Science.gov

Sample records for ace solar occultation

  1. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  2. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, K. S.; Toon, G. C.; Boone, C. D.; Strong, K.

    2015-10-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyze 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an inter-comparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K, and that our retrieved profiles have no seasonal or zonal biases, but do have a warm bias in the stratosphere and a cold bias in the

  3. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the

  4. Distributions and Seasonal Variations of Tropospheric Ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Herbin, H.; Hurtmans, D.; Clarisse, L.; Turquety, S.; Clerbaux, C.; Rinsland, Curtis P.; Boone, C.; Bernath, P. F.; Coheur, P.-F.

    2009-01-01

    This work reports the first measurements of ethene (C2H4) distributions in the upper troposphere. These are obtained by retrieving vertical profiles from 5 to 20 km from infrared solar occultation spectra recorded in 2005 and 2006 by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS). Background volume mixin^ ratios (vmrs) ranging from a few to about 50 pptv (10(exp -1) are measured at the different altitudes, while for certain occultations, vmrs as high as 200 pptv are observed. Zonal distributions and vertically resolved latitudinal distributions are derived for the two year period analyzed, highlighting spatial - including a North-South gradient - as well as seasonal variations. We show the latter to be more pronounced at the highest latitudes, presumably as a result of less active photochemistry during winter. The observation of C2H4 enhancements in remote Arctic regions at high latitudes is consistent with the occurrence of fast transport processes of gaseous pollution from the continents leading to Arctic haze. Citation: Herbin, H., D. Hurtmans, L. Clarisse, S. Turquety, C. Clerbaux, C. P. Rinsland, C. Boone, P. F. Bernath, and P.-F. Colieur (2009), Distributions and seasonal variations of tropospheric ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) solar occultation spectra,

  5. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-02-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier Transform Spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information is not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs are typically within 60 m of those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (Collision-Induced Absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC, CONTRAIL and HIPPO, yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS dataset is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.5 ± 0.7 ppm yr-1, in agreement with the currently accepted global growth rate based on ground-based measurements.

  6. Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds

    NASA Astrophysics Data System (ADS)

    Sakazaki, T.; Shiotani, M.; Suzuki, M.; Kinnison, D.; Zawodny, J. M.; McHugh, M.; Walker, K. A.

    2014-06-01

    This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD; i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S-10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was two times larger than those derived from the other datasets. On the basis of an analysis of data from the Superconducting Submillimeter Limb Emission Sounder (SMILES), and a nudged chemical-transport model (the Specified Dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All datasets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.

  7. Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds

    NASA Astrophysics Data System (ADS)

    Sakazaki, T.; Shiotani, M.; Suzuki, M.; Kinnison, D.; Zawodny, J. M.; McHugh, M.; Walker, K. A.

    2015-01-01

    This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S-10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.

  8. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-07-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year-1, in agreement with the currently accepted global growth rate based on

  9. Methane Cross-Validation Between Spaceborne Solar Occultation Observations from ACE-FTS, Spaceborne Nadir Sounding from Gosat, and Ground-Based Solar Absorption Measurements, at a High Arctic Site.

    NASA Astrophysics Data System (ADS)

    Holl, G.; Walker, K. A.; Conway, S. A.; Saitoh, N.; Boone, C. D.; Strong, K.; Drummond, J. R.

    2014-12-01

    We present cross-validation of remote sensing observations of methane profiles in the Canadian High Arctic. Methane is the third most important greenhouse gas on Earth, and second only to carbon dioxide in its contribution to anthropogenic global warming. Accurate and precise observations of methane are essential to understand quantitatively its role in the climate system and in global change. The Arctic is a particular region of concern, as melting permafrost and disappearing sea ice might lead to accelerated release of methane into the atmosphere. Global observations require spaceborne instruments, in particular in the Arctic, where surface measurements are sparse and expensive to perform. Satellite-based remote sensing is an underconstrained problem, and specific validation under Arctic circumstances is required. Here, we show a cross-validation between two spaceborne instruments and ground-based measurements, all Fourier Transform Spectrometers (FTS). We consider the Canadian SCISAT ACE-FTS, a solar occultation spectrometer operating since 2004, and the Japanese GOSAT TANSO-FTS, a nadir-pointing FTS operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environmental and Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut (80°N, 86°W) since 2006. Measurements are collocated considering temporal, spatial, and geophysical criteria and regridded to a common vertical grid. We perform smoothing on the higher-resolution instrument results to account for different vertical resolutions. Then, profiles of differences for each pair of instruments are examined. Any bias between instruments, or any accuracy that is worse than expected, needs to be understood prior to using the data. The results of the study will serve as a guideline on how to use the vertically resolved methane products from ACE and

  10. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  11. Stellar Occultation Studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    Earth-based observations of stellar occultations provide extremely high spatial resolution for bodies in the outer solar system, about 10,000 times better than that of traditional imaging observations. Stellar occultation data can be used to establish the structure of atmospheres and rings of solar system bodies at high spatial resolution. Airborne occultation observations are particularly effective, since the controlled mobility of the observing platform allows the observer to fly within the optimum part of the occultation shadow for most events that are visible from Earth. Airborne observations are carried out above any clouds and are nearly free of scintillation noise from the Earth's atmosphere. KAO occultation observations resulted in the first detection of gravity waves in the Martian atmosphere, discovery of the Uranian rings, the first detection of Pluto's atmosphere, the first Earth-based investigations of Triton's atmosphere, and the discovery of narrow jets from Chiron's nucleus. The first SOFIA occultation opportunity will be an investigation of Pluto's atmospheric structure in November, 2002, and will resolve a problem that has lingered since the KAO discovery observation fourteen years earlier. We plan to continue our successful airborne occultation program with the greatly enhanced capability provided by SOFIA. We propose here to replace our KAO occultation photometer with one having twice the throughput, half the noise, a somewhat wider wavelength range, four times the field of view, and ten times the frame rate to optimize its performance and to capitalize on the larger collecting area offered by SOFIA. It will also allow for simultaneous visible and IR occultation observations, greatly enriching the results that we can obtain from occultations. We call this new imaging occultation photometer HOPI (High-speed Occultation Photometer and Imager). HOPI will provide a signal-to-noise ratio two to four times that of our present photometer for a given

  12. Nh and CH in the Ace Satellite Solar Spectrumtitle of your Abstract

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Ram, R. S.; Colin, R.

    2010-06-01

    The Canadian ACE (Atmospheric Chemistry Experiment) mission has a high resolution (0.02 cm-1) Fourier transform spectrometer (FTS) in low earth orbit. The primary ACE mission goal is the study ozone chemistry in the stratosphere although it is making a wide range of other measurements, for example, of organic molecules in the troposphere. In the normal operating mode, the ACE-FTS measures a sequence of atmospheric absorption spectra during sunrise and sunset (``solar occultation''). As part of the measurement sequence about 16 high sun exoatmospheric spectra are recorded for each occultation to serve as reference spectra. We have co-added 224782 pure solar spectra to produce the ACE solar atlas in the 750--4400 cm-1 spectral region [Hase et al., JQSRT 111, 521 (2010), see http://www.ace.uwaterloo.ca/solaratlas.html]. The ACE solar spectrum displays prominent vibration-rotation bands of CO, OH, NH and CH, and pure rotational lines of OH and NH. An improved spectroscopic analysis for OH has already been published [Bernath and Colin, JMS 257, 20 (2009)] and we now report on similar work for NH and CH. The vibration-rotation spectra of NH have been reinvestigated using laboratory spectra and infrared solar spectra recorded from orbit by the ACE and ATMOS instruments. In addition to identifying the previously unobserved 6-5 vibration-rotation band in the laboratory spectra, many additional high N rotational lines have been observed. By combining the new observations with the previously published data and recent far infrared data, an improved set of molecular constants and term values have been derived for the NH X^3Σ^- and A^3Π states. Vibration-rotation spectra of the CH X^2Π ground state have also been re-analyzed based on laboratory spectra, the ACE solar spectrum and published data. The previously unobserved 5-4 band has been measured and the other four bands (1-0 to 4-3) have been extended to higher J values. TEXT OF YOUR ABSTRACT

  13. Transmission profiles from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Zalach, Jacob; Von Savigny, Christian

    Vertical atmospheric transmission profiles contain information about its composition and make it possible to reconstruct the vertical distribution of its components. The measurement of stratospheric aerosol extinction profiles and its size distribution is the goal of the ROMIC-ROSA project for which transmission profiles are the most important precondition. One established method to obtain such profiles are satellite born occultation measurements. For this project SCIAMACHY (EnviSat) solar occultation measurements are analysed. The data set covers a time period of ten years within a wavelength interval between 240 and 2380 nm. Due to different spatial resolution of the measured solar profiles a direct application of existing analysis tools and algorithms is not possible. First they have to be adjusted to the present data. This contribution explains the present data processing and shows the resulting transmission profiles.

  14. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in leveling and orienting the Advanced Composition Explorer (ACE) as it is seated on a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory has six high-resolution particle detection sensors and three monitoring instruments. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  15. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. The panel on which they are working is identical to the panel (one of four) seen in the foreground on the ACE spacecraft. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low- energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  16. ACE

    NASA Technical Reports Server (NTRS)

    Lumia, R.

    1999-01-01

    This document describes the progress made during the fourth year of the Center for Autonomous Control Engineering (ACE). We currently support 30 graduate students, 52 undergraduate students, 9 faculty members, and 4 staff members. Progress will be divided into two categories. The first category explores progress for ACE in general. The second describes the results of each specific project supported within ACE.

  17. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will contribute to the understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  18. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  19. Occultation studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Millis, Robert L.

    1987-01-01

    The planetary occultation program began at Lowell Observatory in 1973 with a worldwide campaign to observe mutual occultations and eclipses of the Galilean Satellites. Then the temperature profile of the Martian atmosphere was measured from data taken during the occultation of epsilon Geminorum, the Rings of Uranus were discovered as they occulted SAO 158687, and the dimensions of Pallas were measured when that minor planet occulted SAO 85009. In 1979 the present grant was initiated, providing funds for portable photometric instrumentation used to observe occultations by asteroids as well as by Uranus and Neptune. Software for predicting occultations of catalog stars by asteroids, planets, and comets was written in 1983. Lowell currently provides most of the available predictions for asteroid occultations. Realizing in 1983 that the lack of a high-quality astrometric telescope dedicated to occultation work was limiting progress, an 18-inch, F/8 lens was acquired and adapted to an existing mounting at Lowell. Although acquisition of the lens and implementation of the new telescope has been accomplished primarily with non-grant funds, the instrument makes a major contribution to occultation research.

  20. First multi-year occultation observations of CO2 in the MLT by ACE satellite: observations and analysis using the extended CMAM

    NASA Astrophysics Data System (ADS)

    Beagley, S. R.; Boone, C. D.; Fomichev, V. I.; Jin, J. J.; Semeniuk, K.; McConnell, J. C.; Bernath, P. F.

    2010-02-01

    This paper presents the first global set of observations of CO2 in the mesosphere and lower thermosphere (MLT) obtained by the ACE-FTS instrument on SCISAT-I, a small Canadian satellite launched in 2003. The observations use the solar occultation technique and document the fall-off in the mixing ratio of CO2 in the MLT region. The beginning of the fall-off of the CO2, or "knee" occurs at about 78 km and lies higher than in the CRISTA-1 measurements (~70 km) but lower than in the SABER 1.06 (~80 km) and much lower than in rocket measurements. We also present the measurements of CO obtained concurrently which provide important constraints for analysis. We have compared the ACE measurements with simulations of the CO2 and CO distributions in the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). Applying standard chemistry we find that we cannot get agreement between the model and ACE CO2 observations although the CO observations are adequately reproduced. There appears to be about a 10 km offset compared to the observed ACE CO2, with the model "knee" occurring too high. In analyzing the disagreement, we have investigated the variation of several parameters of interest (photolysis rates, formation rate for CO2, and the impact of uncertainty in turbulent eddy diffusion) in order to explore parameter space for this problem. Our conclusions are that there must be a loss process for CO2, about 2-4~times faster than photolysis that will sequester the carbon in some form other than CO and we have speculated on the role of meteoritic dust as a possible candidate. In addition, from this study we have highlighted a possible important role for unresolved vertical eddy diffusion in 3-D models in determining the distribution of candidate species in the mesosphere which requires further study.

  1. First multi-year occultation observations of CO2 in the MLT by ACE satellite: observations and analysis using the extended CMAM

    NASA Astrophysics Data System (ADS)

    Beagley, S. R.; Boone, C. D.; Fomichev, V. I.; Jin, J. J.; Semeniuk, K.; McConnell, J. C.; Bernath, P. F.

    2009-05-01

    This paper presents the first multi-year global set of observations of CO2 in the mesosphere and lower thermosphere (MLT) obtained by the ACE-FTS instrument on SCISAT-I, a small Canadian satellite launched in 2003. The observations use the solar occultation technique and document the fall-off in the mixing ratio of CO2 in the MLT region. The beginning of the fall-off of the CO2, or "knee" occurs at about 78 km and lies higher than in the CRISTA measurements (~70 km) but lower than in the SABER 1.06 (~82 km) and much lower than in rocket measurements. We also present the measurements of CO obtained concurrently which provide important constraints for analysis. We have compared the ACE measurements with simulations of the CO2 and CO distributions in the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). Applying standard chemistry we find that we cannot get agreement between the model and ACE CO2 observations although the CO observations are adequately reproduced. There appears to be about a 10 km offset compared to the observed ACE CO2, with the model knee occurring too high. In analysing the disagreement, we have investigated the variation of several parameters of interest, photolysis rates, formation rate for CO2, and the impact of uncertainty in eddy diffusion, in order to explore parameter space for this problem. Our conclusions are that there must be a loss process for CO2, about 2-4 times faster than photolysis that will sequester the carbon in some form other than CO and we have speculated on the role of meteoritic dust as a possible candidate. In addition, from this study we have highlighted a possible important role for vertical eddy diffusion in 3-D models in determining the distribution of candidate species in the mesosphere which requires further study.

  2. Exploring the Solar System with Stellar Occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E. W.

    1984-01-01

    By recording the light intensity as a function of time when a planet occults a relatively bright star, the thermal structure of the upper atmosphere of the planet can be probed. The main feature of stellar occultation observations is their high spatial resolution, typically several thousand times better than the resolution achievable with ground-based imaging. Five stellar occultations have been observed. The main results of these observations are summarized. Stellar occultations have been observed on Uranus, Mars, Pallas, Neptune and the Jovian Ring.

  3. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  4. Transient F Ring Dust Features in Cassini UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Becker, T. M.; Colwell, J. E.; Esposito, L. W.; Attree, N.; Murray, C.

    2015-12-01

    We present results from an investigation of the variable particle size distribution in Saturn's dynamic F ring. We analyze 13 solar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS), of which 4 occultations show a clear signature of diffracted sunlight. The magnitude and scattering angle of the diffraction signal suggest the presence of a significant population of micron-sized dust particles; however, the lack of a detection of diffracted light in other solar occultations implies that such a population is transient or spatially variable. Initial comparisons with images from the Cassini Imaging Science Subsystem (ISS) suggest that a diffraction signal is detected in UVIS occultations that coincide with a recent collisional event in the F ring core, as seen in the ISS images. This implies that such events release a significant population of dust, which can then be measured by the diffraction signature in the UVIS data. We use a forward-modeling approach to place constraints on the particle size distribution of the F ring during each solar occultation. We present these measurements of the size distribution and our comparisons of the F ring dust population as measured by UVIS with the ISS images of the ring.

  5. Advancing the Quality of Solar Occultation Retrievals through Solar Imaging

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Hervig, M. E.; Marshall, B. T.; Russell, J. E.; Bailey, S. M.; Brown, C. W.; Burton, J. C.; Deaver, L. E.; Magill, B. E.; McHugh, M. J.; Paxton, G. J.; Thompson, R. E.

    2008-12-01

    The quality of retrieved profiles (e.g. mixing ratio, temperature, pressure, and extinction) from solar occultation sensors is strongly dependent on the angular fidelity of the measurements. The SOFIE instrument, launched on-board the AIM (Aeronomy of Ice in the Mesosphere) satellite on April 25, 2007, was designed to provide very high precision broadband measurements for the study of Polar Mesospheric Clouds (PMCs), that appear near 83km, just below the high latitude summer mesopause. The SOFIE instrument achieves an unprecedented angular fidelity by imaging the sun on a 2D detector array and tracking the edges with an uncertainty of <0.1 arc seconds. This makes possible retrieved profiles of vertical high resolution mixing ratios, refraction base temperature and pressure from tropopause to lower mesosphere, and transmission with accuracy sufficient to infer cosmic smoke extinction. Details of the approach and recent results will be presented.

  6. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  7. Extension of the ACE solar panels is tested in SAEF-II

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  8. SASKTRANIF- a New Engine for the Radiative Transfer Modeling of Solar Occultation Measurements.

    NASA Astrophysics Data System (ADS)

    Jones, A.; Lloyd, N.; Rieger, L. A.; Jensen, L.; Walker, K. A.; Degenstein, D. A.; Bourassa, A. E.; Boone, C. D.

    2014-12-01

    Vertical distributions of atmospheric gases measured by satellite instruments can be retrieved by mathematical inversion algorithms involving a forward model of the radiative transfer equation. Hence, an accurate forward model to predict atmospheric spectra is necessary for estimating volume mixing ratio quantities of these gases. One particular forward model is the SASKTRAN Inter-Face (or SASKTRANIF), which is a line by line radiative transfer model typically used to model atmospheric spectra arising from limb scattered sunlight at ultraviolet to near infrared wavelengths, using linear ray tracing and a three dimensional spherical shell atmosphere of homogeneous layers. An additional engine has now been implemented, designed to model solar occultation based measurements. Solar rays are traced through each atmospheric layer using an algorithm that accounts for refraction of the atmosphere. The extinction is calculated along the line of sight for a penetrating ray intersecting multiple layers of the atmosphere given a known chemical composition. By default, the engine uses the HITRAN 2008 spectral database to obtain information about the absorption cross sections of each modeled species, and also utilizes user defined climatologies for a priori information (such as input trace gas concentrations, temperature, and pressure). The new engine is currently in a testing phase. Here, we firstly compare synthesized spectra from SASKTRANIF with spectra derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) forward model. Secondly, we retrieve vertical volume mixing ratio profiles of various atmospheric gases by performing a global fit to ACE-FTS measured spectra where model parameters are determined using a Marquardt-Levenberg nonlinear least squares algorithm. Resulting vertical profiles are compared to those derived using the ACE-FTS retrieval system.

  9. The 1973 solar occultation of the Crab Nebula pulsar

    NASA Technical Reports Server (NTRS)

    Weisberg, J. M.

    1975-01-01

    The mean electron density of the solar corona was determined by measuring the dispersion of radiofrequency pulses from pulsar NP 0532 during the June 1973 solar occultation. Trends continued which were noticed in 1971 as solar activity declined. Model fitting results suggest that the corona continued to become even more concentrated toward the equator in 1973 than in 1971. The number density of electrons in most regions decreased. The best model of the distribution of corona electrons is suggested to be one with zero density at the poles. K-corona isophotes and contours of equal path-integrated density are presented for several models. Electron density versus date and position in the corona are tabulated. It is seen that there is no simple relationship between the onset of major solar activity and density or scattering enhancements.

  10. Theoretical performance of solar coronagraphs using sharp-edged or apodized circular external occulters

    NASA Astrophysics Data System (ADS)

    Aime, C.

    2013-10-01

    Context. This study focuses on an instrument able to monitor the corona close to the solar limb. Aims: We study the performance of externally occulted solar coronagraphs. We compute the shape of the umbra and penumbra produced by the occulter at the entrance aperture of the telescope and compare levels of rejection obtained for a circular occulter with a sharp or smooth transmission at the edge. Methods: We show that the umbral pattern in an externally occulted coronagraph can be written as a convolution product between the occulter diffraction pattern and an image of the Sun. We then focus on the analysis to circular symmetric occulters. We first derive an analytical expression using two Lommel series for the Fresnel diffraction pattern produced by a sharp-edged circular occulter. Two different expressions are used for inside and outside the occulter's geometric shadow. We verify that a numerical approach that directly solves the Huygens-Fresnel integral gives the same result. This suggests that the numerical computation can be used for a circular occulter with any variable transmission. Results: With the objective of observing the solar corona a few minutes from limb, a sharp-edged circular occulter of a few meters cannot produce an umbra darker than 10-4 of the direct sunlight. The same occulter, having an apodization zone of a few percent of the diameter (3 cm for a 1.5 m occulter), darkers the umbra down to 10-8 of the direct sunlight for linear transmission and to 10-12 for Sonine or cosine bell transmissions. An investigation for an apodized occulter with manufacturing defaults is quickly performed. Conclusions: It has been possible to numerically demonstrate the large superiority of apodized circular occulters with respect to the sharp-edged ones. These occulters allow the theoretical observation of the very limb-close corona with not yet obtained contrast ratios.

  11. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    USGS Publications Warehouse

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, C.; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  12. Satellite solar occultation sounding of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III

    1980-01-01

    This paper discusses the principles, achievements, and prospects for satellite solar occultation sounding of the middle atmosphere. Advantages, disadvantages, and spatial and temporal coverage capabilities are described. Progress over the past 15 years is reviewed, and results from a recent satellite aerosol experiment are presented. Questions with regard to Doppler shift, atmospheric refraction, instrument pointing, pressure sensing, and measurement of diurnally active species are addressed. Two experiments now orbiting on the Nimbus-7 and AEM-B satellites, and approved experiments under development for future flights on Spacelab and the Earth Radiation Budget Satellite, are also described. In some cases more than one experiment is scheduled to be flown on the same spacecraft, and the advantages and synergistic effects of these applications are discussed.

  13. SOLAR OCCULTATION BY TITAN MEASURED BY CASSINI/UVIS

    SciTech Connect

    Capalbo, Fernando J.; Benilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.; Sandel, Bill R.; Holsclaw, Gregory M.; McClintock, William E.

    2013-04-01

    We present the first published analysis of a solar occultation by Titan's atmosphere measured by the Ultraviolet Imaging Spectrograph on board Cassini. The data were measured during flyby T53 in 2009 April and correspond to latitudes between 21 Degree-Sign and 28 Degree-Sign south. The analysis utilizes the absorption of two solar emission lines (584 A and 630 A) in the ionization continuum of the N{sub 2} absorption cross section and solar emission lines around 1085 A where absorption is due to CH{sub 4}. The measured transmission at these wavelengths provides a direct estimate of the N{sub 2} and CH{sub 4} column densities along the line of sight from the spacecraft to the Sun, which we inverted to obtain the number densities. The high signal-to-noise ratio of the data allowed us to retrieve density profiles in the altitude range 1120-1400 km for nitrogen and 850-1300 km for methane. We find an N{sub 2} scale height of {approx}76 km and a temperature of {approx}153 K. Our results are in general agreement with those from previous work, although there are some differences. Particularly, our profiles agree, considering uncertainties, with the density profiles derived from the Voyager 1 Ultraviolet Spectrograph data, and with in situ measurements by the Ion Neutral Mass Spectrometer with revised calibration.

  14. Solar Occultation by Titan Measured by Cassini/UVIS

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.; Sandel, Bill R.; Holsclaw, Gregory M.; McClintock, William E.

    2013-04-01

    We present the first published analysis of a solar occultation by Titan's atmosphere measured by the Ultraviolet Imaging Spectrograph on board Cassini. The data were measured during flyby T53 in 2009 April and correspond to latitudes between 21° and 28° south. The analysis utilizes the absorption of two solar emission lines (584 Å and 630 Å) in the ionization continuum of the N2 absorption cross section and solar emission lines around 1085 Å where absorption is due to CH4. The measured transmission at these wavelengths provides a direct estimate of the N2 and CH4 column densities along the line of sight from the spacecraft to the Sun, which we inverted to obtain the number densities. The high signal-to-noise ratio of the data allowed us to retrieve density profiles in the altitude range 1120-1400 km for nitrogen and 850-1300 km for methane. We find an N2 scale height of ~76 km and a temperature of ~153 K. Our results are in general agreement with those from previous work, although there are some differences. Particularly, our profiles agree, considering uncertainties, with the density profiles derived from the Voyager 1 Ultraviolet Spectrograph data, and with in situ measurements by the Ion Neutral Mass Spectrometer with revised calibration.

  15. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  16. The Present and Future of Occultation Surveys of the Outer Solar System: From TAOS to Whipple

    NASA Astrophysics Data System (ADS)

    Bianco, Federica; Alcock, C.; Murray, S.; Werner, M.; TAOS Collaboration

    2009-09-01

    We have analyzed new data from the TAOS occultation survey and set new, sensitive upper limits to the number density of KBOs of diameter D<30 km, and of objects in Sedna-like orbits. We present the first constraints on models of the formation and evolution of the Solar System based on occultation survey data. We show what future occultation programs must be able to do in order to survey comprehensively the populations of small bodies in the outer solar system, and describe a Discovery class mission, Whipple, that can achieve these goals.

  17. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z.-Y.; Zhang, Z.-W.; Vilenius, E.; Müller, Th.; Ortiz, J. L.; Braga-Ribas, F.; Bosh, A.; Duffard, R.; Lellouch, E.; Tancredi, G.; Young, L.; Milam, Stefanie N.; the JWST “Occultations” Focus Group

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  18. Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 - 2008

    NASA Astrophysics Data System (ADS)

    Fu, Hui; Li, Bo; Li, Xing; Huang, Zhenghua; Mou, Chaozhou; Jiao, Fangran; Xia, Lidong

    2015-05-01

    We identify the coronal sources of the solar winds sampled by the ACE spacecraft during 1999 - 2008 and examine the in situ solar wind properties as a function of wind sources. The standard two-step mapping technique is adopted to establish the photospheric footpoints of the magnetic flux tubes along which the ACE winds flow. The footpoints are then placed in the context of EIT 284 Å images and photospheric magnetograms, allowing us to categorize the sources into four groups: coronal holes (CHs), active regions (ARs), the quiet Sun (QS), and "undefined". This practice also enables us to establish the response to solar activity of the fractions occupied by each type of solar wind, and of their speeds and O7+/O6+ ratios measured in situ. We find that during the maximum phase, the majority of ACE winds originate from ARs. During the declining phase, CHs and ARs are equally important contributors to the ACE solar winds. The QS contribution increases with decreasing solar activity and maximizes in the minimum phase when the QS appears to be the primary supplier of the ACE winds. With decreasing activity, the winds from all sources tend to become cooler, as represented by the increasingly low O7+/O6+ ratios. On the other hand, during each activity phase, the AR winds tend to be the slowest and are associated with the highest O7+/O6+ ratios, while the CH winds correspond to the other extreme, with the QS winds lying in between. Applying the same analysis method to the slow winds alone, here defined as the winds with speeds lower than 500 km s-1, we find basically the same overall behavior, as far as the contributions of individual groups of sources are concerned. This statistical study indicates that QS regions are an important source of the solar wind during the minimum phase.

  19. [Stellar Occultation Studies of Small Bodies in the Outer Solar System: Accomplishments, Status, and Plans

    NASA Technical Reports Server (NTRS)

    Elliott, James

    2005-01-01

    Bodies residing in the outer solar system exhibit unique physical processes, and some of the lessons learned from them can be applied to understanding what occurred in the outer solar system during its formation and early evolution. Pluto, the largest known Kuiper Belt object (KBO), and its near twin Triton--an ex-KBO that has been captured by Neptune--have nitrogen atmospheres that are in vapor-pressure equilibrium with surface ice. These atmospheres are most sensitively probed from Earth by the technique of Stellar occultations, which can provide the temperature and pressure profiles of these atmospheres at a spatial resolution of a few kilometers. Recent results from occultations show that the surface pressure of Triton's atmosphere has been increasing and that the shape of the atmosphere deviates from its expected spherical figure. With the occultation technique we can also learn the sizes of smaller bodies that have formed in the outer solar system: Charon, the Centaurs, and KBOs. Our proposed program involves identifying occultation candidates, predicting occultations, observing occultations, analysis of the data, and synthesis of the occultation results with other data. The main goals for our proposed work are to (i) further observe occultations by Triton with the objectives of understanding its pressure changes, distortion, and enigmatic thermal structure (ii) determine whether the abrupt drop in Pluto's stellar occultation light curve is caused by a sharp thermal gradient near its surface or by atmospheric haze, (iii) further observations to characterize the potential collapse of Pluto's atmosphere as it recedes from the sun (information that should be of interest to the Pluto-Kuiper Express), ( iv ) determine Charon's radius more accurately than can be done with the mutual events to derive a better estimate of Charon's density, and ( v ) directly determine the size (and albedo) of Centaurs with the goal of more accurately estimating the sizes of KBOS.

  20. Orbit design for solar and dual satellite occultation measurements of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.; Harrison, E. F.

    1979-01-01

    Two types of satellite based occultation missions are considered for measuring atmospheric constituents. Nominal cases for each type are presented to demonstrate representative solutions to orbit design problems. For the solar occultation mode, large areas of the globe can be covered during a one year mission, but the measurements are limited to local dawn or dusk. For the dual satellite mode, with a laser aboard a second satellite to act as a source, diurnal coverage can be obtained at the expense of more complex systems and mission scenarios. In this mode, orbit pairs are selected which maintain their relative orbit plane geometry while their differing periods drive cyclic patterns of latitude coverage. A simulated one year solar occultation mission is used to illustrate one way of analyzing occultation data by averaging measurements within bands of constant latitude.

  1. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  2. Orbit dynamics and geographical coverage capabilities of satellite-based solar occultation experiments for global monitoring of stratospheric constituents

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1980-01-01

    Orbit dynamics of the solar occultation technique for satellite measurements of the Earth's atmosphere are described. A one-year mission is simulated and the orbit and mission design implications are discussed in detail. Geographical coverage capabilities are examined parametrically for a range of orbit conditions. The hypothetical mission is used to produce a simulated one-year data base of solar occultation measurements; each occultation event is assumed to produce a single number, or 'measurement' and some statistical properties of the data set are examined. A simple model is fitted to the data to demonstrate a procedure for examining global distributions of atmospheric constitutents with the solar occultation technique.

  3. TAOS: An Occultation Survey of the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Lehner, M. J.; Alcock, C.; Axelrod, T.; Bianco, F. B.; Byun, Y.-I.; Chen, W. P.; Cook, K. H.; de Pater, I.; Geary, J. C.; Kim, D.-W.; King, S.-K.; Lee, T.; Marshall, S. L.; Norton, T.; Protopapas, P.; Rice, J. A.; Ruiz Reyes, M.; Schwamb, M. E.; Szentgyorgyi, A.; Wang, J.-H.; Wang, S.-Y.; Wen, C.-Y.; Zhang, Z.-W.

    2011-10-01

    The Taiwanese-American Occultation survey (TAOS) operate four small telescopes in central Taiwan to search for occultations by small (∼1 km diameter) Kuiper Belt Objects. The system is fully robotic, requiring human intervention only in the event of hardware failures. However, the status of the system during observations is monitored remotely via smart-phone. A successor survey, the Transneptunian Automated Occultation Survey (TAOS II)1 is currently being constructed. This next generation survey will be more than one hundred times as sensitive as the earlier survey. In my talk I will present the results of TAOS I, discuss the future plans of the survey, and provide a detailed description of the TAOS II project.

  4. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  5. Solar Activity and GCR Particle Flux Variations: Assessment and Modeling with Ulysses and ACE/CRIS

    NASA Astrophysics Data System (ADS)

    Saganti, Premkumar

    Galactic Cosmic Ray (GCR) environment during the current and historically known lower solar minimum condition indicate some of the very high anticipated measurements of particle spectral data. Data from the Ulysses spacecraft in the polar orbit about the sun during the years 2004 and 2008 (about 5 AU) provided proton and alpha particle flux data and showed such anticipated high particle flux variations. Also, ACE/CRIS spacecraft data during the years 2007 and 2009 showed some of the high particle flux measurements of several heavy ions such as oxygen and iron. We present Ulysses and ACE/CRIS measured particle flux data and discuss their high density and variations in the context of the current low solar activity for depicting current space radiation environment.

  6. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  7. Vertical Distribution of Gases and Aerosols in Titan's Atmosphere Observed by VIMS/Cassini Solar Occultations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Vinatier, Sandrine; Sicardy, Bruno; Bézard, Bruno; Sotin, Christophe; Nicholson, Philip D.; Hedman, Matt; Brown, Robert H.; Baines, Kevin; Buratti, Bonnie; Clark, Robert

    2013-04-01

    We present the vertical distribution of gaseous species and aerosols in Titan's atmosphere through the analysis of VIMS solar occultations. We employ the infrared channel of VIMS, which covers the 1 - 5 μm wavelength range. VIMS occultations can provide good vertical resolution (~10 km) and an extended altitude range (from 70 to 700 km), complementing well the information from other Cassini instruments. VIMS has retrieved 10 solar occultations up to now. They are distributed through the whole Cassini mission and they probe different latitudes in both hemispheres. Two main gases can be observed by VIMS occultations: methane, through its bands at 1.2, 1.4, 1.7, 2.3 and 3.3 μm, and CO, at 4.7 μm. We can extract methane's abundance between 70 and 750 km and CO's between 70 and 180 km. Regarding aerosols, the VIMS altitude range allows to get information on the properties of both the main haze and the detached layer. Aerosols also affect the transmittance through their spectral signatures. In particular, a spectral signature at 3.4 μm that was attributed to aerosols was recently discovered by the analysis of the first VIMS occultation. We will monitor the latitudinal and temporal variations of the 3.4 μm feature through various occultations. A change in the global circulation regime of Titan sets in with the approaching to the vernal equinox, and a strong decrease of the altitude of the detached layer between the winter solstice and the equinox has indeed been observed. The temporal coverage of VIMS occultations allows the study the effect of these variations in the vertical distribution of aerosol optical and spectral properties.

  8. Elemental composition variations in the solar wind: Comparisons between Ulysses and ACE within different solar wind regimes

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Reisenfeld, D. B.; Wiens, R. C.

    2013-12-01

    The elemental composition of the solar wind is likely established at the base of the corona, a conclusion based on the observed dependence of solar wind abundances on the first ionization potential (FIP) of the elements. Although the plasma conditions within the ecliptic solar wind are highly variable, the elemental composition is less so, and is an indicator of the nature of the solar source. In particular, coronal hole (CH, fast) solar wind tends to have less of a FIP enhancement of the low -FIP elements (e.g., Fe, Mg, Si) than interstream (IS, slow) solar wind. The elemental composition of coronal mass ejections (CMEs) is more variable, but tends to be similar to IS composition. The question we address here is how much does the average composition of the different solar wind regimes vary over the course of the solar cycle and between solar cycles. For the most recent solar cycle, which included the unusually deep and prolonged solar minimum (2006 - 2010) Lepri et al. (2013) have shown measurable drifts in the elemental composition within solar wind regimes using data from the Advanced Composition Explorer (ACE) Solar Wind Ion Composition Spectrometer (SWICS). In contrast, von Steiger and Zurbuchen (2011) have shown using Ulysses SWIC data that the composition of the very fast polar coronal hole flow has remained constant. Here, we extend the Lepri et al. ecliptic analysis to include data from Ulysses, which allows us to expand the analysis to the previous solar cycle (1990 - 2001), as well as check consistency with their recent solar cycle results. (Note that although Ulysses was nominally a polar mission, it spent considerable time at low latitudes as well.) A major driver for this investigation is the Genesis Mission solar wind sample analysis. Namely, was the solar wind sampled by Genesis between late 2001 and early 2004 typical of the solar wind over longer time scales, and hence a representative sample of the long-term solar wind, or was it somehow unique

  9. Technical Note: A Time-Dependent I(sub 0) Correction for Solar Occultation Instruments

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Thomason, Larry W.; Zawodny, Joseph M.

    2009-01-01

    Solar occultation has proven to be a reliable technique for the measurement of atmospheric constituents in the stratosphere. NASA's Stratospheric Aerosol and Gas Experiments (SAGE, SAGE II, and SAGE III) together have provided over 25 years of quality solar occultation data, a data record which has been an important resource for the scientific exploration of atmospheric composition and climate change. Herein, we describe an improvement to the processing of SAGE data that corrects for a previously uncorrected short-term timedependence in the calibration function. The variability relates to the apparent rotation of the scanning track with respect to the face of the sun due to the motion of the satellite. Correcting for this effect results in a decrease in the measurement noise in the Level 1 line-of-sight optical depth measurements of approximately 40% in the middle and upper stratospheric SAGE II and III where it has been applied. The technique is potentially useful for any scanning solar occultation instrument, and suggests further improvement for future occultation measurements if a full disk imaging system can be included.

  10. Intercalibration and Cross-Correlation of Ace and Wind Solar Wind Data

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report covers activities funded from October 1, 1998 through September 30, 2002. Two yearly status reports have been filed on this grant, and they are included as Appendix 1. The purpose of this grant was to compare ACE and Wind solar wind parameters when the two spacecraft were near to one another and then to use the intercalibrated parameters to carry out scientific investigations. In September, 2001 a request for a one-year, no-cost extension until September 30, 2002 was submitted and approved. The statement of work for that extension included adjustment of ACE densities below wind speeds of 350 km/s, a study of shock normal orientations using travel time delays between the two spacecraft, comparison of density jumps at shocks, and a study of temperature anisotropies and double streaming to see if such features evolved between the spacecraft.

  11. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  12. Dependence of Current-Sheet-like Structure on the Solar Wind Type from the ACE Observation

    NASA Astrophysics Data System (ADS)

    Arnold, L. E.; Li, G.

    2012-12-01

    Solar wind is an ideal testbed for studying various properties of magnetohydrodynamics turbulence (MHD), including its intermittent characteristics. One type of intermittent structure in the solar wind is current-sheet-like structures. These structures may originate from the solar surface or may emerge as a result of non-linear interactions in the solar wind. Depending on how they form, in particular whether or not they are formed in the solar wind, their occurrence rate may be a function of the solar wind type. In this work, we examine how the current sheet occurrence rate depend on the solar wind type. In classifying the solar wind type, we follow the criteria given in Zhao and Fisk (2009) and use the Advanced Composition Explorer (ACE) plasma data in the year of 2010. The current sheets are identified using the method developed in Li (2008) and Miao et al. (2011). Our results show that the occurrence rate has a different solar wind speed dependence for the coronal hole wind (CHW) and the non coronal hole wind (NCHW).

  13. Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.; Kocher, M.; Lepri, S. T.; Fisk, L. A.; Zurbuchen, T. H.

    2016-03-01

    The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (Rs) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O7+/O6+ and C6+/C5+ charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measured by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of "Outliers" departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (Vp < 500 km/s) and about 1.0% of them is fast solar wind (Vp > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as Vp < 500 km/s and O7+/O6+ > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C6+/C5+ ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.

  14. Occultations of stars by solar system objects. III - A photographic search for occultations of faint stars by selected asteroids

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Franz, O. G.; Wasserman, L. H.; Bowell, E.

    1983-02-01

    Occultations of stars fainter than the AGK and SAO catalog limits by selected minor planets during their 1983 apparitions have been identified by scanning plates taken with the 13-in. Lowell astrograph. A total of 33 upcoming occultations have been found involving 1 Ceres, 10 Hygiea, 52 Europa, 65 Cybele, 451 Patientia, 511 Davida, and 704 Interamnia.

  15. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  16. On the use of Cherenkov Telescopes for outer Solar system body occultations

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2014-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar system, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 m in radius in the Kuiper Belt and 1 km radius out to 5000 au. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few per cent. I consider how often detectable occultations occur by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KBOs), Oort Cloud objects, and satellites and Trojans of Uranus and Neptune. The great sensitivity of IACT arrays means that they likely detect KBO occultations once every O(10) hours when looking near the ecliptic. IACTs can also set useful limits on many other TJO populations.

  17. Occultations of stars by solar system objects. V - A photographic search for occultations by selected asteroids in 1984

    NASA Technical Reports Server (NTRS)

    Millis, R. L.; Wasserman, L. H.; Franz, O. G.; Bowell, E.; Klemola, A.

    1984-01-01

    Photographic plates taken with the 0.5-m Carnegie double astrograph have been used to identify upcoming asteroid occultations not found in earlier star catalog searches. Twenty-six occultations involving the minor planets 1 Ceres, 10 Hygiea, 52 Europa, 65 Cybele, 451 Patientia, 511 Davida, and 704 Interamnia were found in this search. Of particular interest is the occultation of BD + 8 deg 471 by 1 Ceres on November 13, 1984, which is predicted to be observable throughout much of Mexico and, perhaps, in the southern United States.

  18. ACE-FTS observation of a young biomass burning plume: first reported measurements of C2H4, C3H6O, H2CO and PAN by infrared occultation from space

    NASA Astrophysics Data System (ADS)

    Coheur, P.-F.; Herbin, H.; Clerbaux, C.; Hurtmans, D.; Wespes, C.; Carleer, M.; Turquety, S.; Rinsland, C. P.; Remedios, J.; Hauglustaine, D.; Boone, C. D.; Bernath, P. F.

    2007-10-01

    In the course of our study of the upper tropospheric composition with the infrared Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS), we found an occultation sequence that on 8 October 2005, sampled a remarkable plume near the east coast of Tanzania. Model simulations of the CO distribution in the Southern hemisphere are performed for this period and they suggest that the emissions for this event likely originated from a nearby forest fire, after which the plume was transported from the source region to the upper troposphere. Taking advantage of the very high signal-to-noise ratio of the ACE-FTS spectra over a wide wavenumber range (750-4400 cm-1), we present in-depth analyses of the chemical composition of this plume in the middle and upper troposphere, focusing on the measurements of weakly absorbing pollutants. For this specific biomass burning event, we report simultaneous observations of an unprecedented number of organic species. Measurements of C2H4 (ethene), C3H4 (propyne), H2CO (formaldehyde), C3H6O (acetone) and CH3COO2NO2 (peroxyacetylnitrate, abbreviated as PAN) are the first reported detections using infrared occultation spectroscopy from satellites. Based on the lifetime of the emitted species, we discuss the photochemical age of the plume and also report, whenever possible, the enhancement ratios relative to CO.

  19. ACE-FTS observation of a young biomass burning plume: first reported measurements of C2H4, C3H6O, H2CO and PAN by infrared occultation from space

    NASA Astrophysics Data System (ADS)

    Coheur, P.-F.; Herbin, H.; Clerbaux, C.; Hurtmans, D.; Wespes, C.; Carleer, M.; Turquety, S.; Rinsland, C. P.; Remedios, J.; Hauglustaine, D.; Boone, C. D.; Bernath, P. F.

    2007-06-01

    In the course of our study of the upper tropospheric composition with the infrared Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS), we found an occultation sequence that on 8 October 2005, sampled a remarkable plume near the east coast of Tanzania. Model simulations of the CO distribution in the Southern hemisphere are performed for this period and they demonstrate that the emissions for this event originated from a nearby forest fire, after which the plume was transported from the source region to the upper troposphere. Taking advantage of the very high signal-to-noise ratio of the ACE-FTS spectra over a wide wavenumber range (750-4400 cm-1), we present in-depth analyses of the chemical composition of this plume in the middle and upper troposphere, focusing on the measurements of weakly absorbing pollutants. For this specific biomass burning event, we report simultaneous observations of an unprecedented number of organic species. Measurements of C2H4 (ethene), C3H4 (propyne), H2CO (formaldehyde), C3H6O (acetone) and CH3COO2NO2 (peroxyacetylnitrate, abbreviated as PAN) are the first reported detections using infrared occultation spectroscopy from satellites. Based on the lifetime of the emitted species, we discuss the photochemical age of the plume and also report, whenever possible, the enhancement ratios relative to CO.

  20. ACE-FTS Observation of a Young Biomass Burning Plume: First Reported Measurements of C2H4, C3H6O, H2CO and PAN by Infrared Occultation from Space

    NASA Technical Reports Server (NTRS)

    Coheur, Pierre-Francois; Herbin, Herve; Clerbaux, Cathy; Hurtmans, Daniel; Wespes, Catherine; Carleer, Michel; Turquety, Solene; Rinsland, Curtis P.; Remedios, John; Hauglustaine, Didier; Boone, Chris D.; Bernath, Peter F.

    2007-01-01

    In the course of our study of the upper tropospheric composition with the infrared 35 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE FTS), we 36 found an occultation sequence that on 8 October 2005, sampled a remarkable plume near the 37 east coast of Tanzania. Model simulations of the CO distribution in the Southern hemisphere 38 are performed for this period and they demonstrate that the emissions for this event originated 39 from a nearby forest fire, after which the plume was transported from the source region to the 40 upper troposphere. Taking advantage of the very high signal-to-noise ratio of the ACE FTS 41 spectra over a wide wavenumber range (750-4400 cm(exp -1), we present in-depth analyses of the 42 chemical composition of this plume in the middle and upper troposphere, focusing on the 43 measurements of weakly absorbing pollutants. For this specific biomass burning event, we 44 report simultaneous observations of an unprecedented number of organic species. 45 Measurements of C2H4 (ethene), C3H4 (propyne), H2CO (formaldehyde), C3H6O (acetone) 46 and CH3COO2NO2 (perxoxyacetylnitrate, abbreviated as PAN) are the first reported 47 detections using infrared occultation spectroscopy from satellites. Based on the lifetime of the 48 emitted species, we discuss the photochemical age of the plume and also report, whenever 49 possible, the enhancement ratios relative to CO.

  1. Heliophysics from and of the Moon - the Solar Occultation Explorer (SOX)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Daw, Adrian N.; Habal, Shadia R.; Sittler, Edward C.

    2012-01-01

    The fundamental processes of the inner corona of the Sun at 1.1 to 3 solar radii can occasionally be investigated in detail by ground-based solar eclipse observations at quasi-yearly intervals. The combination of portable ground-based telescopes and the distant occulting edge provided by the lunar limb allows imaging of coronal structure and ion excitation emission lines at the highest available spatial and spectral resolution. These observations are limited to the visible eastern and western coronal regions and cannot view the intervening region over the central disk in the hemisphere towards Earth. A comparable configuration for continuous coronal observations from a spacecraft, e.g. with an external occulter disk on a 100-meter boom, is conceivable and could generate 3-D data models of the corona via tomographic reconstruction from time series measurements but may not now be technically or economically feasible. The faster and cheaper approach would be to make high cadence eclipse observations from one or more small satellites in lunar orbit. The Solar Occultation Explorer (SOX) is suggested as an explorer-class NASA mission that would conduct eclipse observations at daily to hourly cadence depending on the orbit. This smallsat would carry two principal instrument suites: (1 ) spectroscopic imaging telescope with sub-nm resolution for selected coronal emission lines diagnostic of coronal plasma charge state, denSity, and temperature, and (2) in-situ field & particle instrument suite for measurements of the solar wind and local lunar environments. The most comparable flight heritage instrument, the LASCO C1 spectrometer on the Solar and Heliospheric Observatory (SOHO) mission, did achieve high visible-band spectral resolution with a Fabry-Perot interferometer but was limited in brightness sensitivity by usage of an internal occulter system and has not been operational since June 1998 The SOX mission concept is undergoing initial study by the Lunar Solar Origins

  2. Occultations of stars by solar system objects. VII - Occultations of catalog stars by asteroids in 1988 and 1989

    NASA Technical Reports Server (NTRS)

    Wasserman, L. H.; Bowell, E.; Millis, R. L.

    1987-01-01

    Predictions are given for 102 occultations of stars by minor planets occurring in 1988 and 1989. The predictions are based on a computerized comparison of asteroid ephemerides with star positions given in eight major astrometric catalogs. The search is completed for all numbered asteroids whose orbits are accurately known and that reach an angular diameter of at least 0.08 arcsec during the search years. Preliminary information sufficient for planning is given for each occultation.

  3. Coating and surface finishing definition for the Solar Orbiter/METIS inverted external occulter

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Romoli, Marco; Vives, Sebastien; Baccani, Cristian; Escolle, Clement; Pancrazzi, Maurizio; Focardi, Mauro; Da Deppo, Vania; Moses, John D.; Fineschi, Silvano

    2014-07-01

    The METIS coronagraph aboard the Solar Orbiter mission will undergo extreme environmental conditions (e.g., a thermal excursion of about 350 degrees throughout the various mission phases), due to the peculiar spacecraft trajectory that will reach a perihelion of 0.28 AUs. METIS is characterized by an innovative design for the occultation system that allows to halve the thermal load inside the instrument while guaranteeing the stray light reduction that is required for a solar coronagraph. The Inverted External Occulter (IEO) concept revolutionizes the classical scheme, by exchanging the usual positions of the entrance aperture (that is now the outermost element of the instrument facing the Sun) with the actual occulter (that is a spherical mirror inside the coronagraph boom). The chosen material for the IEO manufacturing is Titanium, as a trade o_ between light weight, strength and low thermal expansion coefficient. A 2 years long test campaign has been run to define the IEO geometry, and its results are addressed in previous dedicated papers. This work describes the results of a further campaign aimed at defining the IEO surface and edge finishing, the support flange geometry and the Titanium coating. Various edge finishing were installed on a prototype of the instrument occulting system and their performance in stray light reduction were compared. The support flange geometry was designed in order to reduce the overall weight, to control the thermal load and to accentuate its stray light suppression performance. The coating is a particularly delicate issue. A black coating is necessary in order to assess the stray light issues, typically critical for visible coronagraphs. Black coating of Titanium is not a standard process, thus several space qualified black coatings were experimented on Titanium and characterized. The impact of the IEO coatings was evaluated, the reflectivity and the BRDFs were measured and are addressed in the paper.

  4. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  5. Seasonal comparisons of retrieved temperature and water vapour between ACE-FTS and COSMIC.

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin; Toon, Geoff; Boone, Chris; Strong, Kim

    2015-04-01

    Motivated by the selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars, we developed new algorithms for retrieving vertical profiles of temperature and pressure from spectra. We present temperature retrieval results from remote sensing spectra collected by the Canadian Space Agency's (CSA) Atmospheric Chemistry Experiment (ACE), which recently celebrated its tenth year in orbit. ACE utilizes a high-resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating between 750-4400 cm-1 in limb-scanning mode using the sun as a light source (solar occultation). We compare our retrieved profiles to those of the ACE Science Team and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). COSMIC is a group of six small satellites that use signals from GPS satellites to measure water vapour pressure an temperature via radio occultation. We have collected five sets of zonal and seasonal coincidences with a tight criteria of 150 km and 1 hour. Retrieved H2O profiles from both satellites will also be presented for these data sets. Compared to ACE, we can achieve T differences between 1 and 5 K below 50 km, perform less well between 50 and 100 km. Compared to COSMIC, available below 40 km, we perform similarly, while the ACE retrievals are in close agreement.

  6. Stratospheric constituent measurements using UV solar occultation technique

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Gillis, J.; Goldman, A.; Kosters, J. J.

    1981-01-01

    The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset.

  7. The Composition and Structure of Enceladus' Plume from a Cassini UVIS Observation of a Solar Occultation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Esposito, L. W.; Stewart, I.; Hendrix, A. R.

    2010-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the sun by Enceladus’ water vapor plume on May 18, 2010. UVIS used its extreme ultraviolet (EUV) channel for this new observation, to detect absorptions in the wavelength range 55 to 110 nm. Molecular nitrogen and water vapor have absorptions in this range. The N2 b(3,0) line is at 97.2 nm, extinguishing the solar H Lyman gamma emission. Cassini’s Ion and Neutral Mass Spectrometer (INMS) detected a species with an atomic mass of 28 amu, which could be CO, C2H4 or N2 [1, 2]. Definitive UVIS detection of N2 was important to clear up this ambiguity, and this was an important goal of the observation, as the presence or lack of N2 is key to models of the geochemistry in the interior [3, 4, 5]. UVIS did not detect N2 and we set an upper limit for the column density of 3 x 10^13 cm^-2. The absorption features in the spectrum are best fit by a water vapor column density of 0.9 x 10^16 cm^-2. This column density is in family with previous UVIS measurements from stellar occultations in 2005 and 2007 at far ultraviolet wavelengths, suggesting that Enceladus’ activity has been stable for the last 5 years [6, 7]. We used fluctuations in the signal to probe the structure of the gas jets again, as was analyzed in the 2007 occultation of zeta Orionis [7]. Gas jets are correlated to the dust jets detected by Cassini’s Imaging Science Subsystem [8]. The path of the sun cut through the jets horizontally at an altitude above the limb of ~15 km at the closest point. The resolution of the solar occultation is higher than the stellar occultation, and collimation of the gas jets observed in the solar occultation is greater than estimated in 2007. The observed collimation allows us to derive a mach number of ~4 for the ratio of the vertical velocity in the jet to the thermal velocity of the plume gas. The new opportunity afforded by this solar occultation is used to further model the structure and

  8. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES) Mission Concept

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Bevilacqua, R. M.; Fish, C. S.; Gordley, L. L.; Fromm, M. D.

    2014-12-01

    The goal of SOCRATES is to quantify the critical role of the upper troposphere/lower stratosphere (UTLS) in the climate system. The mission would provide, for the first time, the suite of measurements required to quantify stratosphere/troposphere exchange (STE) pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of potential changes in STE pathways with climate change. The discrimination and quantification of STE pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosol and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of STE (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only a few percent of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Venture mission. The SOCRATES mission concept is an 8-element constellation of autonomous CubeSats, each mated with a GLO sensor, deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the SOCRATES mission and GLO instrument concepts.

  9. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES): Proposed Mission Concept

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Bailey, S. M.

    2015-12-01

    The goal of SOCRATES is to resolve the critical but underexplored role of the upper troposphere/lower stratosphere (UTLS) in climate change. The mission would provide the suite of measurements required to quantify UTLS transport pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of changes in UTLS composition forced by expected changes in these pathways as the climate evolves. The discrimination and quantification of UTLS transport pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosols and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of UTLS transport (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of < 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only of order 10% of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Earth Venture mission. The SOCRATES mission concept is a 6-element constellation of autonomous small satellites, each mated with a GLO sensor, and deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the

  10. A Survey of Velocity Distributions of Solar Wind Ions : ACE/SWICS observations

    NASA Astrophysics Data System (ADS)

    Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2014-12-01

    The state of solar wind ions is generally described by a small set of state variables. In detail these aretotal density (or flux), center of mass (or bulk) velocity, and temperature. These variables are obtainedfrom measured velocity distributions either by fitting a Maxwell-Boltzmann distribution or by calculatingthe zeroth, first, and second order moments of the distribution. Obviously the first approach requires athermalized distribution to yield meaningful results, while the second approach is universally valid.However, in both cases the shape of the distribution can not be reproduced by the derived parameters.From observations of solar wind protons and alpha particles it is known that the assumption of a thermalized distribution is not valid, at least for the majority of observations. For heavy solar wind ions most observationsare severely limited by statistics and do not even allow to distinguish whether the distribution is thermal or not.This often insufficient characterization of the solar wind VDF severely limits the information which can beobtained for more detailed studies, especially about microscopic kinetic physics and the associatedwave-particle interactions. These naturally yield deviations from Maxwell-Boltzmann distributions.To address this problem we have analyzed ten years worth of data from the Solar Wind Ion Composition Spectrometer (SWICS)and the Magnetometer (MAG) on the Advanced Composition Explorer (ACE). From our analysis we obtained reduced 1D velocity spectra in 12 minute cadence for some 40 solar wind ions, from protons and alpha particles up to iron.Using the magnetic field vector information we were able to study periods where the reduced 1D spectra representthe parallel and perpendicular shape of the velocity distributions. We present our results and discussthem in the aforementioned context.

  11. Equivalence Method for Retrieving Stratospheric Constituent Profiles from Infrared Solar Occultation Data.

    NASA Astrophysics Data System (ADS)

    Weinreb, Michael P.

    1986-03-01

    Mixing ratios of stratospheric constituents can be inferred from satellite- or balloon-based infrared solar occultation measurements. The nonlinear system of equations that relates the measurements to the mixing ratios is often solved by the `onion-peeling' technique. We show how to implement onion-peeling with an algorithm in which limb paths are represented by equivalent homogeneous paths. The essential computations are confined to the tangent layers instead of the full multilayer limb paths. The algorithm yields the same solutions as conventional onion-peeling but requires significantly less computation time.

  12. Equivalence method for retrieving stratospheric constituent profiles from infrared solar occultation data

    NASA Astrophysics Data System (ADS)

    Weinreb, M. P.

    1986-03-01

    Mixing ratios of stratospheric constituents can be inferred from satellite- or balloon-based infrared solar occultation measurements. The nonlinear system of equations that relates the measurements to the mixing ratios is often solved by the 'onion-peeling' technique. The way to implement onion-peeling with an algorithm in which limb paths are represented by equivalent homogeneous paths is shown. The essential computations are confined to the tangent layers instead of the full multilayer limb paths. The algorithm yields the same solutions as conventional onion-peeling but requires significantly less computation time.

  13. Vertical structure and size distributions of Martian aerosols from solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Chassefiere, E.; Blamont, J. E.; Krasnopol'skii, V. A.; Korablev, O. I.; Atreya, S. K.; West, R. A.

    1992-01-01

    Phobos 2 spectrometer measurements of solar occultations close to the evening terminator have furnished data on the vertical structure of the Martian aerosols near the northern spring equinox. Since the thermal structure derived from saturated IR profiles of water vapor does not allow the reaching of the CO2 frost point at cloud altitudes, said clouds' particles may be formed by H2O ice. Dust was also monitored at two wavelengths; it is assumed that the dust particles are levitated by eddy mixing. A parallel is drawn between these thin clouds and the polar mesospheric clouds observed on earth.

  14. ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND

    SciTech Connect

    Weberg, Micah J.; Zurbuchen, Thomas H.; Lepri, Susan T. E-mail: thomasz@umich.edu

    2012-11-20

    We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to {approx}25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997 (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.

  15. The effect of solar radio bursts on the GNSS radio occultation signals

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  16. Investigating Coronal Origin of the Solar Wind, a Joint SOHO/UVCS and ACE/SWICS Analysis

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Zurbuchen, T.; Raymond, J. C.; Riley, P.; Strachan, L.

    2005-05-01

    The solar wind ion composition is generally 'frozen-in' within 5 solar radii of the Sun. Many characteristics in the elemental abundances measured in the solar wind are believed to be set in the chromospheric and low coronal levels. Therefore solar wind ion and elemental composition data combined with spectroscopic observations of the inner corona such as those from SOHO/UVCS, are ideal for investigating the coronal origin of the solar wind. We present such joint analysis using SOHO/UVCS and ACE/SWICS data along with a 3-D MHD traceback model. In October 1999, UVCS observed the west limb for 7 consecutive days with the passing of an equatorial coronal hole followed by an active region. This corresponds to a rarefaction transition from fast to slow wind seen by ACE. We present a correlation study of the electron temperature and elemental abundances between the corona and the solar wind from these two datasets. The solar wind ion and elemental composition measured by PLASTIC onboard STEREO would be valuable in conducting such analysis for investigating the formation of the solar wind.

  17. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    SciTech Connect

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-05-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  18. Vertical Distribution of Gases and Aerosols in Titan’s Atmosphere Observed by VIMS/Cassini Solar Occultations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Vinatier, S.; Sicardy, B.; Bézard, B.; Sotin, C.; Nicholson, P. D.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.

    2012-10-01

    We present the vertical distribution of gaseous species and aerosols in Titan’s atmosphere through the analysis of VIMS solar occultations. We employ the infrared channel of VIMS, which covers the 1 - 5 µm wavelength range. VIMS occultations can provide good vertical resolution ( 10 km) and an extended altitude range (from 70 to 700 km), complementing well the information from other Cassini instruments. VIMS has retrieved 8 solar occultations up to now. They are distributed through the whole Cassini mission and they probe different latitudes in both hemispheres. Two main gases can be observed by VIMS occultations: methane, through its bands at 1.2, 1.4, 1.7, 2.3 and 3.3 µm, and CO, at 4.7 µm. We can extract methane’s abundance between 70 and 700 km and CO’s between 70 and 180 km. Regarding aerosols, the VIMS altitude range allows to get information on the properties of both the main haze and the detached layer. Aerosols also affect the transmittance through their spectral signatures. In particular, a spectral signature at 3.4 µm that was attributed to aerosols was recently discovered by the analysis of the first VIMS occultation. We will monitor the latitudinal and temporal variations of the 3.4 µm feature through various occultations. A change in the global circulation regime of Titan sets in with the approaching to the vernal equinox, and a strong decrease of the altitude of the detached layer between the winter solstice and the equinox has indeed been observed. The temporal coverage of VIMS occultations allows the study the effect of these variations in the vertical distribution of aerosol optical and spectral properties.

  19. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  20. Solar Occultation Satellite Data and Derived Meteorological Products: Sampling Issues and Comparisons with Aura MLS

    NASA Technical Reports Server (NTRS)

    Manney, Gloria; Daffer, William H.; Zawodny, Joseph M.; Bernath, Peter F.; Hoppel, Karl W.; Walker, Kaley A.; Knosp, Brian W.; Boone, Chris; Remsberg, Ellis E.; Santee, Michelle L.; Harvey, V. Lynn; Pawson, Steven; Jackson, David R.; Deaver, Lance; Pumphrey, Hugh C.; Lambert, Alyn; Schwartz, Michael J.; Froidevaux, Lucien; McLeod, Sean; Takacs, Lawrence L.; Suarez, Max J.; Trepte, Charles R.; Livesey, Nathaniel; Harwood, Robert S.; Waters, Joe W.

    2007-01-01

    Derived Meteorological Products (DMPs, including potential temperature (theta), potential vorticity, equivalent latitude (EqL), horizontal winds and tropopause locations) have been produced for the locations and times of measurements by several solar occultation (SO) instruments and the Aura Microwave Limb Sounder (MLS). DMPs are calculated from several meteorological analyses for the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer, Stratospheric Aerosol and Gas Experiment II and III, Halogen Occultation Experiment, and Polar Ozone and Aerosol Measurement II and III SO instruments and MLS. Time-series comparisons of MLS version 1.5 and SO data using DMPs show good qualitative agreement in time evolution of O3, N2O, H20, CO, HNO3, HCl and temperature; quantitative agreement is good in most cases. EqL-coordinate comparisons of MLS version 2.2 and SO data show good quantitative agreement throughout the stratosphere for most of these species, with significant biases for a few species in localized regions. Comparisons in EqL coordinates of MLS and SO data, and of SO data with geographically coincident MLS data provide insight into where and how sampling effects are important in interpretation of the sparse SO data, thus assisting in fully utilizing the SO data in scientific studies and comparisons with other sparse datasets. The DMPs are valuable for scientific studies and to facilitate validation of non-coincident measurements.

  1. Two-Dimensional Assimilation Of Solar Occultation Satellite Data To Study Long-Term Ozone Trends

    NASA Astrophysics Data System (ADS)

    Geller, M. A.; Zhou, X.; Smyshlyaev, S.

    The methodology of two-dimensional chemistry-transport model driven data assimilation is used to evaluate atmospheric ozone changes for several decades. The SUNY-SPb two-dimensional transport-chemistry model, using the same mathematical framework, has been used to assimilate atmospheric composition data from two different solar occultation satellite instruments. The associated errors of the satellite observations are objectively calculated based on estimation theory. Two-dimensional data assimilation results for ozone are shown for SAGE II Version 6.2 and for HALOE Version 19 data. SAGE II was launched in October of 1984, and HALOE was launched on September of 1991. The SAGE II data spans two periods of high stratospheric aerosol loading (from El Chichon and Mt. Pinatubo), almost 10 QBO periods, 4 major ENSO events, and almost two complete solar cycles. The HALOE data spans one period of high stratospheric aerosol loading, almost 6 QBO periods, 3 major ENSO events, and about 1 1/2 solar cycles. HALOE and SAGE II results will be compared for the same periods. Assimilated satellite data are used to study the role of solar activity variations, atmospheric dynamics, and aerosol effects for long-term ozone variability in the lower and upper stratosphere and mesosphere.

  2. The use of stellar occultations to study the figures and atmospheres of small bodies in the outer solar system

    NASA Astrophysics Data System (ADS)

    Person, Michael James

    The methods of analyzing stellar occultations by small bodies in the outer solar system are discussed with examples from Triton, Pluto, and Charon. Simulations were performed characterizing the analysis of multi-chord occultations including: the effects of the direction of residual minimization in figure fits, the complications in measuring the reliability of fitted figure parameters when there are few degrees of freedom, and the proper treatment of grazing chords in model fitting. The 2005 July 11 C313.2 stellar occultation by Charon was analyzed. Occultation timings from the three published data sets were combined to accurately determine the mean radius of Charon: 606.0 ± 1.5 km. The analysis indicates that a slight oblateness in the body (0.006 ± 0.003) best matches the data, with a confidence level of 86%. Charon's mean radius corresponds to a bulk density of 1.63 ± 0.07 g/cm 3 , which is significantly less than Pluto's (1.92 ± 0.12 g/cm 3 ), consistent with an impact formation scenario in which at least one of the impactors was differentiated. The 2002 August 21 P131.1 and the 1988 June 9 P8 stellar occultations by Pluto were analyzed. The ellipticity of Pluto's atmosphere as measured by the P131.1 event is 0.066 ± 0.040, with a Gaussian confidence level of 63%, and the ellipticity as measured by the P8 occultations is 0.091 ± 0.041, with a Gaussian confidence level of 70%. If this nonsphericity is confirmed, its size and variation could possibly be attributed to superrotating winds driven by sources such as surface frost migration due to changing insolation patterns or albedo properties, gravity waves, and an asymmetric mass distribution in Pluto itself. The 2001 August 23 Tr231 stellar occultation by Triton was analyzed. The half- light radius of Triton's atmosphere was calculated from astrometrically calibrated model fits to the occultation light curve. The resulting half-light radius of 1479.01 km is larger than the value of 1456.3 km derived from

  3. Pressure sensing of the atmosphere by solar occultation using broadband CO(2) absorption.

    PubMed

    Park, J H; Russell Iii, J M; Drayson, S R

    1979-06-15

    A technique for obtaining pressure at the tangent point in an IR solar occultation experiment is described. By measuring IR absorption in bands of atmospheric CO(2) (e.g., 2.0 microm, 2.7 microm, or 4.3 microm), mean pressure values for each tangent point layer (vertical thickness 2 km or less) of the atmosphere can be obtained with rms errors of less than 3%. The simultaneous retrieval of pressure and gas concentration in a remote-sensing experiment will increase the accuracy of inverted gas concentrations and minimize the dependence of the experiment on pressure or mass path error resulting from use of climatological pressure data, satellite ephemeris, and instrument pointing accuracy. PMID:20212584

  4. Mission analysis for earth atmospheric measurements using solar occultation experiments on Shuttle Spacelabs

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Lawrence, G. F.; Lamkin, S. L.

    1979-01-01

    The maximum geographical coverage of solar occultation experiments for various Shuttle-Spacelab mission concepts is defined and an analysis that includes trade-offs between parameters such as launch time, season, orbital inclination and altitude is presented as well as the mission design data for the Spacelab-3 flight. The effects of orbital ranges from 220 to 600 km on geographical coverage are examined with inclinations up to 97 deg for sun-synchronous orbit. Results show that the widest band of latitude coverage in the tropics and the temperate zones can be achieved with a mid-inclined (i.e., 57 deg) orbit and a mid-morning or late-night launch time.

  5. Bulk Properties of Solar Wind Protons: Inter-comparison of Observations From STEREO, SOHO, ACE, and WIND

    NASA Astrophysics Data System (ADS)

    Simunac, K. D.; Galvin, A. B.; Kistler, L. A.; Popecki, M. A.; Farrugia, C.; Moebius, E.; Lee, M.; Ellis, L.; Singer, K.; Walker, C.; Blush, L. M.; Bochsler, P.; Wurz, P.; Daoudi, H.; Giammanco, C.; Karrer, R.; Opitz, A.; Klecker, B.; Wimmer-Schweingruber, R. F.; Koeten, M.; Thompson, B.

    2007-05-01

    The twin STEREO observatories were launched in October 2006. The PLASTIC experiment onboard both spacecraft analyzes ions with energies between 0.25 and 80 keV/charge, including solar wind protons. Information on bulk properties such as density, speed, and temperature are obtained. In early 2007 STEREO A was separated from SOHO, ACE, WIND, and STEREO B by hundreds of earth radii within the ecliptic plane, and by tens of earth radii out of the ecliptic plane. We report on comparisons of bulk parameters between these spacecraft, and what they show us about small-scale temporal and spatial variations in the solar wind.

  6. Measurements of O3, NO2 and Temperature during the 2004 Canadian Arctic ACE Validation Campaign

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, Tobias E.; Walker, Kaley A.; Strong, Kimberly; Berman, Richard; Bernath, Peter F.; Boone, Chris D.; Drummond, James R.; Fast, Hans; Fraser, Annemarie; MacQuarrie, Keith; Midwinter, Clive; Sung, Keeyoon; McElroy, C. Thomas; Mittermeier, Richard L.; Walker, Jennifer; Wu, Hongjiang

    2005-07-01

    The 2004 Canadian Arctic ACE Validation Campaign was conducted to provide correlative data for validating measurements from the Atmospheric Chemistry Experiment (ACE) satellite mission. These measurements were made at Eureka, Nunavut during polar springtime 2004. Six ground-based instruments were operated during the intensive phase of the campaign and ozonesondes and radiosondes were flown. During this time, ACE-FTS and ACE-MAESTRO were performing solar-occultation measurements over the Canadian Arctic. We report the first comparisons between campaign measurements and those from ACE, focusing on O3, NO2 and temperature. Initial mean O3 profiles from ACE-FTS and ACE-MAESTRO agree to within 20% between 10 and 30 km, and the NO2 profiles agree to within 40% between 17 and 40 km, which is within the standard deviations. The ACE-FTS temperature profiles agree to better than 2.5 K with the radiosonde temperatures from 10 to 32 km and with the lidar temperatures from 17 to 45 km.

  7. Multi-Year Characterization of PSCs Using Solar Occultation Satellite Observations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Bokarius, K.; Fromm, M.; Alfred, J.

    2004-01-01

    POAM solar occultation observations from1994 to present are studied for the purpose of determining Type I PSC formation characteristics and winter-long evolution. This information is critical to an improved understanding and predictive capability of stratospheric ozone depletion. Solar occultation satellite observations of these clouds yields more continuous and wide-spread information than can be obtained from aircraft, balloon, or ground-based observations. This multi-winter PSC study is augmented by the use of our Type Ia/Ib discrimination scheme. Recent studies of PSC formation made with POAM observations and simulations during the 1999-2000 Arctic winter have shown characteristics that shed light on the formation mechanisms responsible for Type Ia solid phase PSCs. This study examines PSC observations from many years on a common basis to see if the characteristics observed & cuing the 1999-2000 Arctic winter ai-e observed in other years and if other characteristics can be identified. The results show that Type Ia PSCs form at the beginning of the winter, within several days of the fxst drop in temperature below TNAT, and peak early in the winter. Type Ia PSCs typically outnumber Ib PSCs over the winter, especially at the beginning of the winter. Type Ia and Ib PSC observations continue throughout the winter. Micro-physical models of PSC formation must match these observed characteristics. Some models predict that temperatures must be more 5 K below T-NAT for five days before significant freezing can occur. This is not seen in the POAM observations. Differences in PSC characte ristics between the first two Arctic winters (1 994- 1995 and 1995- 1 996) and later winters also suggest the influence of volcanic perturb ations on PSC formation. Type Ia and Ib PSC characteristics observed by POAM III and SAGE III for the 2002-2003 Arctic winter are compared.

  8. Distinct EUV minimum of the solar irradiance (16-40 nm) observed by SolACES spectrometers onboard the International Space Station (ISS) in August/September 2009

    NASA Astrophysics Data System (ADS)

    Nikutowski, B.; Brunner, R.; Erhardt, Ch.; Knecht, St.; Schmidtke, G.

    2011-09-01

    In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16-150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth's climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.

  9. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project № 284461, www.eheroes.eu).

  10. Occultation studies of the Solar system. Semiannual status report, 1 July-31 December 1986

    SciTech Connect

    Millis, R. L.

    1987-02-01

    The planetary occultation program began at Lowell Observatory in 1973 with a worldwide campaign to observe mutual occultations and eclipses of the Galilean Satellites. Then the temperature profile of the Martian atmosphere was measured from data taken during the occultation of epsilon Geminorum, the Rings of Uranus were discovered as they occulted SAO 158687, and the dimensions of Pallas were measured when that minor planet occulted SAO 85009. In 1979 the present grant was initiated, providing funds for portable photometric instrumentation used to observe occultations by asteroids as well as by Uranus and Neptune. Software for predicting occultations of catalog stars by asteroids, planets, and comets was written in 1983. Lowell currently provides most of the available predictions for asteroid occultations. Realizing in 1983 that the lack of a high-quality astrometric telescope dedicated to occultation work was limiting progress, an 18-inch, F/8 lens was acquired and adapted to an existing mounting at Lowell. Although acquisition of the lens and implementation of the new telescope has been accomplished primarily with non-grant funds, the instrument makes a major contribution to occultation research.

  11. Titan solar occultation observations reveal transit spectra of a hazy world

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-06-01

    High altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world -- Titan -- to clarify how high altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer (VIMS) aboard NASA's Cassini spacecraft to generate transit spectra. Data span 0.88-5 microns at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectru m. Our spectra show strong methane absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

  12. Titan solar occultation observations reveal transit spectra of a hazy world.

    PubMed

    Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J

    2014-06-24

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope. PMID:24876272

  13. Titan solar occultation observations reveal transit spectra of a hazy world

    PubMed Central

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-01-01

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan’s atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration’s (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88–5 μm at a resolution of 12–18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan’s haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1–10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA’s James Webb Space Telescope. PMID:24876272

  14. Cloud, dust, and ozone vertical profiles from solar occultation measurements: Implications for dynamics

    NASA Technical Reports Server (NTRS)

    Chassefiere, E.; Blamont, J. E.

    1993-01-01

    An instrument was designed for solar occultation measurements of the martian atmosphere from the Phobos spacecraft. It was composed of three different dispersive systems working in the ultraviolet (UV: 0.22-0.32 microns) for the measurement of O3 and aerosols, in the near infrared (NIR: 0.76 microns, 0.94 microns) for the detection of O2 and H2O, and in the infrared (IR: 1.9 microns, 3.7 microns) where CO2 and H2O were measured. A detailed description of the instrument may be found in the special issue of Nature. Its principle objective is to measure from the Phobos orbit the spectrum of the Sun, modified by atmospheric extinction, during sunset. The UV-NIR spot has an angular diameter of 1 arcmin, or approximately 3 km vertical resolution, and is located near the center of the solar disk. The IR field is about twice as large and its line of sight is shifted by 8.5 arcmin, or approximately 20 km, relative to the previous one. It is therefore located near the edge of the solar disk. Sampling times are generally 0.5, 1, and 2 s for IR, UV, and NIR channels respectively, corresponding to vertical excursions of the line of sight of 1, 2, and 4 km respectively under nominal conditions. The instrument operated from February 8 to March 26 (the martian equinox occurred on February 17). The latitude of the intersection of the Sun-spacecraft axis with the surface of Mars varied from -11 to +20, the seasonal date L(sub s) being in the range 0 - 20. All measurements were therefore made near northern spring equinox in equatorial regions. Due to an error in the pointing system, only partial results were obtained, the region below approximately equals 30 km altitude being never sounded by the UV-NIR spectrometer. On the contrary, nine complete occultations were obtained in the IR channels, whose line of sight was fortunately approximately equals 20 km below the UV-NIR axis.

  15. Solar EUV Irradiance Measurements by the Auto-Calibrating EUV Spectrometers (SolACES) Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.

    2014-05-01

    SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.

  16. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  17. Stratospheric NO and NO2 Abundances from ATMOS Solar-Occultation Measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Allen, M.; Gunson, M. R.; Salawitch, R. J.; Collins, G. B.; Huston, K. H.; Abbas, M. M.; Abrams, M. C.; Chang, A. Y.; Fahey, D. W.; Gao, R. S.; Irion, F. W.; Lowenstein, M.; Manney, G. L.; Michelsen, H. A.; Podolske, J. R.; Rinsland, C. P.; Zander, R.

    1996-01-01

    Using results from a time-dependent photochemical model to calculate the diurnal variation of NO and NO2, we have corrected Atmospheric Trace MOlecule Spectroscopy (ATMOS) solar-occultation retrievals of the NO and NO2 abundances at 90' solar zenith angle. Neglecting to adjust for the rapid variation of these gases across the terminator results in potential errors in retrieved profiles of approximately 20% for NO2 and greater than 100% for NC at altitudes below 25 km. Sensitivity analysis indicates that knowledge of the local 03 and temperature profiles, rather than zonal mean or climatological conditions of these quantities, is required to obtain reliable retrievals of NO and NO2 in the lower stratosphere. Extremely inaccurate 03 or temperature values at 20 km can result in 50% errors in retrieved NO or NO2. Mixing ratios of NO in the mid-latitude, lower stratosphere measured by ATMOS during the November 1994 ATLAS-3 mission compare favorably with in situ ER-2 observations, providing strong corroboration of the reliability of the adjusted space-borne measurements.

  18. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Robert, Severine; Vandaele, Ann-Carine; Willame, Yannick; Lopez-Moreno, Jose Juan; Patel, Manish; Belluci, Giancarlo; Daerden, Frank; Neefs, Eddy; Rodriguez-Gomez, Julio

    2013-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite was selected as part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 µm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities. Since last year's abstract, much progress has been made on the instrument design and prototypes have been tested, especially concerning the very challenging thermal needs of the instrument. This paper will concentrate on the developments in the last year that prove NOMAD will be a very powerful, sensitive instrument.

  19. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; López-Moreno, J.-J.; Patel, M. R.; Bellucci, G.; Daerden, F.; Drummond, R.; Neefs, E.; Robert, S.; Rodriguez Gomez, J.

    2012-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite has been selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities.

  20. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Bovensmann, H.; Burrows, J. P.

    2015-11-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD) which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy) fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  1. ACE infrared spectral atlases of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Hughes, Ryan; Bernath, Peter; Boone, Chris

    2014-11-01

    Five infrared atmospheric atlases are presented using solar occultation spectra from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in low earth orbit. The spectral atlases were created for Arctic summer, Arctic winter, mid-latitude summer, mid-latitude winter and the tropics. Each covers the spectral range from 700 to 4400 cm-1 and consists of 31 spectra that span an altitude range of 6-126 km in 4-km altitude intervals. To improve the signal-to-noise ratio, each spectrum in the atlas is an average of at least several hundred individual ACE-FTS limb transmission spectra. Representative plots in pdf format at 10 km (troposphere), 30 km (stratosphere), 70 km (mesosphere), and 110 km (lower thermosphere) are also available.

  2. Unique Observation of a Solar Flare by Lunar Occultation During the 2010 Annular Solar Eclipse Through Ionospheric Disturbances of VLF Signals

    NASA Astrophysics Data System (ADS)

    Maji, Surya K.; Chakrabarti, Sandip K.; Mondal, Sushanta K.

    2012-06-01

    Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8 kHz) by a receiver placed at Khukurdaha (22°27'N, 87°45'E) during the partial solar eclipse (75 %) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.

  3. Variations in Solar Wind Fractionation as Seen by ACE/SWICS and the Implications for Genesis Mission Results

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Reisenfeld, D. B.; Zurbuchen, T. H.; Lepri, S. T.; Shearer, P.; Gilbert, J. A.; von Steiger, R.; Wiens, R. C.

    2015-10-01

    We use Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer (SWICS) elemental composition data to compare the variations in solar wind (SW) fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009), and the period in which the Genesis spacecraft was collecting SW (late 2001—early 2004). We differentiate our analysis in terms of SW regimes (i.e., originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-first ionization potential (low-FIP) ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of SW speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.

  4. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    NASA Astrophysics Data System (ADS)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  5. Occultations of stars by solar system objects. VIII - Occultations of catalog stars by asteroids, planets, Titan, and Triton in 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Wasserman, L. H.; Bowell, E.; Millis, R. L.

    1990-01-01

    Predictions are given for occultations of catalog stars by asteroids, planets, Titan, and Triton in 1990 and 1991. The predictions are based on a computerized comparison of the occulting bodies' ephemerides and nine major star catalogs. The search is complete for all numbered asteroids whose angular diameters exceed 0.08 arcsec during the search years. Preliminary ground tracks are shown for the more favorable occultations.

  6. Simulation of source intensity variations from atmospheric dust for solar occultation Fourier transform infrared spectroscopy at Mars

    NASA Astrophysics Data System (ADS)

    Olsen, K. S.; Toon, G. C.; Strong, K.

    2016-05-01

    A Fourier transform spectrometer observing in solar occultation mode from orbit is ideally suited to detecting and characterizing vertical profiles of trace gases in the Martian atmosphere. This technique benefits from a long optical path length and high signal strength, and can have high spectral resolution. The Martian atmosphere is often subject to large quantities of suspended dust, which attenuates solar radiation along the line-of-sight. An instrument making solar occultation measurements scans the limb of the atmosphere continuously, and the optical path moves through layers of increasing or decreasing dust levels during a single interferogram acquisition, resulting in time-varying signal intensity. If uncorrected, source intensity variations (SIVs) can affect the relative depth of absorption lines, negatively impacting trace gas retrievals. We have simulated SIVs using synthetic spectra for the Martian atmosphere, and investigated different techniques to mitigate the effects of SIVs. We examined high-pass filters in the wavenumber domain, and smoothing methods in the optical path difference (OPD) domain, and conclude that using a convolution operator in the OPD domain can isolate the SIVs and be used to correct for it. We observe spectral residuals of less than 0.25% in both high- and low-dust conditions, and retrieved volume mixing ratio vertical profile differences on the order of 0.5-3% for several trace gases known to be present in the Martian atmosphere. These differences are smaller than those caused by adding realistic noise to the spectra. This work thus demonstrates that it should be possible to retrieve vertical profiles of trace gases in a dusty Martian atmosphere using solar occultation if the interferograms are corrected for the effects of dust.

  7. Climate-active Trace Gases from ACE Satellite Observations

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Brown, A.; Harrison, J.; Chipperfield, M.; Boone, C.; Wilson, C.; Walker, K. A.

    2011-12-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of more than 30 trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1) is measuring the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. Launched by NASA in August 2003 for a nominal two-year mission, ACE performance remains excellent after 8 years in orbit. Volume mixing ratio (VMR) profiles of sixteen halogenated trace gases are routinely retrieved from ACE-FTS atmospheric spectra: CCl4, CF4, CCl3F (CFC-11), CCl2F2 (CFC-12), C2Cl3F3 (CFC-113), CH3Cl, ClONO2, COF2, COCl2, COClF, CHF2Cl (HCFC-22), CH3CCl2F (HCFC-141b), CH3CClF2 (HCFC-142b), HCl, HF and SF6. ACE also provides VMR profiles for CH4, N2O and OCS; HCFC-23 (CHF3) is a recent research product. ACE-FTS measurements were compared to surface measurements made by the AGAGE network and output from the SLIMCAT three-dimensional (3-D) chemical transport model, which is constrained by similar surface data. ACE-FTS measurements of CFCs (and HCl) show declining trends which agree with both AGAGE and SLIMCAT values. The concentrations of HCFCs are increasing with ACE-FTS, SLIMCAT and AGAGE all showing positive trends. These results illustrate the success of the Montreal Protocol in reducing ozone depleting substances. The replacement of CFCs with HCFCs has led to an increase in the VMR of HF in the stratosphere. As chlorine containing compounds continue to be phased out and replaced by fluorine-containing molecules, it is likely that total atmospheric fluorine will continue increasing in the near future. These species are all powerful greenhouse gases. ACE provides near global VMR

  8. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Bramstedt, Klaus; Hilker, Michael; Liebing, Patricia; Plieninger, Johannes; Reuter, Max; Rozanov, Alexei; Sioris, Christopher E.; Bovensmann, Heinrich; Burrows, John P.

    2016-04-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called onion peeling DOAS (ONPD), which combines an onion peeling approach with a weighting function DOAS (differential optical absorption spectroscopy) fit in the spectral region between 1559 and 1671 nm. By use of updated pointing information and optimisation of the data selection as well as of the retrieval approach, the altitude range for reasonable CH4 could be broadened from 20 to 40 km to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles (17-45 km) of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated. CH4 trends above about 20 km are not significantly different from zero and the trend at 17 km is about 3 ppbv year-1. The derived CO2 trends show a general decrease with altitude with values of about 1.9 ppmv year-1 at 21 km and about 1.3 ppmv year-1 at 39 km. These results are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  9. Unique observation of a Solar Flare by Lunar Occultation during the 2010 Annular Solar Eclipse through ionospheric disturbances in VLF waves

    NASA Astrophysics Data System (ADS)

    Kanta Maji, Surya; Chakrabarti, Sandip Kumar

    2012-07-01

    Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient solar extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, changes the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8kHz) by a receiver placed at Khukurdaha (~80 km away from Kolkata) during the partial solar eclipse (75%) of 15th January, 2010. The receiving station and the transmitter were on two opposite sides of the annular eclipse belt. We got a clear depression in the data during the period of partial eclipse. Most interestingly, there was also a flaring activity in the sun on that day which reached its peak (C-type) just after the time when the eclipse was near maximum. We saw effects of the occultation of this flare in our VLF signal since a part of the active region was clearly blocking the moon. We model this occultation, and reconstructed the VLF signal in the absence of the flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.

  10. Solar sensor subsystems alignment check using solar scans for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Jurczyk, S. G.; Moore, A. S.

    1989-01-01

    The alignment of a dual-axes sun sensor subsystem to a telescope having a multiple sensor subsystem is described. The sun sensor consists of two analog and one digital silicon detectors. The analog detectors are shadow mask type operating in the visible spectrum. The detectors are mounted for azimuth and elevation positioning of biaxial gimbals. The digital detector is a linear diode array that operates at a spectral position of 0.7 micron and is used for elevation positioning. The position signals correspond to relative angles between the sun sensor and the solar disk. These three detectors are aligned on an Invar structure which is mounted to a Cassegrain telescope. This telescope relays solar radiance to an eight channel detector subsystem operating in the infrared range from 2 to 10 microns. The test technique and results to check the boresight alignment of these two subsystems by scanning the solar disk will be reported. The boresight alignment for both the azimuth and elevation axes of the two detector subsystems is verified using this technique.

  11. Improved ACE-FTS observations of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2016-04-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22), CH3Cl and CCl4. Recently there has been much community interest in carbon tetrachloride (CCl4), a substance regulated by the Montreal Protocol because it leads to the catalytic destruction of stratospheric ozone. Estimated sources and sinks of CCl4 remain inconsistent with observations of its abundance. Satellite observations of CCl4 in the stratosphere are particularly useful in validating stratospheric loss (photolysis) rates; in fact the atmospheric loss of CCl4 is essentially all due to photolysis in the stratosphere. However, the latest ACE-FTS v3.5 CCl4 retrieval is biased high by ˜ 20-30%. A new ACE-FTS retrieval scheme utilising new laboratory spectroscopic measurements of CCl4 and improved microwindow selection has recently been developed. This improves upon the v3.5 retrieval and resolves the issue of the high bias; this new scheme will form the basis for the upcoming v4 processing version of ACE-FTS data. This presentation will outline the improvements made in the retrieval, and a subset of data will be compared with modelled CCl4 distributions from SLIMCAT, a state-of-the-art three-dimensional chemical transport model. The use of ACE-FTS data to evaluate the modelled stratospheric loss rate of CCl4 will also be discussed. The evaluated model, which also includes a treatment of surface soil and ocean sinks, will then be used to quantify current uncertainties in the global budget of CCl4.

  12. Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

    1994-01-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

  13. Titan's surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; McCord, Thomas B.; Sotin, Christophe

    2014-11-01

    Solar occultation measurements by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) reveal the near-infrared transmission of Titan's atmosphere down to an altitude of ∼40 km. By combining these observations with VIMS reflectance measurements of Titan's surface and knowledge of haze and gas opacity profiles from the Huygens probe, we constrain a simple model for the transfer of radiation in Titan's atmosphere in order to derive surface reflectance in the methane windows used for compositional analysis. The advantages of this model are twofold: (1) it is accurate enough to yield useful results, yet simple enough to be implemented in just a few lines of code, and (2) the model parameters are directly constrained by the VIMS occultation and on-planet measurements. We focus on the 2.0, 2.7, 2.8 and 5.0 μm windows, where haze opacity is minimized, and diagnostic vibrational bands exist for water ice and other candidate surface species. A particularly important result is the strong atmospheric attenuation at 2.7 μm compared to 2.8 μm, resulting in a reversal of apparent spectral slope in a compositionally diagnostic wavelength range. These results show that Titan's surface reflectance is much "bluer" and more closely matched by water ice than the uncorrected spectra would indicate, although the majority of Titan's surface has a spectrum consistent with mixtures (either intimate or areal) of water ice and haze particles precipitated from the atmosphere. Compositions of geologic units can be accurately modeled as mixtures ranging from predominantly water ice (Sinlap crater ejecta and margins of dark equatorial terrain) to predominantly organic-rich (Tui Regio and Hotei Regio), with particles in the size range ∼10-20 μm. In distinguishing between hypothesized formation mechanisms for Tui and Hotei Regio, their organic-rich composition favors a process that concentrates precipitated haze particles, such as playa lake evaporite deposition (Barnes, J.W., Bow

  14. The ExoMars Trace Gas Orbiter NOMAD Spectrometer Suite for Nadir and Solar Occultation Observations of Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Carine Vandaele, Ann; López-Moreno, José Juan; Patel, Manish; Bellucci, Giancarlo; Drummond, Rachel; Neefs, Eduard; Depiesse, Cedric; Daerden, Frank; Rodriguez-Gómez, Julio; Neary, Lori; Robert, Séverine; Willame, Yannick; Mahieux, Arnaud

    2015-04-01

    NOMAD (Nadir and Occultation for MArs Discovery) is one of four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in January 2016 and to begin nominal science mission around Mars in late 2017. It consists of a suite of three high-resolution spectrometers - Solar Occultation (SO), LNO (Limb Nadir and Occultation) and UVIS (Ultraviolet-Visible) - which will generate a huge dataset of Martian atmospheric observations during the mission, across a wide spectral range. Specifically, the SO spectrometer channel will perform occultation measurements, operating between 2.2-4.3μm at a resolution of 0.15cm-1, with 180-1000m vertical spatial resolution and an SNR of 1500-3000. LNO will perform limb scanning, nadir and occultation measurements, operating between 2.2-3.8μm at a resolution of 0.3cm-1. In nadir, global coverage will extend between ±74O latitude with an IFOV of 0.5x17km on the surface. This channel can also make occultation measurements should the SO channel fail. UVIS will make limb, nadir and occultation measurements between 200-650nm, at a resolution of 1nm. It will have 300-1000m vertical resolution during occultation and 5x60km ground resolution during 15s nadir observations. An order-of-magnitude increase in spectral resolution over previous instruments will allow NOMAD to map previously unresolvable gas species, such as important trace gases and isotopes. CO, CO2, H2O, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, O3 and several isotopologues of methane and water will be detectable, providing crucial measurements of the Martian D/H and methane isotope ratios. It will also be possible to map the sources and sinks of these gases, such as regions of surface volcanism/outgassing and atmospheric production, over the course of an entire Martian year, to further constrain atmospheric dynamics and climatology. NOMAD will also continue to monitor the Martian water, carbon, ozone and dust cycles, extending existing datasets made by successive

  15. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance

  16. Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data

    NASA Astrophysics Data System (ADS)

    Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.

    2013-11-01

    We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.

  17. Effect of coronal magnetic fields on the formation of the solar wind from radio polarization occultation data

    NASA Astrophysics Data System (ADS)

    Efimov, A. I.; Andreev, V. E.; Samoznaev, L. N.; Chashei, I. V.; Bird, M. K.

    1999-04-01

    An analysis of radio occultation of the near-solar plasma using linearly polarized S-band (2.3 GHz) signals from the HELIOS-1 and HELIOS-2 spacecraft is presented. Fluctuations in the Faraday rotation of the plane of polarization were measured simultaneously at three widely spaced ground stations of the NASA Deep Space Network at Canberra, Madrid, and Goldstone. The temporal energy spectra of the Faraday-rotation fluctuations (FRF) were obtained using measurements in 1981 and 1983 for heliocentric distances R = (3_12)R_S (R_S is the solar radius). We have studied the dependences of the shape and variance of the FRF spectra on heliocentric distance. The power-law index for the two-dimensional FRF spatial spectrum is close to beta = 2 for heliocentric distances R = (3_6)R_S, and decreases with distance from the Sun, reaching the value beta = 1.2 at R = 10R_S. Comparison with earlier measurements of the power-law index beta' for radio-occultation phase-fluctuation spectra shows that beta ~= beta' when R = (3_6)R_S and beta < beta' ~= 2 at larger distances. The time lag between the FRF for different receiving stations was measured using a cross-correlation analysis, enabling determination of the velocities of the irregularities, which are in good agreement with the expected Alfven speed. The correlation between temporal variations of the fluctuation intensity and the time lag is studied. The FRFs are primarily determined by Alfven waves. The solar wind regime in the acceleration region is governed by coronal magnetic fields.

  18. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    SciTech Connect

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C.; Aran, A.; Gomez-Herrero, R.; Dresing, N.; Heber, B.

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  19. A Summary of 3-D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO, ACE, and Wind Instrumentation

    NASA Astrophysics Data System (ADS)

    Bisi, Mario M.; Jackson, B. V.; Clover, J. M.; Hick, P. P.; Buffington, A.; Tokumaru, M.

    2010-11-01

    We present a summary of results from simultaneous Solar-Terrestrial Environment Laboratory (STELab) Interplanetary Scintillation (IPS), STEREO, ACE, and Wind observations using three-dimensional reconstructions of the Whole Heliosphere Interval - Carrington rotation 2068. This is part of the world-wide IPS community's International Heliosphysical Year (IHY) collaboration. We show the global structure of the inner heliosphere and how our 3-D reconstructions compare with in-ecliptic spacecraft measurements.

  20. ACE-FTS instrument: activities in preparation for launch

    NASA Astrophysics Data System (ADS)

    Soucy, Marc-Andre; Walker, Kaley A.; Fortin, Serge; Deutsch, Christophe

    2003-11-01

    The Atmospheric Chemistry Experiment (ACE) is the mission selected by the Canadian Space Agency for its next science satellite, SCISAT-1. ACE consists of a suite of instruments in which the primary element is an infrared Fourier Transform Spectrometer (FTS) coupled with an auxiliary 2-channel visible (525 nm) and near infrared imager (1020 nm). A secondary instrument, MAESTRO, provides spectrographic data from the near ultra-violet to the near infrared, including the visible spectral range. In combination the instrument payload covers the spectral range from 0.25 to 13.3 micron. A comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols and temperature will be made by solar occultation from a satellite in low earth orbit. The ACE mission will measure and analyse the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere. A high inclination (74 degrees), low earth orbit (650 km) allows coverage of tropical, mid-latitude and polar regions. This paper presents the instrument-related activities in preparation for launch. In particular, activities related to the integration of instrument to spacecraft are presented as well as tests of the instrument on-board the SciSat-1 bus. Environmental qualification activities at spacecraft-level are described. An overview of the characterization and calibration campaign is presented. Activities for integration and verification at launch site are also covered. The latest status of the spacecraft is also presented.

  1. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  2. The two-micron spectral characteristics of the Titanian haze derived from Cassini/VIMS solar occultation spectra

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, Sang Joon; Courtin, Régis; Sohn, Mirim; Lee, Dong-Hun

    2013-11-01

    Vertically-resolved spectral characteristics of the Titanian haze in the 2-μm wavelength range were derived from solar occultation spectra measured by Cassini/VIMS on January 15, 2006. At the various altitudes probed by the solar occultation measurements, we reproduced the observed spectra using a radiative transfer program including absorption by CH4 ro-vibrational bands, collision-induced absorption by N2-N2 pairs, and H2-N2 dimers, as well as absorption and scattering by the haze particles. The retrieved optical depth spectra (or τ-spectra) for the haze show marked variations in the 2.1-2.8 μm range, with peaks near 2.30 and 2.35 μm, and the relative amplitude of these peaks changing with altitude. The gross spectral shape of the τ-spectra is found similar to the typical 2-μm absorption spectra of the alkane group of hydrocarbon (CnH2n+2) ices. The τ-spectra retrieved at 2 μm and those previously retrieved at 3 μm by Kim et al. (2011) are simultaneously reproduced by combinations of 2- and 3-μm absorbance spectra of alkane ices such as CH4, C2H6, C5H12, C6H14, with the addition of a nitrile ice, CH3CN. These combinations are neither unique nor limited and need more fine-tuning to fit the detailed features of the τ-spectra. There is a need for additional laboratory measurements of absorbance and indices of refraction for a wider variety of hydrocarbon and nitrile ices in the temperature range relevant to Titan.

  3. In Charon's Shadow: Analysis of the UV Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Kammer, Joshua A.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K. A.; Olkin, C. B.; Gladstone, G. R.; Summers, M. E.; Greathouse, T. K.; Retherford, K. D.; Versteeg, M. H.; Parker, J. W.; Steffl, A. J.; Schindhelm, E.; Strobel, D. F.; Linscott, I. R.; Hinson, D. P.; Tyler, G. L.; Woods, W. W.

    2015-11-01

    Observations of Charon, Pluto's largest moon, have so far yielded no evidence for a substantial atmosphere. However, during the flyby of New Horizons through the Pluto-Charon system, the Alice ultraviolet spectrograph successfully acquired the most sensitive measurements to date during an occultation of the sun as New Horizons passed through Charon's shadow. These observations include wavelength coverage in the extreme- and far-ultraviolet (EUV and FUV) from 52 nm to 187 nm. We will present these results from Alice, and discuss their implications for an atmosphere on Charon.This work was supported by NASA's New Horizons project.

  4. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  5. The retrieval of the concentrations of nitric oxide and nitrogen dioxide from satellite solar occultation measurements at sunset and sunrise

    SciTech Connect

    Cartalis, C.I.

    1989-01-01

    HALOE (Halogen Occultation Experiment), scheduled to fly on the Upper Atmosphere Research Satellite (UARS) in 1991, aims to retrieve the vertical concentration profiles of seven minor stratospheric constituents in order to improve the understanding of ozone's photochemistry. This dissertation concentrates on the retrieval of the concentrations of nitric oxide and nitrogen dioxide, which both play an active role in the photochemistry of ozone. The investigation is complicated because of their large diurnal changes which are intensified at sunrise and sunset. Consequently, the retrieval of NO and NO{sub 2} from solar occultation measurements at twilight needs to take into account the lifetimes and the rapid interconversion of NO and NO{sub 2}. If the temporal and spatial variations of NO and NO{sub 2} are neglected, the resulting errors for altitudes less than 20 km reach 100 and 5% respectively and for both sunset and sunrise. A photochemical scheme is developed and a separate code calculates the photodissociation rates of the species involved in photochemical reactions, as a function of latitude, temperature, altitude and season. A retrieval code is developed combining an iterative inversion algorithm, working from top of the atmosphere downwards, and a parameterization of the variability of NO and NO{sub 2}. The method is used to examine the accuracy of the retrieval of the vertical concentration profiles and results show that the recovered profiles are in good agreement with measured ones, reflect the trends of NO and NO{sub 2} at sunset and sunrise and satisfy the accuracy expectations of the HALOE experiment.

  6. All about Occultation.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2001-01-01

    Describes occultation events involving the moon, when the moon blocks the view of planets or stars. Describes other events such as a partial solar eclipse, a penumbral lunar eclipse, meteor showers, and moon phases. Provides a list of internet resources related to these events. (DLH)

  7. Effects of the ionosphere and solar activity on radio occultation signals: Application to CHAllenging Minisatellite Payload satellite observations

    NASA Astrophysics Data System (ADS)

    Pavelyev, A. G.; Liou, Y. A.; Wickert, J.; Schmidt, T.; Pavelyev, A. A.; Liu, S. F.

    2007-06-01

    We analyze the ionospheric effect on the phase and amplitude of radio occultation (RO) signal. The introduced theoretical model predicts a correlation between the phase acceleration and intensity variations of RO signal and opens a way to locate layered structures in the propagation medium, in particular, in trans-ionospheric satellite-to-satellite links. For considered CHAllenging Minisatellite Payload (CHAMP) RO events, the locations of the inclined plasma layers in the lower ionosphere are estimated, and the electron density distribution is retrieved. By analysis of the CHAMP RO data, we reveal the dependence of the intensity variations of RO signal on sharp changes in the DST index and on the local time. Maps of the seasonal, geographical, and temporal distributions of the CHAMP RO events with amplitude scintillations, having high S4 index values, and observed during the years 2001-2004 indicate dependence on solar activity. As follows from this analysis, the GPS signals in the trans-ionospheric links can be used for investigating the location and parameters of inclined plasma layers and monitoring the influence of solar activity on the ionosphere with global coverage.

  8. On the Response of Halogen Occultation Experiment (HALOE) Stratospheric Oxone and Temperature to the 11-yr Solar Cycle Forcing

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    2008-01-01

    Results are presented on responses in 14-yr time series of stratospheric ozone and temperature from the Halogen Occultation Experiment (HALOE) of the Upper Atmosphere Research Satellite (UARS) to a solar cycle (SC-like) variation. The ozone time series are for ten, 20-degree wide, latitude bins from 45S to 45N and for thirteen "half-Umkehr" layers of about 2.5 km thickness and extending from 63 hPa to 0.7 hPa. The temperature time series analyses were restricted to pressure levels in the range of 2 hPa to 0.7 hPa. Multiple linear regression (MLR) techniques were applied to each of the 130 time series of zonally-averaged, sunrise plus sunset ozone points over that latitude/pressure domain. A simple, 11-yr periodic term and a linear trend term were added to the final MLR models after their seasonal and interannual terms had been determined. Where the amplitudes of the 11-yr terms were significant, they were in-phase with those of the more standard proxies for the solar uv-flux. The max minus min response for ozone is of order 2 to 3% from about 2 to 5 hPa and for the latitudes of 45S to 45N. There is also a significant max minus min response of order 1 K for temperature between 15S and 15N and from 2 to 0.7 hPa. The associated linear trends for ozone are near zero in the upper stratosphere. Negative ozone trends of 4 to 6%/decade were found at 10 to 20 hPa across the low to middle latitudes of both hemispheres. It is concluded that the analyzed responses from the HALOE data are of good quality and can be used to evaluate the responses of climate/chemistry models to a solar cycle forcing.

  9. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  10. Vertical profiles of dust and ozone in the Martian atmosphere deduced from solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Blamont, J. E.; Chassefiere, E.; Goutail, J. P.; Mege, B.; Nunes-Pinharanda, M.; Souchon, G.; Krasnopolsky, V. A.; Krysko, A. A.; Moroz, V. I.

    1991-02-01

    The vertical distribution of the ozone content and of the aerosols in the Martian atmosphere at the equinox and near the equator was studied with the aid of a biaxial pointing device, a microprocessor-controlled flat mirror of elliptical shape. An upper limit of 5 x 10 to the 7th mol/cu cm for ozone was obtained above an altitude of 30 km. For the aerosols, a semiquantitative distribution has been obtained between 10 and 50 km of altitude. The scale height is nearly equal to the atmospheric scale height in the 10-20 km region where mixing seems to predominate, and falls rapidly to a thickness of about 2 km at 30 km. In 10 percent of the occultations, a stratified haze has been detected between 40 and 50 km. The particle radius of cloud constituents is estimated and optical thickness per kilometer of these hazes at peak extinction are approximated. An eddy diffusion coefficient and a mixing ratio are estimated for clouds assumed to be at equilibrium.

  11. Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.

    1995-01-01

    Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.

  12. Trends and Solar Cycle Effects in Temperature Versus Altitude From the Halogen Occultation Experiment for the Mesosphere and Upper Stratosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2009-01-01

    Fourteen-year time series of mesospheric and upper stratospheric temperatures from the Halogen Occultation Experiment (HALOE) are analyzed and reported. The data have been binned according to ten-degree wide latitude zones from 40S to 40N and at 10 altitudes from 43 to 80 km-a total of 90 separate time series. Multiple linear regression (MLR) analysis techniques have been applied to those time series. This study focuses on resolving their 11-yr solar cycle (or SC-like) responses and their linear trend terms. Findings for T(z) from HALOE are compared directly with published results from ground-based Rayleigh lidar and rocketsonde measurements. SC-like responses from HALOE compare well with those from lidar station data at low latitudes. The cooling trends from HALOE also agree reasonably well with those from the lidar data for the concurrent decade. Cooling trends of the lower mesosphere from HALOE are not as large as those from rocketsondes and from lidar station time series of the previous two decades, presumably because the changes in the upper stratospheric ozone were near zero during the HALOE time period and did not affect those trends.

  13. Pressure sounding of the middle atmosphere from ATMOS solar occultation measurements of atmospheric CO(2) absorption lines.

    PubMed

    Abrams, M C; Gunson, M R; Lowes, L L; Rinsland, C P; Zander, R

    1996-06-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(2) lines with temperature-insensitive strengths by measuring the slant-column CO(2) amount and by adjusting the viewing geometry until the calculated column matches the observed column. Tangent pressures are determined with a spectroscopic precision of l%-3%, corresponding to a tangent-point height precision of 70-210 m. The total uncertainty is limited primarily by the quality of the spectra and ranges between 4% and 6% (280-420 m) for spectra with signal-to-noise ratios of 300:1 and between 4% and 10% for spectra with signal-to-noise ratios of 100:1. The retrieval of atmospheric pressure increases the accuracy of the retrieved-gas concentrations by minimizing the effect of systematic errors introduced by climatological pressure data, ephemeris parameters, and the uncertainties in instrumental pointing. PMID:21085429

  14. ACE blood test

    MedlinePlus

    ... to help diagnose and monitor a disorder called sarcoidosis . People with sarcoidosis may have their ACE level tested regularly to ... normal ACE level may be a sign of sarcoidosis. ACE levels may rise or fall as sarcoidosis ...

  15. LADEE UVS Observations of Solar Occultation by Exospheric Dust Above the Lunar Limb

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Cook, A. M.; Colaprete, A.; Shirley, M. H.; Vargo, K. E.; Elphic, R. C.; Stubbs, T. J.; Glenar, D. A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a lunar orbiter launched in September 2012 that investigates the composition and temporal variation of the tenuous lunar exosphere and dust environment. The primary goals of the mission are to characterize the pristine gas and dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. To address this goal, the LADEE instrument suite includes an Ultraviolet/ Visible Spectrometer (UVS), which searches for dust, Na, K, and trace gases such as OH, H2O, Si, Al, Mg, Ca, Ti, Fe, as well as other previously undetected species. UVS has two sets of optics: a limb-viewing telescope, and a solar viewing telescope. The solar viewer is equipped with a diffuser (see Figure 1a) that allows UVS to stare directly at the solar disk as the Sun starts to set (or rise from) behind the lunar limb. Solar viewer measurements generally have very high signal to noise (SNR greater than 500) for 20-30 ms integration times. The 1-degree solar viewer field of view subtends a diameter of approximately 8 km at a distance of 400-450 km.

  16. Profiles of Stratospheric Chlorine Nitrate from ATMOS/ATLAS 1 Infrared Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ration profiles of chlorine nitrate have been retrieved from 0.01-cm(sub -1) resolution infrared solar occutation spectra recorded at latitudes between 14 degrees N and 54 degrees S by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992).

  17. Pressure sensing of the atmosphere by solar occultation using broadband CO2 absorption

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Russell, J. M., III; Drayson, S. R.

    1979-01-01

    A technique for obtaining pressure at the tangent point in an IR solar occulation experiment is described. By measuring IR absorption in bands of atmospheric CO2 (e.g., 2.0, 2.7, or 4.3 microns), mean pressure values for each tangent point layer (vertical thickness 2 km or less) of the atmosphere can be obtained with rms errors of less than 3%. The simultaneous retrieval of pressure and gas concentration in a remote-sensing experiment will increase the accuracy of inverted gas concentrations and minimize the dependence of the experiment on pressure or mass path error resulting from use of climatological pressure data, satellite ephemeris, and instrument pointing accuracy.

  18. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  19. Seasonal variability of upper tropospheric acetone using ACE-FTS observations and LMDz-INCA model simulations

    NASA Astrophysics Data System (ADS)

    Dufour, Gaëlle; Harrison, Jeremy; Szopa, Sophie; Bernath, Peter

    2014-05-01

    The vertically-resolved distributions of oxygenated organic compounds (oVOCs) are mainly inferred from surface and airborne measurements with limited spatial and temporal coverage. This results in a limited understanding of the atmospheric budget of these compounds and of their impact on the upper tropospheric chemistry. In the last decade, satellite observations which complement in-situ measurements have become available, providing global distributions of several oVOCs. For example, Scisat-1, also known as the Atmospheric Chemistry Experiment (ACE) has measured several oVOCs including methanol and formaldehyde. ACE is a Canadian-led satellite mission for remote sensing of the Earth's atmosphere that has been in operation since 2004. The primary instrument on board is a Fourier transform spectrometer (FTS) featuring broad spectral coverage in the infrared (750-4400 cm-1) with high spectral resolution (0.02 cm-1). The FTS instrument can measure down to 5 km altitude with a high signal-to-noise ratio using solar occultation. The ACE-FTS has the ability to measure seasonal and height-resolved distributions of minor tropospheric constituents on a near-global scale and provides the opportunity to evaluate our understanding of important atmospheric oxygenated organic species. ACE-FTS acetone retrievals will be presented. The spatial distribution and seasonal variability of acetone will be described and compared to LMDz-INCA model simulations.

  20. Atmospheric pseudo-retrievals for averaging kernel and total uncertainty characterization for ACE-FTS level 2 (PRAKTICAL) data

    NASA Astrophysics Data System (ADS)

    Sheese, Patrick; Walker, Kaley; Boone, Chris

    2016-04-01

    For over the past decade, the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SciSat satellite has been observing the Earth's limb via solar occultation in the 750-4400 cm-1 spectral region with 0.02 cm-1 spectral resolution. The most recent version of the level 2 data, version 3.5 (v3.5), which starts in February of 2004 and is currently ongoing, is comprised of volume mixing ratio profiles of over 30 atmospheric trace species and over 20 subsidiary isotopologues. This study will use ACE-FTS level 1 spectra and the v3.5 forward model in pseudo-retrievals that use a Levenberg-Marquardt optimal estimation technique in order to produce representative ACE-FTS averaging kernels and to characterize the systematic and random uncertainties inherent in the level 2 profiles. In order to ensure that the derived error statistics are consistent with the v3.5 data, the results will be compared to random and systematic uncertainties propagated through the standard v3.5 retrieval algorithm. The ACE-FTS uncertainties will also be compared to the reported uncertainties of data sets from other atmospheric limb sounders.

  1. Review of the ACE-FTS measurements and recent results for the troposphere and UTLS

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    The ACE satellite mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; and (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE is making a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. A high-resolution (0.02 cm-1 ) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1 ) is measuring the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. Aerosols and clouds are being monitored using the extinction of solar radiation at 0.525 and 1.02 microns as measured by two filtered imagers as well as by their infrared spectra. A dual spectrograph called MAESTRO was added to the mission to extend the wavelength coverage to the 280-1000 nm spectral region. The principal investigator for MAESTRO is T. McElroy of the Meteorological Service of Canada. The FTS and imagers have been built by ABB-Bomem in Quebec City, while the satellite bus has been made by Bristol Aerospace in Winnipeg. ACE was selected in the Canadian Space Agency's SCISAT-1 program, and was successfully launched by NASA on August 12, 2003 for a nominal 2-year mission. The first results of ACE have been presented in a special issue of Geophysics Research Letters in 2005 and recently a special issue on ACE validation has been prepared for Atmospheric Chemistry and Physics by K

  2. Chemical Data Assimilation: A Case Study of Solar Occultation Data From the Atlas 1 Mission of the Atmospheric Trace Molecule Spectroscopy Experiment

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Khattatov, B.; Mussa, H.

    2003-01-01

    A key advantage of using data assimilation is the propagation of information from data-rich regions to data-poor regions, which is particularly relevant to the use of solar occultation data such as from ATMOS. For the first time an in depth uncertainty analyses is included in a photochemical model-data intercomparison including observation, representativeness, and theoretical uncertainty. Chemical data assimilation of solar occultation measurements can be used to reconstruct full diurnal cycles and to evaluate their chemical self-consistency. This paper considers as an example the measurements made by the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) instrument Atlas-1 during March 1992 for a vertical profile flow tracking coordinates at an equivalent PV latitude of 38 S. ATMOS was chosen because it simultaneously observes several species. This equivalent PV latitude was chosen as it was where ATMOS n observed the atmosphere's composition over the largest range of altitudes. A single vertical profile was used so that the detailed diurnal information that assimilation utilizes could be highlighted. There is generally good self-consistency between the ATMOS Atlas-1 observations and photochemical theory.

  3. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  4. Construction of a photometer to detect stellar occultations by outer solar system bodies for the Whipple mission concept

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Kenter, Almus T.; Alcock, Charles; Murray, Stephen S.; Loose, Markus; Gauron, Thomas; Germain, Gregg; Peregrim, Lawrence

    2014-08-01

    The Whipple mission was a proposal submitted to the NASA Discovery AO in 2010 to study the solid bodies of the Kuiper Belt and Oort Cloud via a blind occultation survey. Though not accepted for flight, the proposal was awarded funding for technology development. Detecting a significant number of Trans Neptunian Objects (TNOs) via a blind occultation survey requires a low noise, wide field of view, multi object differential photometer. The light curve decrement is typically a few percent over timescales of tenths of seconds or seconds for Kuiper Belt and Oort cloud objects, respectively. To obtain a statistically interesting number of detections, this photometer needs to observe many thousands of stars over several years since the rate of occultation for a single star given the space density of the TNOs is low. The light curves from these stars must be monitored with a sensor with a temporal resolution of rv 25-50 ms and with a read noise of< 20 e- rms. Since these requirements are outside the capability of CCDs, the Whipple mission intends to use Teledyne H2RG HyViSI Silicon Hybrid CMOS detectors operating in "window" read mode. The full Whipple focal plane consists of a 3x3 array of these sensors, with each sensor comprised of 1024x 1024 36/μm pixels. Combined with the telescope optic, the Whipple focal plane provides a FOV of rv36 deg2 . In operation, each HyViSI detector, coupled to a Teledyne SIDECAR ASIC, monitors the flux from 650 stars at 40 Hz. The ASIC digitizes the data at the required cadence and an FPGA provides preliminary occultation event selection. The proposed 2010 Whipple mission utilized a spacecraft in a a "drift-away" orbit which signifi­ cantly limited the available telemetry data rate. Most of the light curve processing is required to be on-board the satellite so only candidate occultation events are telemetered to the ground. Occul­ tation light curves must be processed in real time on the satellite by an Field Programmable Gate Array

  5. First observation of 628 CO 2 isotopologue band at 3.3 μm in the atmosphere of Venus by solar occultation from Venus Express

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Vandaele, Ann Carine; Wilquet, Valérie; Montmessin, F.; Dahoo, R.; Villard, E.; Korablev, O.; Fedorova, A.

    2008-05-01

    The new ESA Venus Express orbiter is the first mission applying the probing technique of solar and stellar occultation to the atmosphere of Venus, with the SPICAV/SOIR instrument. SOIR is a new type of spectrometer used for solar occultations in the range 2.2-4.3 μm. Thanks to a high spectral resolving power R˜15,000-20,000 (unprecedented in planetary space exploration), a new gaseous absorption band was soon detected in the atmospheric transmission spectra around 2982 cm -1, showing a structure resembling an unresolved Q branch and a number of isolated lines with a regular wave number pattern. This absorption could not be matched to any species contained in HITRAN or GEISA databases, but was found very similar to an absorption pattern observed by a US team in the spectrum of solar light reflected by the ground of Mars [Villanueva, G.L., Mumma, M.J., Novak, R.E., Hewagama, T., 2008. Icarus 195 (1), 34-44]. This team then suggested to us that the absorption was due to an uncatalogued transition of the 16O 12C 18O molecule. The possible existence of this band was soon confirmed from theoretical considerations by Perevalov and Tashkun. Some SOIR observations of the atmospheric transmission are presented around 2982 cm -1, and rough calculations of line strengths of the Q branch are produced, based on the isotopic ratio measured earlier in the lower atmosphere of Venus. This discovery emphasizes the role of isotopologues of CO 2 (as well as H 2O and HDO) as important greenhouse gases in the atmosphere of Venus.

  6. On the Assessment and Uncertainty of Atmospheric Trace Gas Burden Measurements with High Resolution Infrared Solar Occultation Spectra from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Chang, A. Y.; Gunson, M. R.; Abbas, M. M.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Stiller, G. P.; Zander, R.

    1996-01-01

    The Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument is a high resolution Fourier transform spectrometer that measures atmospheric composition from low Earth orbit with infrared solar occultation sounding in the limb geometry. Following an initial flight in 1985, ATMOS participated in the Atmospheric Laboratory for Applications and Science (ATLAS) 1, 2, and 3 Space Shuttle missions in 1992, 1993, and 1994 yielding a total of 440 occultation measurements over a nine year period. The suite of more than thirty atmospheric trace gases profiled includes CO2, O3, N2O, CH4, H2O, NO, NO2, HNO3, HCl, HF, ClONO2, CCl3F, CCl2F2, CHF2Cl, and N2O5. The analysis method has been revised throughout the mission years culminating in the 'version 2' data set. The spectroscopic error analysis is described in the context of supporting the precision estimates reported with the profiles; in addition, systematic uncertainties assessed from the quality of the spectroscopic database are described and tabulated for comparisons with other experiments.

  7. Zonal Winds Between 25 and 120 Km Retrieved from Solar Occultation Spectra. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Vancleef, Garrett Warren; Shaw, John H.

    1989-01-01

    Atmospheric winds at heights between 25 and 120 km have been retrieved with precisions of 5/ms from the Doppler shifts of atmospheric absorption lines measured from a satellite-borne instrument. Lines of the upsilon 3 CO2 and upsilon 2 H2O rotation-vibration bands caused by gases in the instrument allowed the instrumental frequency scale to be absolutely calibrated so that accurate relative speeds could be obtained. By comparing the positions of both sets of instrumental lines the calibration of the frequency scale was determined to be stable to a precision of less than 2 x 10(-5) cm during the course of each occultation. It was found that the instrumental resolution of 0.015 cm after apodization, the signal to noise ratio of about 100 and stable calibration allowed relative speeds to be determined to a precision of 5 ms or better by using small numbers of absorption lines between 1600 and 3200 cm. Absolute absorption line positions were simultaneously recovered to precisions of 5 x 10(-5) cm or better. The wind speed profiles determined from four sunset occultations and one sunrise occultation show remarkable similarities in the magnitudes and directions of the zonal wind velocities as functions of height. These wind profiles appear to be manifestations of atmospheric tides.

  8. Determination of hydrocarbon abundances and the strength of eddy mixing in the stratosphere of Neptune: Analysis of UVS solar occultation lightcurves

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1995-01-01

    Work on completing our analysis of the Voyager UVS solar occultation data acquired during Neptune encounter is essentially complete, as testified by the attached poster materials. The photochemical modeling addresses the recent revision in branching ratios for radical production in the photolysis of methane at H Lyman alpha implied by the lab measurements of Mordaunt et al. (1993). The software generated in this effort has been useful for checking the degree to which photochemical models addressing other datasets (mainly infrared) are consistent with the UVS data. This work complements the UVS modeling results in that the IR data refer to deeper pressure levels; as regards the modeling of UVS data, the most significant result is the convincing support for the presence of a stagnant lower stratosphere. Evidence for strong dynamical (mixing) transport of minor constituents at shallower pressures is provided by the UVS data analysis.

  9. Profiles of stratospheric chlorine nitrate (ClONO2) from atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded at latitudes between 14 deg N and 54 deg S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 nu(sub 4) band Q branch at 780.21/cm with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about +/- 20%, are compared with previous observations and model calculations.

  10. Identification of the HNO3 3 nu(sub 9) - nu(sub 9) band Q branch in stratospheric solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Perrin, A.; Flaud, J.-M.; Camy-Peyret, C.; Goldman, A.; Rinsland, C. P.; Gunson, M. R.

    1994-01-01

    The spectroscopic identification for the HNO3 3 nu(sub 9) - nu(sub 9) band Q branch at 830.4/cm is reported based on 0.01/cm resolution solar occultation spectra of the lower stratosphere recorded by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer and a recent analysis of this band. Least-squares fits to 0.0025/cm resolution laboratory spectra in the Q branch region indicate an integrated intensity of 0.529 x 10(exp -18)/cm/mol/sq cm at 296 K for this weak band. Stratospheric HNO3 retrievals derived from the ATMOS data are consistent with this value within its estimated uncertainty of about +/- 30%. A set of spectroscopic line parameters suitable for atmospheric studies has been generated.

  11. New and Improved Infrared Spectroscopy of Halogen-Containing Species for ACE-FTS Retrievals

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), onboard the SCISAT-1 satellite, is a high-resolution (0.02 cm-1) instrument covering the 750-4400 cm-1 spectral region in solar occultation mode. Launched in August 2003, the ACE-FTS has been taking atmospheric measurements for over ten years. With long atmospheric pathlengths (˜300 km) and the sun as a radiation source, the ACE-FTS provides a low detection threshold for trace species in the atmosphere. In fact, it measures the vertical profiles of more molecules in the atmosphere than any other satellite instrument.

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. The quantification of the atmospheric abundances of such molecules from measurements taken by the ACE-FTS and other satellite instruments crucially requires accurate quantitative infrared spectroscopy. HITRAN contains absorption cross section datasets for a number of these species, but many of them have minor deficiencies that introduce systematic errors into satellite retrievals. This talk will focus on new and improved laboratory measurements for a number of important halogenated species.

  12. The Effects of Magnetic Anomalies Discovered at Mars on the Structure of the Martian Ionosphere and the Solar Wind Interaction as Follows from Radio Occultation Experiments

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Connerney, J. E. P.; Cloutier, P.; Kliore, A. J.; Breus, T. K.; Krymskii, A. M.; Bauer, S. J.

    1999-01-01

    The electron density distribution in the ionosphere of nonmagnetic (or weakly magnetized) planet depends not only on the solar ultraviolet intensity, but also on the nature of the SW interaction with this planet. Two scenarios previously have been developed based on the observations of the bow shock crossings and on the electron density distribution within the ionosphere. According to one of them Mars has an intrinsic magnetosphere produced by a dipole magnetic field and the Martian ionosphere is protected from the SW flow except during "overpressure conditions, when the planetary magnetic field can not balance the SW dynamic pressure. In the second scenario the Martian intrinsic magnetic dipole field is so weak that Mars has mainly an induced magnetosphere and a Venus-like SW/ionosphere interaction. Today the possible existence of a sufficiently strong global magnetic field that participates in the SW/Mars interaction can no longer be supported. The results obtained by the Mars-Global-Surveyor (MGS) space-craft show the existence of highly variable, but also very localized magnetic fields of crustal origin at Mars as high as 400-1500 nT. The absence of the large-scale global magnetic field at Mars makes it similar to Venus, except for possible effects of the magnetic anomalies associated with the remnant crustal magnetization. However the previous results on the Martian ionosphere obtained mainly by the radio occultation methods show that there appears to be a permanent existence of a global horizontal magnetic field in the Martian ionosphere. Moreover the global induced magnetic field in the Venus ionosphere is not typical at the solar zenith angles explored by the radio occultation methods. Additional information is contained in the original extended abstract.

  13. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  14. Solar Energetic Particle spectral and compositional invariance in the 3-D Heliosphere: Ulysses and ACE/WIND comparisons in late 2001

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga; Tylka, Allan J.; Ng, Chee K.; Marsden, Richard G.; Tranquille, Cecil; Patterson, Doug; Armstrong, Thomas P.; Lanzerotti, Louis J.

    2013-04-01

    We carry out the first detailed examination and comparison of elemental spectra and composition in the late decay phase of two Solar Energetic Particle (SEP) events in the so-called 'reservoir' regions, between spacecraft widely separated in latitude, as well as in longitude and radial distance in the Heliosphere. Energetic particle data from instruments onboard the Ulysses spacecraft located at a high heliospheric latitude of about 70 deg N and at a heliocentric distance of about 2.5 AU and from spacecraft at L1 are used in this work. Particle intensities over time are observed to be in close agreement following the shock passage over the widely separated spacecraft. Electron measurements were used to identify the extent of the particle reservoir. In this update on reservoir composition studies, we extend our previous work to sub-MeV/nucleon energies, using measurements from HI-SCALE on Ulysses and EPAM on ACE. Implications of the observations for models of SEP transport are also discussed. Acknowledgments: The presented work has received funding from the European Union FP7 project COMESEP (263252) and has also been supported by NASA under grants NNH09AK79I and NNX09AU98G (AJT).

  15. An intercomparison study of isotopic ozone profiles from the ACE-FTS, JEM-SMILES, and Odin-SMR instruments

    NASA Astrophysics Data System (ADS)

    Jones, A.; Walker, K. A.; Suzuki, M.; Kasai, Y.; Shiotani, M.; Urban, J.; Bernath, P. F.; Manney, G. L.

    2012-12-01

    Observations of various atmospheric isotopologue species are a valuable source of information, as they can improve our current understanding of the atmosphere. For example, isotopic signatures in atmospheric profiles can be used to investigate atmospheric dynamical processes, while differences in the isotopic composition of atmospheric trace gases can be traced to effects due to their sources and sinks. This study focuses on the intercomparison of three satellite missions that provide measurements of isotopic species. The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) aboard the Canadian satellite SCISAT (launched in August 2003) was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature, pressure, and vertical profiles of over thirty chemical species, including isotopologue profiles for; O3, H2O, CH4, N2O, CO, CO2 and NO. Global coverage for each species is obtained approximately over one year and with a vertical resolution of typically 3-4 km. ACE-FTS O3 isotopologue volume mixing ratio profiles are firstly compared to data measured by the Superconducting Sub-Millimeter-wave Limb Emission Sounder (SMILES), onboard the Japanese Experiment Module (JEM) of the International Space Station (ISS), and the Sub-Millimetre Radiometer (SMR) aboard the Swedish Odin satellite. Secondly, we intercompare the isotopic fractionation profiles for each ozone isotopologue product measured by the three instruments to further ascertain a level of confidence in the measurements.

  16. Marketing ACE in Victoria.

    ERIC Educational Resources Information Center

    2001

    This publication presents options raised through various forums for marketing adult and community education (ACE) in Victoria, Australia, and suggested strategies. After an introduction (chapter 1), chapters 2 and 3 provide a broad view of the current situation for marketing ACE. Chapter 2 discusses general issues in the current position--ACE…

  17. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-01-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  18. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-02-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  19. The Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Russell, James M., III; Gordley, Larry L.; Park, Jae H.; Drayson, S. R.; Hesketh, W. D.; Cicerone, Ralph J.; Tuck, Adrian F.; Frederick, John E.; Harries, John E.; Crutzen, Paul J.

    1993-01-01

    The Halogen Occultation Experiment (HALOE) uses solar occultation to measure vertical profiles of O3, HCl, HF, CH4, H2O, NO, NO2, aerosol extinction, and temperature versus pressure with an instantaneous vertical field of view of 1.6 km at the earth limb. Latitudinal coverage is from 80 deg S to 80 deg N over the course of 1 year and includes extensive observations of the Antarctic region during spring. The altitude range of the measurements extends from about 15 km to about 60-130 km, depending on channel. Experiment operations have been essentially flawless, and all performance criteria either meet or exceed specifications. Internal data consistency checks, comparisons with correlative measurements, and qualitative comparisons with 1985 atmospheric trace molecule spectroscopy (ATMOS) results are in good agreement. Examples of pressure versus latitude cross sections and a global orthographic projection for the September 21 to October 15, 1992, period show the utility of CH4, HF, and H2O as tracers, the occurrence of dehydration in the Antarctic lower stratosphere, the presence of the water vapor hygropause in the tropics, evidence of Antarctic air in the tropics, the influence of Hadley tropical upwelling, and the first global distribution of HCl, HF, and NO throughout the stratosphere. Nitric oxide measurements extend through the lower thermosphere.

  20. The Occult Today: Why?

    ERIC Educational Resources Information Center

    Kessler, Gary E.

    1975-01-01

    Author offered some reflections on the "why" of the contemporary interest in the occult. He attempted to convince the reader that, if he or she has been surprised by the recent rise of occultism, sober reflection will dispell some fears and, perhaps, even convince him or her that occultism is not merely superstition. (Author/RK)

  1. The influence of pickup protons, from interstellar neutral hydrogen, on the propagation of interplanetary shocks from the Halloween 2003 solar events to ACE and Ulysses: A 3-D MHD modeling study

    NASA Astrophysics Data System (ADS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2011-03-01

    We describe our 3-D, time-dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real-time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  2. ACE blood test

    MedlinePlus

    Serum angiotensin-converting enzyme; SACE ... Chernecky CC, Berger BJ. Angiotensin-converting enzyme (ACE) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:138-139.

  3. Line mixing effects in solar occultation spectra of the lower stratosphere - Measurements and comparisons with calculations for the 1932/cm CO2 Q branch

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Strow, L. Larrabee

    1989-01-01

    Line mixing effects have been observed in a CO2 Q branch recorded in 0.01/cm-resolution IR solar occultation spectra of the lower stratosphere. The spectral data were obtained by the Atmospheric Trace Molecule Spectroscopy Fourier transform spectrometer during the Spacelab 3 mission in the spring of 1985. Analysis of the 1932.47/cm Q branch of (C-12)(O-16)2 shows absorption coefficients below the band origin about 0.62 times those calculated using a standard Voigt line-shape function. Calculations of line mixing using the Lorentz halfwidths of the lines and a simple energy-gap scaling law to parameterize rotational energy transfer reproduce the observed absorption coefficients to about 10 percent. The present results provide the first quantitative information on air-broadened line mixing effects in a Q branch at low temperatures (about 210 K) and show that these effects are significant even at the low pressures of the lower stratosphere (about 100 mbar).

  4. Measurements of industrial emissions of VOCs, NH3, NO2 and SO2 in Texas using the Solar Occultation Flux method and mobile DOAS

    NASA Astrophysics Data System (ADS)

    Mellqvist, J.; Samuelsson, J.; Rivera, C.; Lefer, B.; Patel, M.

    2007-12-01

    Solar Occultation Flux (SOF) measurements of olefines and alkanes have been conducted to pin-point and quantify the largest sources of olefines and alkanes in the vicinity of Houston and in south eastern Texas during September 2006. The SOF measurements were part of the extensive summer campaign TexAQS 2006, included in the Second Texas Air Quality Study (TexAQS II). The SOF technique is an optical method utilizing the absorption of direct solar infrared radiation in the 1.8-14 micrometer range for retrieval of total columns of various species such as ethylene, propylene, ammonia and alkanes. The instrument is carried on a mobile platform, making it possible to conduct transects of the emission plume downwind an industry, and thus integrate all the molecules of the plume cross section in real time. By multiplying with the plume wind speed, the total flux emerging from the source is obtained. Flux estimates with SOF were obtained for the large petrochemical and refining complexes around the Houston area. This was done in parallell with airborne plume studies by other parties. The primary research goal was to supply a data set for emission inventory comparisons and for input to models looking at the strong ozone production in Texas. The SOF measurements show that the hourly gas emissions from the Houston Ship channel area correspond to about 1 metric ton of ethylene, 1.5 tons of propylene, 12 tons of alkanes, 1/4 ton of NH3 and about 5 tons of SO2 and NO2. For the VOCs this is an order of magnitude or greater than reported VOC emissions in the 2004 inventory.

  5. SCIAMACHY Lunar Occultation Water Vapor Retrieval & Validation For The Southern Hemispheric Stratosphere

    NASA Astrophysics Data System (ADS)

    Azam, Faiza; Bramstedt, Klaus; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) onboard the European Space Agency's ENVIronmental SATellite (ENVISAT) observes the earth's atmosphere in nadir, limb and solar/lunar occultation geometry covering the UV to NIR (240nm -2380nm) spectral range. The instrument is dedicated to improve our knowl-edge in atmospheric composition and global atmospheric change serving the needs for climate monitoring. The instrument thereby provides total columns as well as vertical profiles of the climate parameters that are relevant to the ozone chemistry, air pollution and global climate change issues, from the troposphere upto the mesosphere. The water vapor has a longer chemical lifetime in the stratosphere and in the polar region it accounts for the chemistry and dynamics. The amount of water vapor in the polar stratosphere directly influence the ozone depletion by controlling the polar vortex temperatures and the formation temperature of the polar stratospheric clouds. From the lunar transmission spectra measured by SCIAMACHY from 2003 to present, stratospheric number density profiles of water vapor have been retrieved over the high southern latitudes ( 50° S -90° S ). The H2 O profiles are retrieved in the altitude range 17-50 km from the calibrated level-1 data using the spectral window 1350-1420 nm. To access the quality and accuracy of this H2 O prod-uct, the validation has been carried out using the correlative solar occultation spectra measured by other instruments such as the satellite instrument ACE-FTS (Atmospheric Chemistry Ex-periment Fourier Transform Spectrometer) and HALOE (HALogen Occultation Experiment). The lunar occultation water vapor retrieval, optimization and the results of the comparisons are presented here. For the Antarctic region, there is a coverage scarcity of the atmospheric species which play significant role in the chemistry and dynamics associated with the polar vortex and the ozone hole by the

  6. Titan's atmosphere as observed by Cassini/VIMS solar occultations: CH4, CO and evidence for C2H6 absorption

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Bézard, Bruno; Vinatier, Sandrine; Hedman, Matthew M.; Lellouch, Emmanuel; Nicholson, Philip D.; Sotin, Christophe; de Kok, Remco J.; Sicardy, Bruno

    2015-03-01

    We present an analysis of the VIMS solar occultations dataset, which allows us to extract vertically resolved information on the characteristics of Titan's atmosphere between ∼100 and 700 km with a vertical resolution of ∼10 km. After a series of data treatment procedures to correct problems in pointing stability and parasitic light, 4 occultations out of 10 are retained. This sample covers different seasons and latitudes of Titan. The transmittances show clearly the evolution of the haze, with the detection of the detached layer at ∼310 km in September 2011 at mid-northern latitudes. Through the inversion of the transmission spectra with a line-by-line radiative transfer code we retrieve the vertical distribution of CH4 and CO mixing ratio. For methane inversion we use its 1.4, 1.7 and 2.3 μm bands. The first two bands are always in good agreement and yield an average stratospheric abundance of 1.28 ± 0.08%, after correcting for forward-scattering effects, with no significant differences between the occultations. This is significantly less than the value of 1.48% obtained by the GCMS/Huygens instrument. We find that the 2.3 μm band cannot be used for the extraction of methane abundance because it is blended with other absorptions, not included in our atmospheric model. The analysis of the residual spectra after the inversion shows that such additional absorptions are present through a great part of the VIMS wavelength range. We attribute many of these bands, including the one at 2.3 μm, to gaseous ethane, whose near-infrared spectrum is not well modeled yet. Ethane also contributes significantly to the strong absorption at 3.2-3.5 μm that was previously attributed only to C-H stretching bands from aerosols. Ethane bands may affect the surface windows too, especially at 2.7 μm. Other residual bands are generated by stretching modes of C-H, C-C and C-N bonds. In addition to the C-H stretch from aliphatic hydrocarbons at 3.4 μm, we detect a strong and

  7. Coronal Radio Occultation Experiments with the Helios Solar Probes: Correlation/Spectral Analysis of Faraday Rotation Fluctuations

    NASA Astrophysics Data System (ADS)

    Efimov, A. I.; Lukanina, L. A.; Rogashkova, A. I.; Samoznaev, L. N.; Chashei, I. V.; Bird, M. K.; Pätzold, M.

    2015-09-01

    The coronal Faraday rotation (FR) experiments using the linearly polarized signals of the Helios-1 and Helios-2 interplanetary probes remain a unique investigation of the magnetic field of the solar corona and its aperiodic and quasi-periodic variations. The unexpectedly long lifetime of these spacecraft (1974 - 1986) enabled studies from very deep solar-activity minimum (1975 - 1976) into the strong activity maximum (1979). Important experimental data were also obtained for the rising (1977 - 1978) and declining (1980 - 1984) branches of the solar-activity cycle. Previous publications have presented results of the initial experimental data only for coronal-sounding experiments performed during individual solar-conjunction opportunities. This report is a more detailed analysis of the Helios FR measurements for the entire period 1975 - 1984. Radial profiles of the FR fluctuation (FRF) intensity recorded during the deepest solar-activity minimum in 1975 - 1976 are shown to differ distinctly from those during the strong solar-activity maximum in 1979. In particular, the decrease of the FRF intensity with solar-offset distance is substantially steeper in 1979 than in 1975/1976. In all cases, however, the FR data reveal quasi-periodic wave-like fluctuations in addition to the random background with a power-law spectrum. The dominant period of these fluctuations, recorded during 35 % of the total measurement time, is found to be close to five minutes. Large-scale FR variations at considerably longer periods (1.1 - 2.7 hours) were observed during 20 % of the measurement time. Knowing the intrinsic motion of the radio ray path from spacecraft to Earth and making a reasonable assumption about the solar-wind velocity, FRF observations at widely spaced ground stations have been used to estimate the velocity of coronal Alfvén waves. The velocity values range between 290 and 550 km s-1 at heliocentric distances between 3.5 and 4.5 R⊙ and are marginally lower (150 - 450 km s

  8. Earth rotation derived from occultation records

    NASA Astrophysics Data System (ADS)

    Sôma, Mitsuru; Tanikawa, Kiyotaka

    2016-04-01

    We determined the values of the Earth's rotation parameter, ΔT = T T - UT, around AD 500 after confirming that the value of the tidal acceleration, dot{n}, of the lunar motion remained unchanged during the period between ancient times and the present. For determining of ΔT, we used contemporaneous occultations of planets by the Moon. In general, occultation records are not useful. However, there are some records that give us a stringent condition for the range of ΔT. Records of the lunar occultations in AD 503 and AD 513 are such examples. In order to assure the usefulness of this occultation data, we used contemporaneous annular and total solar eclipses, which have not been used in the preceding work. This is the first work in which the lunar occultation data have been used as primary data to determine the value of ΔT together with auxiliary contemporaneous annular and total solar eclipses. Our ΔT value is less than a smoothed value (Stephenson 1997) by at least 450 s. The result is consistent with our earlier results obtained from solar eclipses.

  9. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  10. UMBRAS: a matched occulter and telescope for imaging extrasolar planets

    NASA Astrophysics Data System (ADS)

    Schultz, Alfred B.; Jordan, Ian J.; Kochte, Mark; Fraquelli, Dorothy A.; Bruhweiler, Fred; Hollis, Jan M.; Carpenter, Kenneth G.; Lyon, Richard G.; DiSanti, Mike A.; Miskey, Cherie L.; Leitner, Jesse; Burns, Richard D.; Starin, Scott R.; Rodrigue, Melodi; Fadali, M. S.; Skelton, Dennis L.; Hart, Helen M.; Hamilton, Forrest C.; Cheng, Kwang-Ping

    2003-02-01

    We describe a 1-meter space telescope plus free-flying occulter craft mission that would provide direct imaging and spectroscopic observations of Jovian and Uranus-sized planets about nearby stars not detectable by Doppler techniques. The Doppler technique is most sensitive for the detection of massive, close-in extrasolar planets while the use of a free-flying occulter would make it possible to image and study stellar systems with planets comparable to our own Solar System. Such a mission with a larger telescope has the potential to detect earth-like planets. Previous studies of free-flying occulters reported advantages in having the occulting spot outside the telescope compared to a classical coronagraph onboard a space telescope. Using an external occulter means light scatter within the telescope is reduced due to fewer internal obstructions and less light entering the telescope and the polishing tolerances of the primary mirror and the supporting optics can be less stringent, thereby providing higher contrast and fainter detection limits. In this concept, the occulting spot is positioned over the star by translating the occulter craft, at distances of 1,000 to 15,000 kms from the telescope, on the sky instead of by moving the telescope. Any source within the telescope field-of-view can be occulted without moving the telescope. In this paper, we present our current concept for a 1-m space telescope matched to a free-flying occulter, the Umbral Missions Blocking Radiating Astronomical Sources (UMBRAS) space mission. An UMBRAS space mission consists of a Solar Powered Ion Driven Eclipsing Rover (SPIDER) occulter craft and a matched (apodized) telescope. The occulter spacecraft would be semi-autonomous, with its own propulsion systems, internal power (solar cells), communications, and navigation capability. Spacecraft rendezvous and formation flying would be achieved with the aid of telescope imaging, RF or laser ranging, celestial navigation inputs, and formation

  11. Studies in occultation astronomy

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1980-01-01

    Major scientific results are summarized for the following studies: (1) observations of the 8 April 1976 occultation of epsilon Geminorum by Mars; (2) studies in occultation techniques; and (3) the March 1974 occultation of Saturn by the Moon. A re-analysis of the 1974 lunar occultation of the Titan indicates that Titan is strongly limb darkened, with D approximately greater than 5800km; there is internal evidence in the data that Titan's atmosphere is inhomogeneous; and that observations are inconsistent with any sample homogeneous model atmosphere which matches the P (lambda) and Beta (lambda) observations of Titan.

  12. Deep shadow occulter

    NASA Technical Reports Server (NTRS)

    Cash, Webster (Inventor)

    2010-01-01

    Methods and apparatus are disclosed for occulting light. The occulter shape suppresses diffraction at any given size or angle and is practical to build because it can be made binary to avoid scatter. Binary structures may be fully opaque or fully transmitting at specific points. The diffraction suppression is spectrally broad so that it may be used with incoherent white light. An occulter may also include substantially opaque inner portion and an at least partially transparent outer portion. Such occulters may be used on the ground to create a deep shadow in a short distance, or may be used in space to suppress starlight and reveal exoplanets.

  13. Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Holl, Gerrit; Walker, Kaley A.; Conway, Stephanie; Saitoh, Naoko; Boone, Chris D.; Strong, Kimberly; Drummond, James R.

    2016-05-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three data sets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier transform spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier transform infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional collocation criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and

  14. Methane cross-validation between three Fourier Transform Spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Holl, G.; Walker, K. A.; Conway, S.; Saitoh, N.; Boone, C. D.; Strong, K.; Drummond, J. R.

    2015-12-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3

  15. ACES--Today and Tomorrow.

    ERIC Educational Resources Information Center

    Hackney, Harold

    1991-01-01

    Presents text of Presidential Address delivered March 24, 1991, at the Association for Counselor Education and Supervision (ACES) luncheon, part of the American Association for Counseling and Development Convention held in Reno, Nevada. Comments on past, present, and future of ACES, particularly on future challenges and role of ACES. (ABL)

  16. Convective towers detection using GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Biondi, R.; Neubert, T.; Syndergaard, S.; Nielsen, J.

    2010-12-01

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapour mixing ratio and the temperature of the upper troposphere and lower stratosphere. To gain a better understanding of deep convective processes, the study of tropical cyclones could play an important role since they lead to deep convective activity. With this work we want to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. The GPS radio occultation (RO) technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution. Using tropical cyclone best track database and data from different GPS RO missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 hours and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS RO signal is typically larger than the climatology above the tropopause. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses will also be shown to support our hypothesis and to corroborate the idea that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.

  17. An ACE diagnosis.

    PubMed

    Nasher, Omar; Gupta, Anindya

    2013-01-01

    Gaucher's disease is not commonly considered in the differential diagnosis of adult patients with hepatosplenomegaly and increased serum ACE. A 19-year-old girl presented with recurrent epigastric and left hypochondrial pain over a period of 9 years, associated with episodes of nausea and diarrhoea. She was extensively investigated and found to have splenomegaly and raised serum ACE. A screen for haematological disorders was negative. She reported an insect bite during an overseas holiday preceding her symptoms. She was therefore also screened for infectious causes of hepatosplenomegaly but without success. Later on in life, she reported joint pain and discomfort. Sarcoidosis was thought to be the putative cause on more than one occasion. However, the presence of splenomegaly and her relatively young age, led the rheumatologist to the correct diagnosis. PMID:23417380

  18. An ACE diagnosis

    PubMed Central

    Nasher, Omar; Gupta, Anindya

    2013-01-01

    Gaucher's disease is not commonly considered in the differential diagnosis of adult patients with hepatosplenomegaly and increased serum ACE. A 19-year-old girl presented with recurrent epigastric and left hypochondrial pain over a period of 9 years, associated with episodes of nausea and diarrhoea. She was extensively investigated and found to have splenomegaly and raised serum ACE. A screen for haematological disorders was negative. She reported an insect bite during an overseas holiday preceding her symptoms. She was therefore also screened for infectious causes of hepatosplenomegaly but without success. Later on in life, she reported joint pain and discomfort. Sarcoidosis was thought to be the putative cause on more than one occasion. However, the presence of splenomegaly and her relatively young age, led the rheumatologist to the correct diagnosis. PMID:23417380

  19. Upper troposphere and stratosphere distribution of hydrocarbon species in ACE-FTS measurements and GEOS-Chem simulations

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Walker, Kaley A.; Jones, Dylan B. A.; Jones, Ashley; Sheese, Patrick E.; Boone, Chris D.; Bernath, Peter F.; Manney, Gloria L.

    2016-04-01

    Measurements of carbon-containing species, referred to herein as "hydrocarbons", are important components needed for describing and understanding the influence of natural and anthropogenic emissions on atmospheric chemistry. Analysis of the global pattern of hydrocarbons contributes to our understanding of the influence of regional and seasonal variation in air pollution and natural fire events. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) has monitored trace gases in the upper troposphere and stratosphere based on solar occultation measurements for more than ten years. In this study, we investigate the global pattern of seven "hydrocarbon" species (CO, C2H6, C2H2, HCN, H2CO, CH3OH, and HCOOH) and OCS using the ACE-FTS version 3.5 dataset from 2004 to 2013. All hydrocarbons show strong seasonal variation and regional differences, but the detailed pattern differs according to the speciation of the hydrocarbons. For example, in the Northern Hemisphere, CO, C2H6, and C2H2 show the highest mixing ratios in winter, but high CH3OH and HCOOH appear in summer. In the Southern hemisphere, H2CO, HCN, and HCOOH show high mixing ratios in springtime. These patterns indicate the impact of different emission sources including fuel combustion, wildfire emission, and chemical production. By calculating correlations with CO, these results can provide useful information to characterize each hydrocarbon emission. The ACE-FTS measurements have also been compared with GEOS-Chem output to examine the model performance and spatiotemporal patterns in the simulations.

  20. APL workers install CRIS on the Advanced Composition Explorer (ACE) in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers from the Johns Hopkins University's Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A.

  1. Preliminary Results From the Champ Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Hajj, G.; Dong, D.; Iijima, B.; Kuang, D.; Kursinski, R.; Mannucci, A.; Meehan, T.; Romans, L.; de la Torre Juárez, M.; Yunck, T.

    2001-05-01

    Champ collects 200-250 globally distributed GPS occultations every day providing a wealth of information on atmospheric parameters such as pressure, temperature, humidity between 0-60 km altitude and electron density above 60 km altitude. There are several aspects to the Champ occultation measurements which distinguish them from prior measurements (such as from GPS/MET, Oersted and SAC-C): (1) They are taken during solar maximum; (2) they are collected with a new generation receiver ("BlackJack") which provides high quality L1 and L2 measurements even when the DoD anti-spoofing of the GPS signal is turned on; (3) the tracking loop in the receiver is optimized to allow the occulted signal to descend very low in the atmosphere (<1km from the surface). A further distinction comes from the fact that selective availability (the dithering of the GPS clocks) was permanently turned off by DoD, therefore reducing or eliminating the need for 1-second ground measurements previously used to difference out high frequency GPS clock drifts. This talk will present results obtained at JPL from the early Champ occultation data sets, first collected in February, 2001, and will address the specific issues listed above. Specifically, we will present (a) statistics on how low in the atmosphere occultations are able to probe as a function of geographical latitudes and humidity conditions; (b) the limitations on higher altitude atmospheric retrievals (between 30-60 km) caused by the ionosphere at different local times and solar conditions, including comparisons to GPS/MET data taken during solar minimum; (c) individual and statistical comparisons of temperature and water vapor to atmospheric analyses such as NCEP and ECMWF and other data sets such as radiosondes; (d) the impact of including or excluding high rate ground data.

  2. Variability in Saturn's upper atmosphere from Cassini/UVIS occultations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Strobel, D. F.; West, R. A.; Yelle, R. V.

    2015-10-01

    We present new density and temperature profiles based on more than 20 stellar occultations by Saturn's upper atmosphere observed simultaneously by the EUV and FUV channels of the Cassini/UVIS instrument. With these results, more than 40 stellar and solar occultations from Cassini/UVIS [1, 2, 3] and 6 occultations from Voyager/UVS [4] have now been analyzed. The results provide valuable constraints on models of chemistry, dynamics and thermal structure in the upper atmosphere. They are also required to plan for the end of the Cassini mission.

  3. Frequencies of occultations of stars by planets, satellites, and asteroids.

    NASA Technical Reports Server (NTRS)

    O'Leary, B.

    1972-01-01

    Calculations show that several occultations of stars by the large satellites of the outer planets, Pluto, and the large asteroids could be observed each decade with existing equipment at earth-based telescopes. A systematic program of occultation predictions and observations is urged in order to improve our knowledge about the atmospheres, sizes, shapes, topography, and positions of these poorly understood bodies, in support of forthcoming spacecraft missions to the outer solar system.

  4. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  5. National Survey of ACE Programs.

    ERIC Educational Resources Information Center

    Constantino, Ernesto A.

    In 1987-88, a national survey was conducted to determine the adult/continuing education (ACE) policies and practices of large, urban community colleges. Questionnaires were mailed to ACE deans at 74 colleges, requesting information about program characteristics, funding sources, personnel, curriculum review, and marketing and publicity. Study…

  6. KUIPER BELT OBJECT OCCULTATIONS: EXPECTED RATES, FALSE POSITIVES, AND SURVEY DESIGN

    SciTech Connect

    Bickerton, S. J.; Welch, D. L.; Kavelaars, J. J. E-mail: welch@physics.mcmaster.ca

    2009-05-15

    A novel method of generating artificial scintillation noise is developed and used to evaluate occultation rates and false positive rates for surveys probing the Kuiper Belt with the method of serendipitous stellar occultations. A thorough examination of survey design shows that (1) diffraction-dominated occultations are critically (Nyquist) sampled at a rate of 2 Fsu{sup -1}, corresponding to 40 s{sup -1} for objects at 40 AU, (2) occultation detection rates are maximized when targets are observed at solar opposition, (3) Main Belt asteroids will produce occultations light curves identical to those of Kuiper Belt Objects (KBOs) if target stars are observed at solar elongations of: 116{sup 0} {approx}< {epsilon} {approx}< 125 deg., or 131 deg. {approx}< {epsilon} {approx}< 141 deg., and (4) genuine KBO occultations are likely to be so rare that a detection threshold of {approx}>7-8{sigma} should be adopted to ensure that viable candidate events can be disentangled from false positives.

  7. Understanding the 11-year Solar Cycle Signal in Stratospheric Ozone using a 3D CTM

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Feng, Wuhu

    2014-05-01

    The exact structure of the 11-year solar cycle signal in stratospheric ozone is still an open scientific question. Long-term satellite data such as Stratospheric Aerosol and Gas Experiment (SAGE) and Solar Backscatter UltraViolet (SBUV) show a positive solar response in the tropical lower stratosphere and upper stratosphere/lower mesosphere (US/LM), but a negligible signal in the tropical middle stratosphere. On the other hand, Halogen Occultation Experiment (HALOE) measurements show a positive signal in the lower and middle stratosphere and smaller solar signal in the tropical US/LM. Currently most chemical models are able to simulate a "double-peak"-structured solar signal but the model simulated solar signals tend to show better agreement with the HALOE-derived solar signal than those from SBUV or SAGE measurements. Also, some recent studies argue that due to the significantly different solar variability during the recent solar cycle (23), the solar signal in the US/LM ozone is negative (out of phase with total solar irradiance changes) for this later period compared to previous solar cycles. We have used 3-D chemical transport model (CTM) simulations to better understand the possible mechanisms responsible for this discrepancy. Various model simulations have been performed for 1979-2012 time period using ERA-Interim meteorological fields as a dynamical forcing. Model output is sampled at collocated measurement points for three satellite instruments performing stratospheric ozone measurements using the solar occultation technique: SAGE II (1984-2005), HALOE (1992-2005) and Atmospheric Chemistry Experiment (ACE, 2003-present). Overall the modelled ozone shows good agreement with all the data sets. However, in the US/LM, modelled ozone anomalies are better correlated with HALOE and ACE than SAGE II measurements. Hence the modelled solar signal in the stratospheric and lower mesospheric ozone also shows better agreement with the solar signal derived using HALOE and

  8. Long-term trends in the concentrations of SF6, CHClF2, and COF2 in the lower stratosphere from analysis of high-resolution infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.

    1990-01-01

    Long-term trends in the concentrations of SF6, CHClF2 in the lower stratosphere are derived using results from analyses of the 1980 and of several more recently obtained IR solar occultation spectra. Results show that the increase rates of SF6 and CHClF2 were about 7.4/yr and 9.4/yr, respectively, which correspond to cumulative increases by factors of about 1.7 and 2.0 in the concentrations of these gases over the 7.2 yr measurement period. The average increase rate for COF2 was 10.3/yr over the same time period. The present results are compared with previously reported observations and trends and with one-dimensional model calculations.

  9. Balloon-based infrared solar-occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/, and CF/sub 2/Cl/sub 2/. Technical report

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 the authors performed an infrared solar-occultation experiment with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data, the authors retrieved simultaneous mixing-ratio profiles of ozone, water vapor, nitric acid, and CF/sub 2/Cl/sub 2/ between 12 and 35 km. The retrieved ozone and water-vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECC's) and frost-point hygrometers, respectively. The retrieved-ozone profile was in good agreement with the correlative data. The retrieved values of water-vapor-mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although the authors had no concurrent in-situ data for nitric acid and CF/sub 2/Cl/sub 2/, the retrieved profiles were consistent with measurements in the literature.

  10. Balloon-based infrared solar occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/ and CF/sub 2/Cl(sub 2)

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 an infrared solar occultation experiment was performed with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data were retrieved simultaneous mixing ratio profiles of ozone, water vapor, nitric acid, and CFC-12 between 12 and 35 km. The retrieved ozone and water vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECCs) and frost-point hygrometers, respectively. The retrieved ozone profile was in good agreement with the correlative data. The retrieved values of water vapor mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although there was no concurrent in-situ data for nitric acid and CFC-12, the retrieved profiles were consistent with measurements in the literature.

  11. A Digital Video System for Observing and Recording Occultations

    NASA Astrophysics Data System (ADS)

    Barry, M. A. Tony; Gault, Dave; Pavlov, Hristo; Hanna, William; McEwan, Alistair; Filipović, Miroslav D.

    2015-09-01

    Stellar occultations by asteroids and outer solar system bodies can offer ground based observers with modest telescopes and camera equipment the opportunity to probe the shape, size, atmosphere, and attendant moons or rings of these distant objects. The essential requirements of the camera and recording equipment are: good quantum efficiency and low noise; minimal dead time between images; good horological faithfulness of the image timestamps; robustness of the recording to unexpected failure; and low cost. We describe an occultation observing and recording system which attempts to fulfil these requirements and compare the system with other reported camera and recorder systems. Five systems have been built, deployed, and tested over the past three years, and we report on three representative occultation observations: one being a 9 ± 1.5 s occultation of the trans-Neptunian object 28978 Ixion (m v =15.2) at 3 seconds per frame; one being a 1.51 ± 0.017 s occultation of Deimos, the 12 km diameter satellite of Mars, at 30 frames per second; and one being a 11.04 ± 0.4 s occultation, recorded at 7.5 frames per second, of the main belt asteroid 361 Havnia, representing a low magnitude drop (Δm v = ~0.4) occultation.

  12. Radio occultation bending angle anomalies during tropical cyclones

    NASA Astrophysics Data System (ADS)

    Biondi, R.; Neubert, T.; Syndergaard, S.; Nielsen, J.

    2011-02-01

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.

  13. Radio occultation bending angle anomalies during tropical cyclones

    NASA Astrophysics Data System (ADS)

    Biondi, R.; Neubert, T.; Syndergaard, S.; Nielsen, J. K.

    2011-06-01

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.

  14. Occult intrasacral meningocoele

    PubMed Central

    Joseph, Roma A.; McKenzie, Thomas

    1970-01-01

    A case is reported of the rare lesion occult intrasacral meningocoele in a 27-year-old woman who developed symptoms for the first time shortly after the birth of her fourth child. The terminology of the condition is discussed and its pathogenesis, mode of presentation, and treatment reviewed. Images PMID:5528202

  15. Forthcoming Occultations of Astrometric Radio Sources by Planets

    NASA Technical Reports Server (NTRS)

    L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana

    2010-01-01

    Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.

  16. The Transneptunian Automated Occultation Survey (TAOS II)

    NASA Astrophysics Data System (ADS)

    Lehner, Matthew J.; Wang, S.; Alcock, C. A.; Cook, K. H.; Furesz, G.; Geary, J. C.; Hiriart, D.; Ho, P. T.; Norton, T.; Reyes-Ruiz, M.; Szentgyorgyi, A.; Yen, W.; Zhang, Z.

    2012-10-01

    The Transneptunian Automated Occultation Survey (TAOS II) will aim to detect occultations of stars by small ( 1 km diameter) objects in the Solar System and beyond. Such events are very rare (<0.001 events per star per year) and short in duration ( 200 ms), so many stars must be monitored at a high readout cadence. TAOS II will operate three 1.3 meter telescopes at the Observatorio Astronómico Nacional at San Pedro Mártir in Baja California, México. With a 2.3 square degree field of view and a high speed camera comprising CMOS imagers, the survey will monitor 10,000 stars simultaneously with all three telescopes at a readout cadence of 20 Hz.

  17. The Transneptunian Automated Occultation Survey (TAOS II)

    NASA Astrophysics Data System (ADS)

    Lehner, Matthew J.; Wang, Shiang-Yu; Alcock, Charles A.; Cook, Kem H.; Furesz, Gabor; Geary, John C.; Hiriart, David; Ho, Paul T.; Lee, William; Melsheimer, Frank; Norton, Timothy; Reyes-Ruiz, Mauricio; Richer, Michael; Szentgyorgyi, Andrew; Yen, Wei-Ling; Zhang, Zhi-Wei

    2012-09-01

    The Transneptunian Automated Occultation Survey (TAOS II) will aim to detect occultations of stars by small ( 1 km diameter) objects in the Solar System and beyond. Such events are very rare (< 10-3 events per star per year) and short in duration ( 200 ms), so many stars must be monitored at a high readout cadence. TAOS II will operate three 1.3 meter telescopes at the Observatorio Astrońomico Nacional at San Pedro Martir in Baja California, Mexico. With a 2.3 square degree field of view and a high speed camera comprising CMOS imagers, the survey will monitor 10,000 stars simultaneously with all three telescopes at a readout cadence of 20 Hz.

  18. Diverse Applications of Occultation Data in Ozone Assimilation

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Uttley, P.

    2005-01-01

    Ozone profiles from solar occultation instruments provide invaluable information that can be used to evaluate the quality of assimilated ozone fields, from case studies to long-term phenomena. Occultation data can also be applied to include physical constraints while developing components of an assimilation system. Conversely, assimilation of occultation data can help in their validation, and it provides a framework for evaluation of the impact of occultation data on constraining global ozone fields within models. We illustrate these diverse applications by a series of examples using the ozone assimilation system at NASA/Goddard. In a case study, low ozone in the lower stratosphere due to transport of air from the Tropics to northern high latitudes that was captured by assimilation of Aura Microwave Limb Sounder (MLS) and Solar Backscatter Ultraviolet (SBUV) data, was found to agree with SAGE III data. For long-term monitoring, the quality of a multi-year SBUV-only assimilation was evaluated using monthly-mean time series of POAM, HALOE, and SAGE I1 data. We found realism in the representation of the annual cycle in ozone and in some aspects of interannual variability. Assimilation of POAM data was shown to improve the representation of lower stratospheric ozone, especially over Antarctica. More recently, we assimilated ILAS II ozone data in order to help in their validation. Solar occultation data are used to estimate parameters in a new model for forecast error variances that is being developed. These examples demonstrate the importance of occultation data for ozone assimilation, and potential of assimilation to increase the impact and the value of occultation data.

  19. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Haynes, R. H.; Preece, R.; Rodi, J.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  20. Characterization and evolution of distant planetary atmospheres using stellar occultations

    NASA Astrophysics Data System (ADS)

    Young, L. A.

    2008-09-01

    Ground-based or near-Earth (e.g., HST) stellar occultations of every atmosphere in our solar system has been observed: Venus, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, and Pluto [1]. These observations probe the atmospheres at roughly 0.1 to 100 microbar. I will talk about three aspects of stellar occultations: one-dimensional vertical profiles of the atmosphere, two- or three-dimensional atmospheric states, and the time evolution of atmosphere. In all three, I will draw on recent observations, with an emphasis on Pluto. Occultations are particularly important for the study of Pluto's atmosphere, which is impossible to study with imaging, and extremely difficult to study with spectroscopy. It was discovered by stellar occultation in 1988 [2]. No subsequent Pluto occultations were observed until two events in 2002 [3]. Pluto is now crossing the galactic plane, and there have been several additional occultations observed since 2006. These include a high signal-to-noise observation from the Anglo Australian Observatory in 2006 [4] (Fig 1), densely spaced visible and infrared observations of Pluto's upper atmosphere from telescopes in the US and Mexico in March, 2007 [5] (Fig. 2), and a dualwavelength central flash observation from Mt. John in July, 2007 [6] (Fig 3). The flux from a star occulted by an atmosphere diminishes primarily due to the increase in refraction with depth in the atmosphere, defocusing the starlight, although absorption and tangential focusing can also contribute. Because the atmospheric density, to first order, follows an exponential, it is feasible to derive a characteristic pressure and temperature from isothermal fits to even low-quality occultation light curves. Higher quality light curves allow fits with more flexible models, or light curve inversions that derive temperatures limited by the resolution of the data. These allow the derivation of one-dimensional profiles of temperature and pressure vs. altitude, which are critical

  1. An analysis of the Voyager 2 Ultraviolet Spectrometer occultation data at Uranus - Inferring heat sources and model atmospheres

    NASA Technical Reports Server (NTRS)

    Stevens, Michael H.; Strobel, Darrell F.; Herbert, Floyd

    1993-01-01

    Heat source information is derived here from the Voyager 2 Ultraviolet Spectrometer occultation data of Uranus. Analytic functions for the local heat dependence on altitude are used to obtain a temperature profile by solving the heat equation. The stellar entrance and exit occultation and a solar occultation are used to infer the thermal and density structure of the atmosphere. The least squares fit solution to the solar occultation data gives one source located at 1.8 x 10 exp -5 microbar with a strength of 0.056 +/- 0.01 erg/sq cm/s. Latitudinal temperature gradients are obtained.

  2. Solar Cycle comparison of Nitric Oxide in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Carstens, P. L.; Bailey, S. M.; Thurairajah, B.; Yonker, J. D.; Venkataramani, K.; Russell, J. M.; Hervig, M. E.

    2013-12-01

    represent the previous solar minimum between the solar cycles 22 and 23 following Jian et al 2010. We will use the data from HALOE (Halogen Occultation Experiment instrument), ACE (Atmospheric Chemistry Experiment) and SOFIE for our analysis. We will also discuss the factors influencing the changes seen in our analysis. We show no significant change in the concentration of NO at the equator, but a significant change at higher latitudes.

  3. Stellar Occultations by Transneptunian and Centaurs Objects: results from more than 10 observed events

    NASA Astrophysics Data System (ADS)

    Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Camargo, J. I. B.; Sicardy, B.; Ortiz, J. L.

    2014-10-01

    Transneptunian objects (TNOs) are small fossils of the Solar System orbiting beyond Neptune. We use stellar occultations to derive their size and shape. This work summarizes the main results derived, so far, from all detected TNO occultations (excluding Pluto system). We have developed a process, constructing astrometric star catalogues to make long-term reliable predictions (Camargo et al. 2014). Information about their physical properties are invaluable to the understanding of the dynamical evolution of the Solar System.

  4. Clouds in the Tropical Lowermost Stratosphere Observed by ACE

    NASA Astrophysics Data System (ADS)

    Sloan, J. J.; Galkina, I.; Sioris, C. E.; Nowlan, C. R.; McElroy, T.; Zou, J.; Hu, J.; Drummond, J. R.; McLinden, C. A.

    2008-12-01

    Evidence for the occurrence of cloud particles in the tropical lowermost stratosphere in the 2004-2007 period is presented. This study is based on measurements by the three Atmospheric Chemistry Experiment (ACE) instruments onboard SCI-SAT. The Vis & NIR Imagers are used to determine the presence of clouds and their top height. The Fourier Transform Spectrometer (FTS) observations are used to determine the size distribution and composition of the aerosols. The FTS has a 4 km field-of-view. Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) provide more precise altitude determination of the thermal tropopause and the cloud tops by virtue of its smaller FOV (~1 km). Clouds in the tropical lower stratosphere are a rare occurrence but April 2005 produced a few such cases, consistent with previous observations by OSIRIS. We discuss several individual case studies that demonstrate the presence of large particles (mode radius of ~8 microns) clearly above the tropopause.

  5. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999

    NASA Technical Reports Server (NTRS)

    Mink, Douglas J.

    1991-01-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  6. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  7. Heavy Ion Temperatures As Observed By ACE/Swics

    NASA Astrophysics Data System (ADS)

    Tracy, P.; Zurbuchen, T.; Raines, J. M.; Shearer, P.; Kasper, J. C.; Gilbert, J. A.; Alterman, B. L.

    2014-12-01

    Heavy ions observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. Additionally, observations near 1 AU have shown a streaming of heavy ions (Z>4) along the magnetic field direction at speeds faster than protons. The differential velocities observed are of the same order but typically less than the Alfven speed. Previous analysis of the behavior of ion thermal velocities with Ulysses-SWICS, focusing on daily average properties of 35 ion species at 5 AU, found only a small systematic trend with respect to q2/m. Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) shed new light on the thermal properties of the heavy ion population at 1 AU. A clear dependence of heavy ion thermal behavior on q2/m has now been found in the recent ACE-SWICS two hour cadence data set at 1 AU. Examining the thermal velocities of about 70 heavy ion species relative to alpha particles (He2+) shows a distinct trend from equal thermal speed toward equal temperature with increasing q2/m. When examined for solar winds of different collisional ages, the observations indicate the extent of thermal relaxation present in different solar wind types. We explore this collisional dependence with a model for the collisional thermal relaxation of the heavy ions as the solar wind propagates out to 1 AU. This model is used to subtract out the collisional effects seen in the ACE-SWICS data, providing an estimate for the temperature distribution among heavy ions at the corona to be compared to remote sensing observations that have shown that heavy ions are preferentially heated at the corona. We will discuss how this new analysis elucidates the thermal behavior and evolution of heavy ions in the solar wind, along with implications for the upcoming Solar Probe Plus and Solar Orbiter missions.

  8. GPS-LEO orbiter occultation orbital analyses and event determination

    NASA Astrophysics Data System (ADS)

    Abdul Rashid, Z. A.; Cheng, P. P.

    2003-04-01

    A good knowledge of the vertical profiles of temperature and humidity throughout the atmosphere are crucial to understand the present state of the Earth's atmosphere and it's modeling. The application of radio occultation technique has a heritage of over 2 decades in NASA's planetary exploration program to study the atmosphere of most of the major bodies in the solar system. Results from NASA's planetary program experiment have proven to be very effective at characterizing the atmosphere of a planet. However, the use of radio occultation technique to remote sensing the Earth's atmosphere is only practical to be implemented recently with the advent of the matured Global Positioning System (GPS). The GPS occultation technique is well suited to observe the Earth's atmosphere, due to it excellent geographical coverage, all weather capability, long-term stability, self-calibration and high vertical resolution. The GPS/MET (GPS Meteorology) experiment launched in April 1995 is the proof-of-concept of this technique. The results from this experiment is appealing and shown that the GPS occultation technique is a promising candidate to monitor the Earth's atmosphere. With the advancement of receiver technologies and lower system cost, the GPS occultation technique is a promising tool to predict the long-term climatic changes and numerical weather modeling of the Earth's atmosphere at a higher precision. This paper briefly describes the radio occultation concept and the GPS satellite systems, which form the basis understanding of this subject matter. This is followed by a detail description of the occultation geometries between the GPS satellites and a LEO orbiter. A method to determine the occultation event is discussed and thoroughly analyzed in terms of orbit inclinations, altitudes, receiver sampling rates, antenna positioning (aft and fore pointing), and antenna mask angles. A simulator is developed using MATLAB for the orbital analyses and occultation determination in

  9. Stellar Occultation Studies of Pluto, Triton, Charon, and Chiron

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    2002-01-01

    Bodies inhabiting the outer solar system are of interest because, due to the colder conditions, they exhibit unique physical processes. Also, some of the lessons learned from them can be applied to understanding what occurred in the outer solar system during its formation and early evolution. The thin atmospheres of Pluto and Triton have structure that is not yet understood, and they have been predicted to undergo cataclysmic seasonal changes. Charon may have an atmosphere - we don't know. Chiron exhibits cometary activity so far from the sun (much further than most comets), so that H2O sublimation cannot be the driving mechanism. Probing these bodies from Earth with a spatial resolution of a few kilometers can be accomplished only with the stellar occultation technique. In this program we find and predict stellar occultation events by small outer-solar system bodies and then attempt observations of the ones that can potentially answer interesting questions. We also develop new methods of data analysis for occultations and secure other observations that are necessary for interpretation of the occultation data.

  10. Galilean satellites - Observations of mutual occultations and eclipses in 1973

    NASA Technical Reports Server (NTRS)

    Wasserman, L. H.; Elliot, J. L.; Veverka, J.; Liller, W.

    1976-01-01

    Seven Galilean satellite mutual events, two occultations and two eclipses of Europa and three eclipses of Io, were observed at three wavelengths (0.35, 0.50, 0.91 micrometers) with a time resolution of 0.1 sec. Preliminary model fits to the light curves are presented. Model satellites with different albedo distributions (uniform disk, bright solar caps, bright quadrant) are used in generating model occultation and eclipse curves to demonstrate the sensitivity of observed light curves to the brightness distribution on the surface of the occulted or eclipsed satellite. At the present the observations yield no conclusive information of the limb-darkening of Io. The best data for Europa indicate that the satellite is limb-darkened at both 0.50 and 0.91 micrometers.

  11. The Delta II with ACE aboard is prepared for liftoff from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology.

  12. Search for serendipitous Oort cloud object occultation in X-rays

    NASA Astrophysics Data System (ADS)

    Shang, Jie-Rou; Liu, Chih-Yuan; Chang, Hsiang-Kuang

    2015-08-01

    Serendipitous occultation search is a way to study small objects in the outer Solar system like trans-Neptunian objects (TNOs) by extracting and analyzing the diffraction pattern in the occultation lights. There are already some reported detections in both optical and X-ray bands in this kind of search. Except for KBOs, this method also has the potential to extend the search to a distance as far away as the Oort cloud region (beyond a few thousands AU). As the distance is larger, a shorter wavelength is needed to have a smaller Fresnel scale, with which occultation may be more easily detected. Here we introduce the serendipitous occultation method we used in searching Oort cloud objects occultation, and present the results of using Rossi X-ray Timing Explorer/Proportional Counter Array data of Sco X-1 taken from 1996 February to 2012 January.

  13. Uranus occults SAO158687. [stellar occultation and planetary parametric observation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Millis, R. L.

    1977-01-01

    Experience gained in obtaining atmospheric parameters, oblatenesses, and diameters of Jupiter and Mars from recent stellar occultations by these planets is used to predict what can be learned from the March 1977 occultation of the star SAO158687 by Uranus. The spectra of this star and Uranus are compared to indicate the relative instrument intensities of the two objects, the four passbands where the relative intensities are most nearly equal are listed, and expected photon fluxes from the star are computed on the assumption that it has UBVRI colors appropriate for a K5 main-sequence object. It is shown that low photon noise errors can be achieved by choosing appropriate passbands for observation, and the rms error expected for the Uranus temperature profiles obtained from the occultation light curves is calculated. It is suggested that observers of this occultation should record their data digitally for optimum time resolution.

  14. Pinhole occulter experiment

    NASA Technical Reports Server (NTRS)

    Ring, Jeff; Pflug, John

    1987-01-01

    Viewgraphs and charts from a briefing summarize the accomplishments, results, conclusions, and recommendations of a feasibility study using the Pinhole Occulter Facility (POF). Accomplishments for 1986 include: (1) improved IPS Gimbal Model; (2) improved Crew Motion Disturbance Model; (3) use of existing shuttle on-orbit simulation to study the effects of orbiter attitude deadband size on POF performance; (4) increased understanding of maximum performance expected from current actuator/sensor set; (5) use of TREETOPS nonlinear time domain program to obtain system dynamics describing the complex multibody flexible structures; (6) use of HONEY-X design tool to design and evaluate multivariable compensator for stability, robustness, and performance; (7) application of state-of-the-art compensator design methodology Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR); and (8) examination of tolerance required on knowledge of the POF boom flexible mode frequencies to insure stability, using structure uncertainty analysis.

  15. KPNO LUNAR OCCULTATION SUMMARY. III

    SciTech Connect

    Schmidtke, P. C.; Africano, J. L.

    2011-01-15

    The results for 251 lunar occultation events recorded at Kitt Peak National Observatory are presented, including 20 observations of known or suspected double stars and five measurements of stars with resolved angular diameters.

  16. The Occult: Diabolica to Alchemists

    ERIC Educational Resources Information Center

    Delaney, Oliver J.

    1971-01-01

    The 91 items in this bibliography deal with works of occult science. The material is subdivided into biographies, dictionaries, encyclopedias, handbooks, noteworthy histories, indices, annuals, and a few miscellany works with treatises. (95 references) (Author)

  17. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  18. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    SciTech Connect

    Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. |||

    1995-02-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  19. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  20. The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Keller, John M.

    2016-03-01

    We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

  1. Search for serendipitous TNO occultation events in X-rays with Athena

    NASA Astrophysics Data System (ADS)

    Chang, Hsiang-Kuang; Liu, Chih-Yuan; Shang, Jie-Rou

    2015-09-01

    Trans-Neptunian Objects (TNOs), which include Kuiper Belt Objects (KBOs) and yet-to-discover Oort Cloud Objects, are an important population of members of the solar system. Its population properties, such as size distribution, carry information imprinted during the early epoch of the solar system formation. TNOs smaller than about ten kilometers are not directly observable. Their existence, however, may be detected through occultation events of background targets that they cause. Search for such serendipitous occultation events have been conducted in optical and X-ray bands. Since the Fresnel scale is about 30 times smaller in X-rays, using X-ray occultation events one may explore TNOs smaller than that can be done in optical bands. Here I will report X-ray sources suitable for such a study with Athena observations. The estimated Athena detection rate of occultation events, based on different model assumptions of TNO size distribution, will also be presented.

  2. The IMACS Occultation Survey

    NASA Astrophysics Data System (ADS)

    Payne, Matthew John; Holman, Matthew; Alcock, Charles; Osip, David; Schlichting, Hilke

    2015-11-01

    We report the results of our extended campaign to search for occultations of background stars by small (sub-km) Kuiper belt objects (KBOs) using the IMACS instrument on the Magellan Telescope.We implemented a novel shutterless continuous readout mode on the IMACS instrument, with custom-made aperture masks, permitting simultaneous high-speed (~40 Hz) photometry for numerous stars, while minimizing the effects of stellar crowding and sky background. Observing in the southern hemisphere allows us to target the intersection of the ecliptic and galactic planes, where hundreds of stars can be monitored with a single field of view.We observed for a total of ~28 hours spread over eight nights, obtaining over 10,000 star-hours of light curves with per-point SNR > 10. This represents an order of magnitude increase in star hours compared to the previous best ground-based survey by Bianco et al. (2009). Our results allow us to place strong constraints on the surface density of sub-km objects in the Kuiper-Belt, as well as to complement the HST FGS results of Schlichting et al. (2009, 2012).

  3. ACE VET Linkages: Provider, Student and Industry Views.

    ERIC Educational Resources Information Center

    Saunders, John

    In recent years, Australia's system of adult and community education (ACE) has broadened to include vocational learning as well as the hobby, enrichment, and personal development traditionally provided by ACE in the past. A study examined the views of ACE providers, ACE students, and industry organizations regarding ACE vocational education and…

  4. Chlorine activation in the Arctic winter of 2009/2010 analyzed by combined use of JEM/SMILES and ACE-FTS

    NASA Astrophysics Data System (ADS)

    Yuji, T.; Saitoh, N.; Sugita, T.; Kasai, Y.

    2013-12-01

    The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) equipped in the Japanese Experiment Module "KIBO" on board the International Space Station (ISS) had observed atmospheric minor constituents including ClO in the stratosphere and mesosphere from October 12, 2009 to April 21, 2010 with more than ten times the precision of other existing sensors due to its unprecedented high sensitivity with superconducting technology. The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), which is on board SCISAT-1, has been observing atmospheric minor constituents in the upper troposphere and stratosphere since March 11, 2004 by solar occultation technique. We have analyzed the SMILES Level 2 (L2) V2.1.5 research products and the ACE-FTS L2 V3.0 products to discuss the relationship between temperature and stratospheric minor gases related to ozone depletion and the time variation of 'Cl partitioning' in the Arctic winter of 2009/2010. The correlation between the SMILES L2r ClO concentration and temperature on 475 K and 525 K from mid-January to early February showed that the ClO concentrations were higher than 0.5 ppbv at equivalent latitudes higher than 70° and solar zenith angles lower than 96°, where the temperatures were well lower than 200 K; the ClO concentrations and the solar zenith angles had a positive correlation in the region where the ClO concentrations were higher than 0.5 ppbv. However, some data with high ClO concentration also occurred under relatively warmer conditions where PSCs were not expected to exist. The temperature histories of those data showed that they had experienced near ice frost point of ~187 K at 2-4 days before the observations, and then the temperatures drastically increased as much as 20 degrees just before the observations. We have analyzed a time-series of 'Cl partitioning' by using ClO, HOCl, and HCl observed by SMILES and HCl and ClONO2 observed by ACE-FTS inside the polar vortex in 2009/2010. HCl

  5. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  6. ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACE activity

    PubMed Central

    Porritt, Michelle J; Chen, Michelle; Rewell, Sarah S J; Dean, Rachael G; Burrell, Louise M; Howells, David W

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibition can reduce stroke risk by up to 43% in humans and reduce the associated disability, and hence understanding the mechanism of improvement is important. In animals and humans, these effects may be independent of the blood pressure-lowering effects of ACE inhibition. Normotensive (Wistar–Kyoto (WKY)) and hypertensive (spontaneously hypertensive rat (SHR)) animals were treated with the ACE inhibitors ramipril or lisinopril for 7 or 42 days before 2 hours of transient middle cerebral artery occlusion (MCAo). Blood pressure, serum ACE, and blood glucose levels were measured and stroke infarct volume was recorded 24 hours after stroke. Despite greater reductions in blood pressure, infarct size was not improved by ACE inhibition in hypertensive animals. Short-term ACE inhibition produced only a modest reduction in blood pressure, but WKY rats showed marked reductions in infarct volume. Long-term ACE inhibition had additional reductions in blood pressure; however, infarct volumes in WKY rats did not improve further but worsened. WKY rats differed from SHR in having marked cortical ACE activity that was highly sensitive to ACE inhibition. The beneficial effects of ACE inhibition on infarct volume in normotensive rats do not correlate with changes in blood pressure. However, WKY rats have ACE inhibitor-sensitive cortical ACE activity that is lacking in the SHR. PMID:20407464

  7. Antarctic Stratospheric Ozone from the Assimilation of Occultation Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, Krzysztof

    2004-01-01

    Ozone data from the solar occultation Polar Ozone and Aerosol Measurement (POAM) III instrument are included in the ozone assimilation system at NASA's Global Modeling and Assimilation Office, which uses Solar Backscatter UItraViolet/2 (SBUV/2) instrument data. Even though POAM data are available at only one latitude in the southern hemisphere on each day, their assimilation leads to more realistic ozone distribution throughout the Antarctic region, especially inside the polar vortex. Impacts of POAM data were evaluated by comparisons of assimilated ozone profiles with independent ozone sondes. Major improvements in ozone representation are seen in the Antarctic lower stratosphere during austral Winter and spring in 1998. Limitations of assimilation of sparse occultation data are illustrated by an example.

  8. Home Use Tests: Fecal Occult Blood

    MedlinePlus

    ... Procedures In Vitro Diagnostics Home Use Tests Fecal Occult Blood Share Tweet Linkedin Pin it More sharing ... test kit to measure the presence of hidden (occult) blood in your stool (feces). What is fecal ...

  9. The 2010, February 19 stellar occultation by Varuna

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Colas, F.; Maquet, L.; Vachier, F.; Doressoundiram, A.; Roques, F.; Widemann, T.; Ortiz, J.; Assafin, M.; Braga-Ribas, F.; Camargo, J. I. B.; Vieira-Martins, R.; Andrei, A.; da Silva Neto, D.; Behrend, R.; Hund, F.; Hauser, M.; Wagner, S.; Slotegraaf, A.; Willasch, D.; Costa, M. de Jesus; Melo Sousa, P.; Faustino, E.; Prazeres, A.; Machado, S.; Dias do Nascimento, J.; Souza Barreto, E.; Amorim, A.; da Rocha Poppe, P.; Pereira, M. Geraldete; Jacques, C.; Loureiro Giacchini, B.; Collucci, A.; Ferreira da Costa, W.; Martins de Morais, V.

    2010-10-01

    On 2010, February 19, Varuna occulted UCAC2 star 41014042, as seen from regions in southern Africa and north-eastern Brazil. No occultation was observed neither from the station deployed in South Africa, nor from three other stations in Namibia. Out of twelve stations deployed in Brazil, seven had clouds or instrument malfunctions. Three were negative, one possibly positive (visual) is still being analyzed, and one is definitely positive from Sao Luis (CCD). This makes Varuna the most remote solar system object observed to date through a stellar occultation, with a geocentric distance of 6.4 billions km. The Sao Luis occultation has a duration of 52.5 +/- 0.5 sec, corresponding to a chord length of 1003 +/- 9 km projected in the plane of the sky. No atmospheric signature is apparent in the light curve. Since the closest observation to Sao Luis is negative at a transversal distance of 225 km (Quixada, CCD), a significantly elongated shape is required for Varuna. We will discuss our results in view of current independent estimations of Varuna's diameter combining IR thermal and visible data, with a typical value of 1050 km +/- 200 km (Lellouch et al. 2002, Stansberry et al., 2008). We will also discuss the fact that the occultation occurred near Varuna's maximum brightness along its 6.4 hr rotational (0.4-mag amplitude) light curve. Thus Varuna was observed at maximum apparent surface area, which also corresponds to maximum apparent oblateness for an ellipsoidal shape. Lellouch et al, Astron. Astrophys. 391, 1133-1139 (2002). Stansberry et al., in The Solar System beyond Neptune (eds Barucci, M. A.,Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A.) 161-179 (Univ. Arizona Press, 2008). This work is partially supported by french ANR 08-BLAN-0177 "Beyond Neptune".

  10. Manned Mars mission sunlight and communication occultations

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack

    1986-01-01

    Calculations are presented for the 1999 opposition class mission and a procedure for obtaining singlar occultation data for any other given Mars mission is given. Occultation data for a Mars orbiter in a 24.5 hour parking orbit and a Mars base were calculated for: sunlight occultation - the time in darkness; and radio communication occultation - the communication losses between the lander and the orbiter, the lander and Earth, and orbiter and Earth.

  11. The Canadian Arctic ACE/OSIRIS Validation Project at PEARL: Validating Satellite Observations Over the High Arctic

    NASA Astrophysics Data System (ADS)

    Walker, Kaley A.; Strong, Kimberly; Fogal, Pierre F.; Drummond, James R.

    2016-04-01

    Ground-based measurements provide critical data for the validation of satellite retrievals of atmospheric trace gases and for the assessment of long-term stability of these measurements. As of February 2016, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has been making measurements of the Earth's atmosphere for nearly twelve years and Canada's Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite has been operating for fourteen years. As ACE and OSIRIS operations have extended beyond their planned two-year missions, there is an ongoing need to validate the trace gas data profiles from the ACE-Fourier Transform Spectrometer (ACE-FTS), the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) and OSIRIS. In particular, validation comparisons are needed during Arctic springtime to understand better the measurements of species involved in stratospheric ozone chemistry. To this end, thirteen Canadian Arctic ACE/OSIRIS Validation Campaigns have been conducted during the spring period (February - April in 2004 - 2016) at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80N, 86W). For the past decade, these campaigns have been undertaken in collaboration with the Canadian Network for the Detection of Atmospheric Change (CANDAC). The spring period coincides with the most chemically active time of year in the Arctic, as well as a significant number of satellite overpasses. A suite of as many as 12 ground-based instruments, as well as frequent balloon-borne ozonesonde and radiosonde launches, have been used in each campaign. These instruments include: a ground-based version of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a terrestrial version of the ACE-MAESTRO, a SunPhotoSpectrometer, two CANDAC zenith-viewing UV-visible grating spectrometers, a Bomem DA8 Fourier transform spectrometer

  12. Testing for Occult Heartworm Infection

    PubMed Central

    Stogdale, L.

    1984-01-01

    Heartworm infection in dogs is endemic in southern Ontario but occurs only sporadically throughout the remainder of Canada. The disease may either be associated with microfilariae in the patient's blood, a patent infection, or it may be occult. This paper describes a case of occult dirofilariasis in a dog, with emphasis on the diagnosis. A patent infection could be missed if the clinician tests an insufficient amount of blood. He should perform multiple concentration tests using either the modified Knott's technique or a filtration method. Occult infections occur in prepatent or unisexual infections, when the worms become sterile following therapy, or when the host produces antibodies that result in the destruction of the microfilariae. The recent release of a kit which detects the presence of antibodies to the adult heartworms now enables veterinarians to make an accurate diagnosis in the vast majority of dogs. PMID:17422386

  13. Occult Participation: Its Impact on Adolescent Development.

    ERIC Educational Resources Information Center

    Tennant-Clark, Cynthia M.; And Others

    1989-01-01

    Investigated relationship between occult participation, substance abuse, and level of self-esteem among 25 clinical (alcohol or drug treatment) and 25 nonclinical adolescents. Results indicated that adolescent substance abuse and occult participation were significantly related. Found significant differences between high versus low occult groups…

  14. Predicted occultations by Uranus - 1981-1984

    NASA Technical Reports Server (NTRS)

    Klemola, A. R.; Mink, D. J.; Elliot, J. L.

    1981-01-01

    Predictions are presented for 11 occultations by and appulses to Uranus and its ring system for ten stars from 1981 through 1984. The brightest stars are occulted on April 26, 1981 (BD - 19 deg 4222) and on April 22, 1982 (Hyd - 20 deg 51699). The ring system occults the same star twice during March 1983 (Hyd - 21 deg 64352).

  15. Development and Performance of the PHOT (Portable High-Speed Occultation Telescope) Systems

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Young, L. A.; Olkin, C. B.; Buie, M. W.; Shoemaker, K.; French, R. G.; Regester, J.

    2011-06-01

    The PHOT (Portable High-Speed Occultation Telescope) systems were developed for the specific purpose of observing stellar occultations by solar system objects. Stellar occultations have unique observing constraints: they may only be observable from certain parts of the globe; they often require a rapid observing cadence; and they require accurate time-stamp information for each exposure. The PHOT systems consist of 14 inch telescopes, CCD cameras, camera mounting plates, GPS-based time standards, and data acquisition computers. The PHOT systems are similar in principle to the POETS systems (Portable Occultation, Eclipse, and Transit Systems), with the main differences being (1) different CCD cameras with slightly different specifications and (2) a standalone custom-built time standard used by PHOT, whereas POETS uses a commercial time standard that is controlled from a computer. Since 2005, PHOT systems have been deployed on over two-dozen occasions to sites in the US, Mexico, Chile, Namibia, South Africa, France, Austria, Switzerland, Australia, and New Zealand, mounted on portable 14 inch telescopes or on larger stationary telescopes. Occultation light curves acquired from the 3.9 m AAT (Anglo-Australian Telescope) have produced photometric signal-to-noise ratios (S/N) of 333 per scale height for a stellar occultation by Pluto. In this article we describe the seven PHOT subsystems in detail (telescopes, cameras, timers, and data stations) and present S/N estimates for actual and predicted occultations as functions of star brightness, telescope aperture, and frame rate.

  16. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Jenke, P.; Paciesas, W.; Preece, R.; Rodi, J.

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  17. ACE program/UNIX user manual

    SciTech Connect

    Feng-Berman, S.K.

    1993-01-12

    This report the following: How to use the ace program ; Introduction to the ace program; Online command; Define a macro file; Macro commands; Counters and MCA; Counters usage; Counters database; Feedback Counter Database; MCA functions and macro command; X window Interclient Communication; and How to get around in UNIX

  18. ACE program/UNIX user manual

    SciTech Connect

    Feng-Berman, S.K.

    1993-01-12

    This report the following: How to use the ace program?; Introduction to the ace program; Online command; Define a macro file; Macro commands; Counters and MCA; Counters usage; Counters database; Feedback Counter Database; MCA functions and macro command; X window Interclient Communication; and How to get around in UNIX?

  19. Ozone Measurements from the Canadian Arctic Validation of ACE Campaign: 2004 and 2005

    NASA Astrophysics Data System (ADS)

    Walker, K. A.; Strong, K.; Berman, R.; Bernath, P. F.; Boone, C.; Drummond, J. R.; Fast, H.; Fraser, A.; Goutail, F.; Harwood, M.; Kerzenmacher, T. E.; Loewen, P.; Macquarrie, K.; McElroy, C. T.; Midwinter, C.; Mittermeier, R.; Skelton, R.; Strawbridge, K.; Sung, K.; Walker, J.; Wu, H.

    2005-12-01

    Two springtime validation campaigns have been conducted in the Canadian Arctic to provide correlative measurements for validating results from the Atmospheric Chemistry Experiment (ACE) satellite mission. The satellite has two instruments on-board: a high-resolution infrared Fourier Transform Spectrometer (ACE-FTS) and a dual UV-visible-NIR spectrophotometer called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). The validation campaigns took place at Environment Canada's Arctic Stratospheric Ozone (AStrO) Observatory in Eureka, Nunavut (80 N, 86 W) between February and April in both 2004 and 2005. Seven ground-based instruments were operated during the 2004 campaign: a ground-based adaptation of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a ground-based version of the ACE-MAESTRO, a SunPhotoSpectrometer, a zenith-viewing UV-visible grating spectrometer, a Bomem DA8 Fourier transform spectrometer, a Differential Absorption Lidar and a Brewer spectrophotometer. For the 2005 campaign, a Systeme d'Analyse par Observations Zenithales (SAOZ) instrument and a second Brewer were added to the instrument complement. Also, balloon-borne ozonesonde and radiosonde sensors were flown frequently during both campaigns. This paper will focus on comparisons of ozone measurements made by the ground-based, balloon-borne and satellite-borne instruments during the two ACE Arctic Validation campaigns. Comparisons of both retrieved columns and profiles will be presented. Also, the results from the 2004 and 2005 campaigns will be intercompared to highlight the differences between the two years.

  20. New Occultation Systems and the 2005 July 11 Charon Occultation

    NASA Astrophysics Data System (ADS)

    Young, L. A.; French, R. G.; Gregory, B.; Olkin, C. B.; Ruhland, C.; Shoemaker, K.; Young, E. F.

    2005-08-01

    Charon's density is an important input to models of its formation and internal structure. Estimates range from 1.59 to 1.83 g/cm3 (Olkin et al. 2003. Icarus 164, 254), with Charon's radius as the main source of uncertainty. Reported values of Charon's radius from mutual events range from 593±13 (Buie et al. 1992, Icarus 97, 211) to 621±21 km (Young & Binzel 1994, Icarus 108), while an occultation observed from a single site gives a lower limit on the radius of 601.5 km (Walker 1980 MNRAS 192, 47; Elliot & Young 1991, Icarus 89, 244). On 2005 July 11 UT (following this abstract submission date), Charon is predicted to occult the star C313.2. If successful, this event will be the first Charon occultation observed since 1980, and the first giving multiple chords across Charon's disk. This event is expected to measure Charon's radius to 1 km. Our team is observing from three telescopes in Chile, the 4.0-m Blanco and the 0.9-m telescopes at Cerro Tololo and the 4.2-m SOAR telescope at Cerro Pachon. At SOAR, we will be using the camera from our new PHOT systems (Portable High-speed Occultation Telescopes). The PHOT camera is a Princeton Instrument MicroMAX:512BFT from Roper Scientific, a 512×512 frame-transfer CCD with a readnoise of only 3 electrons at the 100 kHz digitization rate. The camera's exposures are triggered by a custom built, compact, stand-alone GPS-based pulse-train generator. A PHOT camera and pulse-train generator were used to observe the occultation of 2MASS 1275723153 by Pluto on 2005 June 15 UT from Sommers-Bausch Observatory in Boulder Colorado; preliminary analysis shows this was at best a grazing occultation from this site and a successful engineering run for the July 11 Charon occultation. The work was supported, in part, by NSF AST-0321338 (EFY) and NASA NNG-05GF05G (LAY).

  1. Long-Term Trends in the Concentrations of SF6, CHClF2, and COF2 in the Lower Stratosphere from Analysis of High-Resolution Infrared Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Sze, N. D.; Massie, S. T.

    1990-01-01

    Long-term trends in the concentrations of SF6, CHClF2 (CFC-22), and COF2 in the lower stratosphere have been derived from analysis of ca. 1980 and more recent infrared solar occultation spectra recorded near 32 deg N latitude at approx. 0.02/ cm resolution. Consistent sets of line parameters and spectral calibration methods have been used in the retrievals to minimize systematic error effects. Quoted error limits are 1 sigma estimated precisions. The SF6 and CHClF2 results are based on spectra recorded by balloon-borne interferometers in March 1981 and June 1988 and a comparison of these results with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment/Spacelab 3 measurements obtained in May 1985 near 30 deg N latitude. In the 13-18 km altitude range the mean measured SF6 mixing ratio in parts per trillion by volume (pptv) increased from 1.17 +/- 0.21 in March 1981 to 2.02 +/- 0.20 pptv in June 1988, and the CHClF2 mixing ratio below 15 km altitude increased from 51 +/- 8 pptv in March 1981 to 102 +/- 10 pptv in June 1988. The CHClF2 retrievals used new empirical CHClF2 line parameters derived from 0.03/cm resolution laboratory spectra recorded at six temperatures between 203 and 293 K; the derived mixing ratios are approx. 30% higher than obtained with earlier sets of line parameters, thereby removing a large discrepancy noted previously between IR and in situ measurements of CHClF2. Assuming an exponential growth model for fitting the trends, SF6 and CHClF2 mean increase rates of 7.4% +/- 1.9% and 9.4% +/- 1.3% /year, are obtained, respectively, which correspond to cumulative increases by factors of approx. 1.7 and -2.0 in the concentrations of these gases over the 7.2-year measurement period. Analysis of spectra recorded in October 1979 and April 1989 yields COF2 volume mixing ratios that are respectively 0.44 +/- 0.17 and 1.21 +/- 0.24 times the ATMOS/Spacelab 3 values, from which an average COF2 increase rate of 10.3 +/- 1.8%/ year over this time

  2. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  3. FIRE_ACE_ER2_MAS

    Atmospheric Science Data Center

    2015-10-28

    ... First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) NASA ER-2 Moderate Resolution Imaging ... SSFR Location:  Northern Alaska Arctic Ocean Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  4. Screening for occult lung cancer.

    PubMed Central

    Barclay, T. H.; MacIntosh, J. H.

    1983-01-01

    A pilot screening program for the early detection of lung cancer was carried out in Saskatchewan in 1968 using chest roentgenography and cytologic examination of sputum samples. The yield from 23 000 men aged 40 years and over was only 10 cases. Nine of the men had advanced disease. One had occult lung cancer. A period of 31 months elapsed between the discovery of malignant cells in this patient's sputum and roentgenographic localization of the tumour. Following pneumonectomy he has survived with no discernible residual or metastatic tumour for 12 years. The morphologic changes in the resected lung provided a basis for discussing the preclinical phase of squamous cancer of the lung, the treatment of occult cancer and multicentric primary pulmonary tumours. The survey would have been more successful with a narrower target group and more frequent examination. Images FIG. 1 FIG. 2 FIG. 3 PMID:6299495

  5. Triton stellar occultation candidates - 1992-1994

    NASA Technical Reports Server (NTRS)

    Mcdonald, S. W.; Elliot, J. T.

    1992-01-01

    A search for Triton stellar occultation candidates for the period 1992-1994 has been completed with CCD strip-scanning observations. The search reached an R magnitude of about 17.4 and found 129 candidates within 1.5 arcsec of Triton's ephemeris during this period. Of these events, around 30 occultations are expected to be visible from the earth, indicating that a number of Triton occultation events should be visible from major observatories. Even the faintest of the present candidate events could produce useful occultation data if observed with a large enough telescope. The present astrometric accuracy is inadequate to identify which of these appulse events will produce occultations on the earth; further astrometry is needed to refine the predictions for positive occultation identification. To aid in selecting candidates for additional astrometric and photometric studies, finder charts and earth-based visibility charts for each event are included.

  6. Revisiting the 1988 Pluto Occultation

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Young, Leslie A.; Slivan, Steve; Barba née Cordella, Linda L.; Millis, Robert L.; Wasserman, Lawrence H.; Nye, Ralph

    2015-11-01

    In 1988, Pluto's atmosphere was surmised to exist because of the surface ices that had been detected through spectroscopy, but it had not yet been directly detected in a definitive manner. The key to making such a detection was the stellar occultation method, used so successfully for the discovery of the Uranian rings in 1977 (Elliot et al. 1989; Millis et al. 1993) and before that for studies of the atmospheres of other planets.On 9 June 1988, Pluto occulted a star, with its shadow falling over the South Pacific Ocean region. One team of observers recorded this event from the Kuiper Airborne Observatory, while other teams captured the event from various locations in Australia and New Zealand. Preceding this event, extensive astrometric observations of Pluto and the star were collected in order to refine the prediction.We will recount the investigations that led up to this important Pluto occultation, discuss the unexpected atmospheric results, and compare the 1988 event to the recent 2015 event whose shadow followed a similar track through New Zealand and Australia.

  7. General relativistic observables for the ACES experiment

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Yu, Nan; Toth, Viktor T.

    2016-02-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J2 and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to <1 ps and ˜4 ×1 0-17 for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential.

  8. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  9. Cassini UVIS Results from Occultations of Stars by Saturn's Icy Moons

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Hendrix, A.

    2009-09-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed occultations of stars by Enceladus, Tethys, Dione, Rhea and Iapetus. Stellar occultations are a sensitive probe for gases and have been extremely valuable for understanding the composition (predominantly water), flux and structure of Enceladus’ plume [1, 2]. More recently we have been looking for trace gases in the plume such as ethylene and methanol. A much-anticipated solar occultation will be observed next year to quantify the existence and amount of N2. At Tethys and Iapetus upper limits are set for the column densities of local volatiles (water, O2, CO2, and CO), all of which have absorption features at far ultraviolet wavelengths. The Rhea occultation data, in addition to setting upper limits on surrounding gases, have been analyzed to look for the presence of the debris disk reported by Cassini's MIMI instrument [3]. No material was detected with 2 sigma certainty, however the low optical depth of the material suggests that the probability of its detection by UVIS is < 1 in 1000. An occultation of epsilon Canis Majoris by Dione will take place in September 2009. Results of that occultation will be presented. This work was partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. [1] Hansen, C. J. et al., Science 311:1422 (2006). [2] Hansen, C. J. et al., Nature 456 (2008). [3] Jones, G. H. et al., Science 319:1380 (2008).

  10. Scaling Relation for Occulter Manufacturing Errors

    NASA Technical Reports Server (NTRS)

    Sirbu, Dan; Shaklan, Stuart B.; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2015-01-01

    An external occulter is a spacecraft own along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The shape of an external occulter must be specially designed to optimally suppress starlight and deviations from the ideal shape due to manufacturing errors can result loss of suppression in the shadow. Due to the long separation distances and large dimensions involved for a space occulter, laboratory testing is conducted with scaled versions of occulters etched on silicon wafers. Using numerical simulations for a flight Fresnel occulter design, we show how the suppression performance of an occulter mask scales with the available propagation distance for expected random manufacturing defects along the edge of the occulter petal. We derive an analytical model for predicting performance due to such manufacturing defects across the petal edges of an occulter mask and compare this with the numerical simulations. We discuss the scaling of an extended occulter test-bed.