the evolution of wind LiDAR technology allows to measure at any point in space but unfortunately it involves two important limitations: the first one is the relatively low spatial and temporal resolution when compared to a sonic anemometer and the second one is the fact that the measurements are limited to the velocity component parallel to the laser beam (radial velocity). To overcome the aforementioned drawbacks, a UAV multirotor platform has been developed. It is based on a state-of-the-art octocopter with enough payload to carry laboratory-grade instruments for the measurement of time-resolved atmospheric pressure, three-component velocity vector and temperature; and enough autonomy to fly from 10 to 20 minutes, which is a standard averaging time in most atmospheric measurement applications. The UAV uses a gyroscope, an accelerometer, a GPS and an algorithm has been developed and integrated for the correction of any orientation and movement. This UAV platform opens many possibilities for the study of features that have been almost exclusively studied until now in wind tunnel such as wind turbine blade tip vortex characteristics, near-wake to far-wake transition, momentum entrainment from the higher part of the boundary layer in wind farms, etc. The validation of this new measurement technique has been performed against sonic anemometry in terms of wind speed and temperature time series as well as

  3. Calculation versus measurement of total energy expenditure.

    PubMed

    van Lanschot, J J; Feenstra, B W; Vermeij, C G; Bruining, H A

    1986-11-01

    In acutely ill patients both hypo- and hyperalimentation must be avoided by adjusting caloric intake to total energy expenditure (TEE). We determined the discrepancy between basal energy expenditure (BEE) calculated from the basic Harris-Benedict formula and TEE measured by continuous indirect calorimetry in a heterogeneous group of mechanically ventilated surgical patients. We also compared the accuracy of TEE calculated from the corrected Harris-Benedict formula or estimated by intermittent indirect calorimetry to that of TEE measured by continuous indirect calorimetry. The poor correlation between calculated BEE and measured TEE was significantly (p less than .05) improved by a correction factor based on each patient's clinical condition. The mean absolute difference between calculated TEE and measured TEE was 8.9 +/- 9.6 (SD) %. Calculations were significantly (p less than .05) improved by estimating TEE from two 5-min recording periods, which suggests that continuous indirect calorimetry may not always be necessary to guide caloric replacement.

  4. Sky brightness and color measurements during the 21 August 2017 total solar eclipse.

    PubMed

    Bruns, Donald G; Bruns, Ronald D

    2018-06-01

    The sky brightness was measured during the partial phases and during totality of the 21 August 2017 total solar eclipse. A tracking CCD camera with color filters and a wide-angle lens allowed measurements across a wide field of view, recording images every 10 s. The partially and totally eclipsed Sun was kept behind an occulting disk attached to the camera, allowing direct brightness measurements from 1.5° to 38° from the Sun. During the partial phases, the sky brightness as a function of time closely followed the integrated intensity of the unobscured fraction of the solar disk. A redder sky was measured close to the Sun just before totality, caused by the redder color of the exposed solar limb. During totality, a bluer sky was measured, dimmer than the normal sky by a factor of 10,000. Suggestions for enhanced measurements at future eclipses are offered.

  5. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  6. Total MRI Small Vessel Disease Burden Correlates with Cognitive Performance, Cortical Atrophy, and Network Measures in a Memory Clinic Population.

    PubMed

    Banerjee, Gargi; Jang, Hyemin; Kim, Hee Jin; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Na, Duk L; Seo, Sang Won; Werring, David John

    2018-01-01

    Recent evidence suggests that combining individual imaging markers of cerebral small vessel disease (SVD) may more accurately reflect its overall burden and better correlate with clinical measures. We wished to establish the clinical relevance of the total SVD score in a memory clinic population by investigating the association with SVD score and cognitive performance, cortical atrophy, and structural network measures, after adjusting for amyloid-β burden. We included 243 patients with amnestic mild cognitive impairment (MCI), Alzheimer's disease dementia, subcortical vascular MCI, or subcortical vascular dementia. All underwent MR and [11C] PiB-PET scanning and had standardized cognitive testing. Multiple linear regression was used to evaluate the relationships between SVD score and cognition, cortical thickness, and structural network measures. Path analyses were performed to evaluate whether network disruption mediates the effects of SVD score on cortical thickness and cognition. Total SVD score was associated with the performance of frontal (β - 4.31, SE 2.09, p = 0.040) and visuospatial (β - 0.95, SE 0.44, p = 0.032) tasks, and with reduced cortical thickness in widespread brain regions. Total SVD score was negatively correlated with nodal efficiency, as well as changes in brain network organization, with evidence of reduced integration and increasing segregation. Path analyses showed that the associations between SVD score and frontal and visuospatial scores were partially mediated by decreases in their corresponding nodal efficiency and cortical thickness. Total SVD burden has clinical relevance in a memory clinic population and correlates with cognition, and cortical atrophy, as well as structural network disruption.

  7. Results of the SOLCON FREESTAR Total Solar Irradiance measurements

    NASA Astrophysics Data System (ADS)

    Dewitte, S.; Joukoff, A.; Crommelynck, D.

    2003-04-01

    The measurement of the Total Solar Irradiance from space is ongoing since 1978. A long term series requires the combination of the time limited measurements of individual measurements. The accuracy of the long term series is limited by the absolute accuracy of the instruments, and by their ageing in space, due to exposure to UV radiation. As a reference for the combination of the different instruments, we use the measurements of the SOLar CONstant (SOLCON) instrument, which is flown regularly on the space shuttle. In this paper we will present the results of the most recent SOLCON flight, which is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) flight foreseen from 16 Jan. 2003 to 1 Feb. 2003. The anticipated results are: 1) comparison of SOLCON with the new instruments Active Cavity Radiometer Irradiance Monitor (ACRIM) III, and 2) the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE) satellite, 3) verification of the ageing of the Variability of IRradiance and Gravity Oscillations (VIRGO) radiometers.

  8. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis ofmore » our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.« less

  10. Local and Total Density Measurements in Ice Shapes

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Broughton, Howard; Sims, James J.; Bleeze, Brian; Gaines, Vatanna

    2005-01-01

    Preliminary measurements of local and total densities inside ice shapes were obtained from ice shapes grown in the NASA Glenn Research Tunnel for a range of glaze ice, rime ice, and mixed phase ice conditions on a NACA 0012 airfoil at 0 angle of attack. The ice shapes were removed from the airfoil and a slice of ice 3 mm thick was obtained using a microtome. The resulting samples were then x-rayed to obtain a micro-radiography, the film was digitized, and image processing techniques were used to extract the local and total density values.

  11. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  12. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  13. Ground-based total ozone column measurements and their diurnal variability

    NASA Astrophysics Data System (ADS)

    Silva, Abel A.

    2013-07-01

    Brewer spectrophotometers were set up in three tropical sites of South America (in the Bolivian Altiplano and seashore and biomass burning areas of Brazil) to measure the total ozone column (TOC). Only TOC measurements with uncertainties ≤1% (1σ) were considered. Typically, the standard deviation for the diurnal sets of measurements was predominantly ≤1% for two of these sites. The average variability in TOC ranged from 6.3 Dobson units (DU) to 16.8 DU, and the largest variability reached 54.3 DU. Comparisons between ground-based and satellite (Total Ozone Mapping Spectrometer (TOMS)) data showed good agreement with coefficients of determination ≤0.83. However, the quality of the ground-based measurements was affected by the weather condition, especially for one of the sites. Visual observation of the sky from the ground during the measurements with one of the Brewers added to the satellite data of reflectivity and aerosol index supports that statement.

  14. Technical note: validation of a motion analysis system for measuring the relative motion of the intermediate component of a tripolar total hip arthroplasty prosthesis.

    PubMed

    Chen, Qingshan; Lazennec, Jean Yves; Guyen, Olivier; Kinbrum, Amy; Berry, Daniel J; An, Kai-Nan

    2005-07-01

    Tripolar total hip arthroplasty (THA) prosthesis had been suggested as a method to reduce the occurrence of hip dislocation and microseparation. Precisely measuring the motion of the intermediate component in vitro would provide fundamental knowledge for understanding its mechanism. The present study validates the accuracy and repeatability of a three-dimensional motion analysis system to quantitatively measure the relative motion of the intermediate component of tripolar total hip arthroplasty prostheses. Static and dynamic validations of the system were made by comparing the measurement to that of a potentiometer. Differences between the mean system-calculated angle and the angle measured by the potentiometer were within +/-1 degrees . The mean within-trial variability was less than 1 degrees . The mean slope was 0.9-1.02 for different angular velocities. The dynamic noise was within 1 degrees . The system was then applied to measure the relative motion of an eccentric THA prosthesis. The study shows that this motion analysis system provides an accurate and practical method for measuring the relative motion of the tripolar THA prosthesis in vitro, a necessary first step towards the understanding of its in vivo kinematics.

  15. Measurements of total OH reactivity at the PROPHET site

    NASA Astrophysics Data System (ADS)

    Rickly, Pamela; Sakowski, Joseph; Bottorff, Brandon; Lew, Michelle; Stevens, Philip; Sklaveniti, Sofia; Léonardis, Thierry; Locoge, Nadine; Dusanter, Sébastien

    2017-04-01

    As the main oxidant in the daytime atmosphere, the hydroxyl radical (OH) initiates the oxidation of organic trace gases and the formation of pollutants such as ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Total OH reactivity measurements have proved to be of interest to investigate the OH budget and have highlighted an incomplete understanding of OH sinks in forested environments, which are characterized by high concentrations of biogenic volatile organic compounds (BVOCs) and their oxidation products. A research facility located in a Michigan forest, US, has hosted several campaigns of OH reactivity measurements over the last 15 years through the PROPHET (Program for Research on Oxidants: Photochemistry, Emission and Transport) program. This site is characterized by deciduous trees emitting isoprene and other BVOCs and a low impact of anthropogenic emissions. Measurements of OH reactivity were performed during PROPHET 1998 and CABINEX 2009. More recently, OH reactivity was measured during the PROPHET 2016 - AMOS (Atmospheric Measurements of Oxidants in summer) field campaign using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). In this presentation, we will show that the two measurement techniques agree within uncertainties, giving confidence in the measured OH reactivity. In addition, concomitant measurements of trace gases (VOCs, NOx, O3) made by online and offline instruments were used to perform a comprehensive apportionment of OH sinks. We will provide insights into the OH reactivity budget and will show how it compares to the previous abovementioned studies.

  16. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    NASA Astrophysics Data System (ADS)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  17. The extraction of accurate coordinates of images on photographic plates by means of a scanning type measuring machine

    NASA Technical Reports Server (NTRS)

    Ross, B. E.

    1971-01-01

    The Moire method experimental stress analysis is similar to a problem encountered in astrometry. It is necessary to extract accurate coordinates from images on photographic plates. The solution to the mutual problem found applicable to the field of experimental stress analysis is presented to outline the measurement problem. A discussion of the photo-reading device developed to make the measurements follows.

  18. Assessing Pharmacy Students’ Ability to Accurately Measure Blood Pressure Using a Blood Pressure Simulator Arm

    PubMed Central

    Bryant, Ginelle A.; Haack, Sally L.; North, Andrew M.

    2013-01-01

    Objective. To compare student accuracy in measuring normal and high blood pressures using a simulator arm. Methods. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. Results. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Conclusions. Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign. PMID:23788809

  19. Assessing pharmacy students' ability to accurately measure blood pressure using a blood pressure simulator arm.

    PubMed

    Bottenberg, Michelle M; Bryant, Ginelle A; Haack, Sally L; North, Andrew M

    2013-06-12

    To compare student accuracy in measuring normal and high blood pressures using a simulator arm. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign.

  20. Total atmospheric ozone determined from spectral measurements of direct solar UV irradiance

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Blumthaler, Mario; Ambach, Walter; Staehelin, Johannes

    1995-01-01

    With a double monochromator, high resolution spectral measurements of direct solar UV-irradiance were performed in Arosa during February and March, 1993. Total atmospheric ozone amount is determined by fitting model calculations to the measured spectra. The results are compared with the operationally performed measurements of a Dobson and a Brewer spectrometer. The total ozone amount determined from spectral measurements differs from the results of the Dobson instrument by -1.1±0.9% and from those of the Brewer instrument by -0.4±0.7%.

  1. Evaluation of a semi-automated computer algorithm for measuring total fat and visceral fat content in lambs undergoing in vivo whole body computed tomography.

    PubMed

    Rosenblatt, Alana J; Scrivani, Peter V; Boisclair, Yves R; Reeves, Anthony P; Ramos-Nieves, Jose M; Xie, Yiting; Erb, Hollis N

    2017-10-01

    Computed tomography (CT) is a suitable tool for measuring body fat, since it is non-destructive and can be used to differentiate metabolically active visceral fat from total body fat. Whole body analysis of body fat is likely to be more accurate than single CT slice estimates of body fat. The aim of this study was to assess the agreement between semi-automated computer analysis of whole body volumetric CT data and conventional proximate (chemical) analysis of body fat in lambs. Data were collected prospectively from 12 lambs that underwent duplicate whole body CT, followed by slaughter and carcass analysis by dissection and chemical analysis. Agreement between methods for quantification of total and visceral fat was assessed by Bland-Altman plot analysis. The repeatability of CT was assessed for these measures using the mean difference of duplicated measures. When compared to chemical analysis, CT systematically underestimated total and visceral fat contents by more than 10% of the mean fat weight. Therefore, carcass analysis and semi-automated CT computer measurements were not interchangeable for quantifying body fat content without the use of a correction factor. CT acquisition was repeatable, with a mean difference of repeated measures being close to zero. Therefore, uncorrected whole body CT might have an application for assessment of relative changes in fat content, especially in growing lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Total and regional body volumes derived from dual-energy X-ray absorptiometry output.

    PubMed

    Wilson, Joseph P; Fan, Bo; Shepherd, John A

    2013-01-01

    Total body volume is an important health metric used to measure body density, shape, and multicompartmental body composition but is currently only available through underwater weighing or air displacement plethysmography (ADP). The objective of this investigation was to derive an accurate body volume from dual-energy X-ray absorptiometry (DXA)-reported measures for advanced body composition models. Volunteers received a whole body DXA scan and an ADP measure at baseline (N = 25) and 6 mo (N = 22). Baseline measures were used to calibrate body volume from the reported DXA masses of fat, lean, and bone mineral content. A second population (N = 385) from the National Health and Nutrition Examination Survey was used to estimate the test-retest precision of regional (arms, legs, head, and trunk) and total body volumes. Overall, we found that DXA-volume was highly correlated to ADP-volume (R² = 0.99). The 6-mo change in total DXA-volume was highly correlated to change in ADP-volume (R² = 0.98). The root mean square percent coefficient of variation precision of DXA-volume measures ranged from 1.1% (total) to 3.2% (head). We conclude that the DXA-volume method can measure body volume accurately and precisely, can be used in body composition models, could be an independent health indicator, and is useful as a prospective or retrospective biomarker of body composition. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  3. A Measure of Total Research Impact Independent of Time and Discipline

    PubMed Central

    Pepe, Alberto; Kurtz, Michael J.

    2012-01-01

    Authorship and citation practices evolve with time and differ by academic discipline. As such, indicators of research productivity based on citation records are naturally subject to historical and disciplinary effects. We observe these effects on a corpus of astronomer career data constructed from a database of refereed publications. We employ a simple mechanism to measure research output using author and reference counts available in bibliographic databases to develop a citation-based indicator of research productivity. The total research impact (tori) quantifies, for an individual, the total amount of scholarly work that others have devoted to his/her work, measured in the volume of research papers. A derived measure, the research impact quotient (riq), is an age-independent measure of an individual's research ability. We demonstrate that these measures are substantially less vulnerable to temporal debasement and cross-disciplinary bias than the most popular current measures. The proposed measures of research impact, tori and riq, have been implemented in the Smithsonian/NASA Astrophysics Data System. PMID:23144782

  4. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  5. How accurate are lexile text measures?

    PubMed

    Stenner, A Jackson; Burdick, Hal; Sanford, Eleanor E; Burdick, Donald S

    2006-01-01

    The Lexile Framework for Reading models comprehension as the difference between a reader measure and a text measure. Uncertainty in comprehension rates results from unreliability in reader measures and inaccuracy in text readability measures. Whole-text processing eliminates sampling error in text measures. However, Lexile text measures are imperfect due to misspecification of the Lexile theory. The standard deviation component associated with theory misspecification is estimated at 64L for a standard-length passage (approximately 125 words). A consequence is that standard errors for longer texts (2,500 to 150,000 words) are measured on the Lexile scale with uncertainties in the single digits. Uncertainties in expected comprehension rates are largely due to imprecision in reader ability and not inaccuracies in text readabilities.

  6. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  7. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG

  8. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  9. Biomarker Surrogates Do Not Accurately Predict Sputum Eosinophils and Neutrophils in Asthma

    PubMed Central

    Hastie, Annette T.; Moore, Wendy C.; Li, Huashi; Rector, Brian M.; Ortega, Victor E.; Pascual, Rodolfo M.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.

    2013-01-01

    Background Sputum eosinophils (Eos) are a strong predictor of airway inflammation, exacerbations, and aid asthma management, whereas sputum neutrophils (Neu) indicate a different severe asthma phenotype, potentially less responsive to TH2-targeted therapy. Variables such as blood Eos, total IgE, fractional exhaled nitric oxide (FeNO) or FEV1% predicted, may predict airway Eos, while age, FEV1%predicted, or blood Neu may predict sputum Neu. Availability and ease of measurement are useful characteristics, but accuracy in predicting airway Eos and Neu, individually or combined, is not established. Objectives To determine whether blood Eos, FeNO, and IgE accurately predict sputum eosinophils, and age, FEV1% predicted, and blood Neu accurately predict sputum neutrophils (Neu). Methods Subjects in the Wake Forest Severe Asthma Research Program (N=328) were characterized by blood and sputum cells, healthcare utilization, lung function, FeNO, and IgE. Multiple analytical techniques were utilized. Results Despite significant association with sputum Eos, blood Eos, FeNO and total IgE did not accurately predict sputum Eos, and combinations of these variables failed to improve prediction. Age, FEV1%predicted and blood Neu were similarly unsatisfactory for prediction of sputum Neu. Factor analysis and stepwise selection found FeNO, IgE and FEV1% predicted, but not blood Eos, correctly predicted 69% of sputum Eosaccurately assigned only 41% of samples. Conclusion Despite statistically significant associations FeNO, IgE, blood Eos and Neu, FEV1%predicted, and age are poor surrogates, separately and combined, for accurately predicting sputum eosinophils and neutrophils. PMID:23706399

  10. Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections

    NASA Technical Reports Server (NTRS)

    Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.

    1990-01-01

    An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.

  11. Small Total Dose Measurement System for SOHLA-1 and SDS-1

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi

    The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data about ionization effects in space. A compact, total-dose measurement system for small satellites—Space-Oriented Higashiosaka Leading Association -1 (SOHLA-1) and Small Demonstration-Satellite -1 (SDS-1)—was developed based on a prior system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is much smaller than the sensor for SOHLA-1. The sensor for SDS-1 is 8 mm wide × 3 mm high × 19 mm long and weighs approximately 4 g with 500 mm with its wire harness. An 8-pin Lead less Chip Carrier (LCC) RADFET and temperature sensor are arranged on it. Seven sensors are mounted on some components inside the SDS-1. The sensor for SOHLA-1 is a 14-pin Dual Inline Package (DIP) type RADFET. The four sensors, which have RADFET on a printed board covered with an aluminum chassis, are mounted both inside and outside the satellite. This report presents small total dose measurement systems and ground irradiation test results for two small satellites.

  12. Improvements to the Total Temperature Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Gonsalez, Jose C.

    2005-01-01

    The ability to accurately set repeatable total temperature conditions is critical for collecting quality icing condition data, particularly near freezing conditions. As part of efforts to continually improve data quality in the NASA Glenn Icing Research Tunnel (IRT), new facility instrumentation and new calibration hardware for total temperature measurement were installed and new operational techniques were developed and implemented. This paper focuses on the improvements made in the calibration of total temperature in the IRT.

  13. Is adapted measured resection superior to gap-balancing in determining femoral component rotation in total knee replacement?

    PubMed

    Luyckx, T; Peeters, T; Vandenneucker, H; Victor, J; Bellemans, J

    2012-09-01

    Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an 'adapted' measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan. Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (SD 2.5) in the gap-balancing group and 1.7° (SD 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our 'adapted' measured resection technique was much lower than reported in the literature.

  14. Accurately determining log and bark volumes of saw logs using high-resolution laser scan data

    Treesearch

    R. Edward Thomas; Neal D. Bennett

    2014-01-01

    Accurately determining the volume of logs and bark is crucial to estimating the total expected value recovery from a log. Knowing the correct size and volume of a log helps to determine which processing method, if any, should be used on a given log. However, applying volume estimation methods consistently can be difficult. Errors in log measurement and oddly shaped...

  15. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  16. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    PubMed

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  17. Accurate temperature measurement by temperature field analysis in diamond anvil cell for thermal transport study of matter under high pressures

    NASA Astrophysics Data System (ADS)

    Yue, Donghui; Ji, Tingting; Qin, Tianru; Wang, Jia; Liu, Cailong; Jiao, Hui; Zhao, Lin; Han, Yonghao; Gao, Chunxiao

    2018-02-01

    The study on the thermal transport properties of matter under high pressure is important but is hard to fulfill in a diamond anvil cell (DAC) because the accurate measurement of the temperature gradient within the sample of DAC is very difficult. In most cases, the sample temperature can be read accurately from the thermocouples that are directly attached to the lateral edges of diamond anvils because both the sample and diamond anvils can be uniformly heated up to a given temperature. But for the thermal transport property studies in DAC, an artificial temperature distribution along the compression axis is a prerequisite. Obviously, the temperature of the top or bottom surface of the sample cannot be substituted by that of diamond anvils although diamond anvils can be considered as a good medium for heat conduction. With temperature field simulation by finite element analysis, it is found that big measurement errors can occur and are fatal to the correct analysis of thermal transport properties of materials. Thus, a method of combining both the four-thermocouple configuration and temperature field analysis is presented for the accurate temperature distribution measurement in DAC, which is based on the single-function relationship between temperature distribution and sample thermal conductivity.

  18. Reliability of Total Test Scores When Considered as Ordinal Measurements

    ERIC Educational Resources Information Center

    Biswas, Ajoy Kumar

    2006-01-01

    This article studies the ordinal reliability of (total) test scores. This study is based on a classical-type linear model of observed score (X), true score (T), and random error (E). Based on the idea of Kendall's tau-a coefficient, a measure of ordinal reliability for small-examinee populations is developed. This measure is extended to large…

  19. Device for measuring the total concentration of oxygen in gases

    DOEpatents

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  20. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  1. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  2. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  3. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2012-09-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near infrared region (∼1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs new spectroscopic analysis (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  4. a New Set-Up for Total Reaction Cross Section Measuring

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.

    2013-06-01

    The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.

  5. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  6. Accuracy verification of the photostereometric system KKN/1B developed for intraoperative measurement of knee movement immediately after total knee arthroplasty.

    PubMed

    Nishino, K; Hayashi, T; Suzuki, Y; Koga, Y; Omori, G

    1999-01-01

    The function and integrity of the knee joint following total knee arthroplasty (TKA) is determined at first by the design and implantation of the prosthesis, and later by the tension of soft tissues surrounding it. Accurate post-TKA motion data obtained intraoperatively could be used not only to optimize implantation techniques from a kinematic standpoint, but also to improve prosthetic design. We therefore developed a system specifically geared to photostereometric measurement of 6 d.o.f. knee motion. A total of eight LEDs are mounted on the prosthetic components in two sets of four by means of connecting measuring-bows. The positions of the LEDs are detected in three-dimensions by two sets of three linear CCD cameras, located bilaterally relative to the knee. The position and orientation of the femoral component relative to the tibial one are estimated from the positions of all LEDs in the sense of least-squares. Based upon results of various accuracy validation experiments performed after precise camera calibration, static overall accuracy and spatial resolution were considered to lie within 0.52 and 0.11 mm, respectively, at any point on the femoral articular surface.

  7. Comparative Analysis of the Measurement of Total Instructional Alignment

    ERIC Educational Resources Information Center

    Kick, Laura C.

    2013-01-01

    In 2007, Lisa Carter created the Total Instructional Alignment system--a process that aligns standards, curriculum, assessment, and instruction. Employed in several hundred school systems, the TIA process is a successful professional development program. The researcher developed an instrument to measure the success of the TIA process with the…

  8. Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy

    PubMed Central

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  9. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  10. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  11. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  12. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.

    PubMed

    Georgiou, Konstantinos; Larentzakis, Andreas V; Khamis, Nehal N; Alsuhaibani, Ghadah I; Alaska, Yasser A; Giallafos, Elias J

    2018-03-01

    A growing number of wearable devices claim to provide accurate, cheap and easily applicable heart rate variability (HRV) indices. This is mainly accomplished by using wearable photoplethysmography (PPG) and/or electrocardiography (ECG), through simple and non-invasive techniques, as a substitute of the gold standard RR interval estimation through electrocardiogram. Although the agreement between pulse rate variability (PRV) and HRV has been evaluated in the literature, the reported results are still inconclusive especially when using wearable devices. The purpose of this systematic review is to investigate if wearable devices provide a reliable and precise measurement of classic HRV parameters in rest as well as during exercise. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases, as well as, through internet search. The 308 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Eighteen studies were included. Sixteen of them integrated ECG - HRV technology and two of them PPG - PRV technology. All of them examined wearable devices accuracy in RV detection during rest, while only eight of them during exercise. The correlation between classic ECG derived HRV and the wearable RV ranged from very good to excellent during rest, yet it declined progressively as exercise level increased. Wearable devices may provide a promising alternative solution for measuring RV. However, more robust studies in non-stationary conditions are needed using appropriate methodology in terms of number of subjects involved, acquisition and analysis techniques implied.

  13. Current Practices of Measuring and Reference Range Reporting of Free and Total Testosterone in the United States.

    PubMed

    Le, Margaret; Flores, David; May, Danica; Gourley, Eric; Nangia, Ajay K

    2016-05-01

    The evaluation and management of male hypogonadism should be based on symptoms and on serum testosterone levels. Diagnostically this relies on accurate testing and reference values. Our objective was to define the distribution of reference values and assays for free and total testosterone by clinical laboratories in the United States. Upper and lower reference values, assay methodology and source of published reference ranges were obtained from laboratories across the country. A standardized survey was reviewed with laboratory staff via telephone. Descriptive statistics were used to tabulate results. We surveyed a total of 120 laboratories in 47 states. Total testosterone was measured in house at 73% of laboratories. At the remaining laboratories studies were sent to larger centralized reference facilities. The mean ± SD lower reference value of total testosterone was 231 ± 46 ng/dl (range 160 to 300) and the mean upper limit was 850 ± 141 ng/dl (range 726 to 1,130). Only 9% of laboratories where in-house total testosterone testing was performed created a reference range unique to their region. Others validated the instrument recommended reference values in a small number of internal test samples. For free testosterone 82% of laboratories sent testing to larger centralized reference laboratories where equilibrium dialysis and/or liquid chromatography with mass spectrometry was done. The remaining laboratories used published algorithms to calculate serum free testosterone. Reference ranges for testosterone assays vary significantly among laboratories. The ranges are predominantly defined by limited population studies of men with unknown medical and reproductive histories. These poorly defined and variable reference values, especially the lower limit, affect how clinicians determine treatment. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  15. Measuring radio-signal power accurately

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Newton, J. W.; Winkelstein, R. A.

    1979-01-01

    Absolute value of signal power in weak radio signals is determined by computer-aided measurements. Equipment operates by averaging received signal over several-minute period and comparing average value with noise level of receiver previously calibrated.

  16. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  17. The application of intraoperative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting

    PubMed Central

    Yu, Yang; Zhang, Fan; Gao, Ming-Xin; Li, Hai-Tao; Li, Jing-Xing; Song, Wei; Huang, Xin-Sheng; Gu, Cheng-Xiong

    2013-01-01

    OBJECTIVES Intraoperative transit time flow measurement (TTFM) is widely used to assess anastomotic quality in coronary artery bypass grafting (CABG). However, in sequential vein grafting, the flow characteristics collected by the conventional TTFM method are usually associated with total graft flow and might not accurately indicate the quality of every distal anastomosis in a sequential graft. The purpose of our study was to examine a new TTFM method that could assess the quality of each distal anastomosis in a sequential graft more reliably than the conventional TTFM approach. METHODS Two TTFM methods were tested in 84 patients who underwent sequential saphenous off-pump CABG in Beijing An Zhen Hospital between April and August 2012. In the conventional TTFM method, normal blood flow in the sequential graft was maintained during the measurement, and the flow probe was placed a few centimetres above the anastomosis to be evaluated. In the new method, blood flow in the sequential graft was temporarily reduced during the measurement by placing an atraumatic bulldog clamp at the graft a few centimetres distal to the anastomosis to be evaluated, while the position of the flow probe remained the same as in the conventional method. This new TTFM method was named the flow reduction TTFM. Graft flow parameters measured by both methods were compared. RESULTS Compared with the conventional TTFM, the flow reduction TTFM resulted in significantly lower mean graft blood flow (P < 0.05); in contrast, yielded significantly higher pulsatility index (P < 0.05). Diastolic filling was not significantly different between the two methods and was >50% in both cases. Interestingly, the flow reduction TTFM identified two defective middle distal anastomoses that the conventional TTFM failed to detect. Graft flows near the defective distal anastomoses were improved substantially after revision. CONCLUSIONS In this study, we found that temporary reduction of graft flow during TTFM seemed to

  18. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-01-31

    A rapid and simple validated experimental protocol is proposed for the accurate determination of the true intrinsic column efficiency and for that of the variance of the extra-column volume of the instrument used, the latter being obtained without requiring the removal of the chromatographic column from the HPLC system. This protocol was applied to 2.1mm×100mm columns packed with sub-3 (2.7μm Halo Peptide ES-C18) and sub-2μm (1.6μm prototype) core-shell particles. It was validated by observing the linear behavior of the plot of the apparent column plate height versus the reciprocal of (1+k')(2) for at least three homologous compounds, with a linear regression coefficient R(2) larger than 0.999. Irrespective of the contribution of the several, different instruments used to the total band broadening, the same column HETP value was obtained within 5%. This new protocol outperform the classical one in which the chromatographic column is replaced with a zero dead volume (ZDV) union connector to measure the extra-column volume variance, which is subtracted from the variance measured with the column to measure the intrinsic HETP. This protocol fails because it significantly underestimates the system volume variance. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  20. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  1. Cosmic ray isotope measurements with a new Cerenkov X total energy telescope

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Kish, J. C.; Schrier, D. A.

    1985-01-01

    Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes.

  2. Refractive index measurement for biomaterial samples by total internal reflection.

    PubMed

    Jin, Y L; Chen, J Y; Xu, L; Wang, P N

    2006-10-21

    The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.

  3. Determination of Ionospheric Total Electron Content Derived from Gnss Measurements

    NASA Astrophysics Data System (ADS)

    Inyurt, S.; Mekik, C.; Yildirim, O.

    2014-12-01

    Global Navigation Satellite System (GNSS) has been used in numerous fields especially related to satellite- based radio navigation system for a long time. Ionosphere, one of the upper atmosphere layers ranges from 60 km to 1500 km, is a dispersive medium and it includes a number of free electrons and ions. The ionization is mainly subject to the sun and its activity. Ionospheric activity depends also on seasonal, diurnal variations and geographical location. Total Electron Content (TEC), which is also called Slant Total Electron Content (STEC), is a parameter that changes according to ionospheric conditions and has highly variable structure. Furthermore, Vertical TEC (VTEC) can be explained as TEC value in the direction of zenith. Thanks to VTEC, TEC values can be modelled. TEC is measured in units of TECU and 1TECU= 1016 electrons/m2. Ionospheric modelling has a great importance for improving the accuracies of positioning and understanding the ionosphere. Thus, various models have been developed to detect TEC value in the last years. Single Layer Model (SLM) which provides determining TEC value and GPS positioning in the ionosphere accurately is one of the most commonly used models. SLM assumes that all free electrons are concentrated in a shell of infinitesimal thickness. In this paper SLM model was used to derive TEC values by means of Bernese 5.0 program developed by the University of Bern, Sweden. In this study, we have used regional ionosphere model to derive TEC value. First of all, GPS data have been collected from 10 stations in Turkey and 13 IGS stations for 7 days from 06.03.2010 to 12.03.2010. Then, Regional Ionosphere Model (RIM) is created with the reference of the GPS data. At the end of the process, the result files are stored as IONEX format. TEC results for those days are obtained with two hours interval. TEC variation related to the research area ranges from nearly 6 TECU to approximately 20 TECU. The obtained results show that TEC values start

  4. Accurate quantitation standards of glutathione via traceable sulfur measurement by inductively coupled plasma optical emission spectrometry and ion chromatography

    PubMed Central

    Rastogi, L.; Dash, K.; Arunachalam, J.

    2013-01-01

    The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814

  5. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  6. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets.

    PubMed

    Burgess, Helen J; Wyatt, James K; Park, Margaret; Fogg, Louis F

    2015-06-01

    There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Laboratory or participants' homes. Thirty-five healthy adults, age 21-62 y. N/A. Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. © 2015 Associated Professional Sleep Societies, LLC.

  7. Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases.

    PubMed

    Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie

    2009-10-10

    Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

  8. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-04

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Radio interferometric measurements for accurate planetary orbiter navigation

    NASA Technical Reports Server (NTRS)

    Poole, S. R.; Ananda, M.; Hildebrand, C. E.

    1979-01-01

    The use of narrowband delta-VLBI to achieve accurate orbit determination is presented by viewing a spacecraft from widely separated stations followed by viewing a nearby quasar from the same stations. Current analysis is examined that establishes the orbit determination accuracy achieved with data arcs spanning up to 3.5 d. Strategies for improving prediction accuracy are given, and the performance of delta-VLBI is compared with conventional radiometric tracking data. It is found that accuracy 'within the fit' is on the order of 0.5 km for data arcs having delta-VLBI on the ends of the arcs and for arc lengths varying from one baseline to 3.5 d. The technique is discussed with reference to the proposed Venus Orbiting Imaging Radar mission.

  10. Venous Thromboembolism Quality Measures Fail to Accurately Measure Quality.

    PubMed

    Lau, Brandyn D; Streiff, Michael B; Pronovost, Peter J; Haut, Elliott R

    2018-03-20

    Venous thromboembolism (VTE) is 1 of the most common causes of preventable harm for patients in hospitals. Consequently, the Joint Commission, the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, the United Kingdom Care Quality Commission, the Australian Commission on Safety and Quality in Health Care, the Maryland Health Services Cost Review Commission, and the American College of Surgeons have prioritized measuring and reporting VTE outcomes with the goal of reducing the incidence of and preventable harm from VTE. We developed a rubric for defect-free VTE prevention, graded each organizational VTE quality measure, and found that none of the current VTE-related quality measures adequately characterizes VTE prevention efforts or outcomes in hospitalized patients. Effective VTE prevention is multifactorial: clinicians must assess patients' risk for VTE and prescribe therapy appropriate for each patient's risk profile, patients must accept the prescribed therapy, and nurses must administer the therapy as prescribed. First, an ideal, defect-free VTE prevention process measure requires: (1) documentation of a standardized VTE risk assessment; (2) prescription of optimal, risk-appropriate VTE prophylaxis; and (3) administration of all risk-appropriate VTE prophylaxis as prescribed. Second, an ideal VTE outcome measure should define potentially preventable VTE as VTE that developed in patients who experienced any VTE prevention process failures. © 2018 American Heart Association, Inc.

  11. Accurate and cost-effective MTF measurement system for lens modules of digital cameras

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-01-01

    For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.

  12. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-12-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  13. Neutron total cross section measurement at WNR. [215 to 250 MeV experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Moore, M.S.; Morgan, G.L.

    1979-01-01

    The techniques involved in measuring fast-neutron total cross sections at the Weapons Neutron Facility (WNR) of the Los Alamos Scientific Laboratory are described. Results of total cross section measurements on natural carbon covering the range 2.5 to 250 MeV are presented. 16 references.

  14. Z-scan theoretical and experimental studies for accurate measurements of the nonlinear refractive index and absorption of optical glasses near damage threshold

    NASA Astrophysics Data System (ADS)

    Olivier, Thomas; Billard, Franck; Akhouayri, Hassan

    2004-06-01

    Self-focusing is one of the dramatic phenomena that may occur during the propagation of a high power laser beam in a nonlinear material. This phenomenon leads to a degradation of the wave front and may also lead to a photoinduced damage of the material. Realistic simulations of the propagation of high power laser beams require an accurate knowledge of the nonlinear refractive index γ. In the particular case of fused silica and in the nanosecond regime, it seems that electronic mechanisms as well as electrostriction and thermal effects can lead to a significant refractive index variation. Compared to the different methods used to measure this parmeter, the Z-scan method is simple, offers a good sensitivity and may give absolute measurements if the incident beam is accurately studied. However, this method requires a very good knowledge of the incident beam and of its propagation inside a nonlinear sample. We used a split-step propagation algorithm to simlate Z-scan curves for arbitrary beam shape, sample thickness and nonlinear phase shift. According to our simulations and a rigorous analysis of the Z-scan measured signal, it appears that some abusive approximations lead to very important errors. Thus, by reducing possible errors on the interpretation of Z-scan experimental studies, we performed accurate measurements of the nonlinear refractive index of fused silica that show the significant contribution of nanosecond mechanisms.

  15. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    PubMed

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  16. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  17. The effect of urea on refractometric total protein measurement in dogs and cats with azotemia.

    PubMed

    Legendre, Kelsey P; Leissinger, Mary; Le Donne, Viviana; Grasperge, Britton J; Gaunt, Stephen D

    2017-03-01

    While protein is the predominant solute measured in plasma or serum by a refractometer, nonprotein substances also contribute to the angle of refraction. There is debate in the current literature regarding which nonprotein substances cause factitiously high refractometric total protein measurements, as compared to the biuret assay. The purpose of the study was to determine if the blood of azotemic animals, specifically with increased blood urea concentration, will have significantly higher refractometric total protein concentrations compared to the total protein concentrations measured by biuret assay. A prospective case series was conducted by collecting data from azotemic (n = 26) and nonazotemic (n = 34) dogs and cats. In addition, an in vitro study was performed where urea was added to an enhanced electrolyte solution at increasing concentrations, and total protein was assessed by both the refractometer and spectrophotometer. Statistical analysis was performed to determine the effect of urea. The refractometric total protein measurement showed a positive bias when compared to the biuret protein measurement in both groups, but the bias was higher in the azotemic group vs the nonazotemic group. The mean difference in total protein measurements of the nonazotemic group (0.59 g/dL) was significantly less (P < .01) than the mean difference of the azotemic group (0.95 g/dL). The in vitro experiment revealed a positive bias with a proportional error. This study demonstrated that increasing concentrations of urea significantly increased the total protein concentration measured by the refractometer as compared to the biuret assay, both in vivo and in vitro. © 2017 American Society for Veterinary Clinical Pathology.

  18. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  19. A new automated colorimetric method for measuring total oxidant status.

    PubMed

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, P<0.001 for all). In addition, the new assay presented a typical sigmoidal reaction pattern in copper-induced lipoprotein autoxidation. The novel assay is linear up to 200 micromol H2O2 Equiv./L and its precision value is lower than 3%. The lower detection limit is 1.13 micromol H2O2 Equiv./L. The reagents are stable for at least 6 months on the automated analyzer. Serum TOS level was significantly higher in patients with osteoarthritis (21.23+/-3.11 micromol H2O2 Equiv./L) than in healthy subjects (14.19+/-3.16 micromol H2O2 Equiv./L, P<0.001) and the results showed a significant negative correlation with total antioxidant capacity (TAC) (r=-0.66 P<0.01). This easy, stable, reliable, sensitive, inexpensive and fully automated method that is described can be used to measure total oxidant status.

  20. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M; Suh, T; Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured formore » TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.« less

  1. Accurate determination of the geoid undulation N

    NASA Astrophysics Data System (ADS)

    Lambrou, E.; Pantazis, G.; Balodimos, D. D.

    2003-04-01

    This work is related to the activities of the CERGOP Study Group Geodynamics of the Balkan Peninsula, presents a method for the determination of the variation ΔN and, indirectly, of the geoid undulation N with an accuracy of a few millimeters. It is based on the determination of the components xi, eta of the deflection of the vertical using modern geodetic instruments (digital total station and GPS receiver). An analysis of the method is given. Accuracy of the order of 0.01arcsec in the estimated values of the astronomical coordinates Φ and Δ is achieved. The result of applying the proposed method in an area around Athens is presented. In this test application, a system is used which takes advantage of the capabilities of modern geodetic instruments. The GPS receiver permits the determination of the geodetic coordinates at a chosen reference system and, in addition, provides accurate timing information. The astronomical observations are performed through a digital total station with electronic registering of angles and time. The required accuracy of the values of the coordinates is achieved in about four hours of fieldwork. In addition, the instrumentation is lightweight, easily transportable and can be setup in the field very quickly. Combined with a stream-lined data reduction procedure and the use of up-to-date astrometric data, the values of the components xi, eta of the deflection of the vertical and, eventually, the changes ΔN of the geoid undulation are determined easily and accurately. In conclusion, this work demonstrates that it is quite feasible to create an accurate map of the geoid undulation, especially in areas that present large geoid variations and other methods are not capable to give accurate and reliable results.

  2. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    NASA Technical Reports Server (NTRS)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  3. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  4. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  5. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {supmore » 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.« less

  6. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2013-11-01

    The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91-109%, 90-108% and 91-108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  8. Techniques for determining total body water using deuterium oxide

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.

    1990-01-01

    The measurement of total body water (TBW) is fundamental to the study of body fluid changes consequent to microgravity exposure or treatment with microgravity countermeasures. Often, the use of radioactive isotopes is prohibited for safety or other reasons. It was selected and implemented for use by some Johnson Space Center (JCS) laboratories, which permitted serial measurements over a 14 day period which was accurate enough to serve as a criterion method for validating new techniques. These requirements resulted in the selection of deuterium oxide dilution as the method of choice for TBW measurement. The development of this technique at JSC is reviewed. The recommended dosage, body fluid sampling techniques, and deuterium assay options are described.

  9. First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Oza, B. J.

    1978-01-01

    In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.

  10. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    PubMed

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Accurate method for luminous transmittance and signal detection quotients measurements in sunglasses lenses

    NASA Astrophysics Data System (ADS)

    Loureiro, A. D.; Gomes, L. M.; Ventura, L.

    2018-02-01

    The international standard ISO 12312-1 proposes transmittance tests that quantify how dark sunglasses lenses are and whether or not they are suitable for driving. To perform these tests a spectrometer is required. In this study, we present and analyze theoretically an accurate alternative method for performing these measurements using simple components. Using three LEDs and a four-channel sensor we generated weighting functions similar to the standard ones for luminous and traffic lights transmittances. From 89 sunglasses lens spectroscopy data, we calculated luminous transmittance and signal detection quotients using our obtained weighting functions and the standard ones. Mean-difference Tukey plots were used to compare the results. All tested sunglasses lenses were classified in the right category and correctly as suitable or not for driving. The greatest absolute errors for luminous transmittance and red, yellow, green and blue signal detection quotients were 0.15%, 0.17, 0.06, 0.04 and 0.18, respectively. This method will be used in a device capable to perform transmittance tests (visible, traffic lights and ultraviolet (UV)) according to the standard. It is important to measure rightly luminous transmittance and relative visual attenuation quotients to report correctly whether or not sunglasses are suitable for driving. Moreover, standard UV requirements depend on luminous transmittance.

  12. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  13. Accurate color measurement methods for medical displays.

    PubMed

    Saha, Anindita; Kelley, Edward F; Badano, Aldo

    2010-01-01

    The necessity for standard instrumentation and measurements of color that are repeatable and reproducible is the major motivation behind this work. Currently, different instrumentation and methods can yield very different results when measuring the same feature such as color uniformity or color difference. As color increasingly comes into play in medical imaging diagnostics, display color will have to be quantified in order to assess whether the display should be used for imaging purposes. The authors report on the characterization of three novel probes for measuring display color with minimal contamination from screen areas outside the measurement spot or from off-normal emissions. They compare three probe designs: A modified small-spot luminance probe and two conic probe designs based on black frusta. To compare the three color probe designs, spectral and luminance measurements were taken with specialized instrumentation to determine the luminance changes and color separation abilities of the probes. The probes were characterized with a scanning slit method, veiling glare, and a moving laser and LED arrangement. The scanning slit measurement was done using a black slit plate over a white line on an LCD monitor. The luminance was measured in 1 mm increments from the center of the slit to +/- 15 mm above and below the slit at different distances between the probe and the slit. The veiling glare setup consisted of measurements of the luminance of a black spot pattern with a white disk of radius of 100 mm as the black spot increases in 1 mm radius increments. The moving LED and laser method consisted of a red and green light orthogonal to the probe tip for the light to directly shine into the probe. The green light source was moved away from the red source in 1 cm increments to measure color stray-light contamination at different probe distances. The results of the color testing using the LED and laser methods suggest a better performance of one of the frusta probes

  14. Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements

    NASA Astrophysics Data System (ADS)

    Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.

    2010-10-01

    This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter

  15. The Measurement Of Total Joint Loosening By X-Ray Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.

    1980-07-01

    Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.

  16. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

    NASA Astrophysics Data System (ADS)

    Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  17. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

    PubMed

    Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  18. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  19. Six years of total ozone column measurements from SCIAMACHY nadir observations

    NASA Astrophysics Data System (ADS)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.

    2009-04-01

    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  20. Six years of total ozone column measurements from SCIAMACHY nadir observations

    NASA Astrophysics Data System (ADS)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.

    2008-11-01

    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  1. Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume.

    PubMed

    Carmichael, Owen; Xie, Jing; Fletcher, Evan; Singh, Baljeet; DeCarli, Charles

    2012-06-01

    Hippocampal injury in the Alzheimer's disease (AD) pathological process is region-specific and magnetic resonance imaging (MRI)-based measures of localized hippocampus (HP) atrophy are known to detect region-specific changes associated with clinical AD, but it is unclear whether these measures provide information that is independent of that already provided by measures of total HP volume. Therefore, this study assessed the strength of association between localized HP atrophy measures and AD-related measures including cerebrospinal fluid (CSF) amyloid beta and tau concentrations, and cognitive performance, in statistical models that also included total HP volume as a covariate. A computational technique termed localized components analysis (LoCA) was used to identify 7 independent patterns of HP atrophy among 390 semiautomatically delineated HP from baseline magnetic resonance imaging of participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Among cognitively normal participants, multiple measures of localized HP atrophy were significantly associated with CSF amyloid concentration, while total HP volume was not. In addition, among all participants, localized HP atrophy measures and total HP volume were both independently and additively associated with CSF tau concentration, performance on numerous neuropsychological tests, and discrimination between normal, mild cognitive impairment (MCI), and AD clinical diagnostic groups. Together, these results suggest that regional measures of hippocampal atrophy provided by localized components analysis may be more sensitive than total HP volume to the effects of AD pathology burden among cognitively normal individuals and may provide information about HP regions whose deficits may have especially profound cognitive consequences throughout the AD clinical course. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Measurement of the total antioxidant response in preeclampsia with a novel automated method.

    PubMed

    Harma, Mehmet; Harma, Muge; Erel, Ozcan

    2005-01-10

    Preeclampsia is one of the most serious complications of pregnancy. Free radical damage has been implicated in the pathophysiology of this condition. In this study, we aimed to measure the antioxidant capacity in plasma samples from normotensive and preeclamptic pregnant women to evaluate their antioxidant status using a more recently developed automated measurement method. Our study group contained 42 women, 24 of whom had preeclampsia, while 18 had normotensive pregnancies. We measured the total plasma antioxidant capacity for all patients, as well as the levels of four major individual plasma antioxidant components; albumin, uric acid, ascorbic acid and bilirubin, and as a reciprocal measure, their total plasma peroxide levels. Statistically significant differences (determined using Student's t-test) were noted between the normotensive and the preeclamptic groups for their total antioxidant responses and their vitamin C levels (1.31 +/- 0.12 mmol versus 1.06 +/- 0.41 mmol Trolox eq./L; 30.2 +/- 17.83 micromol/L versus 18.1 +/- 11.37 micromol/L, respectively), which were both considerably reduced in the preeclamptic patients. In contrast, the total plasma peroxide levels were significantly elevated in this group (49.8 +/- 14.3 micromol/L versus 38.8 +/- 9.6 micromol/L). We found a decreased total antioxidant response in preeclamptic patients using a simple, rapid and reliable automated colorimetric assay, which may suitable for use in any routine clinical biochemistry laboratory, and considerably facilitates the assessment of this useful clinical parameter. We suggest that this novel method may be used as a routine test to evaluate and follow up of the levels of oxidative stress in preeclampsia.

  3. Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.

    2009-01-01

    In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.

  4. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  5. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  6. Airborne measurements of total reactive odd nitrogen (NO(y))

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Ridley, B. A.; Gregory, G. L.; Fehsenfeld, F. C.

    1992-01-01

    Airborne total reactive odd nitrogen measurements were made during August and September 1986 over the continental United States and off the west coast over the Pacific Ocean during NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 2 program. Measurements were made in the marine and continental boundary layer and the free troposphere up to 6.1 km altitude. NO(y) mixing ratios between 24 pptv and more than 1 ppbv were found, with median values of 101 pptv in the marine boundary layer, 298 pptv in the marine free troposphere, and 288 pptv in the continental free troposphere, respectively. The marine troposphere exhibited layered structure which was also seen in the simultaneously measured ozone mixing ratio and dew point temperature. The averaged vertical NO(y) profile over the ocean does not show a distinct gradient. The NO(y) mixing ratio over the continent decreases with increasing altitude. The latter is consistent with our understanding that the continents are the major source region for these gases.

  7. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  8. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  9. Total temperature probes for high-temperature hypersonic boundary-layer measurements

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Bauserman, Willard A., Jr.

    1993-01-01

    The design and test results of two types of total temperature probes that were used for hypersonic boundary-layer measurements are presented. The intent of each design was to minimize the total error and to maintain minimal size for measurements in boundary layers 1.0 in. thick and less. A single platinum-20-percent-rhodium shield was used in both designs to minimize radiation heat transfer losses during exposure to the high-temperature test stream. The shield of the smaller design was flattened at the flow entrance to an interior height of 0.02 in., compared with 0.03 in. for the larger design. The resulting vent-to-inlet area ratios were 60 and 50 percent. A stainless steel structural support sleeve that was used in the larger design was excluded from the smaller design, which resulted in an outer diameter of 0.059 in., to allow closer placement of the probes to each other and to the wall. These small design changes to improve resolution did not affect probe performance. Tests were conducted at boundary-layer-edge Mach numbers of 5.0 and 6.2. The nominal free-stream total temperatures were 2600 degrees and 3200 degrees R. The probes demonstrated extremely good reliability. The best performance in terms of recovery factor occurred when the wire-based Nusselt number was at least 0.04. Recommendations for future probe designs are included.

  10. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  11. Food Photography Is Not an Accurate Measure of Energy Intake in Obese, Pregnant Women.

    PubMed

    Most, Jasper; Vallo, Porsha M; Altazan, Abby D; Gilmore, Linda Anne; Sutton, Elizabeth F; Cain, Loren E; Burton, Jeffrey H; Martin, Corby K; Redman, Leanne M

    2018-04-01

    To improve weight management in pregnant women, there is a need to deliver specific, data-based recommendations on energy intake. This cross-sectional study evaluated the accuracy of an electronic reporting method to measure daily energy intake in pregnant women compared with total daily energy expenditure (TDEE). Twenty-three obese [mean ± SEM body mass index (kg/m2): 36.9 ± 1.3] pregnant women (aged 28.3 ±1.1 y) used a smartphone application to capture images of their food selection and plate waste in free-living conditions for ≥6 d in early (13-16 wk) and late (35-37 wk) pregnancy. Energy intake was evaluated by the smartphone application SmartIntake and compared with simultaneous assessment of TDEE obtained by doubly labeled water. Accuracy was defined as reported energy intake compared with TDEE (percentage of TDEE). Ecological momentary assessment prompts were used to enhance data reporting. Two-one-sided t tests for the 2 methods were used to assess equivalency, which was considered significant when accuracy was >80%. Energy intake reported by the SmartIntake application was 63.4% ± 2.3% of TDEE measured by doubly labeled water (P = 1.00). Energy intake reported as snacks accounted for 17% ± 2% of reported energy intake. Participants who used their own phones compared with participants who used borrowed phones captured more images (P = 0.04) and had higher accuracy (73% ± 3% compared with 60% ± 3% of TDEE; P = 0.01). Reported energy intake as snacks was significantly associated with the accuracy of SmartIntake (P = 0.03). To improve data quality, excluding erroneous days of likely underreporting (<60% TDEE) improved the accuracy of SmartIntake, yet this was not equivalent to TDEE (-22% ± 1% of TDEE; P = 1.00). Energy intake in obese, pregnant women obtained with the use of an electronic reporting method (SmartIntake) does not accurately estimate energy intake compared with doubly labeled water. However, accuracy improves by

  12. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  13. Measurement of the Accurate Mass of a 50 MDa Infectious Virus

    PubMed Central

    Keifer, David Z.; Motwani, Tina; Teschke, Carolyn M.; Jarrold, Martin F.

    2016-01-01

    RATIONALE Bacteriophage P22 is believed to contain a total of 521 copies of 9 different proteins and a 41,724 base pair genome. Despite its enormous size and complexity, phage P22 can be electrosprayed, and it remains intact in ultra-high vacuum where its molar mass distribution has been measured. METHODS Phage P22 virions were generated by complementation in Salmonella enterica and purified. They were transferred into 100 mM ammonium acetate and then electrosprayed. The masses of individual virions were determined using charge detection mass spectrometry. RESULTS The stoichiometry of the protein components of phage P22 is sufficiently well-known that the theoretical molar mass can be determined to within a narrow range. The measured average molar mass of phage P22, 52,180±59 kDa, is consistent with the theoretical molar mass and supports the proposed stoichiometry of the components. The intrinsic width of the phage P22 mass distribution can be entirely accounted for by the distribution of DNA packaged by the headful mechanism. CONCLUSIONS At over 50 MDa, phage P22 is the largest object with a well-defined molar mass to be analyzed by mass spectrometry. The narrow measured mass distribution indicates that the virions survive the transition into the gas phase intact. PMID:27501430

  14. Accurate millimetre and submillimetre rest frequencies for cis- and trans-dithioformic acid, HCSSH

    NASA Astrophysics Data System (ADS)

    Prudenzano, D.; Laas, J.; Bizzocchi, L.; Lattanzi, V.; Endres, C.; Giuliano, B. M.; Spezzano, S.; Palumbo, M. E.; Caselli, P.

    2018-04-01

    Context. A better understanding of sulphur chemistry is needed to solve the interstellar sulphur depletion problem. A way to achieve this goal is to study new S-bearing molecules in the laboratory, obtaining accurate rest frequencies for an astronomical search. We focus on dithioformic acid, HCSSH, which is the sulphur analogue of formic acid. Aims: The aim of this study is to provide an accurate line list of the two HCSSH trans and cis isomers in their electronic ground state and a comprehensive centrifugal distortion analysis with an extension of measurements in the millimetre and submillimetre range. Methods: We studied the two isomers in the laboratory using an absorption spectrometer employing the frequency-modulation technique. The molecules were produced directly within a free-space cell by glow discharge of a gas mixture. We measured lines belonging to the electronic ground state up to 478 GHz, with a total number of 204 and 139 new rotational transitions, respectively, for trans and cis isomers. The final dataset also includes lines in the centimetre range available from literature. Results: The extension of the measurements in the mm and submm range lead to an accurate set of rotational and centrifugal distortion parameters. This allows us to predict frequencies with estimated uncertainties as low as 5 kHz at 1 mm wavelength. Hence, the new dataset provided by this study can be used for astronomical search. Frequency lists are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A56

  15. Measurements and Modeling to Enhance Estimates of NH3 Total Deposition

    EPA Science Inventory

    Values for the total (wet + dry) deposition of ammonia are needed as input to nitrogen budget studies and ecological assessments. Concentrations of ammonia are measured at NADP’s Ammonia Monitoring Network (AMoN) sites. Research is focusing on the use of the concentration...

  16. Measuring light in uneven-aged hardwood stands

    Treesearch

    Leon S. Minckler

    1961-01-01

    Light, essential in the development of a forest, can be controlled within a stand by silvicultural practices. Measuring it, however, has always been a problem for silvicultural researchers. And accurate measurements are necessary, especially in studying the relation between light and reproduction. The desired objective is to measure the total visible light in specific...

  17. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  18. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  19. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  20. Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Mendioroz, Arantza; Fuente, Raquel; Celorrio, Ricardo

    2010-02-01

    In lock-in (modulated) thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.

  1. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  2. Total ozone determination by spectroradiometry in the middle ultraviolet

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Doda, D. D.; Green, A. E. S.

    1979-01-01

    A method has been developed to determine total ozone from multispectral measurements of the direct solar irradiance. The total ozone is determined by a least squares fit to the spectrum between 290 nm and 380 nm. The aerosol extinction is accounted for by expanding it in a power series in wavelength; use of the linear term proved adequate. A mobile laboratory incorporating a sky scanner has been developed and used to obtain data to verify the method. Sun tracking, wavelength setting of the double monochromator, and data acquisition are under control of a minicomputer. Results obtained at Wallops Island, Virginia, and Palestine, Texas, agree well with simultaneous Dobson and Canterbury spectrometer and balloon ECC ozonesonde values. The wavelength calibration of the monochromator and the values for the normalized ozone absorption are the most important factors in an accurate determination of total ozone.

  3. Reliability of Physical Activity Measures During Free-Living Activities in People After Total Knee Arthroplasty.

    PubMed

    Almeida, Gustavo J; Irrgang, James J; Fitzgerald, G Kelley; Jakicic, John M; Piva, Sara R

    2016-06-01

    Few instruments that measure physical activity (PA) can accurately quantify PA performed at light and moderate intensities, which is particularly relevant in older adults. The evidence of their reliability in free-living conditions is limited. The study objectives were: (1) to determine the test-retest reliability of the Actigraph (ACT), SenseWear Armband (SWA), and Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire in assessing free-living PA at light and moderate intensities in people after total knee arthroplasty; (2) to compare the reliability of the 3 instruments relative to each other; and (3) to determine the reliability of commonly used monitoring time frames (24 hours, waking hours, and 10 hours from awakening). A one-group, repeated-measures design was used. Participants wore the activity monitors for 2 weeks, and the CHAMPS questionnaire was completed at the end of each week. Test-retest reliability was determined by using the intraclass correlation coefficient (ICC [2,k]) to compare PA measures from one week with those from the other week. Data from 28 participants who reported similar PA during the 2 weeks were included in the analysis. The mean age of these participants was 69 years (SD=8), and 75% of them were women. Reliability ranged from moderate to excellent for the ACT (ICC=.75-.86) and was excellent for the SWA (ICC=.93-.95) and the CHAMPS questionnaire (ICC=.86-.92). The 95% confidence intervals (95% CI) of the ICCs from the SWA were the only ones within the excellent reliability range (.85-.98). The CHAMPS questionnaire showed systematic bias, with less PA being reported in week 2. The reliability of PA measures in the waking-hour time frame was comparable to that in the 24-hour time frame and reflected most PA performed during this period. Reliability may be lower for time intervals longer than 1 week. All PA measures showed good reliability. The reliability of the ACT was lower than those of the SWA and the CHAMPS

  4. Total Water Measurements Using In Situ UV Fragment Fluorescence Spectroscopy in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2004-01-01

    Given both the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of total water is of central importance to CRYSTAL-FACE. This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-115487 to perform the following tasks for the CRYSTAL-FACE mission that took place in Key West, Florida, during July 2001: 1) Prepare the Total Water instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2) Calibrate and prepare the Total Water instrument for the Summer 2002 CRYSTAL-FACE science flights based in Jacksonville, Florida. 3) Provide both science and engineering support for the above-mentioned efforts. 4) Analyze and interpret the CRYSTAL-FACE data in collaboration with the other mission scientists. 5) Attend the proposed science workshop in Spring 2003. 6) Publish the data and analysis in peer-reviewed journals.

  5. Measuring the migration of the components and polyethylene wear after total hip arthroplasty: beads and specialised radiographs are not necessary.

    PubMed

    Devane, P A; Horne, J G; Foley, G; Stanley, J

    2017-10-01

    This paper describes the methodology, validation and reliability of a new computer-assisted method which uses models of the patient's bones and the components to measure their migration and polyethylene wear from radiographs after total hip arthroplasty (THA). Models of the patient's acetabular and femoral component obtained from the manufacturer and models of the patient's pelvis and femur built from a single computed tomography (CT) scan, are used by a computer program to measure the migration of the components and the penetration of the femoral head from anteroposterior and lateral radiographs taken at follow-up visits. The program simulates the radiographic setup and matches the position and orientation of the models to outlines of the pelvis, the acetabular and femoral component, and femur on radiographs. Changes in position and orientation reflect the migration of the components and the penetration of the femoral head. Validation was performed using radiographs of phantoms simulating known migration and penetration, and the clinical feasibility of measuring migration was assessed in two patients. Migration of the acetabular and femoral components can be measured with limits of agreement (LOA) of 0.37 mm and 0.33 mm, respectively. Penetration of the femoral head can be measured with LOA of 0.161 mm. The migration of components and polyethylene wear can be measured without needing specialised radiographs. Accurate measurement may allow earlier prediction of failure after THA. Cite this article: Bone Joint J 2017;99-B:1290-7. ©2017 The British Editorial Society of Bone & Joint Surgery.

  6. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    PubMed

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering

    DOE PAGES

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; ...

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relativemore » humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial

  8. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis.

    PubMed

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Fusun F; Sabuncu, Tevfik; Aslan, Mehmet; Sarifakiogullari, Serpil; Gunaydin, Necla; Erel, Ozcan

    2005-11-11

    Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p < 0.05), while mean total peroxide level and mean oxidative stress index were higher (all p < 0.05). In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p < 0.05, r = 0.607; p < 0.05, r = -0.506; p < 0.05, r = 0.728, respectively). However, no correlation was observed between necroimflamatory grade and those oxidative status parameters (all p > 0.05). Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis.

  9. Accurate mass measurements and their appropriate use for reliable analyte identification.

    PubMed

    Godfrey, A Ruth; Brenton, A Gareth

    2012-09-01

    Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.

  10. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    PubMed

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  11. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  12. Total body water measurements using resonant cavity perturbation techniques.

    PubMed

    Stone, Darren A; Robinson, Martin P

    2004-05-07

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  13. Total body water measurements using resonant cavity perturbation techniques

    NASA Astrophysics Data System (ADS)

    Stone, Darren A.; Robinson, Martin P.

    2004-05-01

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  14. Design and Measurement of a Digital Phase Locked BWO for Accurately Extracting the Quality Factors in a Biconcave Resonator System

    NASA Astrophysics Data System (ADS)

    Gao, Yuanci; Charles, Jones R.; Yu, Guofen; Jyotsna, Dutta M.

    2012-03-01

    A long loop phase locked backward-wave oscillator (BWO) for a high quality factor resonator system operating at D-band frequencies (130-170GHz) was described, the phase noise of the phased locked BWO was analyzed and measured at typical frequencies. When it used with a high quality factor open resonator for measuring the quality factor of simple harmonic resonators based on the magnitude transfer characteristic, this system has proven to be capable of accurate measuring the quality factor as high as 0.8 million with an uncertainty of less than 1.3% (Lorentzian fitting) at typical frequencies in the range of 130GHz-170GHz.

  15. Microbalance accurately measures extremely small masses

    NASA Technical Reports Server (NTRS)

    Patashnick, H.

    1970-01-01

    Oscillating fiber microbalance has a vibrating quartz fiber as balance arm to hold the mass to be weighed. Increasing fiber weight decreases its resonant frequency. Scaler and timer measure magnitude of the shift. This instrument withstands considerable physical abuse and has calibration stability at normal room temperatures.

  16. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    NASA Astrophysics Data System (ADS)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  17. Self-report and long-term field measures of MP3 player use: how accurate is self-report?

    PubMed

    Portnuff, C D F; Fligor, B J; Arehart, K H

    2013-02-01

    This study was designed to evaluate the usage patterns of portable listening device (PLD) listeners, and the relationships between self-report measures and long-term dosimetry measures of listening habits. This study used a descriptive correlational design. Participants (N = 52) were 18-29 year old men and women who completed surveys. A randomly assigned subset (N = 24) of participants had their listening monitored by dosimetry for one week. Median weekly noise doses reported and measured through dosimetry were low (9-93%), but 14.3% of participants reported exceeding a 100% noise dose weekly. When measured by dosimetry, 16.7% of participants exceeded a 100% noise dose weekly. The self-report question that best predicted the dosimetry-measured dose asked participants to report listening duration and usual listening level on a visual-analog scale. This study reports a novel dosimetry system that can provide accurate measures of PLD use over time. When not feasible, though, the self-report question described could provide a useful research or clinical tool to estimate exposure from PLD use. Among the participants in this study, a small but substantial percentage of PLD users incurred exposure from PLD use alone that increases their risk of music-induced hearing loss.

  18. Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2007-05-01

    Quantitative near-infrared absorption spectroscopy of water-vapour overtone and combination bands at high pressures is complicated by pressure broadening and shifting of individual lines and the blending of neighbouring transitions. An experimental and computational methodology is developed to determine accurate high-pressure absorption spectra. This case study investigates two water-vapour transitions, one near 1388 nm (7203.9 cm-1) and the other near 1345 nm (7435.6 cm-1), for potential two-line absorption measurements of temperature in the range of 400-1050 K with a pressure varying from 5-25 atm. The required quantitative spectroscopy data (line strength, collisional broadening, and pressure-induced frequency shift) of the target transitions and their neighbours (a total of four H2O vapour transitions near 1388 nm and six transitions near 1345 nm) are measured in neat H2O vapour, H2O-air and H2O-CO2 mixtures as a function of temperature (296-1000 K) at low pressures (<800 Torr). Precise values of the line strength S(T), pressure-broadening coefficients γair(T) and \\gamma _{CO_2 } (T), and pressure-shift coefficients δair(T) and \\delta _{CO_2 } (T) for the ten transitions were inferred from the measured spectra and compared with data from HITRAN 2004. A hybrid spectroscopic database was constructed by modifying HITRAN 2004 to incorporate these values for simulation of water-vapour-absorption spectra at high pressures. Simulations using this hybrid database are in good agreement with high pressure experiments and demonstrate that data collected at modest pressures can be used to simulate high-pressure absorption spectra.

  19. Gage measures total radiation, including vacuum UV, from ionized high-temperature gases

    NASA Technical Reports Server (NTRS)

    Wood, A. D.

    1969-01-01

    Transient-heat transfer gage measures the total radiation intensity from vacuum ultraviolet and ionized high temperature gases. The gage includes a sensitive piezoelectric crystal that is completely isolated from any ionized flow and vacuum ultraviolet irradiation.

  20. TOTAL RESPIRATORY TRACT DEPOSITION OF FINE MICRON-SIZED PARTICLES IN HEALTHY ADULTS: EMPIRICIAL EQUATIONS FOR GENDER AND BREATHING PATTERN

    EPA Science Inventory

    An accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medical aerosols. We measured total deposition fraction (TDF) of monodisperse micron-sized particles...

  1. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    PubMed Central

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Fusun F; Sabuncu, Tevfik; Aslan, Mehmet; Sarifakiogullari, Serpil; Gunaydin, Necla; Erel, Ozcan

    2005-01-01

    Background Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Methods Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Results Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p < 0.05), while mean total peroxide level and mean oxidative stress index were higher (all p < 0.05). In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p < 0.05, r = 0.607; p < 0.05, r = -0.506; p < 0.05, r = 0.728, respectively). However, no correlation was observed between necroimflamatory grade and those oxidative status parameters (all p > 0.05). Conclusion Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis. PMID:16283935

  2. Microfluidic nitrogen-assisted nanoelectrospray emitter: A monolithic interface for accurate mass measurements based on a single nozzle.

    PubMed

    Wang, Lingling; Wang, Yujiao; Jiang, Shichang; Ye, Mingyue; Su, Ping; Xiong, Bo

    2016-10-28

    Nitrogen-assisted nanoelectrospray emitter (NANE) was developed to achieve accurate mass-to-charge ratio (m/z) measurements with a single monolithic nozzle. Deposition patterns of generated electrosprays from NANE confirmed their wrapped configurations. Additionally, the intensity of the sample ion and its ratio relative to a reference ion was inclined to focus on the central region of the spray; this trend further supported the existence of wrapped configurations. Further, the proposed NANE was fabricated from poly-(dimethylsiloxane) (PDMS) with octadecyltrichlorosilane modification to restrain the dissolution of PDMS monomers. Assist nitrogen flows were introduced to improve the ionization of reference ions. Moreover, the NANE could regulate the distribution of reference ions by microfluidic three dimensional hydrodynamic focusing. By regulating the distribution of reference ions, the ionization depression was reduced to some degree, and an improved sensitivity was accomplished compared with the mixing of sample and reference solutions. Achieved relative errors of m/z were between 0.2-4.5ppm and 5.2-9.2ppm for ten organic molecules and four biological macromolecules, respectively. Acceptable linear ranges were obtained in quantifications for rhodamine B and emamectin benzoate. Finally, the NANE was compatible with broad infusion rates (from 50nLmin -1 to 15μLmin -1 ) and solutions of different compositions (from 100% methanol to 100% water). Considering the comprehensive application of PDMS in microfluidics, the proposed NANE could be used as a compact and monolithic interface to achieve accurate m/z measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Twomore » methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.« less

  4. Interlaboratory quality control of total HIV-1 DNA load measurement for multicenter reservoir studies.

    PubMed

    Gantner, Pierre; Mélard, Adeline; Damond, Florence; Delaugerre, Constance; Dina, Julia; Gueudin, Marie; Maillard, Anne; Sauné, Karine; Rodallec, Audrey; Tuaillon, Edouard; Plantier, Jean-Christophe; Rouzioux, Christine; Avettand-Fenoel, Véronique

    2017-11-01

    Viral reservoirs represent an important barrier to HIV cure. Accurate markers of HIV reservoirs are needed to develop multicenter studies. The aim of this multicenter quality control (QC) was to evaluate the inter-laboratory reproducibility of total HIV-1-DNA quantification. Ten laboratories of the ANRS-AC11 working group participated by quantifying HIV-DNA with a real-time qPCR assay (Biocentric) in four samples (QCMD). Good reproducibility was found between laboratories (standard deviation ≤ 0.2 log 10 copies/10 6 PBMC) for the three positive QC that were correctly classified by each laboratory (QC1

  5. Time-driven Activity-based Costing More Accurately Reflects Costs in Arthroplasty Surgery.

    PubMed

    Akhavan, Sina; Ward, Lorrayne; Bozic, Kevin J

    2016-01-01

    Cost estimates derived from traditional hospital cost accounting systems have inherent limitations that restrict their usefulness for measuring process and quality improvement. Newer approaches such as time-driven activity-based costing (TDABC) may offer more precise estimates of true cost, but to our knowledge, the differences between this TDABC and more traditional approaches have not been explored systematically in arthroplasty surgery. The purposes of this study were to compare the costs associated with (1) primary total hip arthroplasty (THA); (2) primary total knee arthroplasty (TKA); and (3) three surgeons performing these total joint arthroplasties (TJAs) as measured using TDABC versus traditional hospital accounting (TA). Process maps were developed for each phase of care (preoperative, intraoperative, and postoperative) for patients undergoing primary TJA performed by one of three surgeons at a tertiary care medical center. Personnel costs for each phase of care were measured using TDABC based on fully loaded labor rates, including physician compensation. Costs associated with consumables (including implants) were calculated based on direct purchase price. Total costs for 677 primary TJAs were aggregated over 17 months (January 2012 to May 2013) and organized into cost categories (room and board, implant, operating room services, drugs, supplies, other services). Costs derived using TDABC, based on actual time and intensity of resources used, were compared with costs derived using TA techniques based on activity-based costing and indirect costs calculated as a percentage of direct costs from the hospital decision support system. Substantial differences between cost estimates using TDABC and TA were found for primary THA (USD 12,982 TDABC versus USD 23,915 TA), primary TKA (USD 13,661 TDABC versus USD 24,796 TA), and individually across all three surgeons for both (THA: TDABC = 49%-55% of TA total cost; TKA: TDABC = 53%-55% of TA total cost). Cost

  6. Direct total and free testosterone measurement by liquid chromatography tandem mass spectrometry across two different platforms.

    PubMed

    Rhea, Jeanne M; French, Deborah; Molinaro, Ross J

    2013-05-01

    To develop and validate liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for the direct measurement of total and free testosterone in patient samples on two different analytical systems. An API 4000 and 5000 triple quadropoles were used and compared; the former is reported to be 3-5 times less sensitive, as was used to set the quantitation limits. Free testosterone was separated from the protein-bound fraction by equilibrium dialysis followed by derivatization. Either free or total testosterone, and a deuterated internal standard (d3-testosterone) were extracted by liquid-liquid extraction. The validation results were compared to two different clinical laboratories. The use of d2-testosterone was found to be unacceptable for our method. The total testosterone LC-MS/MS methods on both systems were linear over a wide concentration range of 1.5-2000ng/dL. Free testosterone was measured directly using equilibrium dialysis coupled LC-MS/MS and linear over the concentration range of 2.5-2500pg/mL. Good correlation (total testosterone, R(2)=0.96; free testosterone, R(2)=0.98) was observed between our LC-MS/MS systems and comparator laboratory. However, differences in absolute values for both free and total testosterone measurements were observed while a comparison to a second published LC-MS/MS method showed excellent correlation. Free and total testosterone measurements correlated well with clinical observations. To our knowledge, this is the first published validation of free and total testosterone methods across two analytical systems of different analytical sensitivities. A less sensitive system does not sacrifice analytical or clinical sensitivity to directly measure free and total testosterone in patient samples. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  8. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films

    NASA Astrophysics Data System (ADS)

    Kiese, Sandra; Kücükpinar, Esra; Reinelt, Matthias; Miesbauer, Oliver; Ewender, Johann; Langowski, Horst-Christian

    2017-02-01

    Flexible organic electronic devices are often protected from degradation by encapsulation in multilayered films with very high barrier properties against moisture and oxygen. However, metrology must be improved to detect such low quantities of permeants. We therefore developed a modified ultra-low permeation measurement device based on a constant-flow carrier-gas system to measure both the transient and stationary water vapor permeation through high-performance barrier films. The accumulation of permeated water vapor before its transport to the detector allows the measurement of very low water vapor transmission rates (WVTRs) down to 2 × 10-5 g m-2 d-1. The measurement cells are stored in a temperature-controlled chamber, allowing WVTR measurements within the temperature range 23-80 °C. Differences in relative humidity can be controlled within the range 15%-90%. The WVTR values determined using the novel measurement device agree with those measured using a commercially available carrier-gas device from MOCON®. Depending on the structure and quality of the barrier film, it may take a long time for the WVTR to reach a steady-state value. However, by using a combination of the time-dependent measurement and the finite element method, we were able to estimate the steady-state WVTR accurately with significantly shorter measurement times.

  9. Total energy expenditure of 10- to 12-year-old Japanese children measured using the doubly labeled water method.

    PubMed

    Komura, Keisuke; Nakae, Satoshi; Hirakawa, Kazufumi; Ebine, Naoyuki; Suzuki, Kazuhiro; Ozawa, Haruo; Yamada, Yosuke; Kimura, Misaka; Ishii, Kojiro

    2017-01-01

    To establish Japanese children's estimated energy requirements, total energy expenditure (TEE) data measured using the doubly labeled water (DLW) method is needed. This study aimed to 1) obtain basic TEE data from Japanese children measured using DLW (TEE DLW ), 2) compare TEE DLW with TEE estimated by various estimation formulas to calculate their accuracy, and 3) develop a new equation to estimate TEE using body composition and pedometers. TEE was measured using DLW in 56 10- to 12-year-old Japanese children (33 boys, 23 girls). Physical activity level (PAL) was calculated by dividing TEE DLW by estimated resting energy expenditure. To assess their physical activity, participants wore pedometers during the 7-d DLW period. Total body water was calculated from 2 H and 18 O; fat-free mass (FFM) and fat mass (FM) were then determined. In boys and girls of normal weight, TEE DLW was 2067 ± 230 kcal/d and 1830 ± 262 kcal/d, respectively. Average PAL was 1.58 ± 0.17. FFM was strongly related to TEE ( r  = 0.702, p  < 0.01). After adjusting for FFM and FM, step count was significantly associated with TEE ( r  = 0.707, p  < 0.01). The TEE estimation formula used in the Dietary Reference Intakes (DRI) for the United States and Canada estimated TEE DLW with high accuracy (bias: 2.0%) in both sexes. We developed new equations for TEE consisting of FFM and step count, which accounted for 68% and 65% of TEE variance in boys and girls, respectively: boys, 47.1 × FFM (kg) + 0.0568 × step count (steps/d) - 122, and girls, 55.5 × FFM (kg) + 0.0315 × step count (steps/d) - 117. The TEE in 10- to 12-year-old Japanese children measured using DLW was approximately 7% lower for boys and 12% lower for girls compared to the current Japanese DRI. If PAL can be accurately determined, the equation in the DRI for the United States and Canada may be applicable to Japanese children. In addition, TEE could be predicted using FFM and step count.

  10. Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine

    NASA Astrophysics Data System (ADS)

    Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.

    2017-12-01

    The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.

  11. An approach for the accurate measurement of social morality levels.

    PubMed

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  12. Expected total counts for the Self-Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossa, Riccardo; Universite Libre de Bruxelles; Borella, Alessandro

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuelmore » assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron

  13. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots.

    PubMed

    Doi, K; Fromes, B; Rossmann, K

    1975-01-01

    A new device has been developed with which the focal spot distribution can be measured accurately. The alignment and localization of the focal spot relative to the device are accomplished by adjustment of three micrometer screws in three orthogonal directions and by comparison of red reference light spots with green fluorescent pinhole images at five locations. The standard deviations for evaluating the reproducibility of the adjustments in the horizontal and vertical directions were 0.2 and 0.5 mm, respectively. Measurements were made of the pinhole images as well as of the line-spread functions (LSFs) and modulation transfer functions (MTFs) for an x-ray tube with focal spots of 1-mm and 50-mum nominal size. The standard deviations for the LSF and MTF of the 1-mm focal spot were 0.017 and 0.010, respectively.

  14. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  15. Merged Long-Term Data Sets from TOMS and SBUV Total Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard; McPeters, Richard; Labow, Gordon J.; Hollandsworth, Stacey; Flynn, Larry; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total ozone has been measured by a series of nadir-viewing satellite instruments. These measurements begin with the Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter UltraViolet (SBUV) instruments on Nimbus 7, launched in late 1978. The measurements have continued with the Meteor 3 TOMS, Earth Probe TOMS, and NOAA 9,11,14 SBUV/2 instruments. The problem for producing a long-term data set is establishing the relative calibration of the various instruments to better than 1%. There was a nearly two year gap between the Meteor 3 TOMS and the Earth Probe TOMS. This gap is filled by the NOAA 9 and 11 SBUV/2 instruments, but they were in drifting orbits that result in effective gaps in the record when the equator crossing time occurs at large solar zenith angle. We have used recently re-derived calibrations of the SBUV instruments using the D-pair (306/313 nm wavelengths) data at the equator. These equatorial D-pair measurements should maintain the internal calibration of each instrument better than previous approaches. We then use the comparisons between instruments during their overlap periods to establish a consistent calibration over the entire data set. The resulting merged ozone data set is independent of the ground-based Dobson/Brewer network.

  16. Accurate Black Hole Spin Measurements using ABC

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew

    Measuring the spin of black holes provides important insights into the supernova formation mechanism of stellar-mass black holes, galaxy merger scenarios for supermassive black holes, and the launching mechanisms of ballistic jets. It is therefore of crucial importance to measure black hole spins to a high degree of accuracy. Stellar-mass black holes in binary systems (BHBs) have two major advantages over Active Galactic Nuclei (AGN): (1) owing to their proximity and brightness, observations of BHBs are not as limited by counting statistics as their supermassive counter-parts; (2) unlike in AGN, one can use two largely independent methods to measure the spin in BHBs, providing a check on spin measurements. However, the high flux that makes BHBs such excellent targets for spin measurements also proves to be their Achilles heel: modern CCD cameras are optimized for observing faint sources. Consequently, observations of bright BHBs with CCD cameras are subject to non-linear instrumental effects among them pile-up and grade migration that strongly distort the spectrum. Since spin measurements rely on a very precise model of both the continuum X-ray flux and disc reflection signatures superimposed on top of the former, these instrumental effects may cause inferred spin measurements to differ by a factor of two or more. Current mitigation strategies are aimed at removing instrumental effects either during the observations themselves, by requiring simultaneous observations with multiple telescopes, or in post-processing. Even when these techniques are employed, pile-up may remain unrecognized and still distort results, whereas mitigation strategies may introduce additional systematic biases, e.g. due to increased (cross-)calibration uncertainties. Advances in modern statistical methodology allow for efficient modeling of instrumental effects during the analysis stage, largely eliminating the requirements for observations with multiple instruments or increased observation

  17. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  18. Superresolution confocal technology for displacement measurements based on total internal reflection.

    PubMed

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  19. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  20. Novel Sampling Techniques for Measurement of Turbine Engine Total Particulate Matter Emissions

    EPA Science Inventory

    This is the first progress report of a study to evaluate two different condensation devices for the measurement of the total (volatile + non-volatile) particulate matter (PM) emissions from aircraft turbine engines by direct sampling at the engine exit. The characteristics of th...

  1. Instrument Description: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei

    2017-01-01

    The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.

  2. Measurements of total hydroxyl radical reactivity during the UCAS winter campaign 2016 at Huairou (northeast Beijing)

    NASA Astrophysics Data System (ADS)

    Novelli, Anna; Tan, Zhaofeng; Ma, Xuefei; Holland, Frank; Broch, Sebastian; Bachner, Mathias; Rohrer, Franz; Lu, Keding; Liu, Ying; Wu, Yusheng; Zhang, Yingson; Hofzumahaus, Andreas; Fucks, Hendrik; Wahner, Andreas; Kiendler-Scarr, Astrid

    2017-04-01

    The total OH reactivity is the total OH loss rate coefficient that can be calculated from the sum of the concentration of all OH reactive species weighted by their rate coefficient with OH. The total loss rate is an important parameter as it allows the investigation of the budget of the atmosphere's primary oxidant (OH), placing a constraint on the OH production processes. Typically, calculations of this parameter are challenging in ambient air due to the lack of measurements for all the OH reactive species and, therefore, direct measurements of the total OH reactivity are desirable. Many studies have shown a discrepancy between the measured and the calculated OH reactivity indicating our understanding of both OH chemistry and volatile organic compound composition is not complete. Measurements of the total OH reactivity were performed with a laser photolysis - laser induced fluorescence (LP-LIF) technique during the winter season, from January to March 2016, in the densely populated North China Plain. The site was located northeast of Beijing (Huairou) and was impacted by the alternation of relatively clean air coming from the mountains and highly polluted air characterized by high particle concentration transported over populated areas in the North China Plain. This allowed the investigation of the OH reactivity budget in chemically distinct conditions. Total OH reactivity was on average 18 s-1 in polluted wind sectors with a contribution from nitric oxide and dioxide (NOx) and carbon monoxide (CO) of more than 60%. In contrast, the cleaner sectors showed an average value of 6 s-1 with a larger fraction of unexplained OH reactivity. The comparison between the measured and the calculated (from a large number of ancillary measurements) OH reactivity together with the particle concentration in different chemical regimes will be presented.

  3. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  4. Measurement of total hemispherical emissivity of contaminated mirror surfaces

    NASA Technical Reports Server (NTRS)

    Facey, T. A.; Nonnenmacher, A. L.

    1989-01-01

    The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.

  5. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  6. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  7. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  8. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  9. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  10. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  11. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  12. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  13. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients.

    PubMed

    Jonklaas, Jacqueline; Sathasivam, Anpalakan; Wang, Hong; Gu, Jianghong; Burman, Kenneth D; Soldin, Steven J

    2014-09-01

    We compared the performance of tandem mass spectrometry versus immunoassay for measuring thyroid hormones in a diverse group of inpatients and outpatients. Thyroxine (T4), triiodothyronine (T3), free thyroxine (FT4), and free triiodothyronine (FT3) were measured by liquid chromatography tandem mass spectrometry and immunoassay in 100 patients and the two assays were compared. T4 and T3 values measured by the two different assays correlated well with each other (r=0.91-0.95). However, the correlation was less good at the extremes (r=0.51-0.75). FT4 and FT3 concentrations measured by the two assays correlated less well with each other (r=0.75 and 0.50 respectively). The studied analytes had poor inverse correlation with the log-transformed TSH values (r=-0.22-0.51) in the population as a whole. The strongest correlations were seen in the groups of outpatients (r=-0.25-0.61). The weakest degree of correlation was noted in the inpatient group, with many correlations actually being positive. The worst between-assay correlation was demonstrated at low and high hormone concentrations, in the very concentration ranges where accurate assay performance is typically most clinically important. Based on the lesser susceptibility of mass spectrometry to interferences from conditions such as binding protein abnormalities, we speculate that mass spectrometry better reflects the clinical situation. In this mixed population of inpatients and outpatients, we also note failure of assays to conform to the anticipated inverse linear relationship between thyroid hormones and log-transformed TSH. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Total and free thyroxine and triiodothyronine: Measurement discrepancies, particularly in inpatients

    PubMed Central

    Jonklaas, Jacqueline; Sathasivam, Anpalakan; Wang, Hong; Gu, Jianghong; Burman, Kenneth D.; Soldin, Steven J.

    2014-01-01

    Objective We compared the performance of tandem mass spectrometry versus immunoassay for measuring thyroid hormones in a diverse group of inpatients and outpatients. Methods Thyroxine (T4), triiodothyronine (T3), free thyroxine (FT4), and free triiodothyronine (FT3) were measured by liquid chromatography tandem mass spectrometry and immunoassay in 100 patients and the two assays were compared. Results T4 and T3 values measured by the two different assays correlated well with each other (r =0.91–0.95). However, the correlation was less good at the extremes (r = 0.51–0.75). FT4 and FT3 concentrations measured by the two assays correlated less well with each other (r = 0.75 and 0.50 respectively). The studied analytes had poor inverse correlation with the log-transformed TSH values (r = −0.22–0.51) in the population as a whole. The strongest correlations were seen in the groups of outpatients (r = −0.25–0.61). The weakest degree of correlation was noted in the inpatient group, with many correlations actually being positive. Conclusion The worst between-assay correlation was demonstrated at low and high hormone concentrations, in the very concentration ranges where accurate assay performance is typically most clinically important. Based on the lesser susceptibility of mass spectrometry to interferences from conditions such as binding protein abnormalities, we speculate that mass spectrometry better reflects the clinical situation. In this mixed population of inpatients and outpatients, we also note failure of assays to conform to the anticipated inverse linear relationship between thyroid hormones and log-transformed TSH. PMID:24936679

  15. Digital image analysis: improving accuracy and reproducibility of radiographic measurement.

    PubMed

    Bould, M; Barnard, S; Learmonth, I D; Cunningham, J L; Hardy, J R

    1999-07-01

    To assess the accuracy and reproducibility of a digital image analyser and the human eye, in measuring radiographic dimensions. We experimentally compared radiographic measurement using either an image analyser system or the human eye with digital caliper. The assessment of total hip arthroplasty wear from radiographs relies on both the accuracy of radiographic images and the accuracy of radiographic measurement. Radiographs were taken of a slip gauge (30+/-0.00036 mm) and slip gauge with a femoral stem. The projected dimensions of the radiographic images were calculated by trigonometry. The radiographic dimensions were then measured by blinded observers using both techniques. For a single radiograph, the human eye was accurate to 0.26 mm and reproducible to +/-0.1 mm. In comparison the digital image analyser system was accurate to 0.01 mm with a reproducibility of +/-0.08 mm. In an arthroplasty model, where the dimensions of an object were corrected for magnification by the known dimensions of a femoral head, the human eye was accurate to 0.19 mm, whereas the image analyser system was accurate to 0.04 mm. The digital image analysis system is up to 20 times more accurate than the human eye, and in an arthroplasty model the accuracy of measurement increases four-fold. We believe such image analysis may allow more accurate and reproducible measurement of wear from standard follow-up radiographs.

  16. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography.

    PubMed

    Weatherbee, Andrew; Popov, Ivan; Vitkin, Alex

    2017-08-01

    The viscosity of turbid colloidal glucose solutions has been accurately determined from spectral domain optical coherence tomography (OCT) M-mode measurements and our recently developed OCT dynamic light scattering model. Results for various glucose concentrations, flow speeds, and flow angles are reported. The relative "combined standard uncertainty" uc(η) on the viscosity measurements was ±1% for the no-flow case and ±5% for the flow cases, a significant improvement in measurement robustness over previously published reports. The available literature data for the viscosity of pure water and our measurements differ by 1% (stagnant case) and 1.5% (flow cases), demonstrating good accuracy; similar agreement is seen across the measured glucose concentration range when compared to interpolated literature values. The developed technique may contribute toward eventual noninvasive glucose measurements in medicine. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Wind shear detection using measurement of aircraft total energy change

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1976-01-01

    Encounters with wind shears are of concern and have caused major accidents, particularly during landing approaches. Changes in the longitudinal component of the wind affect the aircraft by changing its kinetic energy with respect to the air. It is shown that an instrument which will measure and display the rate of change of total energy of the aircraft with respect to the air will give a leading indication of wind shear problems. The concept is outlined and some instrumentation and display considerations are discussed.

  18. Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    NASA Technical Reports Server (NTRS)

    Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon

    2014-01-01

    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.

  19. A Novel Device for Total Acoustic Output Measurement of High Power Transducers

    NASA Astrophysics Data System (ADS)

    Howard, S.; Twomey, R.; Morris, H.; Zanelli, C. I.

    2010-03-01

    The objective of this work was to develop a device for ultrasound power measurement applicable over a broad range of medical transducer types, orientations and powers, and which supports automatic measurements to simplify use and minimize errors. Considering all the recommendations from standards such as IEC 61161, an accurate electromagnetic null-balance has been designed for ultrasound power measurements. The sensing element is placed in the water to eliminate errors due to surface tension and water evaporation, and the motion and detection of force is constrained to one axis, to increase immunity to vibration from the floor, water sloshing and water surface waves. A transparent tank was designed so it could easily be submerged in a larger tank to accommodate large transducers or side-firing geometries, and can also be turned upside-down for upward-firing transducers. A vacuum lid allows degassing the water and target in situ. An external control module was designed to operate the sensing/driving loop and to communicate to a local computer for data logging. The sensing algorithm, which incorporates temperature compensation, compares the feedback force needed to cancel the motion for sources in the "on" and "off" states. These two states can be controlled by the control unit or manually by the user, under guidance by a graphical user interface (the system presents measured power live during collection). Software allows calibration to standard weights, or to independently calibrated acoustic sources. The design accommodates a variety of targets, including cone, rubber, brush targets and an oil-filled target for power measurement via buoyancy changes. Measurement examples are presented, including HIFU sources operating at powers from 1 to 100.

  20. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed

    Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.

  1. Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization Microscopy

    PubMed Central

    Forkey, Joseph N.; Quinlan, Margot E.; Goldman, Yale E.

    2005-01-01

    A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is ∼10° at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported. PMID:15894632

  2. [Research progress of polyethylene inserts wear measurement and evaluation in total knee arthroplasty].

    PubMed

    Zhao, Feng; Wang, Chuan; Fan, Yubo

    2015-01-01

    Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.

  3. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    NASA Astrophysics Data System (ADS)

    Poullain, Gilles; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-01

    TbxDy1-xFe2/Pt/Pb(Zrx, Ti1-x)O3 thin films were grown on Pt/TiO2/SiO2/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient αΗΜΕ was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large αΗΜΕ of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance.

  4. A depth-sensing technique on 3D-printed compensator for total body irradiation patient measurement and treatment planning

    PubMed Central

    Lee, Min-Young; Han, Bin; Jenkins, Cesare; Xing, Lei; Suh, Tae-Suk

    2016-01-01

    Purpose: The purpose of total body irradiation (TBI) techniques is to deliver a uniform radiation dose to the entire volume of a patient’s body. Due to variations in the thickness of the patient, it is difficult to produce such a uniform dose distribution throughout the body. In many techniques, a compensator is used to adjust the dose delivered to various sections of the patient. The current study aims to develop and validate an innovative method of using depth-sensing cameras and 3D printing techniques for TBI treatment planning and compensator fabrication. Methods: A tablet with an integrated depth-sensing camera and motion tracking sensors was used to scan a RANDO™ phantom positioned in a TBI treatment booth to detect and store the 3D surface in a point cloud format. The accuracy of the detected surface was evaluated by comparing extracted body thickness measurements with corresponding measurements from computed tomography (CT) scan images. The thickness, source to surface distance, and off-axis distance of the phantom at different body section were measured for TBI treatment planning. A detailed compensator design was calculated to achieve a uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding, and a mixture of wax and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors. Results: The scan of the phantom took approximately 30 s. The mean error for thickness measurements at each section of phantom relative to CT was 0.48 ± 0.27 cm. The average fabrication error for the 3D-printed compensator was 0.16 ± 0.15 mm. In vivo measurements for an end-to-end test showed that overall dose differences were within 5%. Conclusions: A technique for planning and fabricating a compensator for TBI treatment using a depth camera equipped tablet and a 3D printer was demonstrated to be sufficiently accurate to be considered for further investigation

  5. Measurement of the total activity concentrations of Libyan oil scale

    NASA Astrophysics Data System (ADS)

    Da Silva, F. C. A.; Bradley, D. A.; Regan, P. H.; Rozaila, Z. Siti

    2017-08-01

    Twenty-three oil scale samples obtained from the Libyan oil and gas industry production facilities onshore have been measured using high-resolution gamma-ray spectrometry with a shielded HPGe detector, the work being carried out within the Environmental Radioactivity Laboratory at the University of Surrey. The main objectives of this work were to determine the extent to which the predominant radionuclides associated with the uranium and thorium natural decay chains were in secular equilibrium with their decay progeny, also to compare differences between the total activity concentrations (TAC) in secular equilibrium and disequilibrium and to evaluate the measured activities for the predominant gamma-ray emitting decay radionuclides within the 232Th and 238U chains. The oil scale NORM samples did not exhibit radioactive equilibrium between the decay progeny and longer-lived parent radionuclides of the 238U and 232Th series.

  6. Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups.

    PubMed

    Deurenberg, P; Deurenberg-Yap, M; Schouten, F J M

    2002-03-01

    To test the impact of body build factors on the validity of impedance-based body composition predictions across (ethnic) population groups and to study the suitability of segmental impedance measurements. Cross-sectional observational study. Ministry of Health and School of Physical Education, Nanyang Technological University, Singapore. A total of 291 female and male Chinese, Malays and Indian Singaporeans, aged 18-69, body mass index (BMI) 16.0-40.2 kg/ m2. Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calculated. Total body water (TBW) was measured using deuterium oxide dilution. Extra cellular water (ECW) was measured using bromide dilution. Body fat percentage was determined using a chemical four-compartment model. The bias of TBW predicted from total body impedance index (bias: measured minus predicted TBW) was different among the three ethnic groups, TBW being significantly underestimated in Indians compared to Chinese and Malays. This bias was found to be dependent on body water distribution (ECW/TBW) and parameters of body build, mainly relative (to height) arm length. After correcting for differences in body water distribution and body build parameters the differences in bias across the ethnic groups disappeared. The impedance index using total body impedance was better correlated with TBW than the impedance index of arm or leg impedance, even after corrections for body build parameters. The study shows that ethnic-specific bias of impedance-based prediction formulas for body composition is due mainly to differences in body build among the ethnic groups. This means that the use of 'general' prediction equations across different (ethnic) population groups without prior testing of their validity should be avoided. Total

  7. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress.

    PubMed

    Yu, Byung Gyu; Oh, Je Hyeok; Kim, Yeomyung; Kim, Tae Wook

    2017-01-01

    We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress.

  8. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  9. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  10. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.

    PubMed

    Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J

    2013-11-20

    Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.

  12. Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

    PubMed Central

    Krueger, Thomas; Fine, Maoz

    2017-01-01

    As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions. PMID:28879064

  13. Reference method for total water in lint cotton by automated oven drying combined with volumetric Karl Fischer titration

    USDA-ARS?s Scientific Manuscript database

    In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...

  14. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less

  15. The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage.

    PubMed

    Müller, Rolf; Kunz, Anne; Hurst, Dale F; Rolf, Christian; Krämer, Martina; Riese, Martin

    2016-02-01

    Water vapor is the most important greenhouse gas in the atmosphere although changes in carbon dioxide constitute the "control knob" for surface temperatures. While the latter fact is well recognized, resulting in extensive space-borne and ground-based measurement programs for carbon dioxide as detailed in the studies by Keeling et al. (1996), Kuze et al. (2009), and Liu et al. (2014), the need for an accurate characterization of the long-term changes in upper tropospheric and lower stratospheric (UTLS) water vapor has not yet resulted in sufficiently extensive long-term international measurement programs (although first steps have been taken). Here, we argue for the implementation of a long-term balloon-borne measurement program for UTLS water vapor covering the entire globe that will likely have to be sustained for hundreds of years.

  16. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    NASA Astrophysics Data System (ADS)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  17. Clinical Impact of Accurate Point-of-Care Glucose Monitoring for Tight Glycemic Control in Severely Burned Children.

    PubMed

    Tran, Nam K; Godwin, Zachary R; Steele, Amanda N; Wolf, Steven E; Palmieri, Tina L

    2016-09-01

    The goal of this study was to retrospectively evaluate the clinical impact of an accurate autocorrecting blood glucose monitoring system in children with severe burns. Blood glucose monitoring system accuracy is essential for providing appropriate intensive insulin therapy and achieving tight glycemic control in critically ill patients. Unfortunately, few comparison studies have been performed to evaluate the clinical impact of accurate blood glucose monitoring system monitoring in the high-risk pediatric burn population. Retrospective analysis of an electronic health record system. Pediatric burn ICU at an academic medical center. Children (aged < 18 yr) with severe burns (≥ 20% total body surface area) receiving intensive insulin therapy guided by either a noncorrecting (blood glucose monitoring system-1) or an autocorrecting blood glucose monitoring system (blood glucose monitoring system-2). Patient demographics, insulin rates, and blood glucose monitoring system measurements were collected. The frequency of hypoglycemia and glycemic variability was compared between the two blood glucose monitoring system groups. A total of 122 patient charts from 2001 to 2014 were reviewed. Sixty-three patients received intensive insulin therapy using blood glucose monitoring system-1 and 59 via blood glucose monitoring system-2. Patient demographics were similar between the two groups. Mean insulin infusion rates (5.1 ± 3.8 U/hr; n = 535 paired measurements vs 2.4 ± 1.3 U/hr; n = 511 paired measurements; p < 0.001), glycemic variability, and frequency of hypoglycemic events (90 vs 12; p < 0.001) were significantly higher in blood glucose monitoring system-1-treated patients. Compared with laboratory measurements, blood glucose monitoring system-2 yielded the most accurate results (mean ± SD bias: -1.7 ± 6.9 mg/dL [-0.09 ± 0.4 mmol/L] vs 7.4 ± 13.5 mg/dL [0.4 ± 0.7 mmol/L]). Blood glucose monitoring system-2 patients achieve glycemic

  18. Body Mass Index, the Most Widely Used but also Widely Criticized Index: Would a Gold-Standard Measure of Total Body Fat be a Better Predictor of Cardiovascular Disease Mortality?

    PubMed Central

    Ortega, Francisco B; Sui, Xuemei; Lavie, Carl J; Blair, Steven N

    2016-01-01

    Objectives To examine whether an accurate measure (using a gold-standard method) of total body fat (BF) would be a better predictor of cardiovascular disease (CVD) mortality than body mass index (BMI). Participants and Methods A total of 60,335 participants were examined between January 1, 1979, and December 31, 2003, and then followed-up for mean of 15.2 years. BMI was estimated by standard procedures. Indices of body composition [i.e. BF%, fat mass index (FMI), fat-free mass (FFM) and FFM index (FFMI)] were derived from either skinfold thicknesses or hydrostatic weighing. For exact comparisons, the indices studied were categorized identically using sex-specific percentiles. Results Compared with a medium BMI, a very high BMI was associated with hazard ratios (HR) of 2.7 (confidence interval, CI:2.1-3.3) for CVD mortality, a stronger association than for BF% or FMI; i.e. HR=1.6(CI:1.3-1.9) and 2.2(CI:1.8-2.7), respectively. Compared with a medium FFMI, a very high FFMI was associated with a HR of 2.2 (CI:1.7-2.7) for CVD mortality, with these estimates being markedly smaller for FFM, i.e. HR=1.2(CI:0.9-1.6). When the analyses were restricted only to the sample with hydrostatic assessments (N=29,959), the results were nearly identical, with even slightly larger differences in favor of BMI, i.e. HR=3.0 (CI:2.2-4.0) compared with BF% and FMI, i.e. HR=1.5(CI:1.2-1.9) and 2.1(CI:1.6-2.7) respectively. We estimated Harrell c-index as an indicator of discriminant/predictive ability for these models and observed that the c-index in models including BMI was significantly higher than that in models including BF% or FMI (all P values <.005). Conclusions The simple and inexpensive measure of BMI can be as clinically important or even more than total adiposity measures assessed by accurate and expensive methods. Physiological explanations for these findings are discussed. PMID:26948431

  19. Body Mass Index, the Most Widely Used But Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality?

    PubMed

    Ortega, Francisco B; Sui, Xuemei; Lavie, Carl J; Blair, Steven N

    2016-04-01

    To examine whether an accurate measure (using a criterion standard method) of total body fat would be a better predictor of cardiovascular disease (CVD) mortality than body mass index (BMI). A total of 60,335 participants were examined between January 1, 1979, and December 31, 2003, and then followed-up for a mean follow-up period of 15.2 years. Body mass index was estimated using standard procedures. Body composition indices (ie, body fat percentage [BF%], fat mass index [FMI], fat-free mass [FFM], and FFM index [FFMI]) were derived from either skinfold thicknesses or hydrostatic weighing. For exact comparisons, the indices studied were categorized identically using sex-specific percentiles. Compared with a medium BMI, a very high BMI was associated with a hazard ratio (HR) of 2.7 (95% CI, 2.1-3.3) for CVD mortality, which was a stronger association than for BF% or FMI (ie, HR, 1.6; 95% CI, 1.3-1.9 and HR, 2.2; 95% CI, 1.8-2.7, respectively). Compared with a medium FFMI, a very high FFMI was associated with an HR of 2.2 (95% CI, 1.7-2.7) for CVD mortality, with these estimates being markedly smaller for FFM (ie, HR, 1.2; 95% CI, 0.9-1.6). When the analyses were restricted only to the sample assessed with hydrostatic weighing (N=29,959, 51.7%), the results were similar, with even slightly larger differences in favor of BMI (ie, HR, 3.0; 95% CI, 2.2-4.0) compared with BF% and FMI (ie, HR, 1.5; 95% CI, 1.2-1.9 and HR, 2.1; 95% CI, 1.6-2.7, respectively). We estimated Harrell's c-index as an indicator of discriminating/predictive ability of these models and observed that the c-index for models including BMI was significantly higher than that for models including BF% or FMI (P<.005 for all). The simple and inexpensive measure of BMI can be as clinically important as, or even more than, total adiposity measures assessed using accurate, complex, and expensive methods. Physiological explanations for these findings are discussed. Copyright © 2016 Mayo Foundation for

  20. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  1. Use of Total Possibilistic Uncertainty as a Measure of Students' Modelling Capacities

    ERIC Educational Resources Information Center

    Voskoglou, Michael Gr.

    2010-01-01

    We represent the main stages of the process of mathematical modelling as fuzzy sets in the set of the linguistic labels of negligible, low intermediate, high and complete success by students in each of these stages and we use the total possibilistic uncertainty as a measure of students' modelling capacities. A classroom experiment is also…

  2. X-ray power and yield measurements at the refurbished Z machine

    DOE PAGES

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; ...

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less

  3. A Cost-Effective Transparency-Based Digital Imaging for Efficient and Accurate Wound Area Measurement

    PubMed Central

    Li, Pei-Nan; Li, Hong; Wu, Mo-Li; Wang, Shou-Yu; Kong, Qing-You; Zhang, Zhen; Sun, Yuan; Liu, Jia; Lv, De-Cheng

    2012-01-01

    Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm2 to 1 cm2 was integrated into the sheet, the tracing areas in JPG image were measured directly, using the “Magnetic lasso tool” in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice. PMID:22666449

  4. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    PubMed

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  5. Agreement between total corneal astigmatism calculated by vector summation and total corneal astigmatism measured by ray tracing using Galilei double Scheimpflug analyzer.

    PubMed

    Feizi, Sepehr; Delfazayebaher, Siamak; Ownagh, Vahid; Sadeghpour, Fatemeh

    To evaluate the agreement between total corneal astigmatism calculated by vector summation of anterior and posterior corneal astigmatism (TCA Vec ) and total corneal astigmatism measured by ray tracing (TCA Ray ). This study enrolled a total of 204 right eyes of 204 normal subjects. The eyes were measured using a Galilei double Scheimpflug analyzer. The measured parameters included simulated keratometric astigmatism using the keratometric index, anterior corneal astigmatism using the corneal refractive index, posterior corneal astigmatism, and TCA Ray . TCA Vec was derived by vector summation of the astigmatism on the anterior and posterior corneal surfaces. The magnitudes and axes of TCA Vec and TCA Ray were compared. The Pearson correlation coefficient and Bland-Altman plots were used to assess the relationship and agreement between TCA Vec and TCA Ray , respectively. The mean TCA Vec and TCA Ray magnitudes were 0.76±0.57D and 1.00±0.78D, respectively (P<0.001). The mean axis orientations were 85.12±30.26° and 89.67±36.76°, respectively (P=0.02). Strong correlations were found between the TCA Vec and TCA Ray magnitudes (r=0.96, P<0.001). Moderate associations were observed between the TCA Vec and TCA Ray axes (r=0.75, P<0.001). Bland-Altman plots produced the 95% limits of agreement for the TCA Vec and TCA Ray magnitudes from -0.33 to 0.82D. The 95% limits of agreement between the TCA Vec and TCA Ray axes was -43.0 to 52.1°. The magnitudes and axes of astigmatisms measured by the vector summation and ray tracing methods cannot be used interchangeably. There was a systematic error between the TCA Vec and TCA Ray magnitudes. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  6. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit

  7. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  8. Estimation of total electron content (TEC) using spaceborne GPS measurements

    NASA Astrophysics Data System (ADS)

    Choi, Key-Rok; Lightsey, E. Glenn

    2008-09-01

    TerraSAR-X (TSX), a high-resolution interferometric Synthetic Aperture Radar (SAR) mission from DLR (German Aerospace Center, Deutsches Zentrum für Luft-und Raumfahrt), was successfully launched into orbit on June 15, 2007. It includes a dual-frequency GPS receiver called IGOR (Integrated GPS Occultation Receiver), which is a heritage NASA/JPL BlackJack receiver. The software for the TSX IGOR receiver was specially-modified software developed at UT/CSR. This software was upgraded to provide enhanced occultation capabilities. This paper describes total electron content (TEC) estimation using simulation data and onboard GPS data of TerraSAR-X. The simulated GPS data were collected using the IGOR Engineering Model (EM) in the laboratory and the onboard GPS data were collected from the IGOR Flight Model (FM) on TSX. To estimate vertical total electron content (vTEC) for the simulation data, inter-frequency biases (IFB) were estimated using the "carrier to code leveling process." For the onboard GPS data, IFBs of GPS satellites were retrieved from the navigation message and applied to the measurements.

  9. Estimation of species extinction: what are the consequences when total species number is unknown?

    PubMed

    Chen, Youhua

    2014-12-01

    The species-area relationship (SAR) is known to overestimate species extinction but the underlying mechanisms remain unclear to a great extent. Here, I show that when total species number in an area is unknown, the SAR model exaggerates the estimation of species extinction. It is proposed that to accurately estimate species extinction caused by habitat destruction, one of the principal prerequisites is to accurately total the species numbers presented in the whole study area. One can better evaluate and compare alternative theoretical SAR models on the accurate estimation of species loss only when the exact total species number for the whole area is clear. This presents an opportunity for ecologists to simulate more research on accurately estimating Whittaker's gamma diversity for the purpose of better predicting species loss.

  10. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    PubMed

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate

  11. High-accurate optical fiber liquid level sensor

    NASA Astrophysics Data System (ADS)

    Sun, Dexing; Chen, Shouliu; Pan, Chao; Jin, Henghuan

    1991-08-01

    A highly accurate optical fiber liquid level sensor is presented. The single-chip microcomputer is used to process and control the signal. This kind of sensor is characterized by self-security and is explosion-proof, so it can be applied in any liquid level detecting areas, especially in the oil and chemical industries. The theories and experiments about how to improve the measurement accuracy are described. The relative error for detecting the measurement range 10 m is up to 0.01%.

  12. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress

    PubMed Central

    Kim, Yeomyung

    2017-01-01

    Objective We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Methods Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. Results The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). Conclusion The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress. PMID:28854262

  13. First light measurements of the Total Solar Irradiance experiment CLARA on NORSAT-1

    NASA Astrophysics Data System (ADS)

    Schmutz, Werner

    2016-07-01

    NORSAT-1 is a Norwegian micro-satellite, which will be launched April 22, 2016. (In the future at the time of writing this abstract.) The satellite carries two scientific instruments and an AIS receiver for performing ship detection from space. One of the scientific instruments is a Compact Light-weight Absolute RAdiometer (CLARA) and the other is a Langmuir Probe instrument comprising four probes mounted on booms. The latter experiment will measure electron density and the platform's floating potential along the orbit. The University of Oslo provides the Langmuir probes. The radiometer experiment CLARA has been built by PMOD/WRC funded through the Swiss PRODEX program. It will measure Total Solar Irradiance with an instrument of novel design that is optimized for minimizing mass and size by still ensuring highest measuring accuracy and thermal stability. The radiometers of CLARA have been fully characterized as well as calibrated at the TRF facility. It is expected that the first light accuracy of the absolute measurement of Total Solar Irradiance will be better than pm0.3 W/m^{2, allowing to probe the current TSI composite for its absolute level. The presentation will give an overview of the CLARA instrument and its calibration. It is expected that at the time of the COSPAR conference the first light TSI value of CLARA/NORSAT-1 is ready for publication. Together with a previous absolute TSI measurements available for July 27, 2010 measured by PREMOS/PICARD the new absolute TSI measurement will be used to test the accuracy of long term TSI trend given by the relative TSI composite.

  14. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed Central

    Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739

  15. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures

    USDA-ARS?s Scientific Manuscript database

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Habitat complexity measures are often made using total station surveying or visual approximation, which can be subjective and have spatial resolution limitati...

  16. Validation of Brewer and Pandora measurements using OMI total ozone

    NASA Astrophysics Data System (ADS)

    Baek, Kanghyun; Kim, Jae H.; Herman, Jay R.; Haffner, David P.; Kim, Jhoon

    2017-07-01

    Korea will launch the Geostationary Environment Monitoring Spectrometer (GEMS) instrument in 2018 onboard the Geostationary Korean Multi-Purpose Satellite to monitor tropospheric gas concentrations with high temporal and spatial resolutions. The purpose of this study is to examine the performance of total column ozone (TCO) measurements from ground-based Pandora and Brewer instruments that will be used for validation of the GEMS ozone product. Satellite measurements can be used to detect erroneous outliers at a particular ground station, which deviate significantly from co-located satellite measurements relative to other stations. This is possible because a single satellite retrieval algorithm is used to process the entire satellite dataset, and instrument characteristics typically change slowly over the life of the satellite. Thus, the short-term stability (months) of satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems at individual stations. As a reference for satellite ozone measurements, we have selected TCO data derived from OMI-TOMS V8.5 algorithm, because it is a robust algorithm that has been well studied to identify its various error sources. We validated ground-based Brewer and Pandora TCO measurements using OMI-TOMS TCO data collected over South Korea from March 2012 to December 2014. The Brewer TCO measurements at Pohang showed significant deviation from overall seasonal variation during the study period. In addition, in the presence of clouds, Pandora TCO measurements are unusually ∼7% higher than OMI-TOMS TCO data. To filter out these cloud-contaminated data, we applied a Kalman filter to the Pandora measurements. The diurnal variation in the Kalman-filtered Pandora data agrees well with the Brewer data, and the correlation of Kalman-filtered Pandora data with OMI-TOMS TCO is significantly improved from 0.89 to 0.99 at Seoul and from 0.93 to 0.99 at Busan.

  17. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    NASA Astrophysics Data System (ADS)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2011-12-01

    The input and loss of plant available nitrogen (N) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr) compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic conversions to NO

  18. Measurements of NO and total reactive odd-nitrogen, NOy, in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Murphy, D. M.; Eubank, C. S.; Ferry, G. V.; Chan, K. Roland; Ko, Malcolm K. W.

    1988-01-01

    Measurements of NO and total reactive N, NOy, were made as part of the Airborne Antarctic Ozone Experiment conducted in Punta Arenas, Chile during Aug. and Sept. 1987. The total reactive N reservoir includes the species NO, NO2, NO3, N2 O5, HNO3, and ClONO2. The instrument was located on board the NASA ER2 aircraft which conducted 12 flights over the Antarctic continent reaching altitudes of 18 km at 72 deg S latitude. The NOy technique utilized the conversion of component NOy species to NO on a gold catalyst and the subsequent detection of NO by the chemiluminescence reaction of NO with ozone. Since the inlet sample line is heated and the catalyst operates at 300 C, NOy incorporated in aerosols evaporates and is converted to NO. NO was measured on two separate flights by removing the catalyst from the sample inlet line.

  19. Hot topic: apparent total-tract nutrient digestibilities measured commercially using 120-hour in vitro indigestible neutral detergent fiber as a marker are related to commercial dairy cattle performance.

    PubMed

    Schalla, A; Meyer, L; Meyer, Z; Onetti, S; Schultz, A; Goeser, J

    2012-09-01

    Measuring individual feed nutrient concentration is common practice for field dairy nutritionists. However, accurately measuring nutrient digestibility and using digestion values in total digestible nutrients models is more challenging. Our objective was to determine if in vivo apparent total-tract nutrient digestibility measured with a practical approach was related to commercial milk production parameters. Total mixed ration and fecal samples were collected from high-producing cows in pens on 39 commercial dairies and analyzed at a commercial feed and forage testing laboratory for nutrient concentration and 120-h indigestible NDF (iNDF) content using the Combs-Goeser in vitro digestion technique. The 120-h iNDF was used as an internal marker to calculate in vivo apparent nutrient digestibilities. Two samples were taken from each dairy and were separated in time by at least 3 wk. Samples were targeted to be taken within 7d of Dairy Herd Improvement (DHI) herd testing. Approved DHI testers measured individual cow milk weights as well as fat and protein concentrations. Individual cow records were averaged by pen corresponding to the total mixed ration and fecal samples. Formulated diet and dry matter intake (DMI) records for each respective pen were also collected. Mixed model regression analysis with dairy specified as a random effect was used to relate explanatory variables (diet nutrient concentrations, formulated DMI, in vivo apparent nutrient digestibilities, and fecal nutrient concentrations) to milk production measures. Dry matter intake, organic matter (OM) digestibility, fecal crude protein (CP) concentration, and fecal ether extract concentration were related to milk, energy-corrected milk, and fat yields. Milk protein concentration was related to CP digestibility, and milk protein yield was related to DMI, OM digestibility, CP digestibility, and ether extract digestibility. Although many studies have related DMI and OM digestibility to milk production

  20. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  1. Total testosterone quantitative measurement in serum by LC-MS/MS☆

    PubMed Central

    Wang, Yuesong; Gay, Gabrielle D.; Botelho, Julianne Cook; Caudill, Samuel P.; Vesper, Hubert W.

    2016-01-01

    Reliable measurement of total testosterone is essential for the diagnosis, treatment and prevention of a number of hormone-related diseases affecting adults and children. A mass spectrometric method for testosterone determination in human serum was carefully developed and thoroughly validated. Total testosterone from 100 μL serum is released from proteins with acidic buffer and isolated by two serial liquid–liquid extraction steps. The first extraction step isolates the lipid fractions from an acidic buffer solution using ethyl acetate and hexane. The organic phase is dried down and reconstituted in a basic buffer solution. The second extraction step removes the phospholipids and other components by hexane extraction. Liquid chromatography–isotopic dilution tandem mass spectrometry is used to quantify the total testosterone. The sample preparation is automatically conducted in a liquid-handling system with 96-deepwell plates. The method limit of detection is 9.71 pmol/L (0.280 ng/dL) and the method average percent bias is not significantly different from reference methods. The performance of this method has proven to be consistent with the method precision over a 2-year period ranging from 3.7 to 4.8% for quality control pools at the concentrations 0.527, 7.90 and 30.7 nmol/L (15.2, 228, and 886 ng/dL), respectively. This method provides consistently high accuracy and excellent precision for testosterone determination in human serum across all clinical relevant concentrations. PMID:24960363

  2. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  3. A new fully automated FTIR system for total column measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.

    2010-10-01

    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON). It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control. First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  4. Calculating High Speed Centrifugal Compressor Performance from Averaged Measurements

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan; Fleming, Ryan; Key, Nicole L.

    2012-12-01

    To improve the understanding of high performance centrifugal compressors found in modern aircraft engines, the aerodynamics through these machines must be experimentally studied. To accurately capture the complex flow phenomena through these devices, research facilities that can accurately simulate these flows are necessary. One such facility has been recently developed, and it is used in this paper to explore the effects of averaging total pressure and total temperature measurements to calculate compressor performance. Different averaging techniques (including area averaging, mass averaging, and work averaging) have been applied to the data. Results show that there is a negligible difference in both the calculated total pressure ratio and efficiency for the different techniques employed. However, the uncertainty in the performance parameters calculated with the different averaging techniques is significantly different, with area averaging providing the least uncertainty.

  5. The correlation between the total magnetic flux and the total jet power

    NASA Astrophysics Data System (ADS)

    Nokhrina, Elena E.

    2017-12-01

    Magnetic field threading a black hole ergosphere is believed to play the key role in both driving the powerful relativistic jets observed in active galactic nuclei and extracting the rotational energy from a black hole via Blandford-Znajek process. The magnitude of magnetic field and the magnetic flux in the vicinity of a central black hole is predicted by theoretical models. On the other hand, the magnetic field in a jet can be estimated through measurements of either the core shift effect or the brightness temperature. In both cases the obtained magnetic field is in the radiating domain, so its direct application to the calculation of the magnetic flux needs some theoretical assumptions. In this paper we address the issue of estimating the magnetic flux contained in a jet using the measurements of a core shift effect and of a brightness temperature for the jets, directed almost at the observer. The accurate account for the jet transversal structure allow us to express the magnetic flux through the observed values and an unknown rotation rate of magnetic surfaces. If we assume the sources are in a magnetically arrested disk state, the lower limit for the rotation rate can be obtained. On the other hand, the flux estimate may be tested against the total jet power predicted by the electromagnetic energy extraction model. The resultant expression for power depends logarithmically weakly on an unknown rotation rate. We show that the total jet power estimated through the magnetic flux is in good agreement with the observed power. We also obtain the extremely slow rotation rates, which may be an indication that the majority of the sources considered are not in the magnetically arrested disk state.

  6. TOTAL ORGANIC CARBON ANALYZERS AS TOOLS FOR MEASURING CARBONACEOUS MATTER IN NATURAL WATERS

    EPA Science Inventory

    For some utilities, new US drinking water regulations may require removal of disinfection byproduct (DBP) precursor material as a means of mimnimizing DBP formation. The EPa's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness o...

  7. Instrument accurately measures weld angle and offset

    NASA Technical Reports Server (NTRS)

    Boyd, W. G.

    1967-01-01

    Weld angle is measured to the nearest arc minute and offset to one thousandth of an inch by an instrument designed to use a reference plane at two locations on a test coupon. A special table for computation has been prepared for use with the instrument.

  8. Radiocarbon measurements constrain the fossil and biological components of total CO2

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S. J.; Tans, P. P.; Turnbull, J. C.

    2009-12-01

    In a rapidly evolving environment in which binding treaties and laws at the international, national and state levels are likely to limit greenhouse gas emissions, it will be critical for society to have independent verification of emissions and their accumulation in the atmosphere. Current treaties and laws like the Kyoto Protocol and California’s AB32 rely upon “bottom-up” reporting by governments and industry from inventories and process models to assess emissions. What we propose here is that to promote accuracy and transparency, it will also be necessary to verify these “bottom-up” approaches from the “top-down” perspective of the atmosphere. In particular, total CO2, which is the bottom line for climate forcing, and fossil fuel CO2, which is the primary driver of the observed increase need to be monitored. Total CO2 is already measured at high precision and accuracy at numerous sites nationally and globally by a variety of university and government entities (see e.g., www.esrl.noaa.gov/gmd/ccgg/globalview/). CO2 measurements in more locations and at higher frequencies are required to establish tighter constraints to emissions. For fossil fuel CO2, however, we require measurements of the rare isotopic species 14CO2. Fossil fuel emissions of CO2 are devoid of 14 (radiocarbon), because, by definition, these fuels are many millions of years old and the 14 half-life is only 5730 years. This makes 14CO2 an ideal tracer for fossil fuel emissions. Here we will present results of a nascent United States 14CO2 observation program that together with model simulations suggest a large number of 14CO2 measurements over the coterminous USA would allow for tight (~20%) regional (~105 - 106 km2) constraints on fossil fuel emissions at annual or seasonal time scales. Additionally, correlations of our 14CO2 observations with a wide suite of anthropogenic tracers suggest that “tuning” of these tracers with 14CO2 for fossil fuel detection may be possible

  9. First total-absorption spectroscopy measurement on the neutron-rich Cu isotopes

    NASA Astrophysics Data System (ADS)

    Naqvi, F.; Spyrou, A.; Liddick, S. N.; Larsen, A. C.; Guttormsen, M.; Bleuel, D. L.; Campo, L. C.; Couture, A.; Crider, B. P.; Dombos, A. C.; Ginter, T.; Lewis, R.; Mosby, S.; Perdikakis, G.; Prokop, C. P.; Quinn, S. J.; Renstrom, T.; Rubio, B.; Siem, S.

    2015-10-01

    The first beta-decay studies of 73-71Cu isotopes using the Total Absorption Spectroscopy (TAS) will be reported. The Cu isotopes have one proton outside the Z = 28 shell and hence are good candidates to probe the single-particle structure in the region.Theories predict weakening of the Z = 28 shell gap due to the tensor interaction between the valence πν single-particle orbitals. Comparing the beta-decay strength distributions in the daughter Zn isotopes to the theoretical calculations will provide a stringent test of the predictions. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) employing the TAS technique with the Summing NaI(Tl) detector, while beta decays were measured in the NSCL beta-counting system. The experimentally obtained total absorption spectra for the neutron-rich Cu isotopes will be presented and the implications of the extracted beta-feeding intensities will be discussed.

  10. Measurement of the np total cross section difference Δ σ L(np) at 1.39, 1.69, 1.89 and 1.99 GeV

    NASA Astrophysics Data System (ADS)

    Sharov, V. I.; Anischenko, N. G.; Antonenko, V. G.; Averichev, S. A.; Azhgirey, L. S.; Bartenev, V. D.; Bazhanov, N. A.; Belyaev, A. A.; Blinov, N. A.; Borisov, N. S.; Borzakov, S. B.; Borzunov, Yu T.; Bushuev, Yu P.; Chernenko, L. P.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Fedorov, A. N.; Fimushkin, V. V.; Finger, M.; Finger, M.; Golovanov, L. B.; Gurevich, G. M.; Janata, A.; Kirillov, A. D.; Kolomiets, V. G.; Komogorov, E. V.; Kovalenko, A. D.; Kovalev, A. I.; Krasnov, V. A.; Krstonoshich, P.; Kuzmin, E. S.; Ladygin, V. P.; Lazarev, A. B.; Lehar, F.; de Lesquen, A.; Liburg, M. Yu; Livanov, A. N.; Lukhanin, A. A.; Maniakov, P. K.; Matafonov, V. N.; Matyushevsky, E. A.; Moroz, V. D.; Morozov, A. A.; Neganov, A. B.; Nikolaevsky, G. P.; Nomofilov, A. A.; Panteleev, Tz; Pilipenko, Yu K.; Pisarev, I. L.; Plis, Yu A.; Polunin, Yu P.; Prokofiev, A. N.; Prytkov, V. Yu; Rukoyatkin, P. A.; Schedrov, V. A.; Schevelev, O. N.; Shilov, S. N.; Shindin, R. A.; Slunečka, M.; Slunečková, V.; Starikov, A. Yu; Stoletov, G. D.; Strunov, L. N.; Svetov, A. L.; Usov, Yu A.; Vasiliev, T.; Volkov, V. I.; Vorobiev, E. I.; Yudin, I. P.; Zaitsev, I. V.; Zhdanov, A. A.; Zhmyrov, V. N.

    2004-09-01

    New accurate results of the neutron-proton spin-dependent total cross section difference Δσ_L(np) at the neutron beam kinetic energies 1.39, 1.69, 1.89 and 1.99 GeV are presented. Measurements were carried out in 2001 at the Synchrophasotron of the Veksler and Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research. A quasi-monochromatic neutron beam was produced by break-up of extracted polarized deuterons. The deuteron (and hence neutron) polarization direction was flipped every accelerator burst. The vertical neutron polarization direction was rotated onto the neutron beam direction and longitudinally (L) polarized neutrons were transmitted through a large proton L-polarized target. The target polarization vector was inverted after 1-2 days of measurements. The data were recorded for four different combinations of the beam and target parallel and antiparallel polarization directions at each energy. A fast decrease of Δσ_L(np) with increasing energy above 1.1 GeV was confirmed. The structure in the Δσ_L(np) energy dependence around 1.8 GeV, first observed from our previous data, seems to be well pronounced. The new results are also compared with model predictions and with phase shift analysis fits. The Δσ_L quantities for isosinglet state I = 0, deduced from the measured Δσ_L(np) values and the known Δσ_L(pp) data, are also given. The results were completed by the measurements of unpolarized total cross sections σ_{0tot}(np) at 1.3, 1.4 and 1.5 GeV and σ_{0tot}(nC) at 1.4 and 1.5 GeV. These data were obtained using the same apparatus and high intensity unpolarized deuteron beams were extracted either from the Synchrophasotron, or from the Nuclotron.

  11. Component alignment in revision total knee arthroplasty using diaphyseal engaging modular offset press-fit stems.

    PubMed

    Nakasone, Cass K; Abdeen, Ayesha; Khachatourians, Armond G; Sugimori, Tanzo; Vince, Kelly G

    2008-12-01

    We performed a retrospective study of the radiographic position of femoral and tibial components in a series of revision total knee arthroplasties using diaphyseal-engaging, press fit, modular stems. Fifty-two consecutive revision cases were performed. Femoral and tibial component alignment was measured preoperatively and postoperatively. The canal-filling ratio was measured and correlated with anatomic alignment. There was a trend toward improved alignment with increasing canal fill, suggesting that uncemented diaphyseal engaging press-fit modular stems facilitate accurate alignment for both femoral and tibial components in revision surgery.

  12. Multiple scattering theory for total skin electron beam design.

    PubMed

    Antolak, J A; Hogstrom, K R

    1998-06-01

    The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.

  13. Simplified methods for computing total sediment discharge with the modified Einstein procedure

    USGS Publications Warehouse

    Colby, Bruce R.; Hubbell, David Wellington

    1961-01-01

    A procedure was presented in 1950 by H. A. Einstein for computing the total discharge of sediment particles of sizes that are in appreciable quantities in the stream bed. This procedure was modified by the U.S. Geological Survey and adapted to computing the total sediment discharge of a stream on the basis of samples of bed sediment, depth-integrated samples of suspended sediment, streamflow measurements, and water temperature. This paper gives simplified methods for computing total sediment discharge by the modified Einstein procedure. Each of four homographs appreciably simplifies a major step in the computations. Within the stated limitations, use of the homographs introduces much less error than is present in either the basic data or the theories on which the computations of total sediment discharge are based. The results are nearly as accurate mathematically as those that could be obtained from the longer and more complex arithmetic and algebraic computations of the Einstein procedure.

  14. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    PubMed Central

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  15. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  16. Polyphenols excreted in urine as biomarkers of total polyphenol intake.

    PubMed

    Medina-Remón, Alexander; Tresserra-Rimbau, Anna; Arranz, Sara; Estruch, Ramón; Lamuela-Raventos, Rosa M

    2012-11-01

    Nutritional biomarkers have several advantages in acquiring data for epidemiological and clinical studies over traditional dietary assessment tools, such as food frequency questionnaires. While food frequency questionnaires constitute a subjective methodology, biomarkers can provide a less biased and more accurate measure of specific nutritional intake. A precise estimation of polyphenol consumption requires blood or urine sample biomarkers, although their association is usually highly complex. This article reviews recent research on urinary polyphenols as potential biomarkers of polyphenol intake, focusing on clinical and epidemiological studies. We also report a potentially useful methodology to assess total polyphenols in urine samples, which allows a rapid, simultaneous determination of total phenols in a large number of samples. This methodology can be applied in studies evaluating the utility of urinary polyphenols as markers of polyphenol intake, bioavailability and accumulation in the body.

  17. Measuring Fisher Information Accurately in Correlated Neural Populations

    PubMed Central

    Kohn, Adam; Pouget, Alexandre

    2015-01-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735

  18. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test.

    PubMed

    Williams, Cylie M; Caserta, Antoni J; Haines, Terry P

    2013-09-01

    The weight bearing lunge test is increasing being used by health care clinicians who treat lower limb and foot pathology. This measure is commonly established accurately and reliably with the use of expensive equipment. This study aims to compare the digital inclinometer with a free app, TiltMeter on an Apple iPhone. This was an intra-rater and inter-rater reliability study. Two raters (novice and experienced) conducted the measurements in both a bent knee and straight leg position to determine the intra-rater and inter-rater reliability. Concurrent validity was also established. Allied health practitioners were recruited as participants from the workplace. A preconditioning stretch was conducted and the ankle range of motion was established with the weight bearing lunge test position with firstly the leg straight and secondly with the knee bent. The measurement device and each participant were randomised during measurement. The intra-rater reliability and inter-rater reliability for the devices and in both positions were all over ICC 0.8 except for one intra-rater measure (Digital inclinometer, novice, ICC 0.65). The inter-rater reliability between the digital inclinometer and the tilmeter was near perfect, ICC 0.96 (CI: 0.898-0.983); Concurrent validity ICC between the two devices was 0.83 (CI: -0.740 to 0.445). The use of the Tiltmeter app on the iPhone is a reliable and inexpensive tool to measure the available ankle range of motion. Health practitioners should use caution in applying these findings to other smart phone equipment if surface areas are not comparable. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging

  20. A validated method for measurement of serum total, serum free, and salivary cortisol, using high-performance liquid chromatography coupled with high-resolution ESI-TOF mass spectrometry.

    PubMed

    Montskó, Gergely; Tarjányi, Zita; Mezősi, Emese; Kovács, Gábor L

    2014-04-01

    Blood cortisol level is routinely analysed in laboratory medicine, but the immunoassays in widespread use have the disadvantage of cross-reactivity with some commonly used steroid drugs. Mass spectrometry has become a method of increasing importance for cortisol estimation. However, current methods do not offer the option of accurate mass identification. Our objective was to develop a mass spectrometry method to analyse salivary, serum total, and serum free cortisol via accurate mass identification. The analysis was performed on a Bruker micrOTOF high-resolution mass spectrometer. Sample preparation involved protein precipitation, serum ultrafiltration, and solid-phase extraction. Limit of quantification was 12.5 nmol L(-1) for total cortisol, 440 pmol L(-1) for serum ultrafiltrate, and 600 pmol L(-1) for saliva. Average intra-assay variation was 4.7%, and inter-assay variation was 6.6%. Mass accuracy was <2.5 ppm. Serum total cortisol levels were in the range 35.6-1088 nmol L(-1), and serum free cortisol levels were in the range 0.5-12.4 nmol L(-1). Salivary cortisol levels were in the range 0.7-10.4 nmol L(-1). Mass accuracy was equal to or below 2.5 ppm, resulting in a mass error less than 1 mDa and thus providing high specificity. We did not observe any interference with routinely used steroidal drugs. The method is capable of specific cortisol quantification in different matrices on the basis of accurate mass identification.

  1. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  2. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  3. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    NASA Astrophysics Data System (ADS)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  4. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.

    PubMed

    Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A

    2004-01-01

    Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.

  5. Selection criteria for oxidation method in total organic carbon measurement.

    PubMed

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Apparatus for Measuring Total Emissivity of Small, Low-Emissivity Samples

    NASA Technical Reports Server (NTRS)

    Tuttle, James; DiPirro, Michael J.

    2011-01-01

    An apparatus was developed for measuring total emissivity of small, lightweight, low-emissivity samples at low temperatures. The entire apparatus fits inside a small laboratory cryostat. Sample installation and removal are relatively quick, allowing for faster testing. The small chamber surrounding the sample is lined with black-painted aluminum honeycomb, which simplifies data analysis. This results in the sample viewing a very high-emissivity surface on all sides, an effect which would normally require a much larger chamber volume. The sample and chamber temperatures are individually controlled using off-the-shelf PID (proportional integral derivative) controllers, allowing flexibility in the test conditions. The chamber can be controlled at a higher temperature than the sample, allowing a direct absorptivity measurement. The lightweight sample is suspended by its heater and thermometer leads from an isothermal bar external to the chamber. The wires run out of the chamber through small holes in its corners, and the wires do not contact the chamber itself. During a steady-state measurement, the thermometer and bar are individually controlled at the same temperature, so there is zero heat flow through the wires. Thus, all of sample-temperature-control heater power is radiated to the chamber. Double-aluminized Kapton (DAK) emissivity was studied down to 10 K, which was about 25 K colder than any previously reported measurements. This verified a minimum in the emissivity at about 35 K and a rise as the temperature dropped to lower values.

  7. Accurate HLA type inference using a weighted similarity graph.

    PubMed

    Xie, Minzhu; Li, Jing; Jiang, Tao

    2010-12-14

    The human leukocyte antigen system (HLA) contains many highly variable genes. HLA genes play an important role in the human immune system, and HLA gene matching is crucial for the success of human organ transplantations. Numerous studies have demonstrated that variation in HLA genes is associated with many autoimmune, inflammatory and infectious diseases. However, typing HLA genes by serology or PCR is time consuming and expensive, which limits large-scale studies involving HLA genes. Since it is much easier and cheaper to obtain single nucleotide polymorphism (SNP) genotype data, accurate computational algorithms to infer HLA gene types from SNP genotype data are in need. To infer HLA types from SNP genotypes, the first step is to infer SNP haplotypes from genotypes. However, for the same SNP genotype data set, the haplotype configurations inferred by different methods are usually inconsistent, and it is often difficult to decide which one is true. In this paper, we design an accurate HLA gene type inference algorithm by utilizing SNP genotype data from pedigrees, known HLA gene types of some individuals and the relationship between inferred SNP haplotypes and HLA gene types. Given a set of haplotypes inferred from the genotypes of a population consisting of many pedigrees, the algorithm first constructs a weighted similarity graph based on a new haplotype similarity measure and derives constraint edges from known HLA gene types. Based on the principle that different HLA gene alleles should have different background haplotypes, the algorithm searches for an optimal labeling of all the haplotypes with unknown HLA gene types such that the total weight among the same HLA gene types is maximized. To deal with ambiguous haplotype solutions, we use a genetic algorithm to select haplotype configurations that tend to maximize the same optimization criterion. Our experiments on a previously typed subset of the HapMap data show that the algorithm is highly accurate

  8. Perceptions of Community College Presidents: Total Quality Management Performance Measures at Their Colleges

    ERIC Educational Resources Information Center

    Riccardi, Mark T.

    2009-01-01

    Continuous Quality Improvement (CQI) measures such as Total Quality Management (TQM), Strategic Planning, Six Sigma, and the Balanced Scorecard are often met with skepticism among leaders of higher education. This study attempts to fill a gap in the literature regarding the study of relationships among specific variables, or building blocks,…

  9. Comprehensive measurement of total nondigestible carbohydrates in foods by enzymatic-gravimetric method and liquid chromatography.

    PubMed

    Nishibata, Toyohide; Tashiro, Kouichi; Kanahori, Sumiko; Hashizume, Chieko; Kitagawa, Machiko; Okuma, Kazuhiro; Gordon, Dennis T

    2009-09-09

    Total nondigestible carbohydrate (NDC) in foods was determined by combining, not modifications, AOAC Official Methods 991.43, 2001.03, and 2002.02. Total NDC included insoluble dietary fiber (IDF) + high-molecular-weight soluble dietary fiber (HMWSDF), nondigestible oligosaccharides (NDO) not precipitated in ethanol solution, and resistant starch (RS). Eight sources of NDC (cellulose, wheat bran, gum arabic, resistant maltodextrin, polydextrose, fructooligosaccharide, galactooligosaccharides, and RS) were incorporated in different combinations into standard formula bread samples. All of the NDC sources and bread samples were analyzed for their (1) IDF + HMWSDF content with corrections for residual RS amount using AOAC Official Method 991.43, (2) NDO by liquid chromatography (LC) in AOAC Official Method 2001.03, and (3) RS by AOAC Official Method 2002.02. The correlation coefficient (R(2)) comparing calculated amounts versus measured amounts of total NDC in 11 bread samples was 0.92. Analysis of commercial food samples was also well matched with the DF + NDO value on their nutritional label. Consequently, we confirmed a single measurement of LC can determine all NDO in foods, and total NDC in foods can be determined by unifying existing AOAC Official Methods.

  10. Five methods of breast volume measurement: a comparative study of measurements of specimen volume in 30 mastectomy cases.

    PubMed

    Kayar, Ragip; Civelek, Serdar; Cobanoglu, Murat; Gungor, Osman; Catal, Hidayet; Emiroglu, Mustafa

    2011-03-27

    To compare breast volume measurement techniques in terms of accuracy, convenience, and cost. Breast volumes of 30 patients who were scheduled to undergo total mastectomy surgery were measured preoperatively by using five different methods (mammography, anatomic [anthropometric], thermoplastic casting, the Archimedes procedure, and the Grossman-Roudner device). Specimen volume after total mastectomy was measured in each patient with the water displacement method (Archimedes). The results were compared statistically with the values obtained by the five different methods. The mean mastectomy specimen volume was 623.5 (range 150-1490) mL. The breast volume values were established to be 615.7 mL (r = 0.997) with the mammographic method, 645.4 mL (r = 0.975) with the anthropometric method, 565.8 mL (r = 0.934) with the Grossman-Roudner device, 583.2 mL (r = 0.989) with the Archimedes procedure, and 544.7 mL (r = 0.94) with the casting technique. Examination of r values revealed that the most accurate method was mammography for all volume ranges, followed by the Archimedes method. The present study demonstrated that the most accurate method of breast volume measurement is mammography, followed by the Archimedes method. However, when patient comfort, ease of application, and cost were taken into consideration, the Grossman-Roudner device and anatomic measurement were relatively less expensive, and easier methods with an acceptable degree of accuracy.

  11. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  12. Online dissolved methane and total dissolved sulfide measurement in sewers.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo

    2015-01-01

    Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle.

  13. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Chang, Ni-Bin

    2010-10-01

    In recent years, the risk of health effects caused by the increased exposure to Ultraviolet-B (UVB) due to stratospheric ozone depletion has received wide attention. In the US, there are two ways to accurately measure the UVB. They include: 1) the National Aeronautical and Space Administration (NASA) Nimbus-7 total ozone mapping spectrometer (TOMS), and 2) the United State Department of Agriculture (USDA) ground-based network. This paper compares these two sensors' data for the ultraviolet index (UVI) nationally and regionally to support possible public health, agricultural, and ecological analyses in the future. The major findings of our study are: 1) although there are discrepancies between these two data sets, the temporal correlation coefficients can be as high as 98%. 2) Both types of data sources depict the macroscopic spatial pattern of the UVI across the continental US.indicating a strong spatial correlation; 3) The two data sources are generally consistent though the UVI of the NASA TOMS data are often about 0.13-1.05 units larger than those of the USDA ground-based measurements; and 4) Varying differences can be seen between the Midwest and two coastal regions. While the level of the UVI on the west coast has shown a decreasing trend in the past few years, its counterpart on the east coast showed an opposite trend in between 2000 and 2005. It is hard to conclude that the changes are due to variations of total ozone concentrations in this study period. The USDA ground-based measurements may be better applied for time series analysis for public health, ecological, and agricultural applications due to their ability to provide intensive calibrated point measurements.

  14. Highly accurate photogrammetric measurements of the Planck reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro

    2017-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  15. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    NASA Technical Reports Server (NTRS)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  16. Measurements of the Temperature-Dependent Total Hemispherical Emissivity Using an Electrostatic Levitation Facility

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A. K.; Kelton, K. F.

    2017-01-01

    Among the three fundamental processes of heat transfer (conduction, convection, and radiation), radiation is the most dominant at high temperatures. The total hemispherical emissivity is an important property that determines the amount of heat loss by radiation. Unfortunately, the emissivity, especially its temperature dependence (ɛ (T)), is unknown for most materials. Here, we demonstrate the feasibility of measuring ɛ (T) using an electrostatic levitation (ESL) technique that allows such measurements to be made on levitated solid and liquid samples in a contamination-free, high-vacuum environment. The ɛ (T) for solid Ni and liquid Zr_{60}Al_{10}Cu_{18}Ni9Co3 from these measurements is consistent with the existing literature data.

  17. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  18. Measures of total stress-induced blood pressure responses are associated with vascular damage.

    PubMed

    Nazzaro, Pietro; Seccia, Teresa; Vulpis, Vito; Schirosi, Gabriella; Serio, Gabriella; Battista, Loredana; Pirrelli, Anna

    2005-09-01

    The role of cardiovascular reactivity to study hypertension, and the assessment methods, are still controversial. We aimed to verify the association of hypertension and vascular damage with several measures of cardiovascular response. We studied 40 patients with normal-high (132 +/- 1/87 +/- 1 mm Hg) blood pressure (Group 1) and 80 untreated hypertensive subjects. Postischemic forearm vascular resistance (mFVR) served to differentiate hypertensive subjects (142 +/- 2/92 +/- 1 mm Hg v 143 +/- 2/94 +/- 2 mm Hg, P = NS) with a lower (Group 2) and higher (Group 3) hemodynamic index of vascular damage (4.8 +/- .05 v 6.3 +/- .09, P < .001). Reactivity was induced by Stroop (5') and cold pressor (90") tests. We measured muscular contraction and skin conductance as indices of emotional arousal, blood pressure, heart rate, forearm blood flow, and vascular resistance. Reactivity measures included: a) change from baseline, b) residualized score, c) cumulative change from baseline and residualized score, and d) total reactivity as area-under-the-curve (AUC), including changes occurring during baseline and recovery phases. The AUC of systolic blood pressure, diastolic blood pressure, and mFVR progressively increased in the groups (P < .001). Corrections of anthropometric and metabolic confounders were introduced in the Pearson equation between mFVR and reactivity measures. The AUC of SBP, DBP, and forearm blood flow and resistance demonstrated the highest (P < .001) correlation. On multiple regression analysis, AUC of SBP (beta = 0.634) and forearm blood flow (beta = -0.337) were predictive (P < .001) of vascular damage. Total blood pressure stress response, as AUC, including baseline and recovery phases, was significantly better associated with hypertension and vascular damage than the other reactivity measures studied.

  19. How to achieve more accurate comparisons in organ donation activity: time to effectiveness indicators.

    PubMed

    Deulofeu, R; Bodí, M A; Twose, J; López, P

    2010-06-01

    We are used to comparisons of activity using donation or transplantation population (pmp) rates between regions or countries, without a further evaluation of the process. But crude pmp rates do not clearly reflect real transplantation capacity, because organ procurement does not finish with the donation step; it is also necessary to know the utilization of the obtained organs. The objective of this study was to present methods and indicators deemed necessary to evaluate the effectiveness of the process. We have proposed the use of simple definitions and indicators to more accurately measure and compare the effectiveness of the total organ procurement process. To illustrate the use and performance of these indicators, we have presented the donation and transplantation activity in Catalonia from 2002 to 2007.

  20. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  1. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  2. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  3. A comparison of direct and indirect analytical approaches to measuring total nicotine equivalents in urine.

    PubMed

    Taghavi, Taraneh; Novalen, Maria; Lerman, Caryn; George, Tony P; Tyndale, Rachel F

    2018-05-31

    Total nicotine equivalents (TNE), the sum of nicotine and metabolites in urine, is a valuable tool for evaluating nicotine exposure. Most methods for measuring TNE involve two-step enzymatic hydrolysis for indirect quantification of glucuronide metabolites. Here, we describe a rapid, low-cost direct liquid chromatography - tandem mass spectrometry (LCMS) assay. In 139 smokers' urine samples, Bland-Altman, correlation, and regression analyses were used to investigate differences in quantification of nicotine and metabolites, TNE, and nicotine metabolite ratio (NMR) between direct and indirect LCMS methods. DNA from a subset (n=97 smokers) was genotyped for UGT2B10*2 and UGT2B17*2 and the known impact of these variants was evaluated using urinary ratios determined by the direct versus indirect method. The direct method showed high accuracy (0-9% bias) and precision (3-14% coefficient of variation) with similar distribution of nicotine metabolites to literary estimates and good agreement between the direct and indirect methods for nicotine, cotinine, and 3-hydroxycotinine (ratios 0.99-1.07), but less agreement for their respective glucuronides (ratios 1.16-4.17). The direct method identified urinary 3HC+3HC-GLUC/COT as having the highest concordance with plasma NMR and provided substantially better estimations of the established genetic impact of glucuronidation variants compared to the indirect method. Direct quantification of nicotine and metabolites is less time-consuming and less costly, and provides accurate estimates of nicotine intake, metabolism rate and the impact of genetic variation in smokers. Lower cost and maintenance combined with high accuracy and reproducibility make the direct method ideal for smoking biomarker, NMR and pharmacogenomics studies. Copyright ©2018, American Association for Cancer Research.

  4. Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS

    NASA Astrophysics Data System (ADS)

    Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

    2010-12-01

    A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the “total evaporation” (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the

  5. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  6. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  7. Is oral temperature an accurate measurement of deep body temperature? A systematic review.

    PubMed

    Mazerolle, Stephanie M; Ganio, Matthew S; Casa, Douglas J; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was -0.50°C ± 0.31°C at rest and -0.58°C ± 0.75°C during a nonsteady state. Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot accurately reflect core body temperature, probably because it is

  8. Development of an accurate portable recording peak-flow meter for the diagnosis of asthma.

    PubMed

    Hitchings, D J; Dickinson, S A; Miller, M R; Fairfax, A J

    1993-05-01

    This article describes the systematic design of an electronic recording peak expiratory flow (PEF) meter to provide accurate data for the diagnosis of occupational asthma. Traditional diagnosis of asthma relies on accurate data of PEF tests performed by the patients in their own homes and places of work. Unfortunately there are high error rates in data produced and recorded by the patient, most of these are transcription errors and some patients falsify their records. The PEF measurement itself is not effort independent, the data produced depending on the way in which the patient performs the test. Patients are taught how to perform the test giving maximal effort to the expiration being measured. If the measurement is performed incorrectly then errors will occur. Accurate data can be produced if an electronically recording PEF instrument is developed, thus freeing the patient from the task of recording the test data. It should also be capable of determining whether the PEF measurement has been correctly performed. A requirement specification for a recording PEF meter was produced. A commercially available electronic PEF meter was modified to provide the functions required for accurate serial recording of the measurements produced by the patients. This is now being used in three hospitals in the West Midlands for investigations into the diagnosis of occupational asthma. In investigating current methods of measuring PEF and other pulmonary quantities a greater understanding was obtained of the limitations of current methods of measurement, and quantities being measured.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Development and validation of a very brief questionnaire measure of physical activity in adults with coronary heart disease.

    PubMed

    Orrell, Alison; Doherty, Patrick; Miles, Jeremy; Lewin, Robert

    2007-10-01

    The aim of this study was to validate the Total Activity Measure, a brief questionnaire, to measure physical activity in an older adult population with heart disease. Two versions of the Total Activity Measure were administered twice, 7 days apart. The Total Activity Measure 1 asked respondents for the frequency and average duration of bouts of physical activity at three different intensity levels per week, whereas the Total Activity Measure 2 asked respondents for the total time spent in activity at each activity level per week. Questionnaire accuracy was studied in 62 men and 15 women aged 47-84 years, by repeatability and comparison of both administrations of the Total Activity Measure 1 and Total Activity Measure 2 with 7-day RT3 accelerometer data. Seventy-three adults (58 men, 15 women) were used for all statistical analyses. Intraclass correlation coefficients for the Total Activity Measure 1 and Total Activity Measure 2 total activity scores (metabolic equivalent per minute) were r=0.73 (95% confidence intervals, 0.56-0.83) and r=0.82 (95% confidence intervals, 0.71-0.88), respectively. Correlations between the Total Activity Measure 1 and RT3 accelerometer for total activity score (metabolic equivalent per minute) were significant, r=0.26 at time 1 and r=0.27 at time 2 for moderate intensity activities. Correlations between the Total Activity Measure 2 and RT3 accelerometer for total activity score (metabolic equivalent per minute) were also significant, r=0.38 at time 1 and r=0.36 at time 2, r=0.31 at time 2 for strenuous intensity activities and r=0.29 at time 1 and r=0.25 at time 2 for moderate intensity activities. Participants overestimated the amount of physical activity on both questionnaires as compared with the RT3 accelerometer. The Total Activity Measure 2 was reasonably accurate in assessing total and moderate intensity activity over a 7-day period and demonstrated good test-retest reliability. The Total Activity Measure 1 was less accurate

  10. Comparison of Anterior, Posterior, and Total Corneal Astigmatism Measured Using a Single Scheimpflug Camera in Healthy and Keratoconus Eyes.

    PubMed

    Choi, Young; Eom, Youngsub; Song, Jong Suk; Kim, Hyo Myung

    2018-05-15

    To compare the effect of posterior corneal astigmatism on the estimation of total corneal astigmatism using anterior corneal measurements (simulated keratometry [K]) between eyes with keratoconus and healthy eyes. Thirty-three eyes of 33 patients with keratoconus of grade I or II and 33 eyes of 33 age- and sex-matched healthy control subjects were enrolled. Anterior, posterior, and total corneal cylinder powers and flat meridians measured by a single Scheimpflug camera were analyzed. The difference in corneal astigmatism between the simulated K and total cornea was evaluated. The mean anterior, posterior, and total corneal cylinder powers of the keratoconus group (4.37 ± 1.73, 0.95 ± 0.39, and 4.36 ± 1.74 CD, respectively) were significantly greater than those of the control group (1.10 ± 0.68, 0.39 ± 0.18, and 0.97 ± 0.63 CD, respectively). The cylinder power difference between the simulated K and total cornea was positively correlated with the posterior corneal cylinder power and negatively correlated with the absolute flat meridian difference between the simulated K and total cornea in both groups. The mean magnitude of the vector difference between the astigmatism of the simulated K and total cornea of the keratoconus group (0.67 ± 0.67 CD) was significantly larger than that of the control group (0.28 ± 0.12 CD). Eyes with keratoconus had greater estimation errors of total corneal astigmatism based on anterior corneal measurement than did healthy eyes. Posterior corneal surface measurement should be more emphasized to determine the total corneal astigmatism in eyes with keratoconus. © 2018 The Korean Ophthalmological Society.

  11. Comparison of Anterior, Posterior, and Total Corneal Astigmatism Measured Using a Single Scheimpflug Camera in Healthy and Keratoconus Eyes

    PubMed Central

    Choi, Young; Song, Jong Suk; Kim, Hyo Myung

    2018-01-01

    Purpose To compare the effect of posterior corneal astigmatism on the estimation of total corneal astigmatism using anterior corneal measurements (simulated keratometry [K]) between eyes with keratoconus and healthy eyes. Methods Thirty-three eyes of 33 patients with keratoconus of grade I or II and 33 eyes of 33 age- and sex-matched healthy control subjects were enrolled. Anterior, posterior, and total corneal cylinder powers and flat meridians measured by a single Scheimpflug camera were analyzed. The difference in corneal astigmatism between the simulated K and total cornea was evaluated. Results The mean anterior, posterior, and total corneal cylinder powers of the keratoconus group (4.37 ± 1.73, 0.95 ± 0.39, and 4.36 ± 1.74 cylinder diopters [CD], respectively) were significantly greater than those of the control group (1.10 ± 0.68, 0.39 ± 0.18, and 0.97 ± 0.63 CD, respectively). The cylinder power difference between the simulated K and total cornea was positively correlated with the posterior corneal cylinder power and negatively correlated with the absolute flat meridian difference between the simulated K and total cornea in both groups. The mean magnitude of the vector difference between the astigmatism of the simulated K and total cornea of the keratoconus group (0.67 ± 0.67 CD) was significantly larger than that of the control group (0.28 ± 0.12 CD). Conclusions Eyes with keratoconus had greater estimation errors of total corneal astigmatism based on anterior corneal measurement than did healthy eyes. Posterior corneal surface measurement should be more emphasized to determine the total corneal astigmatism in eyes with keratoconus. PMID:29770640

  12. Determination of accurate vertical atmospheric profiles of extinction and turbulence

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Campbell, James; Hallenborg, Eric

    2017-09-01

    Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.

  13. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  14. Outcomes of total knee arthroplasty in relation to preoperative patient-reported and radiographic measures: data from the osteoarthritis initiative.

    PubMed

    Kahn, Timothy L; Soheili, Aydin; Schwarzkopf, Ran

    2013-12-01

    Total knee arthroplasty (TKA) is the preferred surgical treatment for end-stage osteoarthritis. However, substantial numbers of patients still experience poor outcomes. Consequently, it is important to identify which patient characteristics are predictive of outcomes in order to guide clinical decisions. Our hypothesis is that preoperative patient-reported outcome measures and radiographic measures may help to predict TKA outcomes. Using cohort data from the Osteoarthritis Initiative, we studied 172 patients who underwent TKA. For each patient, we compiled pre- and postoperative Western Ontario and McMaster University Arthritis Index (WOMAC) scores. Radiographs were measured for knee joint angles, femorotibial angles, anatomical lateral distal femoral angles, and anatomical medial proximal tibial angles; Kellgren and Lawrence (KL) grades were assigned to each compartment of the knee. All studied measurements were compared to WOMAC outcomes. Preoperative WOMAC disability, pain, and total scores were positively associated with postoperative WOMAC total scores (P = .010, P = .010, and P = .009, respectively) and were associated with improvement in WOMAC total scores (P < .001, P < .001, and P < .001, respectively). For radiographic measurements, preoperative joint angles were positively associated with improvements in postoperative WOMAC total scores (P = .044). Combined KL grades (medial and lateral compartments) were negatively correlated with postoperative WOMAC disability and pain scores (P = .045 and P = .044) and were positively correlated with improvements in WOMAC total scores (P = .001). All preoperative WOMAC scores demonstrated positive associations with postoperative WOMAC scores, while among the preoperative radiographic measurements only combined KL grades and joint angles showed any correlation with postoperative WOMAC scores. Higher preoperative KL grades and joint angles were associated with better (lower) postoperative WOMAC scores, demonstrating an

  15. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μ m for the fictitious droplets of 50 μ m in diameter and -1.2 ± 0.3 μ m for the fictitious droplets of 30 μ m in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μ m . When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μ m at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  16. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications.

    PubMed

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μm for the fictitious droplets of 50 μm in diameter and -1.2 ± 0.3 μm for the fictitious droplets of 30 μm in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μm. When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μm at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  17. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  18. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  19. Determination of ferrous and total iron in refractory spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyas, Josef

    2015-12-30

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less

  20. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  1. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder

  2. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  3. Measurement of total occlusal convergence of 3 different tooth preparations in 4 different planes by dental students.

    PubMed

    Yoon, Stephan S; Cheong, Chan; Preisser, John; Jun, Sangho; Chang, Brian M; Wright, Robert F

    2014-08-01

    Total occlusal convergence of crown preparation is an important didactic and clinical concept in dental education. The purpose of this study was to compare the discrepancy between the total occlusal convergence of dental students' typodont crown preparations and the ideal range (4 to 10 degrees) in 3 different regions of the mouth and in 4 different planes of the teeth. The dental students of the Class of 2012 at Harvard School of Dental Medicine were asked to prepare typodont teeth for crowns on 3 different teeth, the maxillary left central incisor (ceramic), mandibular left first molar (complete metal), and mandibular left first premolar (metal ceramic), during their third year preclinical summative examination and the Comprehensive Clinical Examination in their fourth year. Eighteen students prepared 3 teeth in their third and fourth years, whereas 19 students participated only in their fourth year, for a total of 55 sets of 3 teeth. By using custom fit die bases to reproduce the position, a novel procedure of measuring each tooth was accomplished in 4 different planes: the faciolingual, mesiodistal, mesiofacial-distolingual, and mesiolingual-distofacial. The total occlusal convergence of each image was measured with a computer screen protractor. The gingival 2 mm of the axial wall was used to determine the taper of each wall. Linear mixed model analysis was used to estimate and compare the total occlusal convergences of different teeth and planes (α=.05). Bonferroni corrections were used to adjust for post hoc multiple comparisons. The mean total occlusal convergence varied by tooth and plane (2-way interaction; P<.001). For the first molar, dental students excessively tapered in all 4 planes; the model-predicted 99% CIs for the total occlusal convergence were as follows: faciolingual (12.7, 19.4), mesiodistal (14.0, 19.3), mesiofacial-distolingual (13,4, 19.4), and mesiolingual-distofacial (13.7, 19.1). For the central incisor, 99% CIs for the total occlusal

  4. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  5. Determination of total carbonates in soil archaeometry using a new pressure method with temperature compensation

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios

    2017-04-01

    For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for

  6. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  7. Determining site index accurately in even-aged stands

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    Good site index estimates are necessary for intensive forest management. To get tree age used in determining site index, increment cores are commonly used. The diffuse-porous rings of northern hardwoods, though, are difficult to count in cores, so many site index estimates are imprecise. Also, measuring the height of standing trees is more difficult and less accurate...

  8. Sensitivity Studies for Space-based Measurements of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  9. Computer-assisted revision total knee replacement.

    PubMed

    Sikorski, J M

    2004-05-01

    A technique for performing allograft-augmented revision total knee replacement (TKR) using computer assistance is described, on the basis of the results in 14 patients. Bone deficits were made up with impaction grafting. Femoral grafting was made possible by the construction of a retaining wall or dam which allowed pressurisation and retention of the graft. Tibial grafting used a mixture of corticocancellous and morsellised allograft. The position of the implants was monitored by the computer system and adjusted while the cement was setting. The outcome was determined using a six-parameter, quantitative technique (the Perth CT protocol) which measured the alignment of the prosthesis and provided an objective score. The final outcomes were not perfect with errors being made in femoral rotation and in producing a mismatch between the femoral and tibial components. In spite of the shortcomings the alignments were comparable in accuracy with those after primary TKR. Computer assistance shows considerable promise in producing accurate alignment in revision TKR with bone deficits.

  10. Accurate Laboratory Measurements of Vibration-Rotation Transitions of 36ArH^+ and 38ArH+

    NASA Astrophysics Data System (ADS)

    Cueto, Maite; Cernicharo, Jose; Herrero, Victor Jose; Tanarro, Isabel; Domenech, Jose Luis

    2014-06-01

    The protonated Ar ion 36ArH^+ has recently been identified in space, in the Crab Nebula, from Herschel spectra. Its R(0) and R(1) transitions lie at 617.5 and 1234.6 GHz, respectively, where atmospheric transmission is rather poor, even for a site as good as that of ALMA. As an alternative, especially after the end of the Herschel mission, rovibrational transitions of ArH^+ could be observed in absorption against bright background sources such as the galactic center, or other objects. We report on accurate laboratory wavenumber measurements of 19 lines of the v=1-0 band of 36ArH^+ and 38ArH^+, using a hollow cathode discharge cell, a difference frequency laser spectrometer and Ar with natural isotopic composition. Of those lines, only eight had been reported before and with much less accuracy. The data have also been used in a Dunham-type global fit of all published laboratory data (IR and sub-mm) of all isotopologues. Barlow et al., Science, 342, 1343 (2013) R.R. Filgueira and C.E. Blom, J. Mol. Spectrosc., 127, 279 (1988) M. Cueto et al, Astrophys. J. Lett, 783, L5 (2014)

  11. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation

    PubMed Central

    Kang, K-T.; Koh, Y-G.; Son, J.; Kwon, O-R.; Baek, C.; Jung, S. H.

    2016-01-01

    Objectives Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1. PMID:28094763

  12. Assessment of the associated particle prompt gamma neutron activation technique for total body nitrogen measurement in vivo

    USDA-ARS?s Scientific Manuscript database

    Total Body Nitrogen (TBN) can be used to estimate Total Body Protein (TBP), an important body composition component at the molecular level. A system using the associated particle technique in conjunction with prompt gamma neutron activation analysis has been developed for the measurement of TBN in ...

  13. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  14. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  15. Low- ν Flux and Total Charged-current Cross Sections in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, Lu

    2014-03-01

    The MINER νA experiment measures neutrino and antineutrino interaction cross sections on carbon and other nuclei. Cross section measurements require accurate knowledge of the incident neutrino flux. The ``low- ν'' flux technique uses a standard-candle cross section for events with low energy transfer to to the hadronic system to determine the incident flux. MINER νA will use low- ν fluxes for neutrinos and antineutrinos to tune production models used in beam simulations and to extract total cross sections as a function of energy. We present the low- ν flux technique adapted for the MINER νA data samples and preliminary results for the extracted low- ν fluxes in MINER νA. MINER νA will extend the range of antineutino charged-current cross section measurements to lower energies which are of interest to future accelerator oscillation experiments.

  16. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.

  17. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning

    PubMed Central

    Silva, Susana F.; Domingues, José Paulo

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938

  18. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    PubMed

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  19. Measuring Starlight Deflection during the 2017 Eclipse: Repeating the Experiment that made Einstein Famous

    NASA Astrophysics Data System (ADS)

    Bruns, Donald

    2016-05-01

    In 1919, astronomers performed an experiment during a solar eclipse, attempting to measure the deflection of stars near the sun, in order to verify Einstein's theory of general relativity. The experiment was very difficult and the results were marginal, but the success made Albert Einstein famous around the world. Astronomers last repeated the experiment in 1973, achieving an error of 11%. In 2017, using amateur equipment and modern technology, I plan to repeat the experiment and achieve a 1% error. The best available star catalog will be used for star positions. Corrections for optical distortion and atmospheric refraction are better than 0.01 arcsec. During totality, I expect 7 or 8 measurable stars down to magnitude 9.5, based on analysis of previous eclipse measurements taken by amateurs. Reference images, taken near the sun during totality, will be used for precise calibration. Preliminary test runs performed during twilight in April 2016 and April 2017 can accurately simulate the sky conditions during totality, providing an accurate estimate of the final uncertainty.

  20. Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance.

    PubMed

    Krishtop, Victor; Doronin, Ivan; Okishev, Konstantin

    2012-11-05

    Photon correlation spectroscopy is an effective method for measuring nanoparticle sizes and has several advantages over alternative methods. However, this method suffers from a disadvantage in that its measuring accuracy reduces in the presence of convective flows of fluid containing nanoparticles. In this paper, we propose a scheme based on attenuated total reflectance in order to reduce the influence of convection currents. The autocorrelation function for the light-scattering intensity was found for this case, and it was shown that this method afforded a significant decrease in the time required to measure the particle sizes and an increase in the measuring accuracy.

  1. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  2. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.

    PubMed

    Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand

    2016-05-01

    The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the

  3. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    NASA Astrophysics Data System (ADS)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  4. Phase rainbow refractometry for accurate droplet variation characterization.

    PubMed

    Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard

    2016-10-15

    We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.

  5. Validity and reliability of the abdominal test and evaluation systems tool (ABTEST) to accurately measure abdominal force.

    PubMed

    Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A

    2015-07-01

    Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; p<0.001). Mean electromyographic activity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, p<0.001). Data indicate the ABTEST can accurately measure rectus-abdominus force isolated from hip-flexor involvement. Negligible activation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Can Total Body Resistance Measured Using Bioelectrical Impedance Analysis Be the Index of Dehydration in Older Japanese Patients?

    PubMed

    Shimizu, Miyuki; Kinoshita, Kensuke; Maeno, Takami; Kobayashi, Hiroyuki; Maeno, Tetsuhiro

    2017-11-01

    Dehydration in older patients has long been considered a significant health problem because it implies increased morbidity and mortality. However, dehydration is detected by a combination of physical signs and blood tests. For older people dwelling at home and in nursing homes, a simple and non-invasive method for detecting dehydration by caregivers is needed. The total body resistance is measured using bioelectrical impedance analysis and is known as an indicator of dehydration. There are no data from older Japanese patients on this issue. We performed this study to examine the relationship between dehydration and total body resistance in Japan. We performed blood tests and measured bioelectrical impedance in older outpatients aged ≥ 65 years from the Internal Medicine Department at Mito Kyodo General Hospital. Patients were classified as dehydrated and non-dehydrated using the dehydration index with a blood urea nitrogen/creatinine ratio > 20, and the mean total body resistance was compared between the two groups. Eighty-one patients were recruited in the study. In the dehydrated group, the mean total body resistance was 439 Ω at 50 kHz, which was significantly higher than that in the non-dehydrated group (408 Ω, P = 0.038). The total body resistance measurements can be used for simple assessment of dehydration among older Japanese patients.

  7. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    PubMed Central

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  8. Highly accurate nephelometric titrimetry.

    PubMed

    Zhan, Xiancheng; Li, Chengrong; Li, Zhiyi; Yang, Xiucen; Zhong, Shuguang; Yi, Tao

    2004-02-01

    A method that accurately indicates the end-point of precipitation reactions by the measurement of the relative intensity of the scattered light in the titrate is presented. A new nephelometric titrator with an internal nephelometric sensor has been devised. The work of the titrator including the sensor and change in the turbidity of the titrate and intensity of the scattered light are described. The accuracy of the nephelometric titrimetry is discussed theoretically. The titration of NaCl with AgNO(3) serves as a model. A relative error as well as deviation is within 0.2% under the experimental conditions. The applicability of the titrimetry in pharmaceutical analyses, for example, phenytoin sodium and procaine hydrochloride, is generally illustrated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Measurement of total body water in intensive care patients with fluid overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streat, S.J.; Beddoe, A.H.; Hill, G.L.

    1985-07-01

    The measurement of total body water (TBW) in critically ill intensive care patients with greatly expanded TBW allows body composition studies to be undertaken in such patients with potentially important clinical consequences. Previous workers in this field have stressed the importance of the distortion of compartmental specific activity resulting from continued intravenous (IV) fluid administration during the period of equilibration and have made attempts to predict the equilibrium value of specific activity from the early arterial kinetics. In this paper a method for the measurement of TBW in critically ill intensive care patients is presented together with results of 16more » studies on 11 such patients (mean TBW 54.61). It is shown that the effect of continued IV fluid administration in association with prolonged equilibration is small and that the prediction of TBW from analysis of the early (first hour) arterial kinetics is inappropriate. It is concluded that in such patients the volume of distribution of the isotope is constant after four hours from IV injection and that TBW can be measured with a mean precision of 0.7% (SD) from the fourth, fifth, and sixth hour measurements.« less

  10. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  11. Precise measurement method for ionospheric total electron content using signals from GPS satellites

    NASA Technical Reports Server (NTRS)

    Imae, Michito; Kiuchi, Hitoshi; Kaneko, Akihiro; Hama, Shinichi; Miki, Chihiro

    1990-01-01

    A GPS codeless receiver called GTR-2 was for measuring total electron content (TEC) along the line of sight to the GPS satellite by using the cross correlation amplitude of the received P-code signals carried by L1(1575.42 MHz) and L2(1227.6 MHz). This equipment has the performance of uncertainty in the measurement of TEC of about 2 X 10(exp 16) electrons/sq m when a 10 dBi gain antenna was used. To increase the measurement performance, an upper version of GTR-2 called GTR-3 is planned which uses the phase information of the continuous signals obtained by making a cross correlation or multiplication of the received L1 and L2 P-code signals. By using the difference of these measured phases values, the ionospheric delay with the ambiguities of the periods of L1+L2 and L1-L2 signals can be estimated.

  12. Sleep deprivation impairs the accurate recognition of human emotions.

    PubMed

    van der Helm, Els; Gujar, Ninad; Walker, Matthew P

    2010-03-01

    Investigate the impact of sleep deprivation on the ability to recognize the intensity of human facial emotions. Randomized total sleep-deprivation or sleep-rested conditions, involving between-group and within-group repeated measures analysis. Experimental laboratory study. Thirty-seven healthy participants, (21 females) aged 18-25 y, were randomly assigned to the sleep control (SC: n = 17) or total sleep deprivation group (TSD: n = 20). Participants performed an emotional face recognition task, in which they evaluated 3 different affective face categories: Sad, Happy, and Angry, each ranging in a gradient from neutral to increasingly emotional. In the TSD group, the task was performed once under conditions of sleep deprivation, and twice under sleep-rested conditions following different durations of sleep recovery. In the SC group, the task was performed twice under sleep-rested conditions, controlling for repeatability. In the TSD group, when sleep-deprived, there was a marked and significant blunting in the recognition of Angry and Happy affective expressions in the moderate (but not extreme) emotional intensity range; differences that were most reliable and significant in female participants. No change in the recognition of Sad expressions was observed. These recognition deficits were, however, ameliorated following one night of recovery sleep. No changes in task performance were observed in the SC group. Sleep deprivation selectively impairs the accurate judgment of human facial emotions, especially threat relevant (Anger) and reward relevant (Happy) categories, an effect observed most significantly in females. Such findings suggest that sleep loss impairs discrete affective neural systems, disrupting the identification of salient affective social cues.

  13. Measurement of the Differential and Total Thrust and Torque of Six Full-Scale Adjustable-Pitch Propellers

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1933-01-01

    Force measurements giving total thrust and torque, and propeller slip stream surveys giving differential thrust and torque were simultaneously made on each of six full-scale propellers in the 20-foot propeller-research tunnel of the National Advisory Committee for Aeronautics. They were adjustable-pitch metal propellers 9.5 feet in diameter; three had modified Clark Y blade sections and three had modified RAF-6 blade sections. This report gives the differential thrust and torque and the variation caused by changing the propeller tip speed and the pitch setting. The total thrust and torque obtained from integration of the thrust and torque distribution curves are compared with those obtained by direct force measurements.

  14. Parathyroid hormone and serum calcium levels measurements as predictors of postoperative hypocalcemia in total thyroidectomy

    PubMed Central

    Algarni, Mohammed; Dionigi, Gianlorenzo; Hadi, Al-Hakami; AlSubayea, Haia

    2017-01-01

    Background The rules of quantitative measures such as parathyroid hormone (PTH) levels in the first hours following total thyroidectomy have since been validated repeatedly. Such measures play an integral rule in identifying patients at significant risk for hypocalcaemia and have allowed for earlier supplementation of these patients with calcium with or without vitamin D. Methods A retrospective analysis was conducted of 40 consecutive patients with well differentiated thyroid cancer (WDTC) who underwent total thyroidectomy without central neck dissection (CND) as an initial surgery and no comorbidity at King Abdulaziz Medical City (National Guard hospital), between July 2011 and July 2012. A blood testing protocol was applied for all patients that measured serum calcium PTH at 6 hours postoperatively. Results Following total thyroidectomy, women were found to experience transient hypocalcaemia in 12.5% of cases (4/32), whereas no men cases encountered this postoperative complication (0/8). However, most probably due to small sample size, this difference was not statistically significant. PTH level was significantly associated with post thyroidectomy hypocalcaemia (43.7±39.3 versus 13.40±24.9 ng/L), P=0.014. Only negligible differences in the length of hospital stay were observed with and without post-thyroidectomy hypocalcaemia. Conclusions Using post-thyroidectomy PTH levels to predict hypocalcaemia has been confirmed in the current study. So, the use of PTH levels allows for early risk stratification of our patients and we feel this has resulted in better patient satisfaction. PMID:29142830

  15. Can Ultrasound Accurately Assess Ischiofemoral Space Dimensions? A Validation Study.

    PubMed

    Finnoff, Jonathan T; Johnson, Adam C; Hollman, John H

    2017-04-01

    Ischiofemoral impingement is a potential cause of hip and buttock pain. It is evaluated commonly with magnetic resonance imaging (MRI). To our knowledge, no study previously has evaluated the ability of ultrasound to measure the ischiofemoral space (IFS) dimensions reliably. To determine whether ultrasound could accurately measure the IFS dimensions when compared with the gold standard imaging modality of MRI. A methods comparison study. Sports medicine center within a tertiary-care institution. A total of 5 male and 5 female asymptomatic adult subjects (age mean = 29.2 years, range = 23-35 years; body mass index mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. Subjects were secured in a prone position on a MRI table with their hips in a neutral position. Their IFS dimensions were then acquired in a randomized order using diagnostic ultrasound and MRI. The main outcome measurements were the IFS dimensions acquired with ultrasound and MRI. The mean IFS dimensions measured with ultrasound was 29.5 mm (standard deviation [SD] 4.99 mm, standard error mean 1.12 mm), whereas those obtained with MRI were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). The mean difference between the ultrasound and MRI measurements was 1.25 mm, which was not statistically significant (SD 3.71 mm, standard error mean 3.71 mm, 95% confidence interval -0.49 mm to 2.98 mm, t 19 = 1.506, P = .15). The Bland-Altman analysis indicated that the 95% limits of agreement between the 2 measurement was -6.0 to 8.5 mm, indicating that there was no systematic bias between the ultrasound and MRI measurements. Our findings suggest that the IFS measurements obtained with ultrasound are very similar to those obtained with MRI. Therefore, when evaluating individuals with suspected ischiofemoral impingement, one could consider using ultrasound to measure their IFS dimensions. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier

  16. Total Column Greenhouse Gas Monitoring in Central Munich: Automation and Measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Heinle, Ludwig; Paetzold, Johannes C.; Le, Long

    2016-04-01

    It is challenging to use in-situ surface measurements of CO2 and CH4 to derive emission fluxes in urban regions. Surface concentrations typically have high variance due to the influence of nearby sources, and they are strongly modulated by mesoscale transport phenomena that are difficult to simulate in atmospheric models. The integrated amount of a tracer through the whole atmosphere is a direct measure of the mass loading of the atmosphere given by emissions. Column measurements are insensitive to vertical redistribution of tracer mass, e.g. due to growth of the planetary boundary layer, and are also less influenced by nearby point sources, whose emissions are concentrated in a thin layer near the surface. Column observations are more compatible with the scale of atmospheric models and hence provide stronger constraints for inverse modeling. In Munich we are aiming at establishing a regional sensor network with differential column measurements, i.e. total column measurements of CO2 and CH4 inside and outside of the city. The inner-city station is equipped with a compact solar-tracking Fourier transform spectrometer (Bruker EM27/SUN) in the campus of Technische Universität München, and our measurements started in Aug. 2015. The measurements over seasons will be shown, as well as preliminary emission studies using these observations. To deploy the compact spectrometers for stationary monitoring of the urban emissions, an automatic protection and control system is mandatory and a challenging task. It will allow solar measurements whenever the sun is out and reliable protection of the instrument when it starts to rain. We have developed a simplified and highly reliable concept for the enclosure, aiming for a fully automated data collection station without the need of local human interactions. Furthermore, we are validating and combining the OCO-2 satellite-based measurements with our ground-based measurements. For this purpose, we have developed a software tool that

  17. Measurement of lung volumes from supine portable chest radiographs.

    PubMed

    Ries, A L; Clausen, J L; Friedman, P J

    1979-12-01

    Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.

  18. Total daily activity measured with actigraphy and motor function in community-dwelling older persons with and without dementia.

    PubMed

    James, Bryan D; Boyle, Patricia A; Bennett, David A; Buchman, Aron S

    2012-01-01

    Actigraphic measures of physical activity do not rely on participants' self-report and may be of particular importance for examining the health benefits of physical activity across the full spectrum of older individuals, especially those with dementia, a group in which loss of motor function is particularly salient. We tested whether actigraphy could be used to examine the relationship between total daily physical activity and motor function in community-dwelling older persons both with (n = 70) and without (n = 624) clinical dementia. Total daily activity was measured using actigraphy for a median of 9 (range: 2-16) days. All participants also underwent a structured examination, including 9 muscle strength and 9 motor performance measures summarized as a composite measure. In linear regression models controlling for age, sex, and education, total daily activity was associated with global motor scores (β = 0.13, SD = 0.01, P < 0.001). This association remained significant after adjusting for body composition, cognition, depressive symptoms, disability, vascular risk factors, and diseases (β = 0.07, SD = 0.01, P < 0.001). The association did not vary by dementia status (interaction P = 0.53). In persons without dementia, the association was independent of self-reported physical activity. Total daily activity was associated with both muscle strength (β = 0.10, SD = 0.02, P < 0.001) and motor performance (β = 0.16, SD = 0.02, P < 0.001). Actigraphy can be used in the community setting to provide objective measures of total daily activity that are associated with a broad range of motor performances. These associations did not vary by dementia status. Actigraphy may provide a means to more fully explicate the nature and course of motor impairment in old age.

  19. Total Daily Activity Measured With Actigraphy and Motor Function in Community-Dwelling Older Persons With and Without Dementia

    PubMed Central

    James, Bryan D.; Boyle, Patricia A.; Bennett, David A.; Buchman, Aron S.

    2011-01-01

    Actigraphic measures of physical activity do not rely on participant self-report and may be of particular importance for efforts to examine the health benefits of physical activity across the full spectrum of older individuals especially those with dementia, a group in which loss of motor function is particularly salient. We tested whether actigraphy could be employed to examine the relationship between total daily physical activity and motor function in community-dwelling older persons both with (n=70) and without clinical dementia (n=624). Total daily activity was measured with actigraphy for a median of 9 (range 2–16) days. All participants also underwent a structured examination including 9 muscle strength and 9 motor performance measures summarized as a composite measure. In linear regression models controlling for age, sex, and education, total daily activity was associated with global motor scores (β=0.13, SD=0.01, p<0.001). This association remained significant after adjusting for body composition, cognition, depressive symptoms, disability, vascular risk factors and diseases (β=0.07, SD=0.01, p < 0.001). The association did not vary by dementia status (interaction p=0.53). In persons without dementia, the association was independent of self-reported physical activity. Total daily activity was associated with both muscle strength (β=0.10, SD=0.02, p<0.001) and motor performance (β=0.16, SD=0.02, p<0.001). Actigraphy can be employed in the community-setting to provide objective measures of total daily activity that are associated with a broad range of motor performances and these associations did not vary by dementia status. Actigraphy may provide a means to more fully explicate the nature and course of motor impairment in old age. PMID:21946015

  20. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.

    PubMed

    Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A

    1985-08-01

    Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.

  1. Computer image-guided surgery for total maxillectomy.

    PubMed

    Homma, Akihiro; Saheki, Masahiko; Suzuki, Fumiyuki; Fukuda, Satoshi

    2008-12-01

    In total maxillectomy, the entire upper jaw including the tumor is removed en bloc from the facial skeleton. An intraoperative computed tomographic guidance system (ICTGS) can improve orientation during surgical procedures. However, its efficacy in head and neck surgery remains controversial. This study evaluated the use of an ICTGS in total maxillectomy. Five patients with maxillary sinus neoplasms underwent surgery using a StealthStation ICTGS. The headset was used for anatomic registration during the preoperative CT scan and surgical procedure. The average accuracy was 0.95 mm. The ICTGS provided satisfactory accuracy until the end of resection in all cases, and helped the surgeon to confirm the anatomical location and decide upon the extent of removal in real time. It was particularly useful when the zygoma, maxillary frontal process, orbital floor, and pterygoid process were divided. All patients remained alive and disease free during short-term follow-up. The ICTGS played a supplementary role in total maxillectomy, helping the surgeon to recognize target points accurately in real time, to determine the minimum accurate bone-resection line, and to use the most direct route to reach the lesion. It could also reduce the extent of the skin incision and removal, thus maintaining oncological safety.

  2. Is Oral Temperature an Accurate Measurement of Deep Body Temperature? A Systematic Review

    PubMed Central

    Mazerolle, Stephanie M.; Ganio, Matthew S.; Casa, Douglas J.; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Context: Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. Objective: To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. Data Sources: In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Data Synthesis: Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was −0.50°C ± 0.31°C at rest and −0.58°C ± 0.75°C during a nonsteady state. Conclusions: Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot

  3. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  4. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    PubMed Central

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-01-01

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0∘ to 75∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples. PMID:28241466

  5. Objectively Measured Total and Occupational Sedentary Time in Three Work Settings

    PubMed Central

    van Dommelen, Paula; Coffeng, Jennifer K.; van der Ploeg, Hidde P.; van der Beek, Allard J.; Boot, Cécile R. L.; Hendriksen, Ingrid J. M.

    2016-01-01

    Background Sedentary behaviour increases the risk for morbidity. Our primary aim is to determine the proportion and factors associated with objectively measured total and occupational sedentary time in three work settings. Secondary aim is to study the proportion of physical activity and prolonged sedentary bouts. Methods Data were obtained using ActiGraph accelerometers from employees of: 1) a financial service provider (n = 49 men, 31 women), 2) two research institutes (n = 30 men, 57 women), and 3) a construction company (n = 38 men). Total (over the whole day) and occupational sedentary time, physical activity and prolonged sedentary bouts (lasting ≥30 minutes) were calculated by work setting. Linear regression analyses were performed to examine general, health and work-related factors associated with sedentary time. Results The employees of the financial service provider and the research institutes spent 76–80% of their occupational time in sedentary behaviour, 18–20% in light intensity physical activity and 3–5% in moderate-to-vigorous intensity physical activity. Occupational time in prolonged sedentary bouts was 27–30%. Total time was less sedentary (64–70%), and had more light intensity physical activity (26–33%). The employees of the construction company spent 44% of their occupational time in sedentary behaviour, 49% in light, and 7% in moderate intensity physical activity, and spent 7% in sedentary bouts. Total time spent in sedentary behavior was 56%, 40% in light, and 4% in moderate intensity physical behaviour, and 12% in sedentary bouts. For women, low to intermediate education was the only factor that was negatively associated with occupational sedentary time. Conclusions Sedentary behaviour is high among white-collar employees, especially in highly educated women. A relatively small proportion of sedentary time was accrued in sedentary bouts. It is recommended that worksite health promotion efforts should focus on reducing sedentary

  6. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  7. Direct measurement of the total decay width of the top quark.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-11-15

    We present a measurement of the total decay width of the top quark using events with top-antitop quark pair candidates reconstructed in the final state with one charged lepton and four or more hadronic jets. We use the full Tevatron run II data set of sqrt[s]=1.96  TeV proton-antiproton collisions recorded by the CDF II detector. The top quark mass and the mass of the hadronically decaying W boson are reconstructed for each event and compared with distributions derived from simulated signal and background samples to extract the top quark width (Γtop) and the energy scale of the calorimeter jets with in situ calibration. For a top quark mass Mtop=172.5  GeV/c2, we find 1.10<Γtop<4.05  GeV at 68% confidence level, which is in agreement with the standard model expectation of 1.3 GeV and is the most precise direct measurement of the top quark width to date.

  8. The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders.

    PubMed

    Jiao, S; Tiezzi, F; Huang, Y; Gray, K A; Maltecca, C

    2016-02-01

    Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation

  9. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  10. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    PubMed Central

    Myers, Risa B.; Herskovic, Jorge R.

    2011-01-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDW) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a clinical data warehouse containing synthetic patient data. We present a synthetic clinical data warehouse (CDW), and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our

  11. Are Fluency Measures Accurate Predictors of Reading Achievement?

    ERIC Educational Resources Information Center

    Schilling, Stephen G.; Carlisle, Joanne F.; Scott, Sarah E.; Zeng, Ji

    2007-01-01

    This study focused on the predictive validity of fluency measures that comprise Dynamic Indicators of Basic Early Literacy Skills (DIBELS). Data were gathered from first through third graders attending 44 schools in 9 districts or local educational agencies that made up the first Reading First cohort in Michigan. Students were administered DIBELS…

  12. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  13. Total OH reactivity measurements for the OH-initiated oxidation of aromatic hydrocarbons in the presence of NOx

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Nakashima, Yoshihiro; Morino, Yu; Imamura, Takashi; Kurokawa, Jun-ichi; Kajii, Yoshizumi

    2017-12-01

    The total OH reactivity of the secondary products formed from the OH-initiated oxidation of toluene, p-xylene, and 1,3,5-trimethylbenzene was directly measured in the presence of NOx using a laboratory environmental chamber in order to investigate unidentified reactive species in urban air. The total OH reactivity was also calculated from the concentrations of the reactants and products, which were monitored by Fourier-transform infrared spectroscopy. The difference between the measured and calculated OH reactivity, the so-called missing OH reactivity, comprised 58-81% of the total OH reactivity of the secondary products. These results suggest that the secondary products formed from the oxidation of aromatic hydrocarbons may be important candidates in accounting for the missing OH reactivity in the analyses of urban environments. The Master Chemical Mechanism (MCM) calculations were performed to predict the temporal variation in the total OH reactivity for the oxidation of aromatic hydrocarbons. The MCM calculations successfully reproduced the observed total OH reactivity when the particle and semi-volatile product concentrations were negligibly low. The MCM calculations were used to identify the missing secondary products. The results suggest that important components of the missing OH reactivity are unsaturated multifunctional products such as unsaturated dicarbonyls, unsaturated epoxydicarbonyls, and furanones.

  14. Accurate physical laws can permit new standard units: The two laws F→=ma→ and the proportionality of weight to mass

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne M.

    2014-04-01

    Three common approaches to F→=ma→ are: (1) as an exactly true definition of force F→ in terms of measured inertial mass m and measured acceleration a→; (2) as an exactly true axiom relating measured values of a→, F→ and m; and (3) as an imperfect but accurately true physical law relating measured a→ to measured F→, with m an experimentally determined, matter-dependent constant, in the spirit of the resistance R in Ohm's law. In the third case, the natural units are those of a→ and F→, where a→ is normally specified using distance and time as standard units, and F→ from a spring scale as a standard unit; thus mass units are derived from force, distance, and time units such as newtons, meters, and seconds. The present work develops the third approach when one includes a second physical law (again, imperfect but accurate)—that balance-scale weight W is proportional to m—and the fact that balance-scale measurements of relative weight are more accurate than those of absolute force. When distance and time also are more accurately measurable than absolute force, this second physical law permits a shift to standards of mass, distance, and time units, such as kilograms, meters, and seconds, with the unit of force—the newton—a derived unit. However, were force and distance more accurately measurable than time (e.g., time measured with an hourglass), this second physical law would permit a shift to standards of force, mass, and distance units such as newtons, kilograms, and meters, with the unit of time—the second—a derived unit. Therefore, the choice of the most accurate standard units depends both on what is most accurately measurable and on the accuracy of physical law.

  15. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  16. Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

    DOE PAGES

    Fallot, M.; Porta, A.; Meur, L. Le; ...

    2017-09-13

    Here, the accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several studies have shown that the underlying nuclear physicsmore » required for the conversion of these spectra into antineutrino spectra is not totally understood. An alternative to such converted spectra is a complementary approach that consists of determining the antineutrino spectrum by means of the measurement and processing of nuclear data. The beta properties of some key fission products suffer from the pandemonium effect which can be circumvented by the use of the Total Absorption Gamma-ray Spectroscopy technique (TAGS). The two main contributors to the Pressurized Water Reactor antineutrino spectrum in the region where the spectral distortion has been observed are 92Rb and 142Cs, which have been measured at the radioactive beam facility of the University of Jyvaskyla in two TAGS experiments. We present the results of the analysis of the TAGS measurements of the β-decay properties of 92Rb along with preliminary results on 142Cs and report on the measurements already performed.« less

  17. Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallot, M.; Porta, A.; Meur, L. Le

    Here, the accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several studies have shown that the underlying nuclear physicsmore » required for the conversion of these spectra into antineutrino spectra is not totally understood. An alternative to such converted spectra is a complementary approach that consists of determining the antineutrino spectrum by means of the measurement and processing of nuclear data. The beta properties of some key fission products suffer from the pandemonium effect which can be circumvented by the use of the Total Absorption Gamma-ray Spectroscopy technique (TAGS). The two main contributors to the Pressurized Water Reactor antineutrino spectrum in the region where the spectral distortion has been observed are 92Rb and 142Cs, which have been measured at the radioactive beam facility of the University of Jyvaskyla in two TAGS experiments. We present the results of the analysis of the TAGS measurements of the β-decay properties of 92Rb along with preliminary results on 142Cs and report on the measurements already performed.« less

  18. Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method

    NASA Astrophysics Data System (ADS)

    Daud, Mohammad Noh

    2014-09-01

    A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A' state to the 21 A' and 11 A'' states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A' state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.

  19. Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy.

    PubMed

    Ding, Aiping; Xing, Lei; Han, Bin

    2015-07-01

    . The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.

  20. Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy.

    PubMed

    Dycus, J Houston; Harris, Joshua S; Sang, Xiahan; Fancher, Chris M; Findlay, Scott D; Oni, Adedapo A; Chan, Tsung-Ta E; Koch, Carl C; Jones, Jacob L; Allen, Leslie J; Irving, Douglas L; LeBeau, James M

    2015-08-01

    Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.