Sample records for ace2 null mice

  1. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    PubMed

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p < 0.01). Enalapril increased ACE2 levels (p < 0.01), but did not affect Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  2. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice

    PubMed Central

    Qadri, Fatimunnisa; Penninger, Josef M.; Santos, Robson Augusto S.; Bader, Michael

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2−/y) mice. Methods. Male C57BL/6 and ACE2−/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2−/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2−/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2−/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2−/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis. PMID:28101297

  3. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria.

    PubMed

    Riera, Marta; Anguiano, Lidia; Clotet, Sergi; Roca-Ho, Heleia; Rebull, Marta; Pascual, Julio; Soler, Maria Jose

    2016-03-15

    Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 μg/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard

  4. Ocular Phenotype of Fbn2-Null Mice

    PubMed Central

    Shi, Yanrong; Tu, Yidong; Mecham, Robert P.; Bassnett, Steven

    2013-01-01

    Purpose. Fibrillin-2 (Fbn2) is the dominant fibrillin isoform expressed during development of the mouse eye. To test its role in morphogenesis, we examined the ocular phenotype of Fbn2−/− mice. Methods. Ocular morphology was assessed by confocal microscopy using antibodies against microfibril components. Results. Fbn2−/− mice had a high incidence of anterior segment dysgenesis. The iris was the most commonly affected tissue. Complete iridal coloboma was present in 37% of eyes. Dyscoria, corectopia and pseudopolycoria were also common (43% combined incidence). In wild-type (WT) mice, fibrillin-2-rich microfibrils are prominent in the pupillary membrane (PM) during development. In Fbn2-null mice, the absence of Fbn2 was partially compensated for by increased expression of fibrillin-1, although the resulting PM microfibrils were disorganized, compared with WTs. In colobomatous adult Fbn2−/− eyes, the PM failed to regress normally, especially beneath the notched region of the iris. Segments of the ciliary body were hypoplastic, and zonular fibers, although relatively plentiful, were unevenly distributed around the lens equator. In regions where the zonular fibers were particularly disturbed, the synchronous differentiation of the underlying lens fiber cells was affected. Conclusions. Fbn2 has an indispensable role in ocular morphogenesis in mice. The high incidence of iris coloboma in Fbn2-null animals implies a previously unsuspected role in optic fissure closure. The observation that fiber cell differentiation was disturbed in Fbn2−/− mice raises the possibility that the attachment of zonular fibers to the lens surface may help specify the equatorial margin of the lens epithelium. PMID:24130178

  5. Leptin regulates ACE activity in mice.

    PubMed

    Hilzendeger, Aline Mourao; Morais, Rafael Leite; Todiras, Mihail; Plehm, Ralph; da Costa Goncalves, Andrey; Qadri, Fatimunnisa; Araujo, Ronaldo Carvalho; Gross, Volkmar; Nakaie, Clovis Ryuichi; Casarini, Dulce Elena; Carmona, Adriana Karaoglanovic; Bader, Michael; Pesquero, João Bosco

    2010-09-01

    Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1-7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin-angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin-angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.

  6. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice.

    PubMed

    Tennese, Alysa A; Wevrick, Rachel

    2011-03-01

    Hypothalamic dysfunction may underlie endocrine abnormalities in Prader-Willi syndrome (PWS), a genetic disorder that features GH deficiency, obesity, and infertility. One of the genes typically inactivated in PWS, MAGEL2, is highly expressed in the hypothalamus. Mice deficient for Magel2 are obese with increased fat mass and decreased lean mass and have blunted circadian rhythm. Here, we demonstrate that Magel2-null mice have abnormalities of hypothalamic endocrine axes that recapitulate phenotypes in PWS. Magel2-null mice had elevated basal corticosterone levels, and although male Magel2-null mice had an intact corticosterone response to restraint and to insulin-induced hypoglycemia, female Magel2-null mice failed to respond to hypoglycemia with increased corticosterone. After insulin-induced hypoglycemia, Magel2-null mice of both sexes became more profoundly hypoglycemic, and female mice were slower to recover euglycemia, suggesting an impaired hypothalamic counterregulatory response. GH insufficiency can produce abnormal body composition, such as that seen in PWS and in Magel2-null mice. Male Magel2-null mice had Igf-I levels similar to control littermates. Female Magel2-null mice had low Igf-I levels and reduced GH release in response to stimulation with ghrelin. Female Magel2-null mice did respond to GHRH, suggesting that their GH deficiency has a hypothalamic rather than pituitary origin. Female Magel2-null mice also had higher serum adiponectin than expected, considering their increased fat mass, and thyroid (T(4)) levels were low. Together, these findings strongly suggest that loss of MAGEL2 contributes to endocrine dysfunction of hypothalamic origin in individuals with PWS.

  7. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.

    PubMed

    Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  8. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    PubMed Central

    Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  9. Activation pattern of ACE2/Ang-(1-7) and ACE/Ang II pathway in course of heart failure assessed by multiparametric MRI in vivo in Tgαq*44 mice.

    PubMed

    Tyrankiewicz, Urszula; Olkowicz, Mariola; Skórka, Tomasz; Jablonska, Magdalena; Orzylowska, Anna; Bar, Anna; Gonet, Michal; Berkowicz, Piotr; Jasinski, Krzysztof; Zoladz, Jerzy A; Smolenski, Ryszard T; Chlopicki, Stefan

    2018-01-01

    Here, we analyzed systemic (plasma) and local (heart/aorta) changes in ACE/ACE-2 balance in Tgαq*44 mice in course of heart failure (HF). Tgαq*44 mice with cardiomyocyte-specific Gαq overexpression and late onset of HF were analyzed at different age for angiotensin pattern in plasma, heart, and aorta using liquid chromatography/mass spectrometry, for progression of HF by in vivo magnetic resonance imaging under isoflurane anesthesia, and for physical activity by voluntary wheel running. Six-month-old Tgαq*44 mice displayed decreased ventricle radial strains and impaired left atrial function. At 8-10 mo, Tgαq*44 mice showed impaired systolic performance and reduced voluntary wheel running but exhibited preserved inotropic reserve. At 12 mo, Tgαq*44 mice demonstrated a severe impairment of basal cardiac performance and modestly compromised inotropic reserve with reduced voluntary wheel running. Angiotensin analysis in plasma revealed an increase in concentration of angiotensin-(1-7) in 6- to 10-mo-old Tgαq*44 mice. However, in 12- to 14-mo-old Tgαq*44 mice, increased angiotensin II was noted with a concomitant increase in Ang III, Ang IV, angiotensin A, and angiotensin-(1-10). The pattern of changes in the heart and aorta was also compatible with activation of ACE2, followed by activation of the ACE pathway. In conclusion, mice with cardiomyocyte Gαq protein overexpression develop HF that is associated with activation of the systemic and the local ACE/Ang II pathway. However, it is counterbalanced by a prominent ACE2/Ang-(1-7) activation, possibly allowing to delay decompensation. NEW & NOTEWORTHY Changes in ACE/ACE-2 balance were analyzed based on measurements of a panel of nine angiotensins in plasma, heart, and aorta of Tgαq*44 mice in relation to progression of heart failure (HF) characterized by multiparametric MRI and exercise performance. The early stage of HF was associated with upregulation of the ACE2/angiotensin-(1-7) pathway, whereas the end

  10. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    PubMed

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse

    PubMed Central

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-01-01

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS. PMID:28273875

  12. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse.

    PubMed

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-03-05

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS.

  13. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice

    PubMed Central

    Blue, Mary E.; Kaufmann, Walter E.; Bressler, Joseph; Eyring, Charlotte; O’Driscoll, Cliona; Naidu, SakkuBai; Johnston, Michael V.

    2014-01-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of NMDA receptors in the prefrontal cortex of 2–8 year-old girls, while girls older than 10 years had reductions in NMDA receptors compared to age matched controls (Blue et al., 1999b). Using [3H]-CGP to label NMDA type glutamate receptors in 2 and 7 week old wildtype (WT), Mecp2-null and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age, but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at two weeks of age, but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice. PMID:21901842

  14. Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress.

    PubMed

    Rabelo, Luiza A; Todiras, Mihail; Nunes-Souza, Valéria; Qadri, Fatimunnisa; Szijártó, István András; Gollasch, Maik; Penninger, Josef M; Bader, Michael; Santos, Robson A; Alenina, Natalia

    2016-01-01

    Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.

  15. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice.

    PubMed

    Kyriakides, T R; Zhu, Y H; Yang, Z; Huynh, G; Bornstein, P

    2001-10-01

    The matricellular angiogenesis inhibitor, thrombospondin (TSP) 2, has been shown to be an important modulator of wound healing and the foreign body response. Specifically, TSP2-null mice display improved healing with minimal scarring and form well-vascularized foreign body capsules. In this study we performed subcutaneous implantation of sponges and investigated the resulting angiogenic and fibrogenic responses. Histological and immunohistochemical analysis of sponges, excised at 7, 14, and 21 days after implantation, revealed significant differences between TSP2-null and wild-type mice. Most notably, TSP2-null mice exhibited increased angiogenesis and fibrotic encapsulation of the sponge. However, invasion of dense tissue was compromised, even though its overall density was increased. Furthermore, histomorphometry and biochemical assays demonstrated a significant increase in the extracellular distribution of matrix metalloproteinase (MMP) 2, but no change in the levels of active transforming growth factor-beta(1). The alterations in neovascularization, dense tissue invasion, and MMP2 in TSP2-null mice coincided with the deposition of TSP2 in the extracellular matrix of wild-type animals. These observations support the proposed role of TSP2 as a modulator of angiogenesis and matrix remodeling during tissue repair. In addition, they provide in vivo evidence for a newly proposed function of TSP2 as a modulator of extracellular MMP2 levels.

  16. Impaired angiogenesis in aminopeptidase N-null mice

    PubMed Central

    Rangel, Roberto; Sun, Yan; Guzman-Rojas, Liliana; Ozawa, Michael G.; Sun, Jessica; Giordano, Ricardo J.; Van Pelt, Carolyn S.; Tinkey, Peggy T.; Behringer, Richard R.; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2007-01-01

    Aminopeptidase N (APN, CD13; EC 3.4.11.2) is a transmembrane metalloprotease with several functions, depending on the cell type and tissue environment. In tumor vasculature, APN is overexpressed in the endothelium and promotes angiogenesis. However, there have been no reports of in vivo inactivation of the APN gene to validate these findings. Here we evaluated, by targeted disruption of the APN gene, whether APN participates in blood vessel formation and function under normal conditions. Surprisingly, APN-null mice developed with no gross or histological abnormalities. Standard neurological, cardiovascular, metabolic, locomotor, and hematological studies revealed no alterations. Nonetheless, in oxygen-induced retinopathy experiments, APN-deficient mice had a marked and dose-dependent deficiency of the expected retinal neovascularization. Moreover, gelfoams embedded with growth factors failed to induce functional blood vessel formation in APN-null mice. These findings establish that APN-null mice develop normally without physiological alterations and can undergo physiological angiogenesis but show a severely impaired angiogenic response under pathological conditions. Finally, in addition to vascular biology research, APN-null mice may be useful reagents in other medical fields such as malignant, cardiovascular, immunological, or infectious diseases. PMID:17360568

  17. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population.

    PubMed

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana

    2015-01-01

    Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.

  18. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    PubMed

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  19. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  20. Brain ACE2 shedding contributes to the development of neurogenic hypertension

    PubMed Central

    Chhabra, Kavaljit H.; Lazartigues, Eric

    2015-01-01

    Rationale Over-activity of the brain Renin Angiotensin System (RAS) is a major contributor to neurogenic hypertension. While over-expression of Angiotensin-Converting Enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming Angiotensin (Ang)-II into Ang-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. Objective We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. Methods and Results To test this hypothesis, we used the DOCA-salt model of neurogenic hypertension in non-transgenic (NT) and syn-hACE2 mice over-expressing ACE2 in neurons. DOCA-salt treatment in NT mice led to significant increases in blood pressure, hypothalamic Ang-II levels, inflammation, impaired baroreflex sensitivity, autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, while these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled a rise in ACE2 activity in the cerebrospinal fluid of NT mice following DOCA-salt treatment and was accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. Conclusions Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension. PMID:24014829

  1. A human GRPr-transfected Ace-1 canine prostate cancer model in mice.

    PubMed

    Ding, Haiming; Kothandaraman, Shankaran; Gong, Li; Williams, Michelle M; Dirksen, Wessel P; Rosol, Thomas J; Tweedle, Michael F

    2016-06-01

    A versatile drug screening system was developed to simplify early targeted drug discovery in mice and then translate readily from mice to a dog prostate cancer model that more fully replicates the features of human prostate cancer. We stably transfected human cDNA of the GRPr bombesin (BBN) receptor subtype to canine Ace-1 prostate cancer cells (Ace-1(huGRPr) ). Expression was examined by (125) I-Tyr(4) -BBN competition, calcium stimulation assay, and fluorescent microscopy. A dual tumor nude mouse xenograft model was developed from Ace-1(CMV) (vector transfected Ace-1) and Ace-1(huGRPr) cells. The model was used to explore the in vivo behavior of two new IRDye800-labeled GRPr binding optical imaging agents: 800-G-Abz4-t-BBN, from a GRPr agonist peptide, and 800-G-Abz4-STAT, from a GRPr antagonist peptide, by imaging the tumor mice and dissected organs. Both agents bound Ace-1(huGRPr) and PC-3, a known GRPr-expressing human prostate cancer cell line, with 4-13 nM IC50 against (125) I-Tyr(4) -BBN, but did not bind Ace-1(CMV) cells (vector transfected). Binding was blocked by bombesin. Ca(2+) activation assays demonstrated that Ace-1(huGPRr) expressed biologically active GRPr. Both Ace-1 cell lines grew in the flanks of 100% of the nude mice and formed tumors of ∼0.5 cm diameter in 1 week. In vivo imaging of the mice at 800 nm emission showed GRPr+: GRPr- tumor signal brighter by a factor of two at 24 h post IV administration of 10 nmol of the imaging agents. Blood retention (4-8% ID at 1 h) was greater by a factor >10 and cumulative urine accumulation (28-30% at 4 h) was less by a factor 2 compared to a radioactive analog of the t-BBN containing agent, (177) LuAMBA, probably due to binding to blood albumin, which we confirmed in a mouse serum assay. The dual tumor Ace-1(CMV) /Ace-1(huGRPr) model system provides a rapid test of specific to nonspecific binding of new GRPr avid agents in a model that will extend logically to the known Ace-1 orthotopic

  2. ACE2-Independent Action Of Presumed ACE2 Activators: Studies In Vivo, Ex Vivo and In Vitro

    PubMed Central

    Haber, Philipp K.; Ye, Minghao; Wysocki, Jan; Maier, Christoph; Haque, Syed K.; Batlle, Daniel

    2014-01-01

    Angiotensin converting enzyme 2, (ACE2), is a key enzyme in the metabolism of angiotensin II. 1-[[2-(dimetilamino)ethyl]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT)and Diminazene (DIZE)have been reported to exert various organ-protective effects that have been attributed to activation of ACE2. To test the effect of these compounds we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II induced acute hypertension, blood pressure recovery was markedly enhanced by XNT (slope with XNT -3.26±0.2 vs.-1.6±0.2 mmHg/min without XNT, p<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The blood pressure lowering effect of XNT seen in WT animals was also observed in ACE2 KO mice (slope with XNT -3.09±0.30 mmHg/min vs. -1.28±0.22 mmHg/min without XNT, p<0.001). These findings show that the blood pressure lowering effect of XNT in Ang II induced hypertension cannot be due to activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and DIZE. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and DIZE. We conclude that the biologic effects of these compounds are ACE2 independent and should not be attributed to activation of this enzyme. PMID:24446061

  3. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  4. Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease.

    PubMed

    Wang, Wang; Patel, Vaibhav B; Parajuli, Nirmal; Fan, Dong; Basu, Ratnadeep; Wang, Zuocheng; Ramprasath, Tharmarajan; Kassiri, Zamaneh; Penninger, Josef M; Oudit, Gavin Y

    2014-08-01

    Angiotensin-converting enzyme 2 (ACE2) metabolizes Ang II into Ang 1-7 thereby negatively regulating the renin-angiotensin system. However, heart disease in humans and in animal models is associated with only a partial loss of ACE2. ACE2 is an X-linked gene; and as such, we tested the clinical relevance of a partial loss of ACE2 by using female ACE2(+/+) (wildtype) and ACE2(+/-) (heterozygote) mice. Pressure overload in ACE2(+/-) mice resulted in greater LV dilation and worsening systolic and diastolic dysfunction. These changes were associated with increased myocardial fibrosis, hypertrophy, and upregulation of pathological gene expression. In response to Ang II infusion, there was increased NADPH oxidase activity and myocardial fibrosis resulting in the worsening of Ang II-induced diastolic dysfunction with a preserved systolic function. Ang II-mediated cellular effects in cultured adult ACE2(+/-) cardiomyocytes and cardiofibroblasts were exacerbated. Ang II-mediated pathological signaling worsened in ACE2(+/-) hearts characterized by an increase in the phosphorylation of ERK1/2 and JNK1/2 and STAT-3 pathways. The ACE2(+/-) mice showed an exacerbated pressor response with increased vascular fibrosis and stiffness. Vascular superoxide and nitrotyrosine levels were increased in ACE2(+/-) vessels consistent with increased vascular oxidative stress. These changes occurred with increased renal fibrosis and superoxide production. Partial heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease secondary to pressure overload and Ang II infusion. Heart disease in humans with idiopathic dilated cardiomyopathy is associated with a partial loss of ACE2. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to pressure overload-induced heart disease. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to Ang II-induced heart and vascular diseases. Partial loss of ACE2 is sufficient to enhance the susceptibility to

  5. Sex dimorphism in ANGII-mediated crosstalk between ACE2 and ACE in diabetic nephropathy.

    PubMed

    Clotet-Freixas, Sergi; Soler, Maria Jose; Palau, Vanesa; Anguiano, Lidia; Gimeno, Javier; Konvalinka, Ana; Pascual, Julio; Riera, Marta

    2018-06-08

    Angiotensin-converting enzyme (ACE) and ACE2 play a critical role in the renin-angiotensin system (RAS) by altering angiotensin II (ANGII) levels, thus governing its deleterious effects. Both enzymes are altered by sex and diabetes, and play an important role in the development of diabetic nephropathy (DN). Importantly, previous evidence in diabetic and ACE2-deficient (ACE2KO) males suggest a sex-dependent crosstalk between renal ACE and ACE2. In the present work, we aimed to study the sex-specific susceptibility to diabetes and direct infusion of ANGII in kidney disease progression, with a special focus on its link to ACE2 and ACE. In our mouse model, ANGII promoted hypertension, albuminuria, reduced glomerular filtration, and glomerular histological alterations. ANGII adverse effects were accentuated by diabetes and ACE2 deficiency, in a sex-dependent fashion: ACE2 deficiency accentuated ANGII-induced hypertension, albuminuria, and glomerular hypertrophy in diabetic females, whereas in diabetic males exacerbated ANGII-mediated glomerular hypertrophy, mesangial expansion, and podocyte loss. At the molecular level, ANGII downregulated renal ACE gene and enzymatic activity levels, as well as renin gene expression in ACE2KO mice. Interestingly, male sex and diabetes accentuated this effect. Here we show sex dimorphism in the severity of diabetes- and ANGII-related renal lesions, and demonstrate that ACE2- and ACE-related compensatory mechanisms are sex-specific. Supporting our previous findings, the modulation and ANGII-mediated crosstalk between ACE2 and ACE in DN progression was more evident in males. This work increases the understanding of the sex-specific role of ACE2 and ACE in DN, reinforcing the necessity of more personalized treatments targeting RAS.

  6. Brain ACE2 overexpression reduces DOCA-salt hypertension independently of endoplasmic reticulum stress

    PubMed Central

    de Queiroz, Thyago Moreira; Sriramula, Srinivas; Feng, Yumei; Johnson, Tanya; Mungrue, Imran N.; Lazartigues, Eric

    2014-01-01

    Endoplasmic reticulum (ER) stress was previously reported to contribute to neurogenic hypertension while neuronal angiotensin-converting enzyme type 2 (ACE2) overexpression blunts the disease. To assess which brain regions are important for ACE2 beneficial effects and the contribution of ER stress to neurogenic hypertension, we first used transgenic mice harboring a floxed neuronal hACE2 transgene (SL) and tested the impact of hACE2 knockdown in the subfornical organ (SFO) and paraventricular nucleus (PVN) on deoxycorticosterone acetate (DOCA)-salt hypertension. SL and nontransgenic (NT) mice underwent DOCA-salt or sham treatment while infected with an adenoassociated virus (AAV) encoding Cre recombinase (AAV-Cre) or a control virus (AAV-green fluorescent protein) to the SFO or PVN. DOCA-salt-induced hypertension was reduced in SL mice, with hACE2 overexpression in the brain. This reduction was only partially blunted by knockdown of hACE2 in the SFO or PVN, suggesting that both regions are involved but not essential for ACE2 regulation of blood pressure (BP). DOCA-salt treatment did not increase the protein levels of ER stress and autophagy markers in NT mice, despite a significant increase in BP. In addition, these markers were not affected by hACE2 overexpression in the brain, despite a significant reduction of hypertension in SL mice. To further assess the role of ER stress in neurogenic hypertension, NT mice were infused intracerebroventricularlly with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, during DOCA-salt treatment. However, TUDCA infusion failed to blunt the development of hypertension in NT mice. Our data suggest that brain ER stress does not contribute to DOCA-salt hypertension and that ACE2 blunts neurogenic hypertension independently of ER stress. PMID:25519733

  7. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not alteredmore » in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.« less

  8. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice.

    PubMed

    Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A

    2009-07-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.

  9. Dmp1 Null Mice Develop a Unique Osteoarthritis-like Phenotype

    PubMed Central

    Zhang, Qi; Lin, Shuxian; Liu, Ying; Yuan, Baozhi; Harris, Steph E; Feng, Jian Q.

    2016-01-01

    Patients with hypophosphatemia rickets (including DMP1 mutations) develop severe osteoarthritis (OA), although the mechanism is largely unknown. In this study, we first identified the expression of DMP1 in hypertrophic chondrocytes using immunohistochemistry (IHC) and X-gal analysis of Dmp1-knockout-lacZ-knockin heterozygous mice. Next, we characterized the OA-like phenotype in Dmp1 null mice from 7-week-old to one-year-old using multiple techniques, including X-ray, micro-CT, H&E staining, Goldner staining, scanning electronic microscopy, IHC assays, etc. We found a classical OA-like phenotype in Dmp1 null mice such as articular cartilage degradation, osteophyte formation, and subchondral osteosclerosis. These Dmp1 null mice also developed unique pathological changes, including a biphasic change in their articular cartilage from the initial expansion of hypertrophic chondrocytes at the age of 1-month to a quick diminished articular cartilage layer at the age of 3-months. Further, these null mice displayed severe enlarged knees and poorly formed bone with an expanded osteoid area. To address whether DMP1 plays a direct role in the articular cartilage, we deleted Dmp1 specifically in hypertrophic chondrocytes by crossing the Dmp1-loxP mice with Col X Cre mice. Interestingly, these conditional knockout mice didn't display notable defects in either the articular cartilage or the growth plate. Because of the hypophosphatemia remained in the entire life span of the Dmp1 null mice, we also investigated whether a high phosphate diet would improve the OA-like phenotype. A 8-week treatment of a high phosphate diet significantly rescued the OA-like defect in Dmp1 null mice, supporting the critical role of phosphate homeostasis in maintaining the healthy joint morphology and function. Taken together, this study demonstrates a unique OA-like phenotype in Dmp1 null mice, but a lack of the direct impact of DMP1 on chondrogenesis. Instead, the regulation of phosphate homeostasis

  10. sirt1-null mice develop an autoimmune-like condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie

    2008-10-01

    The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistentmore » with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease.« less

  11. Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  12. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade.

    PubMed

    Sukumaran, Vijayakumar; Tsuchimochi, Hirotsugu; Tatsumi, Eisuke; Shirai, Mikiyasu; Pearson, James T

    2017-11-15

    Hyperglycemia up-regulates intracellular angiotensin II (ANG-II) production in cardiac myocytes. This study investigated the hemodynamic and metabolic effects of azilsartan (AZL) treatment in a mouse model of diabetic cardiomyopathy and whether the cardioprotective effects of AZL are mediated by the angiotensin converting enzyme (ACE)-2/ANG 1-7/Mas receptor (R) cascade. Control db/+ and db/db mice (n=5 per group) were treated with vehicle or AZL (1 or 3mg/kg/d oral gavage) from the age of 8 to 16weeks. Echocardiography was then performed and myocardial protein levels of ACE-2, Mas R, AT 1 R, AT 2 R, osteopontin, connective tissue growth factor (CTGF), atrial natriuretic peptide (ANP) and nitrotyrosine were measured by Western blotting. Oxidative DNA damage and inflammatory markers were assessed by immunofluorescence of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor (TNF)-α and interleukin 6 (IL-6). Compared with db/+ mice, the vehicle-treated db/db mice developed obesity, hyperglycemia, hyperinsulinemia and diastolic dysfunction along with cardiac hypertrophy and fibrosis. AZL treatment lowered blood pressure, fasting blood glucose and reduced peak plasma glucose during an oral glucose tolerance test. AZL-3 treatment resulted in a significant decrease in the expression of cytokines, oxidative DNA damage and cardiac dysfunction. Moreover, AZL-3 treatment significantly abrogated the downregulation of ACE-2 and Mas R protein levels in db/db mice. Furthermore, AZL treatment significantly reduced cardiac fibrosis, hypertrophy and their marker molecules (osteopontin, CTGF, TGF-β1 and ANP). Short-term treatment with AZL-3 reversed abnormal cardiac structural remodeling and partially improved glucose metabolism in db/db mice by modulating the ACE-2/ANG 1-7/Mas R pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation.

    PubMed

    Chakraborty, Anirban; Wakamiya, Maki; Venkova-Canova, Tatiana; Pandita, Raj K; Aguilera-Aguirre, Leopoldo; Sarker, Altaf H; Singh, Dharmendra Kumar; Hosoki, Koa; Wood, Thomas G; Sharma, Gulshan; Cardenas, Victor; Sarkar, Partha S; Sur, Sanjiv; Pandita, Tej K; Boldogh, Istvan; Hazra, Tapas K

    2015-10-09

    Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice.

    PubMed

    Burke, Darren; Dishowitz, Michael; Sweetwyne, Mariya; Miedel, Emily; Hankenson, Kurt D; Kelly, Daniel J

    2013-10-01

    It is often difficult to decouple the relative importance of different factors in regulating MSC differentiation. Genetically modified mice provide model systems whereby some variables can be manipulated while others are kept constant. Fracture repair in thrombospondin-2 (TSP2)-null mice is characterized by reduced endochondral ossification and enhanced intramembranous bone formation. The proposed mechanism for this shift in MSC fate is that increased vascular density and hence oxygen availability in TSP2-null mice regulates differentiation. However, TSP2 is multifunctional and regulates other aspects of the regenerative cascade, such as MSC proliferation. The objective of this study is to use a previously developed computational model of tissue differentiation, in which substrate stiffness and oxygen tension regulate stem cell differentiation, to simulate potential mechanisms which may drive alterations in MSC fate in TSP2-null mice. Four models (increased cell proliferation, increased numbers of MSCs in the marrow decreased cellular oxygen consumption, and an initially stiffer callus) were not predictive of experimental observations in TSP2-null mice. In contrast, increasing the rate of angiogenic progression led to a prediction of greater intramembranous ossification, diminished endochondral ossification, and a reduced region of hypoxia in the fracture callus similar to that quantified experimentally by the immunohistochemical detection of pimonidazole adducts that develop with hypoxia. This study therefore provides further support for the hypothesis that oxygen availability during early fracture healing is a key regulator of MSC bipotential differentiation, and furthermore, it highlights the advantages of integrating computational models with genetically modified mouse studies for further elucidating mechanisms regulating stem cell fate. Copyright © 2013 Orthopaedic Research Society.

  15. Xenogeneic graft-versus-host-disease in NOD-scid IL-2null mice display a T-effector memory phenotype.

    PubMed

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D; Lombardi, Giovanna; Nestle, Frank O

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.

  16. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation* ♦

    PubMed Central

    Chakraborty, Anirban; Wakamiya, Maki; Venkova-Canova, Tatiana; Pandita, Raj K.; Aguilera-Aguirre, Leopoldo; Sarker, Altaf H.; Singh, Dharmendra Kumar; Hosoki, Koa; Wood, Thomas G.; Sharma, Gulshan; Cardenas, Victor; Sarkar, Partha S.; Sur, Sanjiv; Pandita, Tej K.; Boldogh, Istvan; Hazra, Tapas K.

    2015-01-01

    Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans. PMID:26245904

  17. Xenogeneic Graft-versus-Host-Disease in NOD-scid IL-2null Mice Display a T-Effector Memory Phenotype

    PubMed Central

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D.; Lombardi, Giovanna; Nestle, Frank O.

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; “Hu-PBMC mice”) are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2null), notably the NOD-scid IL-2null (NSG) and BALB/c-Rag2 null IL-2null (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45+ compartment and higher engraftment levels of CD3+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (TEM) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting TEM-cell driven GvHD. PMID:22937164

  18. The lethal form of Cushing's in 7B2 null mice is caused by multiple metabolic and hormonal abnormalities.

    PubMed

    Sarac, Miroslav S; Zieske, Arthur W; Lindberg, Iris

    2002-06-01

    The neuroendocrine-specific protein 7B2, which serves as a molecular escort for proPC2 in the secretory pathway, promotes the production of enzymatically active PC2 and may have non-PC2 related endocrine roles. Mice null for 7B2 exhibit a lethal phenotype with a complex Cushing's-like pathology, which develops from intermediate lobe ACTH hypersecretion as a consequences of interruption of PC2-mediated peptide processing as well as undefined consequences of the loss of 7B2. In this study we investigated the endocrine and metabolic alterations of 7B2 null mice from pathological and biochemical points of view. Our results show that 7B2 nulls exhibit a multisystem disorder that includes severe pathoanatomical and histopathologic alterations of vital organs, including the heart and spleen but most notably the liver, in which massive steatosis and necrosis are observed. Metabolic derangements in glucose metabolism result in glycogen and fat deposition in liver under conditions of chronic hypoglycemia. Liver failure is also likely to contribute to abnormalities in blood coagulation and blood chemistry, such as lactic acidosis. A hypoglycemic crisis coupled with respiratory distress and intensive internal thrombosis most likely results in rapid deterioration and death of the 7B2 null.

  19. Relationship of angiotensin I-converting enzyme (ACE) and bradykinin B2 receptor (BDKRB2) polymorphism with diabetic nephropathy.

    PubMed

    Zou, Honghong; Wu, Guoqing; Lv, Jinlei; Xu, Gaosi

    2017-06-01

    To determine whether ACE 2 I/D and BDKRB2 3 +9/-9 polymorphism causatively affect diabetic nephropathy progression RESULTS: STZ-induced metabolic disorder, as well as inflammatory responses, was significantly aggravated in ACE II-B2R 4 +9bp, ACE DD-B2R+9bp, or ACE DD-B2R-9bp diabetic mice but not ACE II-B2R-9bp, indicating the genetic susceptibility of ACE DD or B2R+9bp to diabetic nephropathy. Furthermore, ACE II-B2R+9bp, ACE DD-B2R+9bp, or ACE DD-B2R-9bp rather than ACE II-B2R-9bp, worsened renal performance and enhanced pathological alterations induced by STZ. Markedly elevated monocyte chemoattractant protein-1(MCP-1), podocin, osteopontin (OPN), transforming growth factor-β1 (TGF-β1), and reduced nephrin, podocin were also detected both in diabetic mice and podocytes under hyperglycemic conditions in response to ACE II-B2R+9bp, ACE DD-B2R+9bp, or ACE DD-B2R-9bp, versus ACE II-B2R-9bp. In addition, high glucose-induced mitochondrial oxidative stress and cell apoptosis were observably increased in response to ACE II-B2R+9bp, ACE DD-B2R+9bp, or ACE DD-B2R-9bp but not ACE II-B2R-9bp. We provide first evidence indicating the causation between ACE DD or B2R+9bp genotype and the increased risk for diabetic nephropathy, broadening our horizon about the role of genetic modulators in this disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice

    PubMed Central

    Mak, Kai Y; Chin, Ruth; Cunningham, Sharon C; Habib, Miriam R; Torresi, Joseph; Sharland, Alexandra F; Alexander, Ian E; Angus, Peter W; Herath, Chandana B

    2015-01-01

    Angiotensin converting enzyme 2 (ACE2) which breaks down profibrotic peptide angiotensin II to antifibrotic peptide angiotensin-(1–7) is a potential therapeutic target in liver fibrosis. We therefore investigated the long-term therapeutic effect of recombinant ACE2 using a liver-specific adeno-associated viral genome 2 serotype 8 vector (rAAV2/8-ACE2) with a liver-specific promoter in three murine models of chronic liver disease, including carbon tetrachloride-induced toxic injury, bile duct ligation-induced cholestatic injury, and methionine- and choline-deficient diet-induced steatotic injury. A single injection of rAAV2/8-ACE2 was administered after liver disease has established. Hepatic fibrosis, gene and protein expression, and the mechanisms that rAAV2/8-ACE2 therapy associated reduction in liver fibrosis were analyzed. Compared with control group, rAAV2/8-ACE2 therapy produced rapid and sustained upregulation of hepatic ACE2, resulting in a profound reduction in fibrosis and profibrotic markers in all diseased models. These changes were accompanied by reduction in hepatic angiotensin II levels with concomitant increases in hepatic angiotensin-(1–7) levels, resulting in significant reductions of NADPH oxidase assembly, oxidative stress and ERK1/2 and p38 phosphorylation. Moreover, rAAV2/8-ACE2 therapy normalized increased intrahepatic vascular tone in fibrotic livers. We conclude that rAAV2/8-ACE2 is an effective liver-targeted, long-term therapy for liver fibrosis and its complications without producing unwanted systemic effects. PMID:25997428

  1. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  2. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    PubMed Central

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E.

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  3. Cadmium modulates adipocyte functions in metallothionein-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WATmore » with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.« less

  4. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    PubMed

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  5. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo

    PubMed Central

    2012-01-01

    Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501

  6. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation.

    PubMed

    Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young

    2016-06-29

    To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4-5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD.

  7. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex.

    PubMed

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-09-20

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.

  8. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  9. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex

    PubMed Central

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-01-01

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy. PMID:27601681

  10. Constitutive Androgen Receptor-Null Mice Are Sensitive to the Toxic Effects of Parathion: Association with Reduced Cytochrome P450-Mediated Parathion MetabolismS⃞

    PubMed Central

    Mota, Linda C.; Hernandez, Juan P.

    2010-01-01

    Constitutive androgen receptor (CAR) is activated by several chemicals and in turn regulates multiple detoxification genes. Our research demonstrates that parathion is one of the most potent, environmentally relevant CAR activators with an EC50 of 1.43 μM. Therefore, animal studies were conducted to determine whether CAR was activated by parathion in vivo. Surprisingly, CAR-null mice, but not wild-type (WT) mice, showed significant parathion-induced toxicity. However, parathion did not induce Cyp2b expression, suggesting that parathion is not a CAR activator in vivo, presumably because of its short half-life. CAR expression is also associated with the expression of several drug-metabolizing cytochromes P450 (P450). CAR-null mice demonstrate lower expression of Cyp2b9, Cyp2b10, Cyp2c29, and Cyp3a11 primarily, but not exclusively in males. Therefore, we incubated microsomes from untreated WT and CAR-null mice with parathion in the presence of esterase inhibitors to determine whether CAR-null mice show perturbed P450-mediated parathion metabolism compared with that in WT mice. The metabolism of parathion to paraoxon and p-nitrophenol (PNP) was reduced in CAR-null mice with male CAR-null mice showing reduced production of both paraoxon and PNP, and female CAR-null mice showing reduced production of only PNP. Overall, the data indicate that CAR-null mice metabolize parathion slower than WT mice. These results provide a potential mechanism for increased sensitivity of individuals with lower CAR activity such as newborns to parathion and potentially other chemicals due to decreased metabolic capacity. PMID:20573718

  11. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation

    PubMed Central

    Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young

    2016-01-01

    To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4–5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD. PMID:27352957

  12. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice.

    PubMed

    Wang, Xingxu; Ye, Yong; Gong, Hui; Wu, Jian; Yuan, Jie; Wang, Shijun; Yin, Peipei; Ding, Zhiwen; Kang, Le; Jiang, Qiu; Zhang, Weijing; Li, Yang; Ge, Junbo; Zou, Yunzeng

    2016-08-01

    Angiotensin II (AngII) type 1 receptor blockers (ARBs) have been effectively used in hypertension and cardiac remodeling. However, the differences among them are still unclear. We designed this study to examine and compare the effects of several ARBs widely used in clinics, including Olmesartan, Candesartan, Telmisartan, Losartan, Valsartan and Irbesartan, on the ACE-AngII-AT1 axis and the ACE2-Ang(1-7)-Mas axis during the development of cardiac remodeling after pressure overload. Although all of the six ARBs, attenuated the development of cardiac hypertrophy and heart failure induced by transverse aortic constriction (TAC) for 2 or 4weeks in the wild-type mice evaluated by echocardiography and hemodynamic measurements, the degree of attenuation by Olmesartan, Candesartan and Losartan tended to be larger than that of the other three drugs tested. Additionally, the degree of downregulation of the ACE-AngII-AT1 axis and upregulation of the ACE2-Ang(1-7)-Mas axis was higher in response to Olmesartan, Candesartan and Losartan administration in vivo and in vitro. Moreover, in angiotensinogen-knockdown mice, TAC-induced cardiac hypertrophy and heart failure were inhibited by Olmesartan, Candesartan and Losartan but not by Telmisartan, Valsartan and Irbesartan administration. Furthermore, only Olmesartan and Candesartan could downregulate the ACE-AngII-AT1 axis and upregulate the ACE2-Ang(1-7)-Mas axis in vitro. Our data suggest that Olmesartan, Candesartan and Losartan could effectively inhibit pressure overload-induced cardiac remodeling even when with knockdown of Ang II, possibly through upregulation of the expression of the ACE2-Ang(1-7)-Mas axis and downregulation of the expression of the ACE-AngII-AT1 axis. In contrast, Telmisartan, Valsartan and Irbesartan only played a role in the presence of AngII, and Losartan had no effect in the presence of AngII in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice

    PubMed Central

    Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang

    2016-01-01

    Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933

  14. maLPA1-null mice as an endophenotype of anxious depression

    PubMed Central

    Moreno-Fernández, R D; Pérez-Martín, M; Castilla-Ortega, E; Rosell del Valle, C; García-Fernández, M I; Chun, J; Estivill-Torrús, G; Rodríguez de Fonseca, F; Santín, L J; Pedraza, C

    2017-01-01

    Anxious depression is a prevalent disease with devastating consequences and a poor prognosis. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1–6) through which lysophosphatidic acid acts as an intracellular signalling molecule. The loss of this receptor induces anxiety and several behavioural and neurobiological changes that have been strongly associated with depression. In this study, we sought to investigate the involvement of the LPA1 receptor in mood. We first examined hedonic and despair-like behaviours in wild-type and maLPA1 receptor null mice. Owing to the behavioural response exhibited by the maLPA1-null mice, the panic-like reaction was assessed. In addition, c-Fos expression was evaluated as a measure of the functional activity, followed by interregional correlation matrices to establish the brain map of functional activation. maLPA1-null mice exhibited anhedonia, agitation and increased stress reactivity, behaviours that are strongly associated with the psychopathological endophenotype of depression with anxiety features. Furthermore, the functional brain maps differed between the genotypes. The maLPA1-null mice showed increased limbic-system activation, similar to that observed in depressive patients. Antidepressant treatment induced behavioural improvements and functional brain normalisation. Finally, based on validity criteria, maLPA1-null mice are proposed as an animal model of anxious depression. Here, for we believe the first time, we have identified a possible relationship between the LPA1 receptor and anxious depression, shedding light on the unknown neurobiological basis of this subtype of depression and providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, especially for the anxious subtype of depression. PMID:28375206

  15. maLPA1-null mice as an endophenotype of anxious depression.

    PubMed

    Moreno-Fernández, R D; Pérez-Martín, M; Castilla-Ortega, E; Rosell Del Valle, C; García-Fernández, M I; Chun, J; Estivill-Torrús, G; Rodríguez de Fonseca, F; Santín, L J; Pedraza, C

    2017-04-04

    Anxious depression is a prevalent disease with devastating consequences and a poor prognosis. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intracellular signalling molecule. The loss of this receptor induces anxiety and several behavioural and neurobiological changes that have been strongly associated with depression. In this study, we sought to investigate the involvement of the LPA1 receptor in mood. We first examined hedonic and despair-like behaviours in wild-type and maLPA1 receptor null mice. Owing to the behavioural response exhibited by the maLPA1-null mice, the panic-like reaction was assessed. In addition, c-Fos expression was evaluated as a measure of the functional activity, followed by interregional correlation matrices to establish the brain map of functional activation. maLPA1-null mice exhibited anhedonia, agitation and increased stress reactivity, behaviours that are strongly associated with the psychopathological endophenotype of depression with anxiety features. Furthermore, the functional brain maps differed between the genotypes. The maLPA1-null mice showed increased limbic-system activation, similar to that observed in depressive patients. Antidepressant treatment induced behavioural improvements and functional brain normalisation. Finally, based on validity criteria, maLPA1-null mice are proposed as an animal model of anxious depression. Here, for we believe the first time, we have identified a possible relationship between the LPA1 receptor and anxious depression, shedding light on the unknown neurobiological basis of this subtype of depression and providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, especially for the anxious subtype of depression.

  16. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice

    PubMed Central

    Kishi, Noriyuki; MacDonald, Jessica L.; Ye, Julia; Molyneaux, Bradley J.; Azim, Eiman; Macklis, Jeffrey D.

    2016-01-01

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816

  17. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa

    PubMed Central

    Magalhães, Ana; Gomes, Joana; Ismail, Mohd Nazri; Haslam, Stuart M; Mendes, Nuno; Osório, Hugo; David, Leonor; Le Pendu, Jacques; Haas, Rainer; Dell, Anne; Borén, Thomas; Reis, Celso A

    2009-01-01

    Glycoconjugates expressed on gastric mucosa play a crucial role in host–pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal α(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Leb and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of α(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucα(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected. PMID:19706747

  18. Maternal nicotine exposure effects on adolescent learning and memory are abolished in alpha(α)2* nicotinic acetylcholine receptor-null mutant mice.

    PubMed

    Mojica, Celina; Bai, Yu; Lotfipour, Shahrdad

    2018-06-01

    The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Transforming Growth Factor Beta (TGFβ1, TGFβ2 and TGFβ3) Null-Mutant Phenotypes in Embryonic Gonadal Development

    PubMed Central

    Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.

    2008-01-01

    The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002

  20. Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2.

    PubMed

    Kume, T; Deng, K; Hogan, B L

    2000-02-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2(lacZ)) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes.

  1. Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice.

    PubMed

    Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher; Berdal, Ariane; Lézot, Frédéric

    2013-01-01

    The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.

  2. Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2

    PubMed Central

    Kume, Tsutomu; Deng, Keyu; Hogan, Brigid L. M.

    2000-01-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2lacZ) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes. PMID:10648626

  3. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.

    PubMed

    Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J

    2007-04-18

    The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.

  4. Accentuated Osteoclastic Response to Parathyroid Hormone Undermines Bone Mass Acquisition in Osteonectin-null Mice

    PubMed Central

    do Reis, Luciene Machado; Kessler, Catherine B.; Adams, Douglas J.; Lorenzo, Joseph; Jorgetti, Vanda; Delany, Anne M.

    2008-01-01

    Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null

  5. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  6. Age-Related Changes in Bone Morphology Are Accelerated in Group VIA Phospholipase A2 (iPLA2β)-Null Mice

    PubMed Central

    Ramanadham, Sasanka; Yarasheski, Kevin E.; Silva, Matthew J.; Wohltmann, Mary; Novack, Deborah Veis; Christiansen, Blaine; Tu, Xiaolin; Zhang, Sheng; Lei, Xiaoyong; Turk, John

    2008-01-01

    Phospholipases A2 (PLA2) hydrolyze the sn−2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA2 (iPLA2β), which participates in a variety of signaling events; iPLA2β mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-γ and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA2β-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA2β causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA2β in bone formation. PMID:18349124

  7. Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice

    PubMed Central

    Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher

    2013-01-01

    The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 −/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 −/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 −/− mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 −/− RankTg mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 −/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor. PMID:24278237

  8. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome.

    PubMed

    Millar-Büchner, Pamela; Philp, Amber R; Gutierrez, Noemí; Villanueva, Sandra; Kerr, Bredford; Flores, Carlos A

    2016-12-01

    Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon

  9. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    PubMed Central

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  10. Comparison of body weight and gene expression in amelogenin null and wild-type mice.

    PubMed

    Li, Yong; Yuan, Zhi-An; Aragon, Melissa A; Kulkarni, Ashok B; Gibson, Carolyn W

    2006-05-01

    Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.

  11. Characterization of periodontal structures of enamelin-null mice.

    PubMed

    Chan, Hsun-Liang; Giannobile, William V; Eber, Robert M; Simmer, James P; Hu, Jan C

    2014-01-01

    Enamelin-null (ENAM(-/-)) mice have no enamel. When characterizing ENAM(-/-) mice, alveolar bone height reduction was observed, and it was hypothesized that enamel defects combined with diet are associated with the periodontal changes of ENAM(-/-)mice. The aim of the present study is to compare the dimension of interradicular bone of ENAM(-/-) (knock-out [KO]) with wild-type (WT) mice, maintained on hard (HC) or soft (SC) chow. A total of 100 animals divided into four groups were studied at 3, 8, and 24 weeks of age: 1) KO/HC; 2) KO/SC; 3) WT/HC; and 4) WT/SC. Microcomputed tomography was performed, and the following measurements were made between mandibular first (M1) and second (M2) molars: relative alveolar bone height (RBH), crestal bone width (CBW), bone volume (BV), bone mineral content (BMC), and bone mineral density (BMD). The position of M1 and M2 in relation to the inferior border of the mandible was also determined at 24 weeks. All variables were analyzed by one-way analysis of variance and Dunnett test for pairwise comparisons. Morphologic analyses were conducted on hematoxylin and eosin-stained sections. Radiographically, the enamel layer was absent in ENAM(-/-) mice. Interproximal open contacts were observed exclusively in ENAM(-/-) mice, and the prevalence decreased over time, suggesting that a shifting of tooth position had occurred. Additionally, in the two ENAM(-/-) groups, RBH was significantly lower at 8 and 24 weeks (P <0.02); CBW, BV, and BMC were significantly less (P <0.05) at 24 weeks. No differences in BMD were found among the four groups. The molars migrated to a more coronal position in ENAM(-/-) mice and mice on HC. Histologic findings were consistent with radiographic observations. After eruption, the junctional epithelium was less organized in ENAM(-/-) mice. The interdental bone density was not affected in the absence of enamelin, but its volume was, which is likely a consequence of alternations in tooth position.

  12. Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice.

    PubMed

    Wang, Lei A; de Kloet, Annette D; Smeltzer, Michael D; Cahill, Karlena M; Hiller, Helmut; Bruce, Erin B; Pioquinto, David J; Ludin, Jacob A; Katovich, Michael J; Raizada, Mohan K; Krause, Eric G

    2018-05-01

    This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet.

    PubMed

    Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo

    2017-02-01

    Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively. Published by Elsevier Ltd.

  14. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    PubMed

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  15. ACE2 alterations in kidney disease.

    PubMed

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-11-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1-7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance.

  16. ACE2 alterations in kidney disease

    PubMed Central

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1–7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance. PMID:23956234

  17. Pharmacologic modulation of ACE2 expression.

    PubMed

    Soler, María José; Barrios, Clara; Oliva, Raymond; Batlle, Daniel

    2008-10-01

    Angiotensin-converting enzyme 2 (ACE2) is an enzymatically active homologue of angiotensin-converting enzyme that degrades angiotensin I, angiotensin II, and other peptides. Recent studies have shown that under pathologic conditions, ACE2 expression in the kidney is altered. In this review, we briefly summarize recent studies dealing with pharmacologic interventions that modulate ACE2 expression. ACE2 amplification may have a potential therapeutic role for kidney disease and hypertension.

  18. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    PubMed

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  19. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibitedmore » increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.« less

  20. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors

    PubMed Central

    Wang, Lei; de Kloet, Annette D.; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A.; Pioquinto, David J.; Ludin, Jacob A.; Oh, S. Paul; Katovich, Michael J.; Frazier, Charles J.; Raizada, Mohan K.; Krause, Eric G.

    2016-01-01

    Over-activation of brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme (ACE2) inhibits RAS activity by converting angiotensin II, the effector peptide of RAS, to angiotensin-(1-7), which activates Mas receptors (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ~62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA. PMID

  1. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  2. Protection of a Ceramide Synthase 2 Null Mouse from Drug-induced Liver Injury

    PubMed Central

    Park, Woo-Jae; Park, Joo-Won; Erez-Roman, Racheli; Kogot-Levin, Aviram; Bame, Jessica R.; Tirosh, Boaz; Saada, Ann; Merrill, Alfred H.; Pewzner-Jung, Yael; Futerman, Anthony H.

    2013-01-01

    Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury. PMID:24019516

  3. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: The importance of assessing the amount of running in transgenic mice studies

    PubMed Central

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.

    2014-01-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600

  4. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    PubMed

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  5. Angiotensin converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy

    PubMed Central

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M.; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2016-01-01

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II(1-8) that could also be effective involves fostering its degradation. Angiotensin converting enzyme 2 (ACE2) is a monocarboxypeptidase than cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity and glomerular size, were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  6. Human nasal polyp microenvironments maintained in a viable and functional state as xenografts in NOD-scid IL2rgamma(null) mice.

    PubMed

    Bernstein, Joel M; Brooks, Stephen P; Lehman, Heather K; Pope, Liza; Sands, Amy; Shultz, Leonard D; Bankert, Richard B

    2009-12-01

    The objective was to develop a model with which to study the cellular and molecular events associated with nasal polyp progression. To accomplish this, we undertook to develop a system in which nondisrupted human nasal polyp tissue could be successfully implanted into severely immunocompromised mice, in which the histopathology of the original nasal polyp tissue, including inflammatory lymphocytes, epithelial and goblet cell hyperplasia, and subepithelial fibrosis, could be preserved for prolonged periods. Small, non-disrupted pieces of human nasal polyp tissues were subcutaneously implanted into NOD-scid IL2rgamma(null) mice. Xenografts at 8 to 12 weeks after implantation were examined histologically and immunohistochemically to identify human inflammatory leukocytes and to determine whether the characteristic histopathologic characteristics of the nasal polyps were maintained for a prolonged period. The xenografts, spleen, lung, liver, and kidneys were examined histologically and immunohistochemically and were evaluated for changes in volume. The sera of these mice were assayed for human cytokines and immunoglobulin. Xenografts of human nasal polyp tissues were established after their subcutaneous implantation into NOD-scid IL2rgamma(null) mice. The xenografts were maintained in a viable and functional state for up to 3 months, and retained a histopathologic appearance similar to that of the original tissue, with a noticeable increase in goblet cell hyperplasia and marked mucus accumulation in the submucosal glands compared to the original nasal polyp tissue. Inflammatory lymphocytes present in the polyp microenvironment were predominantly human CD8+ T cells with an effector memory phenotype. Human CD4+ T cells, CD138+ plasma cells, and CD68+ macrophages were also observed in the xenografts. Human immunoglobulin and interferon-gamma were detected in the sera of xenograft-bearing mice. The polyp-associated lymphocytes proliferated and were found to migrate from

  7. Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis

    PubMed Central

    Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.

    2016-01-01

    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496

  8. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  9. An Improved Protocol for Efficient Engraftment in NOD/LTSZ-SCIDIL-2NULL Mice Allows HIV Replication and Development of Anti-HIV Immune Responses

    PubMed Central

    Singh, Maneesh; Singh, Pratibha; Gaudray, Gilles; Musumeci, Lucia; Thielen, Caroline; Vaira, Dolores; Vandergeeten, Claire; Delacroix, Laurence; Van Gulck, Ellen; Vanham, Guido; de Leval, Laurence; Rahmouni, Souad; Moutschen, Michel

    2012-01-01

    Cord blood hematopoietic progenitor cells (CB-HPCs) transplanted immunodeficient NOD/LtsZ-scidIL2null (NSG) and NOD/SCID/IL2null (NOG) mice need efficient human cell engraftment for long-term HIV-1 replication studies. Total body irradiation (TBI) is a classical myeloablation regimen used to improve engraftment levels of human cells in these humanized mice. Some recent reports suggest the use of busulfan as a myeloablation regimen to transplant HPCs in neonatal and adult NSG mice. In the present study, we further ameliorated the busulfan myeloablation regimen with fresh CB-CD34+cell transplantation in 3–4 week old NSG mice. In this CB-CD34+transplanted NSG mice engraftment efficiency of human CD45+cell is over 90% in peripheral blood. Optimal engraftment promoted early and increased CD3+T cell levels, with better lymphoid tissue development and prolonged human cell chimerism over 300 days. These humanized NSG mice have shown long-lasting viremia after HIV-1JRCSF and HIV-1Bal inoculation through intravenous and rectal routes. We also saw a gradual decline of the CD4+T cell count, widespread immune activation, up-regulation of inflammation marker and microbial translocation after HIV-1 infection. Humanized NSG mice reconstituted according to our new protocol produced, moderate cellular and humoral immune responses to HIV-1 postinfection. We believe that NSG mice reconstituted according to our easy to use protocol will provide a better in vivo model for HIV-1 replication and anti-HIV-1 therapy trials. PMID:22675567

  10. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. © The Author(s), 2015.

  11. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models.

    PubMed

    Shannon, Harlan E; Yang, Lijuan

    2004-01-01

    Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.

  12. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies.

    PubMed

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J

    2013-11-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Expression of Basigin in Reproductive Tissues of Oestrogen Receptor-α or –β Null Mice

    PubMed Central

    Chen, Li; Bi, Jiajia; Nakai, Masaaki; Bunick, David; Couse, John F.; Korach, Kenneth S.; Nowak, Romana A.

    2016-01-01

    Basigin plays important roles in both male and female reproduction because basigin (Bsg) null male and female mice are infertile. The aim of the present study was to determine whether basigin expression in reproductive organs requires oestrogen receptor (ER) α or ERβ. Expression of basigin protein in the testis, ovary and male and female reproductive tracts was studied in adult wild type, ERα-null (αERKO) and ERβ-null (βERKO) mice by immunohistochemistry and immunoblotting. Basigin mRNA levels in ovary and uterus were examined by quantitative RT-PCR. In females, basigin protein expression was observed mainly in granulosa and interstitial cells of the ovary and epithelial cells of the proximal oviduct in all genotypes. Basigin protein was also expressed in the uterine epithelium at prooestrus and oestrus in WT and βERKO mice but not in αERKO mice. However, a higher level of basigin mRNA was observed in uteri of αERKO mice compared with WT and βERKO mice. In males, basigin was expressed in Leydig cells and all germ cells except spermatogonia in all genotypes. Basigin was present in epithelial cells lining the efferent ductules in WT and βERKO mice but expression was greatly reduced in αERKO mice. In epididymal ducts, basigin expression was observed in epithelial cells in the caput and cauda in all genotypes. These data suggest that expression of basigin protein requires ERα, but not ERβ, in the uterus and efferent ductules, but is independent of ER in the ovary, oviduct, testis and epididymis. PMID:20388736

  14. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    PubMed

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  15. The absence of intrarenal ACE protects against hypertension

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Janjoulia, Tea; Fletcher, Nicholas K.; Giani, Jorge F.; Nguyen, Mien T.X.; Riquier-Brison, Anne D.; Seth, Dale M.; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L. Gabriel; Bernstein, Kenneth E.; McDonough, Alicia A.

    2013-01-01

    Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension. PMID:23619363

  16. Gonadectomy prevents the increase in blood pressure and glomerular injury in angiotensin-converting enzyme 2 knockout diabetic male mice. Effects on renin-angiotensin system.

    PubMed

    Clotet, Sergi; Soler, María José; Rebull, Marta; Gimeno, Javier; Gurley, Susan B; Pascual, Julio; Riera, Marta

    2016-09-01

    Angiotensin-converting enzyme 2 (ACE2) deletion worsens kidney injury, and its amplification ameliorates diabetic nephropathy. Male sex increases the incidence, prevalence, and progression of chronic kidney disease in our environment. Here, we studied the effect of ACE2 deficiency and gonadectomy (GDX) on diabetic nephropathy and its relationship with fibrosis, protein kinase B (Akt) activation, and the expression of several components of the renin-angiotensin system (RAS).Mice were injected with streptozotocin to induce diabetes and followed for 19 weeks. Physiological and renal parameters were studied in wild-type and ACE2 knockout (ACE2KO) male mice with and without GDX. Diabetic ACE2KO showed increased blood pressure (BP), glomerular injury, and renal fibrosis compared with diabetic wild-type. Gonadectomized diabetic ACE2KO presented a decrease in BP. In the absence of ACE2, GDX attenuated albuminuria and renal lesions, such as mesangial matrix expansion and podocyte loss. Both, α-smooth muscle actin accumulation and collagen deposition were significantly decreased in renal cortex of gonadectomized diabetic ACE2KO but not diabetic wild-type mice. GDX also reduced circulating ACE activity in ACE2KO mice. Loss of ACE2 modified the effect of GDX on cortical gene expression of RAS in diabetic mice. Akt phosphorylation in renal cortex was increased by diabetes and loss of ACE2 and decreased by GDX in control and diabetic ACE2KO but not in wild-type mice. Our results suggest that GDX may exert a protective effect within the kidney under pathological conditions of diabetes and ACE2 deficiency. This renoprotection may be ascribed to different mechanisms such as decrease in BP, modulation of RAS, and downregulation of Akt-related pathways.

  17. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

  18. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  19. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy.

    PubMed

    Eriguchi, Masahiro; Lin, Mercury; Yamashita, Michifumi; Zhao, Tuantuan V; Khan, Zakir; Bernstein, Ellen A; Gurley, Susan B; Gonzalez-Villalobos, Romer A; Bernstein, Kenneth E; Giani, Jorge F

    2018-04-01

    Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.

  20. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in

  1. MSCs with ACE II gene affect apoptosis pathway of acute lung injury induced by bleomycin.

    PubMed

    Zhang, Xiaomiao; Gao, Fengying; Li, Qian; Dong, Zhixia; Sun, Bo; Hou, Lili; Li, Zhuozhe; Liu, Zhenwei

    2015-02-01

    The aim of this study was to evaluate the effect and related mechanisms of Mesenchymal stem cells (MSCs) and Angiotensin converting enzyme II (ACE II) on acute lung injury (ALI). MSCs were separated from umbilical cord cells, and the changes of phenotype before and after ACE II silence were observed using Flow Cytometer. ALI model was induced by 10 mg/mL bleomycin in 60 Balb/c mice, and the rest 8 mice were regarded as the baseline group. The mice were randomly divided into four groups (n = 15): control, ACE II, stem, and stem + ACE II. The apoptotic index (AI) was calculated using TUNEL, and the detection of protein and mRNA of Bax, Bak and p53, Bcl-2, Grp78, CHOP and Caspase 12 were used by western-blot and RT-PCR, respectively. The umbilical cord cells differentiated into stable MSCs about 14 days, and ACE II transfection reached a peak at the 5th day after transfection. ACE II silence did not affect the phenotype of MSCs. All the proteins and mRNAs expression except Bcl-2 in the stem and stem + ACE II were significantly lower than those in control from 8 h (p < 0.05, p < 0.01), while Bcl-2 exhibited an opposite trend. Stem + ACE II performed a better effect than single stem in most indexes, including AI (p < 0.05, p < 0.01). The co-administration of MSCs and ACE II can significantly suppress apoptosis in ALI mice, and may be an effective clinical treatment for ALI.

  2. Assessment of Benzene-Induced Hematotoxicity Using a Human-Like Hematopoietic Lineage in NOD/Shi-scid/IL-2null Mice

    PubMed Central

    Takahashi, Masayuki; Tsujimura, Noriyuki; Yoshino, Tomoko; Hosokawa, Masahito; Otsuka, Kensuke; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-01-01

    Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2null (NOG) mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG mice). Here, we first evaluated the toxic response of human-like hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice). A comparison of the degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for interspecies differences. PMID:23226520

  3. Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy.

    PubMed

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2017-06-01

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II (1-8) that could also be effective involves fostering its degradation. Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity, and glomerular size were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  4. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  5. [Effect of altitude chronic hypoxia on liver enzymes and its correlation with ACE/ACE2 in yak and migrated cattle].

    PubMed

    Liu, Feng-yun; Hu, Lin; Li, Yu-xian; Liu, Shi-ming; Tang, Yong-ping; Qi, Sheng-gui; Yang, Lei; Wu, Tian-yi

    2015-05-01

    To investigate the difference of liver enzyme levels and its correlation with serum ACE/ACE2 among yak and cattle on Qinghai-Tibetan plateau, and to further explore the biochemical mechanism of their liver of altitude adaptation. The serum samples of yak were collected at 3,000 m, 3,500 m, 4,000 m and 4,300 m respectively, meanwhile the serum samples of migrated cattle on plateau (2,500 m) and lowland cattle (1,300 m) were also collected. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholinesterase (CHE), gamma glutamyl transferase (GGT), alkaline phosphatase (ALP), serum lipase (LPS), angiotensin converting enzyme(ACE), angiotensin converting enzyme-2 (ACE2) in serum were measured by using fully automatic blood biochemcal analyzer. We analysed the differences of the above enzymes and its correlation with ACE/ACE2. We used one way analysis of variance (ANOVA). The levels of ALT in 4,000 m group and 4,300 m group of yak increased significantly compared with other groups, there were no statistically significant differences in AST, CHE, GGT, ACE/ACE2 levels of yaks at different altitudes. As compared to lowland cattle, the serum levels of AST and CHE were increased, the level of LPS and ACE was decreased significantly, respectively, and especially, the ratio of ACE/ACE2 of migranted cattle reduced nearly two times. The levels of LPS were significantly correlated to the ratio of ACE/ACE2 in yak (r = 0.357, P < 0.01), and a high correlation between ALP and ACE/ACE2 in lowland cattle( r = 0.418, P < 0.05), But the biggest contribution rate of the ratio of ACE/ACE2 was only 17.5% for the changes of the levels of liver enzyme. The results indicated that with the altitude increased did not significantly influence the changes of liver enzymes' activities in mountainous yaks but not in cattle. However, all above these changes weren't actually correlated to the ratio of ACE/ACE2.

  6. Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFβ Activation

    PubMed Central

    Arnold, Shanna A.; Rivera, Lee B.; Carbon, Juliet G.; Toombs, Jason E.; Chang, Chi-Lun; Bradshaw, Amy D.; Brekken, Rolf A.

    2012-01-01

    Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation. PMID:22348081

  7. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    PubMed Central

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  8. Peptide Transporter 1 is Responsible for Intestinal Uptake of the Dipeptide Glycylsarcosine: Studies in Everted Jejunal Rings from Wild-type and Pept1 Null Mice

    PubMed Central

    Ma, Katherine; Hu, Yongjun; Smith, David E.

    2010-01-01

    The purpose of this study was to determine the relative importance of PEPT1 in the uptake of peptides/mimetics from mouse small intestine using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2-cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [14C]GlySar (4 μM) was studied as a function of time, temperature, sodium and pH, concentration, and potential inhibitors. Compared to wild-type animals, Pept1 null mice exhibited a 78% reduction of GlySar uptake at pH 6.0, 37°C. GlySar uptake showed pH dependence with peak values between pH 6.0-6.5 in wild-type animals, while no such tendency was observed in Pept1 null mice. GlySar exhibited Michaelis-Menten uptake kinetics and a minor nonsaturable component in wild-type animals. In contrast, GlySar uptake occurred by only a nonsaturable process in Pept1 null mice. GlySar uptake was significantly inhibited by dipeptides, aminocephalosporins, angiotensin-converting enzyme inhibitors, and the antiviral prodrug valacyclovir; these inhibitors had little, if any, effect on the uptake of GlySar in Pept1 null mice. The findings demonstrate that PEPT1 plays a critical role in the uptake of GlySar in jejunum, and suggest that PEPT1 is the major transporter responsible for the intestinal absorption of small peptides. PMID:20862774

  9. Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells.

    PubMed

    Serreze, D V; Leiter, E H; Hanson, M S; Christianson, S W; Shultz, L D; Hesselton, R M; Greiner, D L

    1995-12-01

    When used as hosts in passive transfer experiments, a stock of NOD/Lt mice congenic for the severe combined immunodeficiency (scid) mutation have provided great insight to the contributions of various T-cell populations in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). Moreover, NOD-scid mice support higher levels of human lymphohematopoietic cell growth than the C.B-17-scid strain in which the mutation originated. However, the ability to perform long-term lymphohematopoietic repopulation studies in the NOD-scid stock has been limited by the fact that most of these mice develop lethal thymic lymphomas beginning at 20 weeks of age. These thymic lymphomas are characterized by activation and subsequent genomic reintegrations of Emv30, an endogenous murine ecotropic retrovirus unique to the NOD genome. To test the role of this endogenous retrovirus in thymomagenesis, we produced a stock of Emv30null NOD-scid mice by congenic replacement of the proximal end of chromosome 11 with genetic material derived from the closely related NOR/Lt strain. Thymic lymphomas still initiate in Emv30null NOD-scid females, but their rate of progression is significantly retarded since the frequency of tumors weighing between 170 and 910 mg at 25 weeks of age was reduced to 20.8% vs. 76.2% in Emv30% segregants. The thymic lymphomas that did develop in Emv30null NOD-scid mice were not characterized by a compensatory increase in mink cell focus-forming proviral integrations, which initiate thymomagenesis in other susceptible mouse strains. Significantly, the ability of standard NOD T-cells to transfer IDDM to the Emv30null NOD-scid stock was not impaired.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice.

    PubMed

    Lin, Jiandie; Wu, Pei-Hsuan; Tarr, Paul T; Lindenberg, Katrin S; St-Pierre, Julie; Zhang, Chen-Yu; Mootha, Vamsi K; Jäger, Sibylle; Vianna, Claudia R; Reznick, Richard M; Cui, Libin; Manieri, Monia; Donovan, Mi X; Wu, Zhidan; Cooper, Marcus P; Fan, Melina C; Rohas, Lindsay M; Zavacki, Ann Marie; Cinti, Saverio; Shulman, Gerald I; Lowell, Bradford B; Krainc, Dimitri; Spiegelman, Bruce M

    2004-10-01

    PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.

  11. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    PubMed Central

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  12. Reductions in expression of growth regulating genes in skeletal muscle with age in wild type and myostatin null mice.

    PubMed

    Jones, Jennifer C; Kroscher, Kellie A; Dilger, Anna C

    2014-03-28

    Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.

  13. Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release.

    PubMed

    Quarta, Davide; Naylor, Christopher G; Barik, Jacques; Fernandes, Cathy; Wonnacott, Susan; Stolerman, Ian P

    2009-04-01

    The nicotine discriminative stimulus has been linked to beta2-containing (beta2*) nicotinic receptors, with little evidence of a role for alpha7 nicotinic receptors, because nicotine discrimination was very weak in beta2 null mutant mice but normal in alpha7 mutants. As both alpha7 and beta2* nicotinic receptors have been implicated in nicotine-stimulated dopamine overflow, this study focused on the dopamine-mediated element in the nicotine stimulus by examining cross-generalisation between amphetamine and nicotine. Male alpha7 nicotinic receptor null mutant mice and wild-type controls were bred in-house and trained to discriminate nicotine (0.8 mg/kg) or (+)-amphetamine (0.6 mg/kg) from saline in a two-lever procedure with a tandem VI-30 FR-10 schedule of food reinforcement. Dopamine release from striatal slices was determined in parallel experiments. An alpha7 nicotinic receptor-mediated component of dopamine release was demonstrated in tissue from wild-type mice using choline as a selective agonist. This response was absent in tissue from null mutant animals. The mutation did not influence acquisition of drug discriminations but subtly affected the results of cross-generalisation tests. In mice trained to discriminate nicotine or amphetamine, there was partial cross-generalisation in wild-type mice and, at certain doses, these effects were attenuated in mutants. Further support for an alpha7 nicotinic receptor-mediated component was provided by the ability of the alpha7 nicotinic receptor antagonist methyllycaconitine to attenuate responses to nicotine and amphetamine in wild-type mice. These findings support the concept of an alpha7 nicotinic receptor-mediated dopaminergic element in nicotine discrimination, warranting further tests with selective dopamine agonists.

  14. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice.

    PubMed

    Iwakuma, Tomoo; Parant, John M; Fasulo, Mark; Zwart, Edwin; Jacks, Tyler; de Vries, Annemieke; Lozano, Guillermina

    2004-10-07

    Mdm2 and its homolog Mdm4 inhibit the function of the tumor suppressor p53. Targeted disruption of either mdm2 or mdm4 genes in mice results in embryonic lethality that is completely rescued by concomitant deletion of p53, suggesting that deletion of negative regulators of p53 results in a constitutively active p53. Thus, these mouse models offer a unique in vivo system to assay the functional significance of different p53 modifications. Phosphorylation of serine 389 in murine p53 occurs specifically after ultraviolet-light-induced DNA damage, and phosphorylation of this site enhances p53 activity both in vitro and in vivo. Recently, mice with a serine to alanine substitution at serine 389 (p53S389A) in the endogenous p53 locus were generated. To examine the in vivo significance of serine 389 phosphorylation during embryogenesis, we crossed these mutant mice to mice lacking mdm2 or mdm4. The p53S389A allele did not alter the embryonic lethality of mdm2 or mdm4. Additional crosses to assay the effect of one p53S389A allele with a p53 null allele also did not rescue the lethal phenotypes. In conclusion, the phenotypes due to loss of mdm2 or mdm4 were not even partially rescued by p53S389A, suggesting that p53S389A is functionally wild type during embryogenesis.

  15. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.

    PubMed

    Tomoe, Yuka; Segawa, Hiroko; Shiozawa, Kazuyo; Kaneko, Ichiro; Tominaga, Rieko; Hanabusa, Etsuyo; Aranami, Fumito; Furutani, Junya; Kuwahara, Shoji; Tatsumi, Sawako; Matsumoto, Mitsutu; Ito, Mikiko; Miyamoto, Ken-ichi

    2010-06-01

    In the present study, we evaluated the roles of type II and type III sodium-dependent P(i) cotransporters in fibroblast growth factor 23 (FGF23) activity by administering a vector encoding FGF23 with the R179Q mutation (FGF23M) to wild-type (WT) mice, Npt2a knockout (KO) mice, Npt2c KO mice, and Npt2a(-/-)Npt2c(-/-) mice (DKO mice). In Npt2a KO mice, FGF23M induced severe hypophosphatemia and markedly decreased the levels of Npt2c, type III Na-dependent P(i) transporter (PiT2) protein, and renal Na/P(i) transport activity. In contrast, in Npt2c KO mice, FGF23M decreased plasma phosphate levels comparable to those in FGF23M-injected WT mice. In DKO mice with severe hypophosphatemia, FGF23M administration did not induce an additional increase in urinary phosphate excretion. FGF23 administration significantly decreased intestinal Npt2b protein levels in WT mice but had no effect in Npt2a, Npt2c, and DKO mice, despite marked suppression of plasma 1,25(OH)(2)D(3) levels in all the mutant mice. The main findings were as follow: 1) FGF23-dependent phosphaturic activity in Npt2a KO mice is dependent on renal Npt2c and PiT-2 protein; 2) in DKO mice, renal P(i) reabsorption is not further decreased by FGF23M, but renal vitamin D synthesis is suppressed; and 3) downregulation of intestinal Npt2b may be mediated by a factor(s) other than 1,25(OH)(2)D(3). These findings suggest that Npt2a, Npt2c, and PiT-2 are necessary for the phosphaturic activity of FGF23. Thus complementary regulation of Npt2 family proteins may be involved in systemic P(i) homeostasis.

  16. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion

    PubMed Central

    Leoni, Giovanna; Patel, Hetal B.; Sampaio, André L. F.; Gavins, Felicity N. E.; Murray, Joanne F.; Grieco, Paolo; Getting, Stephen J.; Perretti, Mauro

    2008-01-01

    The existence of anti-inflammatory circuits centered on melanocortin receptors (MCRs) has been supported by the inhibitory properties displayed by melanocortin peptides in models of inflammation and tissue injury. Here we addressed the pathophysiological effect that one MCR, MCR type 3 (MC3R), might have on vascular inflammation. After occlusion (35 min) and reopening of the superior mesenteric artery, MC3R-null mice displayed a higher degree of plasma extravasation (45 min postreperfusion) and cell adhesion and emigration (90 min postreperfusion). These cellular alterations were complemented by higher expression of mesenteric tissue CCL2 and CXCL1 (mRNA and protein) and myeloperoxydase, as compared with wild-type animals. MC1R and MC3R mRNA and protein were both expressed in the inflamed mesenteric tissue; however, no changes in vascular responses were observed in a mouse colony bearing an inactive MC1R. Pharmacological treatment of animals with a selective MC3R agonist ([d-Trp8]-γ-melanocyte-stimulating hormone; 10 μg i.v.) produced marked attenuation of cell adhesion, emigration, and chemokine generation; such effects were absent in MC3R-null mice. These new data reveal the existence of a tonic inhibitory signal provided by MC3R in the mesenteric microcirculation of the mouse, acting to down-regulate cell trafficking and local mediator generation.—Leoni, G., Patel, H. B., Sampaio, A. L. F., Gavins, F. N. E., Murray, J. F., Grieco, P., Getting, S. J., Perretti, M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. PMID:18757499

  17. Imbalanced plasma ACE and ACE2 level in the uremic patients with cardiovascular diseases and its change during a single hemodialysis session.

    PubMed

    Yang, Chung-Wei; Lu, Li-Che; Chang, Chia-Chu; Cho, Ching-Chang; Hsieh, Wen-Yeh; Tsai, Chin-Hung; Lin, Yi-Chang; Lin, Chih-Sheng

    2017-11-01

    The renin-angiotensin system (RAS) has significant influences on heart and renal disease progression. Angiotensin converting enzyme (ACE) and angiotensin converting enzyme II (ACE2) are major peptidases of RAS components and play counteracting functions through angiotensin II (Ang II)/ATIR and angiotensin-(1-7) (Ang-(1-7))/Mas axis, respectively. There were 360 uremic patients on regular hemodialysis (HD) treatment (inclusive of 119 HD patients with cardiovascular diseases (CVD) and 241 HD patients without CVD and 50 healthy subjects were enrolled in this study. Plasma ACE, ACE2, Ang II and Ang-(1-7) levels of the HD patients were determined. We compared pre-HD levels of plasma ACE, ACE2, Ang II and Ang-(1-7) in the HD patients with and without CVD to those of the controls. The HD patients, particularly those with CVD, showed a significant increase in the levels of ACE and Ang II, whereas ACE2 and Ang-(1-7) levels were lower than those in the healthy controls. Therefore, imbalanced ACE/ACE2 was observed in the HD patients with CVD. In the course of a single HD session, the plasma ACE, ACE/ACE2 and Ang II levels in the HD patients with CVD were increased from pre-HD to post-HD. On the contrary, ACE2 levels were decreased after the HD session. These changes were not detected in the HD patients without CVD. Pathogenically imbalanced circulating ACE/ACE2 was detected in the HD patients, particularly those with CVD. HD session could increase ACE/Ang II/AT1R axis and decrease ACE2/Ang-(1-7)/Mas axis activity in the circulation of HD patients with CVD.

  18. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds

    PubMed Central

    Yang, Jie; Wang, Shih-Kai; Choi, Murim; Reid, Bryan M; Hu, Yuanyuan; Lee, Yuan-Ling; Herzog, Curtis R; Kim-Berman, Hera; Lee, Moses; Benke, Paul J; Kent Lloyd, K C; Simmer, James P; Hu, Jan C-C

    2015-01-01

    WNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA,EDAR, or EDARADD variations. Wnt10a null mice exhibited supernumerary mandibular fourth molars, and smaller molars with abnormal cusp patterning and root taurodontism. Wnt10a−/− incisors showed distinctive apical–lingual wedge-shaped defects. These findings spurred us to closely examine the dental phenotypes of our WNT10A families. WNT10A heterozygotes exhibited molar root taurodontism and mild tooth agenesis (with incomplete penetrance) in their permanent dentitions. Individuals with two defective WNT10A alleles showed severe tooth agenesis and had fewer cusps on their molars. The misshapened molar crowns and roots were consistent with the Wnt10a null phenotype and were not previously associated with WNT10A defects. The missing teeth contrasted with the presence of supplemental teeth in the Wnt10a null mice and demonstrated mammalian species differences in the roles of Wnt signaling in early tooth development. We conclude that molar crown and root dysmorphologies are caused by WNT10A defects and that the severity of the tooth agenesis correlates with the number of defective WNT10A alleles. PMID:25629078

  20. Maturation Stage Enamel Malformations in Amtn and Klk4 Null Mice

    PubMed Central

    Nunez, Stephanie M.; Chun, Yong-Hee P.; Ganss, Bernhard; Hu, Yuanyuan; Richardson, Amelia S; Schmitz, James E.; Fajardo, Roberto; Yang, Jie; Hu, Jan C-C.; Simmer, James P.

    2015-01-01

    Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn−/−, Klk4−/−, Amtn+/−Klk4+/− and Amtn−/−Klk4−/− mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice, demonstrating a delay in enamel maturation in Amtn−/− incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4 gHA/cm3) in the Klk4−/− and Amtn−/−Klk4−/− mice respectively, compared with wild-type enamel (3.1 gHA/cm3). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4−/− and Amtn−/−Klk4−/− mice. Knoop hardness of Amtn−/− outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4−/− enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn−/− and Klk4−/− mice were distinctly different, while the Amtn−/−Klk4−/− outer enamel was not as hard as in the Amtn−/− and Klk4−/− mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation. PMID:26620968

  1. Sensitization to autoimmune hepatitis in group VIA calcium-independent phospholipase A2-null mice led to duodenal villous atrophy with apoptosis, goblet cell hyperplasia and leaked bile acids.

    PubMed

    Jiao, Li; Gan-Schreier, Hongying; Tuma-Kellner, Sabine; Stremmel, Wolfgang; Chamulitrat, Walee

    2015-08-01

    Chronic bowel disease can co-exist with severe autoimmune hepatitis (AIH) in an absence of primary sclerosing cholangitis. Genetic background may contribute to this overlap syndrome. We previously have shown that the deficiency of iPLA2β causes an accumulation of hepatocyte apoptosis, and renders susceptibility for acute liver injury. We here tested whether AIH induction in iPLA2β-null mice could result in intestinal injury, and whether bile acid metabolism was altered. Control wild-type (WT) and female iPLA2β-null (iPLA2β(-/-)) mice were intravenously injected with 10mg/kg concanavalinA (ConA) or saline for 24h. ConA treatment of iPLA2β(-/-) mice caused massive liver injury with increased liver enzymes, fibrosis, and necrosis. While not affecting WT mice, ConA treatment of iPLA2β(-/-) mice caused severe duodenal villous atrophy concomitant with increased apoptosis, cell proliferation, globlet cell hyperplasia, and endotoxin leakage into portal vein indicating a disruption of intestinal barrier. With the greater extent than in WT mice, ConA treatment of iPLA2β(-/-) mice increased jejunal expression of innate response cytokines CD14, TNF-α, IL-6, and SOCS3 as well as chemokines CCL2 and the CCL3 receptor CCR5. iPLA2β deficiency in response to ConA-induced AIH caused a significant decrease in hepatic and biliary bile acids, and this was associated with suppression of hepatic Cyp7A1, Ntcp and ABCB11/Bsep and upregulation of intestinal FXR/FGF15 mRNA expression. The suppression of hepatic Ntcp expression together with the loss of intestinal barrier could account for the observed bile acid leakage into peripheral blood. Thus, enteropathy may result from acute AIH in a susceptible host such as iPLA2β deficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The common missense mutation D489N in TRIM32 causing limb girdle muscular dystrophy 2H leads to loss of the mutated protein in knock-in mice resulting in a Trim32-null phenotype.

    PubMed

    Kudryashova, Elena; Struyk, Arie; Mokhonova, Ekaterina; Cannon, Stephen C; Spencer, Melissa J

    2011-10-15

    Mutations in tripartite motif protein 32 (TRIM32) are responsible for several hereditary disorders that include limb girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathy (STM) and Bardet Biedl syndrome. Most LGMD2H mutations in TRIM32 are clustered in the NHL β-propeller domain at the C-terminus and are predicted to interfere with homodimerization. To get insight into TRIM32's role in the pathogenesis of LGMD2H and to create an accurate model of disease, we have generated a knock-in mouse (T32KI) carrying the c.1465G > A (p.D489N) mutation in murine Trim32 corresponding to the human LGMD2H/STM pathogenic mutation c.1459G > A (p.D487N). Our data indicate that T32KI mice have both a myopathic and a neurogenic phenotype, very similar to the one described in the Trim32-null mice that we created previously. Analysis of Trim32 gene expression in T32KI mice revealed normal mRNA levels, but a severe reduction in mutant TRIM32 (D489N) at the protein level. Our results suggest that the D489N pathogenic mutation destabilizes the protein, leading to its degradation, and results in the same mild myopathic and neurogenic phenotype as that found in Trim32-null mice. Thus, one potential mechanism of LGMD2H might be destabilization of mutated TRIM32 protein leading to a null phenotype.

  3. Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function.

    PubMed

    Hsieh, Minnie; Boerboom, Derek; Shimada, Masayuki; Lo, Yuet; Parlow, Albert F; Luhmann, Ulrich F O; Berger, Wolfgang; Richards, JoAnne S

    2005-12-01

    Previous studies showed that transcripts encoding specific Wnt ligands and Frizzled receptors including Wnt4, Frizzled1 (Fzd1), and Frizzled4 (Fzd4) were expressed in a cell-specific manner in the adult mouse ovary. Overlapping expression of Wnt4 and Fzd4 mRNA in small follicles and corpora lutea led us to hypothesize that the infertility of mice null for Fzd4 (Fzd4-/-) might involve impaired follicular growth or corpus luteum formation. Analyses at defined stages of reproductive function indicate that immature Fzd4-/- mouse ovaries contain follicles at many stages of development and respond to exogenous hormone treatments in a manner similar to their wild-type littermates, indicating that the processes controlling follicular development and follicular cell responses to gonadotropins are intact. Adult Fzd4-/- mice also exhibit normal mating behavior and ovulate, indicating that endocrine events controlling these processes occur. However, Fzd4-/- mice fail to become pregnant and do not produce offspring. Histological and functional analyses of ovaries from timed mating pairs at Days 1.5-7.5 postcoitus (p.c.) indicate that the corpora lutea of the Fzd4-/- mice do not develop normally. Expression of luteal cell-specific mRNAs (Lhcgr, Prlr, Cyp11a1 and Sfrp4) is reduced, luteal cell morphology is altered, and markers of angiogenesis and vascular formation (Efnb1, Efnb2, Ephb4, Vegfa, Vegfc) are low in the Fzd4-/- mice. Although a recently identified, high-affinity FZD4 ligand Norrin (Norrie disease pseudoglioma homolog) is expressed in the ovary, adult Ndph-/- mice contain functional corpora lutea and do not phenocopy Fzd4-/- mice. Thus, Fzd4 appears to impact the formation of the corpus luteum by mechanisms that more closely phenocopy Prlr null mice.

  4. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    PubMed

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  5. Expression and evolutionary analyses of three acetylcholinesterase genes (Mi-ace-1, Mi-ace-2, Mi-ace-3) in the root-knot nematode Meloidogyne incognita.

    PubMed

    Cui, Ruqiang; Zhang, Lei; Chen, Yuyan; Huang, Wenkun; Fan, Chengming; Wu, Qingsong; Peng, Deliang; da Silva, Washington; Sun, Xiaotang

    2017-05-01

    The full cDNA of Mi-ace-3 encoding an acetylcholinesterase (AChE) in Meloidogyne incognita was cloned and characterized. Mi-ace-3 had an open reading frame of 1875 bp encoding 624 amino acid residues. Key residues essential to AChE structure and function were conserved. The deduced Mi-ACE-3 protein sequence had 72% amino acid similarity with that of Ditylenchus destructor Dd-AChE-3. Phylogenetic analyses using 41 AChEs from 24 species showed that Mi-ACE-3 formed a cluster with 4 other nematode AChEs. Our results revealed that the Mi-ace-3 cloned in this study, which is orthologous to Caenorhabditis elegans AChE, belongs to the nematode ACE-3/4 subgroup. There was a significant reduction in the number of galls in transgenic tobacco roots when Mi-ace-1, Mi-ace-2, and Mi-ace-3 were knocked down simultaneously, whereas little or no effect were observed when only one or two of these genes were knocked down. This is an indication that the functions of these three genes are redundant. Copyright © 2017. Published by Elsevier Inc.

  6. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction.

    PubMed

    Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E

    2014-07-25

    We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. periostin Null Mice Exhibit Dwarfism, Incisor Enamel Defects, and an Early-Onset Periodontal Disease-Like Phenotype

    PubMed Central

    Rios, Hector; Koushik, Shrinagesh V.; Wang, Haiyan; Wang, Jian; Zhou, Hong-Ming; Lindsley, Andrew; Rogers, Rhonda; Chen, Zhi; Maeda, Manabu; Kruzynska-Frejtag, Agnieszka; Feng, Jian Q.; Conway, Simon J.

    2005-01-01

    Periostin was originally identified as an osteoblast-specific factor and is highly expressed in the embryonic periosteum, cardiac valves, placenta, and periodontal ligament as well as in many adult cancerous tissues. To investigate its role during development, we generated mice that lack the periostin gene and replaced the translation start site and first exon with a lacZ reporter gene. Surprisingly, although periostin is widely expressed in many developing organs, periostin-deficient (perilacZ) embryos are grossly normal. Postnatally, however, ∼14% of the nulls die before weaning and all of the remaining perilacZ nulls are severely growth retarded. Skeletal analysis revealed that trabecular bone in adult homozygous skeletons was sparse, but overall bone growth was unaffected. Furthermore, by 3 months, the nulls develop an early-onset periodontal disease-like phenotype. Unexpectedly, these mice also show a severe incisor enamel defect, although there is no apparent change in ameloblast differentiation. Significantly, placing the perilacZ nulls on a soft diet that alleviated mechanical strain on the periodontal ligament resulted in a partial rescue of both the enamel and periodontal disease-like phenotypes. Combined, these data suggest that a healthy periodontal ligament is required for normal amelogenesis and that periostin is critically required for maintenance of the integrity of the periodontal ligament in response to mechanical stresses. PMID:16314533

  8. Defective Generation of a Humoral Immune Response Is Associated with a Reduced Incidence and Severity of Collagen-Induced Arthritis in Microsomal Prostaglandin E Synthase-1 Null Mice1

    PubMed Central

    Kojima, Fumiaki; Kapoor, Mohit; Yang, Lihua; Fleishaker, Erica L.; Ward, Martin R.; Monrad, Seetha U.; Kottangada, Ponnappa C.; Pace, Charles Q.; Clark, James A.; Woodward, Jerold G.; Crofford, Leslie J.

    2008-01-01

    Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase and specifically catalyzes the conversion of PGH2 to PGE2. The present study demonstrates the effect of genetic deletion of mPGES-1 on the developing immunologic responses and its impact on the clinical model of bovine collagen-induced arthritis. mPGES-1 null and heterozygous mice exhibited decreased incidence and severity of arthritis compared with wild-type mice in a gene dose-dependent manner. Histopathological examination revealed significant reduction in lining hyperplasia and tissue destruction in mPGES-1 null mice compared with their wild-type littermates. mPGES-1 deficient mice also exhibited attenuation of mechanical nociception in a gene dose-dependent manner. In addition, mPGES-1 null and heterozygous mice showed a marked reduction of serum IgG against type II collagen (CII), including subclasses IgG1, IgG2a, IgG2b, IgG2c, and IgG3, compared with wild-type mice, which correlated with the reduction in observed inflammatory features. These results demonstrate for the first time that deficiency of mPGES-1 inhibits the development of collagen-induced arthritis, at least in part, by blocking the development of a humoral immune response against type II collagen. Pharmacologic inhibition of mPGES-1 may therefore impact both the inflammation and the autoimmunity associated with human diseases such as rheumatoid arthritis. PMID:18523303

  9. Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

    PubMed Central

    Nicolson, Tamara J.; Bellomo, Elisa A.; Wijesekara, Nadeeja; Loder, Merewyn K.; Baldwin, Jocelyn M.; Gyulkhandanyan, Armen V.; Koshkin, Vasilij; Tarasov, Andrei I.; Carzaniga, Raffaella; Kronenberger, Katrin; Taneja, Tarvinder K.; da Silva Xavier, Gabriela; Libert, Sarah; Froguel, Philippe; Scharfmann, Raphael; Stetsyuk, Volodymir; Ravassard, Philippe; Parker, Helen; Gribble, Fiona M.; Reimann, Frank; Sladek, Robert; Hughes, Stephen J.; Johnson, Paul R.V.; Masseboeuf, Myriam; Burcelin, Remy; Baldwin, Stephen A.; Liu, Ming; Lara-Lemus, Roberto; Arvan, Peter; Schuit, Frans C.; Wheeler, Michael B.; Chimienti, Fabrice; Rutter, Guy A.

    2009-01-01

    OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks. PMID:19542200

  10. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity

    PubMed Central

    Kyriakides, Themis R.; Leach, Kathleen J.; Hoffman, Allan S.; Ratner, Buddy D.; Bornstein, Paul

    1999-01-01

    Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of TSP2 in the FBR, polydimethylsiloxane (PDMS) and oxidized PDMS (ox-PDMS) disks were implanted in TSP2-null and control mice. Growth of TSP2-null and control skin fibroblasts in vitro also was evaluated on both types of disks. Normal fibroblasts grew as a monolayer on both surfaces, but attachment of the cells to ox-PDMS was weak and sensitive to movement. TSP2-null fibroblasts grew as aggregates on both surfaces, and their attachment was further compromised on ox-PDMS. After a 4-week implantation period, both types of PDMS elicited a similar FBR with a collagenous capsule in both TSP2-null and control mice. However, strikingly, the collagenous capsule that formed in TSP2-null mice was highly vascularized and thicker than that formed in normal mice. In addition, abnormally shaped collagen fibers were observed in capsules from mutant mice. These observations indicate that the presence or absence of an extracellular matrix component, TSP2, can influence the nature of the FBR, in particular its vascularity. The expression of TSP2 therefore could represent a molecular target for local inhibitory measures when vascularization of the tissue surrounding an implanted device is desired. PMID:10200282

  11. Mice with an NaV1.4 sodium channel null allele have latent myasthenia, without susceptibility to periodic paralysis

    PubMed Central

    Wu, Fenfen; Mi, Wentao; Fu, Yu; Struyk, Arie

    2016-01-01

    Over 60 mutations of SCN4A encoding the NaV1.4 sodium channel of skeletal muscle have been identified in patients with myotonia, periodic paralysis, myasthenia, or congenital myopathy. Most mutations are missense with gain-of-function defects that cause susceptibility to myotonia or periodic paralysis. Loss-of-function from enhanced inactivation or null alleles is rare and has been associated with myasthenia and congenital myopathy, while a mix of loss and gain of function changes has an uncertain relation to hypokalaemic periodic paralysis. To better define the functional consequences for a loss-of-function, we generated NaV1.4 null mice by deletion of exon 12. Heterozygous null mice have latent myasthenia and a right shift of the force-stimulus relation, without evidence of periodic paralysis. Sodium current density was half that of wild-type muscle and no compensation by retained expression of the foetal NaV1.5 isoform was detected. Mice null for NaV1.4 did not survive beyond the second postnatal day. This mouse model shows remarkable preservation of muscle function and viability for haploinsufficiency of NaV1.4, as has been reported in humans, with a propensity for pseudo-myasthenia caused by a marginal Na+ current density to support sustained high-frequency action potentials in muscle. PMID:27048647

  12. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  13. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice

    PubMed Central

    Bouillon, Roger; Carmeliet, Geert; Verlinden, Lieve; van Etten, Evelyne; Verstuyf, Annemieke; Luderer, Hilary F.; Lieben, Liesbet; Mathieu, Chantal; Demay, Marie

    2008-01-01

    The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)2D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1α-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)2D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1α-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status. PMID:18694980

  14. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice

    PubMed Central

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-01-01

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution. PMID:18288204

  15. Cystamine restores GSTA3 levels in Vanin-1 null mice.

    PubMed

    Di Leandro, Luana; Maras, Bruno; Schininà, M Eugenia; Dupré, Silvestro; Koutris, Ilias; Martin, Florent M; Naquet, Philippe; Galland, Franck; Pitari, Giuseppina

    2008-03-15

    Free cysteamine levels in mouse tissues have been strictly correlated to the presence of membrane-bound pantetheinase activity encoded by Vanin-1. Vanin-1 is involved in many biological processes in mouse, from thymus homing to sexual development. Vanin-1 -/- mice are fertile and grow and develop normally; they better control inflammation and most of the knockout effects were rescued by cystamine treatment. Gene structure analysis showed the presence of an oxidative stimuli-responsive ARE-like sequence in the promoter. In this paper we investigate antioxidant-detoxifying enzymatic activities at the tissue level, comparing Vanin-1 -/- and wild-type mice. In Vanin-1 null animals we pointed out a decrease in the Se-independent glutathione peroxidase activity. The decrease in enzymatic activity appeared to be correlated to an impairment of GST isoenzyme levels. In particular a significant drop in GSTA3 together with a minor decrement in GSTM1 and an increase in GSTP1 levels was detected in Vanin-1 -/- livers. Cystamine administration to Vanin-1 -/- mice restored specifically GSTA3 levels and the corresponding enzymatic activity without influencing protein expression. A possible role of cystamine on protein stability/folding can be postulated.

  16. IDENTIFICATION OF NOVEL TOXICITY-ASSOCIATED METABOLITES BY METABOLOMICS AND MASS ISOTOPOMER ANALYSIS OF ACETAMINOPHEN METABOLISM IN WILD-TYPE AND CYP2E1-NULL MICE

    PubMed Central

    Chen, Chi; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2008-01-01

    CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3′-biacetaminophen (VIII, an APAP dimer) and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem MS fragmentation, in vitro reactions and chemical treatments. Dose-, time- and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically-modified animal models, mass isotopomer analysis and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unravelling novel mechanisms. PMID:18093979

  17. ACE Over Expression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer's Disease

    PubMed Central

    Koronyo-Hamaoui, Maya; Shah, Kandarp; Koronyo, Yosef; Bernstein, Ellen; Giani, Jorge F.; Janjulia, Tea; Black, Keith L.; Shi, Peng D.; Gonzalez-Villalobos, Romer A.; Fuchs, Sebastien; Shen, Xiao Z.; Bernstein, Kenneth E.

    2014-01-01

    While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice over express ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD. PMID:24792094

  18. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice.

    PubMed

    Stevens, Karen E; Choo, Kevin S; Stitzel, Jerry A; Marks, Michael J; Adams, Catherine E

    2014-03-13

    Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. Published by Elsevier B.V.

  19. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice

    PubMed Central

    Stevens, Karen E.; Choo, Kevin S.; Stitzel, Jerry A.; Marks, Michael J.; Adams, Catherine E.

    2014-01-01

    Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. PMID:24462939

  20. Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension.

    PubMed

    Garcia, Victor; Joseph, Gregory; Shkolnik, Brian; Ding, Yan; Zhang, Frank Fan; Gotlinger, Katherine; Falck, John R; Dakarapu, Rambabu; Capdevila, Jorge H; Bernstein, Kenneth E; Schwartzman, Michal Laniado

    2015-07-01

    Increased vascular 20-HETE is associated with hypertension and activation of the renin-angiotensin system (RAS) through induction of vascular angiotensin-converting enzyme (ACE) expression. Cyp4a12tg mice, whose Cyp4a12-20-HETE synthase expression is under the control of a tetracycline (doxycycline, DOX) promoter, were used to assess the contribution of ACE/RAS to microvascular remodeling in 20-HETE-dependent hypertension. Treatment of Cyp4a12tg mice with DOX increased systolic blood pressure (SBP; 136 ± 2 vs. 102 ± 1 mmHg; P < 0.05), and this increase was prevented by administration of 20-HEDGE, lisinopril, or losartan. DOX-induced hypertension was associated with microvascular dysfunction and remodeling of preglomerular microvessels, which was prevented by 20-HEDGE, a 20-HETE antagonist, yet only lessened, but not prevented, by lisinopril or losartan. In ACE 3/3 mice, which lack vascular endothelial ACE, administration of 5α-dihydrotestosterone (DHT), a known inducer of 20-HETE production, increased SBP; however, the increase was about 50% of that in wild-type (WT) mice (151 ± 1 vs. 126 ± 1 mmHg). Losartan and 20-HEDGE prevented the DHT-induced increase in SBP in WT and ACE 3/3 mice. DHT treatment increased 20-HETE production and microvascular remodeling in WT and ACE 3/3 mice; however, remodeling was attenuated in the ACE 3/3 mice as opposed to WT mice (15.83 ± 1.11 vs. 22.17 ± 0.92 μm; P < 0.05). 20-HEDGE prevented microvascular remodeling in WT and ACE 3/3 mice, while losartan had no effect on microvascular remodeling in ACE 3/3. Taken together, these results suggest that RAS contributes to 20-HETE-mediated microvascular remodeling in hypertension and that 20-HETE-driven microvascular remodeling independent of blood pressure elevation does not fully rely on ACE activity in the vascular endothelium. Copyright © 2015 the American Physiological Society.

  1. Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft

  2. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  3. (99m)Tc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice.

    PubMed

    Kaloudi, Aikaterini; Nock, Berthold A; Lymperis, Emmanouil; Krenning, Eric P; de Jong, Marion; Maina, Theodosia

    2016-06-01

    In situ inhibition of neutral endopeptidase (NEP) has been recently shown to impressively increase the bioavailability and tumor uptake of biodegradable gastrin radioligands. Furthermore, angiotensin converting enzyme (ACE) has been previously shown to cleave gastrin analogs in vitro. In the present study, we have assessed the effects induced by single or dual NEP/ACE-inhibition on the pharmacokinetic profile of three (99m)Tc-labeled gastrins of varying peptide chain length: [(99m)Tc]SG6 ([(99m)Tc-N4-Gln(1)]gastrin(1-17)), [(99m)Tc]DG2 ([(99m)Tc-N4-Gly(4),DGlu(5)]gastrin(4-17)) and [(99m)Tc]DG4 ([(99m)Tc-N4-DGlu(10)]gastrin(10-17)). Mouse blood samples were collected 5min after injection of each of [(99m)Tc]SG6/DG2/DG4 together with: a) vehicle, b) the NEP-inhibitor phosphoramidon (PA), c) the ACE-inhibitor lisinopril (Lis), or d) PA plus Lis and were analyzed by RP-HPLC for radiometabolite detection. Biodistribution was studied in SCID mice bearing A431-CCK2R(+/-) xenografts at 4h postinjection (pi). [(99m)Tc]SG6 or [(99m)Tc]DG4 was coinjected with either vehicle or the above described NEP/ACE-inhibitor regimens; for [(99m)Tc]DG2 control and PA animal groups were only included. Treatment of mice with PA induced significant stabilization of (99m)Tc-radiotracers in peripheral blood, while treatment with Lis or Lis+PA affected the stability of des(Glu)5 [(99m)Tc]DG4 only. In line with these findings, PA coinjection led to notable amplification of tumor uptake of radiopeptides compared to controls (P<0.01). Only [(99m)Tc]DG4 profited by single Lis (2.06±0.39%ID/g vs 0.99±0.13%ID/g in controls) or combined Lis+PA coinjection (8.91±1.61%ID/g vs 4.89±1.33%ID/g in PA-group). Furthermore, kidney uptake remained favourably low and unaffected by PA and/or Lis coinjection only in the case of [(99m)Tc]DG4 (<1.9%ID/g) resulting in the most optimal tumor-to-kidney ratios. In situ NEP/ACE-inhibition diversely affected the in vivo profile of (99m)Tc-radioligands based on

  4. Induction and persistence of abnormal testicular germ cells following gestational exposure to di-(n-butyl) phthalate in p53-null mice.

    PubMed

    Saffarini, Camelia M; Heger, Nicholas E; Yamasaki, Hideki; Liu, Tao; Hall, Susan J; Boekelheide, Kim

    2012-01-01

    Phthalate esters are commonly used plasticizers found in many household items, personal care products, and medical devices. Animal studies have shown that in utero exposure to di-(n-butyl) phthalate (DBP) within a critical window during gestation causes male reproductive tract abnormalities resembling testicular dysgenesis syndrome. Our studies utilized p53-deficient mice for their ability to display greater resistance to apoptosis during development. This model was chosen to determine whether multinucleated germ cells (MNG) induced by gestational DBP exposure could survive postnatally and evolve into testicular germ cell cancer. Pregnant dams were exposed to DBP (500 mg/kg/day) by oral gavage from gestational day 12 until birth. Perinatal effects were assessed on gestational day 19 and postnatal days 1, 4, 7, and 10 for the number of MNGs present in control and DBP-treated p53-heterozygous and null animals. As expected, DBP exposure induced MNGs, with greater numbers found in p53-null mice. Additionally, there was a time-dependent decrease in the incidence of MNGs during the early postnatal period. Histologic examination of adult mice exposed in utero to DBP revealed persistence of abnormal germ cells only in DBP-treated p53-null mice, not in p53-heterozygous or wild-type mice. Immunohistochemical staining of perinatal MNGs and adult abnormal germ cells was negative for both octamer-binding protein 3/4 and placental alkaline phosphatase. This unique model identified a role for p53 in the perinatal apoptosis of DBP-induced MNGs and provided insight into the long-term effects of gestational DBP exposure within a p53-null environment.

  5. Enhanced anorexigenic signaling in lean obesity resistant syndecan-3 null mice

    PubMed Central

    Zheng, Qiao; Zhu, Jinling; Shanabrough, Marya; Borok, Erzsebet; Benoit, Stephen C.; Horvath, Tamas L.; Clegg, Deborah J.; Reizes, Ofer

    2010-01-01

    Obesity is associated with increased risk of diabetes, cardiovascular disease and several types of cancers. The hypothalamus is a region of the brain critical in the regulation of body weight. One of the critical and best studied hypothalamic circuits is comprised of the melanocortinergic orexigenic agouti -related protein (AgRP) and anorexigenic α-melanocyte stimulating hormone (α-MSH) neurons. These neurons project axons to the same hypothalamic target neurons and balance each other’s activity leading to body weight regulation. We previously showed that the brain proteoglycan syndecan-3 regulates feeding behavior and body weight, and syndecan-3 null (SDC-3−/−) mice are lean and obesity resistant. Here we show that the melanocortin agonist MTII potently suppresses food intake and activates the hypothalamic paraventricular nuclei (PVN) in SDC-3−/− mice based on c-fos immunoreactivity. Interestingly, we determined that the AgRP neuropeptide is reduced in the PVN of SDC-3−/− mice compared to wild type mice. In contrast, neuropeptide Y, coexpressed in the AgRP neuron, is not differentially expressed nor is the counteracting neuropeptide αMSH. These findings are unprecedented and indicate that AgRP protein localization can be selectively regulated within the hypothalamus resulting in altered neuropeptide response and tone. PMID:20923696

  6. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione andmore » exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gst{alpha}1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.« less

  7. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet.

    PubMed

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L; Tanaka, Yuji; Klaassen, Curtis D

    2010-06-15

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstalpha1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities. Copyright 2010. Published by Elsevier Inc.

  8. The ACE2 gene: its potential as a functional candidate for cardiovascular disease.

    PubMed

    Burrell, Louise M; Harrap, Stephen B; Velkoska, Elena; Patel, Sheila K

    2013-01-01

    The RAS (renin-angiotensin system) plays an important role in the pathophysiology of CVD (cardiovascular disease), and RAS blockade is an important therapeutic strategy in the management of CVD. A new counterbalancing arm of the RAS is now known to exist in which ACE (angiotensin-converting enzyme) 2 degrades Ang (angiotensin) II, the main effector of the classic RAS, and generates Ang-(1-7). Altered ACE2 expression is associated with cardiac and vascular disease in experimental models of CVD, and ACE2 is increased in failing human hearts and atherosclerotic vessels. In man, circulating ACE2 activity increases with coronary heart disease, as well as heart failure, and a large proportion of the variation in plasma ACE2 levels has been attributed to hereditary factors. The ACE2 gene maps to chromosome Xp22 and this paper reviews the evidence associating ACE2 gene variation with CVD and considers clues to potential functional ACE2 variants that may alter gene expression or transcriptional activity. Studies to date have investigated ACE2 gene associations in hypertension, left ventricular hypertrophy and coronary artery disease, but the results have been inconsistent. The discrepancies may reflect the sample size of the studies, the gender or ethnicity of subjects, the cardiovascular phenotype or the ACE2 SNP investigated. The frequent observation of apparent sex-dependence might be of special importance, if confirmed. As yet, there are no studies to concurrently assess ACE2 gene polymorphisms and circulating ACE2 activity. Large-scale carefully conducted clinical studies are urgently needed to clarify more precisely the potential role of ACE2 in the CVD continuum.

  9. Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion.

    PubMed

    Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino

    2008-02-13

    CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.

  10. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocytemore » count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular

  11. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2null mice

    PubMed Central

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2null mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  12. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    PubMed

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome

    PubMed Central

    McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.

    2013-01-01

    Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313

  14. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  15. Impaired Angiogenesis and Mobilization of Circulating Angiogenic Cells in HIF-1α Heterozygous-Null Mice after Burn Wounding

    PubMed Central

    Zhang, Xianjie; Liu, Lixin; Wei, Xiaofei; Tan, Yee Sun; Tong, Lana; Chang, Ryan; Ghanamah, Mohammed S.; Reinblatt, Maura; Marti, Guy P.; Harmon, John W.; Semenza, Gregg L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that controls vascular responses to hypoxia and ischemia. In this study, mice that were heterozygous for a null allele at the locus encoding the HIF-1α subunit (HET mice) and their wild type (WT) littermates were subjected to thermal injury involving 10% of body surface area. HIF-1α protein levels were increased in burn wounds of WT but not of HET mice on day 2. Serum levels of stromal-derived factor 1α, which binds to CXCR4, were increased on day 2 in WT but not in HET mice. Circulating angiogenic cells were also increased on day 2 in WT but not in HET mice and included CXCR4+Sca1+ cells. Laser Doppler perfusion imaging demonstrated increased blood flow in burn wounds of WT but not HET mice on day 7. Immunohistochemistry on day 7 revealed a reduced number of CD31+ vessels at the healing margin of burn wounds in HET as compared to WT mice. Vessel maturation was also impaired in wounds of HET mice as determined by the number of α-smooth muscle actin-positive vessels on day 21. The remaining wound area on day 14 was significantly increased in HET mice compared to WT littermates. The percentage of healed wounds on day 14 was significantly decreased in HET mice. These data delineate a signaling pathway by which HIF-1 promotes angiogenesis during burn wound healing. PMID:20163569

  16. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.

    PubMed

    Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi

    2004-01-01

    Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.

  17. ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors.

    PubMed

    Danilov, Sergei M; Tovsky, Stan I; Schwartz, David E; Dull, Randal O

    2017-07-01

    Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response. To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient's blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Due to the fact that "20% of patients do not respond to ACEI by blood pressure drop," the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.

  18. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies

    PubMed Central

    Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.

    2002-01-01

    Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201

  19. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles

    PubMed Central

    Thomas, Melissa M.; Wang, David C.; D'Souza, Donna M.; Krause, Matthew P.; Layne, Andrew S.; Criswell, David S.; O'Neill, Hayley M.; Connor, Michael K.; Anderson, Judy E.; Kemp, Bruce E.; Steinberg, Gregory R.; Hawke, Thomas J.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.—Thomas, M. M., Wang, D. C., D'Souza, D. M., Krause, M. P., Layne, A. S., Criswell, D. S., O'Neill, H. M., Connor, M. K., Anderson, J. E., Kemp, B. E., Steinberg, G. R., and Hawke, T. J. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. PMID:24522207

  20. Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls

    NASA Astrophysics Data System (ADS)

    Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.

    2018-03-01

    Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.

  1. Osthole protects lipopolysaccharide-induced acute lung injury in mice by preventing down-regulation of angiotensin-converting enzyme 2.

    PubMed

    Shi, Yun; Zhang, Bo; Chen, Xiang-Jun; Xu, Dun-Quan; Wang, Yan-Xia; Dong, Hai-Ying; Ma, Shi-Rong; Sun, Ri-He; Hui, Yan-Ping; Li, Zhi-Chao

    2013-03-12

    The renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Angiotensin converting enzyme 2 (ACE2) plays a protective role in acute lung injury. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to have anti-inflammatory effect, but the effect of osthole on the ALI is largely unknown. The aim of this study is to explore whether and by what mechanisms osthole protects lipopolysaccharide(LPS)-induced acute lung injury. Herein, we found that osthole had a beneficial effect on LPS-induced ALI in mice. As revealed by survival study, pretreatment with high doses of osthole reduced the mortality of mice from ALI. Osthole pretreatment significantly improved LPS-induced lung pathological changes, reduced lung wet/dry weight ratios and total protein in BALF. Osthole also inhibited the release of inflammatory mediators TNF-α and IL-6. Meanwhile, osthole markedly prevented the loss of ACE2 and Ang1-7 in lung tissue of ALI mice. ACE2 inhibitor blocked the protective effect of osthole in NR 8383 cell lines. Taken together, our study showed that osthole improved survival rate and attenuated LPS-induced ALI and ACE2 may play a role in it. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  3. Endogenous Siderophore 2,5-Dihydroxybenzoic Acid Deficiency Promotes Anemia and Splenic Iron Overload in Mice

    PubMed Central

    Liu, Zhuoming; Ciocea, Alieta

    2014-01-01

    Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis. PMID:24777603

  4. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  5. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance

    PubMed Central

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-01-01

    Background: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. Methods: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Results: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Conclusions: Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to

  6. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    PubMed

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  7. The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice.

    PubMed

    Elashry, Mohamed I; Matsakas, Antonios; Wenisch, Sabine; Arnhold, Stefan; Patel, Ketan

    2017-06-01

    Skeletal muscle mass loss has a broad impact on body performance and physical activity. Muscle wasting occurs due to genetic mutation as in muscular dystrophy, age-related muscle loss (sarcopenia) as well as in chronic wasting disorders as in cancer cachexia. Food restriction reduces muscle mass underpinned by increased muscle protein break down. However the influence of dietary restriction on the morphometry and phenotype of forelimb muscles in a genetically modified myostatin null mice are not fully characterized. The effect of a five week dietary limitation on five anatomically and structurally different forelimb muscles was examined. C57/BL6 wild type (Mstn +/+ ) and myostatin null (Mstn -/- ) mice were either given a standard rodent normal daily diet ad libitum (ND) or 60% food restriction (FR) for a 5 week period. M. triceps brachii Caput laterale (T.lateral), M. triceps brachii Caput longum (T.long), M. triceps brachii Caput mediale (T.medial), M. extensor carpi ulnaris (ECU) and M. flexor carpi ulnaris (FCU) were dissected, weighted and processed for immunohistochemistry. Muscle mass, fibers cross sectional areas (CSA) and myosin heavy chain types IIB, IIX, IIA and type I were analyzed. We provide evidence that caloric restriction results in muscle specific weight reduction with the fast myofibers being more prone to atrophy. We show that slow fibers are less liable to dietary restriction induced muscle atrophy. The effect of dietary restriction was more pronounced in Mstn -/- muscles to implicate the oxidative fibers compared to Mstn +/+ . Furthermore, peripherally located myofibers are more susceptible to dietary induced reduction compared to deep fibers. We additionally report that dietary restriction alters the glycolytic phenotype of the Mstn -/- into the oxidative form in a muscle dependent manner. In summary our study shows that calorie restriction alters muscle fiber profile of forelimb muscles of Myostatin null mice. Copyright © 2017 Elsevier Gmb

  8. Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A.

    PubMed

    Bale, Laurie K; Conover, Cheryl A

    2005-08-01

    Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.

  9. Proliferation, differentiation and apoptosis in connexin43-null osteoblasts

    NASA Technical Reports Server (NTRS)

    Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.

    2001-01-01

    Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.

  10. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  11. Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retnlβ (RELMβ) Null Mice: A Model of Intestinal Immune System Dysfunction in Disease Susceptibility.

    PubMed

    Wernstedt Asterholm, Ingrid; Kim-Muller, Ja Young; Rutkowski, Joseph M; Crewe, Clair; Tao, Caroline; Scherer, Philipp E

    2016-09-01

    Resistin, and its closely related homologs, the resistin-like molecules (RELMs) have been implicated in metabolic dysregulation, inflammation, and cancer. Specifically, RELMβ, expressed predominantly in the goblet cells in the colon, is released both apically and basolaterally, and is hence found in both the intestinal lumen in the mucosal layer as well as in the circulation. RELMβ has been linked to both the pathogenesis of colon cancer and type 2 diabetes. RELMβ plays a complex role in immune system regulation, and the impact of loss of function of RELMβ on colon cancer and metabolic regulation has not been fully elucidated. We therefore tested whether Retnlβ (mouse ortholog of human RETNLβ) null mice have an enhanced or reduced susceptibility for colon cancer as well as metabolic dysfunction. We found that the lack of RELMβ leads to increased colonic expression of T helper cell type-2 cytokines and IL-17, associated with a reduced ability to maintain intestinal homeostasis. This defect leads to an enhanced susceptibility to the development of inflammation, colorectal cancer, and glucose intolerance. In conclusion, the phenotype of the Retnlβ null mice unravels new aspects of inflammation-mediated diseases and strengthens the notion that a proper intestinal barrier function is essential to sustain a healthy phenotype. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Renoprotective Effects of Vitex megapotamica (Spreng.) Moldenke in C57BL/6 LDLr-Null Mice Undergoing High Fat Diet

    PubMed Central

    Araújo, Valdinei de Oliveira; Gasparotto, Francielly Mourão; Pires, Vanessa Aranega; Maciel, Aline Antunes; Ortmann, Caroline Flach; Cardozo Junior, Euclides Lara; Lourenço, Emerson Luiz Botelho; Gasparotto Junior, Arquimedes

    2015-01-01

    Although Vitex megapotamica (Spreng.) Moldenke is used in Brazilian folk medicine as hypolipidemic drug no study has been conducted to evaluate the effects of this species in an experimental model of atherosclerosis. So, the aim of this study was to evaluate the possible renoprotective activity of methanolic extract obtained from Vitex megapotamica (MEVM) using C57BL/6 LDLr-null mice submitted to high fat diet (HFD). MEVM was orally administered at doses of 30, 100, and 300 mg/kg, for three weeks, starting from the 2nd week of HFD. Systolic blood pressure (SBP) and diuretic activity were measured weekly. At the end of experiments the serum lipids, atherogenic index serum (AIS), oxidative stress, and markers of renal function were determined. HFD induced a significant increase in the systolic blood pressure, dyslipidemia, increase in AIS, and lipid peroxidation accompanied by an important reduction in renal function. Treatment with MEVM was able to prevent increase in SBP, total cholesterol, triglycerides, AIS, urea, and creatinine levels in LDLr-null mice. These effects were accompanied by a significant reduction in oxidative stress and renal injury. The data reported here support the potential of Vitex megapotamica as candidate to be an herbal medicine used in cardiovascular or renal diseases. PMID:25788962

  14. Restoration of On-Time Embryo Implantation Corrects the Timing of Parturition in Cytosolic Phospholipase A2 Group IVA Deficient Mice1

    PubMed Central

    Brown, Naoko; Morrow, Jason D.; Slaughter, James C.; Paria, Bibhash C.; Reese, Jeff

    2009-01-01

    Cytosolic phospholipase A2 (cPLA2, PLA2G4A) catalyzes the release of arachidonic acid for prostaglandin synthesis by cyclooxygenase 1 (PTGS1) and cyclooxygenase 2 (PTGS2). Mice with Pla2g4a deficiency have parturition delay and other reproductive deficits, including deferred onset of implantation, crowding of implantation sites, and small litters. In this study, we examined the contribution of PLA2G4A to parturition in mice. Pla2g4a mRNA and protein expression were discretely localized in the term and preterm uterine luminal epithelium and colocalized with Ptgs1, but not Ptgs2, expression. The levels of PGE2, PGF2alpha, 6-keto-PGF1alpha, and TxB2 were significantly decreased in Pla2g4a-null uterine tissues, similar to Ptgs1-null uteri, consistent with predominance of PLA2G4A-PTGS1-mediated prostaglandin synthesis in preparation for murine parturition. Litter size was strongly associated with the timing of parturition in Pla2g4a-null mice but could not fully account for the parturition delay. Pla2g4a-null females that received PGE2 + carbaprostacyclin at the time of implantation delivered earlier (20.5 ± 0.2 days vs. 21.6 ± 0.2 days, P < 0.01), although litter size was not improved (4.6 vs. 4.4 pups per litter, P = 0.6). After correction for small litter size, multivariate analysis indicated that Pla2g4a-null mice given prostaglandin treatment to improve implantation timing had gestational length that was similar to wild-type and Pla2g4a heterozygous mice. These results indicate that, despite specific Pla2g4a expression and function in term gestation uteri, the delayed parturition phenotype in Pla2g4a-null mice is primarily due to deferral of implantation. The role of PLA2G4A in timely parturition appears to be critically related to its actions in early pregnancy. PMID:19684335

  15. ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats.

    PubMed

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-08-01

    The local role of the renin angiotensin system (RAS) was documented recently beside its conventional systemic functions. Studies showed that the effector angiotensin II (AngII) alters bone health, while inhibition of the angiotensin converting enzyme (ACE-1) preserved these effects. The newly identified Ang1-7 exerts numerous beneficial effects opposing the AngII. Thus, the current study examines the role of Ang1-7 in mediating the osteo-preservative effects of ACEI (captopril) through the G-protein coupled Mas receptor using an ovariectomized (OVX) rat model of osteoporosis. 8 weeks after the surgical procedures, captopril was administered orally (40mgkg -1 d -1 ), while the specific Mas receptor blocker (A-779) was delivered at infusion rate of 400ngkg -1 min -1 for 6 weeks. Bone metabolic markers were measured in serum and urine. Minerals concentrations were quantified in serum, urine and femoral bones by inductive coupled plasma mass spectroscopy (ICP-MS). Trabecular and cortical morphometry was analyzed in the right distal femurs using micro-CT. Finally, the expressions of RAS peptides, enzymes and receptors along with the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) were determined femurs heads. OVX animals markedly showed altered bone metabolism and mineralization along with disturbed bone micro-structure. Captopril significantly restored the metabolic bone bio-markers and corrected Ca 2+ and P values in urine and bones of estrogen deficient rats. Moreover, the trabecular and cortical morphometric features were repaired by captopril in OVX groups. Captopril also improved the expressions of ACE-2, Ang1-7, Mas and OPG, while abolished OVX-induced up-regulation of ACE-1, AngII, Ang type 1 receptor (AT1R) and RANKL. Inhibition of Ang1-7 cascade by A-779 significantly eradicated captopril protective effects on bone metabolism, mineralization and micro-structure. A-779 also restored OVX effects on RANKL expression and ACE-1/AngII/AT1R

  16. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation.

    PubMed

    Renvoisé, Benoît; Malone, Brianna; Falgairolle, Melanie; Munasinghe, Jeeva; Stadler, Julia; Sibilla, Caroline; Park, Seong H; Blackstone, Craig

    2016-12-01

    Hereditary spastic paraplegias (HSPs; SPG1-76 plus others) are length-dependent disorders affecting long corticospinal axons, and the most common autosomal dominant forms are caused by mutations in genes that encode the spastin (SPG4), atlastin-1 (SPG3A) and REEP1 (SPG31) proteins. These proteins bind one another and shape the tubular endoplasmic reticulum (ER) network throughout cells. They also are involved in lipid droplet formation, enlargement, or both in cells, though mechanisms remain unclear. Here we have identified evidence of partial lipoatrophy in Reep1 null mice in addition to prominent spastic paraparesis. Furthermore, Reep1-/- embryonic fibroblasts and neurons in the cerebral cortex both show lipid droplet abnormalities. The apparent partial lipodystrophy in Reep1 null mice, although less severe, is reminiscent of the lipoatrophy phenotype observed in the most common form of autosomal recessive lipodystrophy, Berardinelli-Seip congenital lipodystrophy. Berardinelli-Seip lipodystrophy is caused by autosomal recessive mutations in the BSCL2 gene that encodes an ER protein, seipin, that is also mutated in the autosomal dominant HSP SPG17 (Silver syndrome). Furthermore, REEP1 co-immunoprecipitates with seipin in cells. This strengthens the link between alterations in ER morphogenesis and lipid abnormalities, with important pathogenic implications for the most common forms of HSP. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  17. ACE2 activity was increased in atherosclerotic plaque by losartan: Possible relation to anti-atherosclerosis.

    PubMed

    Zhang, Yue Hui; Hao, Qing Qing; Wang, Xiao Yu; Chen, Xu; Wang, Nan; Zhu, Li; Li, Shu Ying; Yu, Qing Tao; Dong, Bo

    2015-06-01

    Angiotensin-converting enzyme 2 (ACE2) is a new member of the renin-angiotensin system (RAS) and it has been proposed that ACE2 is a potential therapeutic target for the control of cardiovascular disease. The effect of losartan on the ACE2 activity in atherosclerosis was studied. Atherosclerosis was induced in New Zealand white rabbits by high-cholesterol diet for 3 months. An Angiotensin II (Ang II) receptor blocker (losartan, 25 mg/kg/d) was given for 3 months. ACE2 activity was measured by fluorescence assay and the extent of atherosclerosis was evaluated by H&E and Oil Red O staining. In addition, the effect of losartan on ACE2 activity in smooth muscle cells (SMCs) in vitro was also evaluated. Losartan increased ACE2 activity in atherosclerosis in vivo and SMCs in vitro. Losartan inhibited atherosclerotic evolution. Addition of losartan blocked Ang II-induced down-regulation of ACE2 activity, and blockade of extracellular signal-regulated kinase (ERK1/2) with PD98059 prevented Ang II-induced down-regulation of ACE2 activity. The results showed that ACE2 activity was regulated in atherosclerotic plaque by losartan, which may play an important role in treatment of atherosclerosis. The mechanism involves Ang II-AT1R-mediated mitogen-activated protein kinases, MAPKs (MAPKs) signaling pathway. © The Author(s) 2014.

  18. Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice.

    PubMed

    Aoki, Yoshitsugu; Nagata, Tetsuya; Yokota, Toshifumi; Nakamura, Akinori; Wood, Matthew J A; Partridge, Terence; Takeda, Shin'ichi

    2013-12-15

    Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is among the more promising approaches to the treatment of several neuromuscular disorders including Duchenne muscular dystrophy. The main weakness of this approach arises from the low efficiency and sporadic nature of the delivery of charge-neutral PMO into muscle fibers, the mechanism of which is unknown. In this study, to test our hypothesis that muscle fibers take up PMO more efficiently during myotube formation, we induced synchronous muscle regeneration by injection of cardiotoxin into the tibialis anterior muscle of Dmd exon 52-deficient mdx52 and wild-type mice. Interestingly, by in situ hybridization, we detected PMO mainly in embryonic myosin heavy chain-positive regenerating fibers. In addition, we showed that PMO or 2'-O-methyl phosphorothioate is taken up efficiently into C2C12 myotubes when transfected 24-72 h after the induction of differentiation but is poorly taken up into undifferentiated C2C12 myoblasts suggesting efficient uptake of PMO in the early stages of C2C12 myotube formation. Next, we tested the therapeutic potential of PMO for laminin-α2 chain-null dy(3K)/dy(3K) mice: a model of merosin-deficient congenital muscular dystrophy (MDC1A) with active muscle regeneration. We confirmed the recovery of laminin-α2 chain and slightly prolonged life span following skipping of the mutated exon 4 in dy(3K)/dy(3K) mice. These findings support the idea that PMO entry into fibers is dependent on a developmental stage in myogenesis rather than on dystrophinless muscle membranes and provide a platform for developing PMO-mediated therapies for a variety of muscular disorders, such as MDC1A, that involve active muscle regeneration.

  19. Original Research: ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis

    PubMed Central

    Prata, Luana O; Rodrigues, Carolina R; Martins, Jéssica M; Vasconcelos, Paula C; Oliveira, Fabrício Marcus S; Ferreira, Anderson J; Rodrigues-Machado, Maria da Glória

    2016-01-01

    The interstitial lung diseases are poorly understood and there are currently no studies evaluating the association of physical exercise with an ACE2 activator (DIZE) as a possible treatment for this group of diseases. We evaluate the effects of pharmacological treatment with an angiotensin-converting enzyme 2 activator drug, associated with exercise, on the pulmonary lesions induced by bleomycin. From the 96 male Balb/c mice used in the experiment, only 49 received 8 U/kg of bleomycin (BLM, intratracheally). The mice were divided into control (C) and bleomycin (BLM) groups, sedentary and trained (C-SED, C-EXE, BLM-SED, BLM-EXE), control and bleomycin and also sedentary and trained treated with diminazene (C-SED/E, C-EXE/E, BLM-SED/E, BLM-EXE/E). The animals were trained five days/week, 1 h/day with 60% of the maximum load obtained in a functional capacity test, for four weeks. Diminazene groups were treated (1 mg/kg, by gavage) daily until the end of the experiment. The lungs were collected 48 h after the training program, set in buffered formalin and investigated by Gomori’s trichrome, immunohistochemistry of collagen type I, TGF-β1, beta-prolyl-4-hydroxylase, MMP-1 and -2. The BLM-EXE/E group obtained a significant increase in functional capacity, reduced amount of fibrosis and type I collagen, decreased expression of TGF-β1 and beta-prolyl-4-hydroxylase and an increase of metalloproteinase −1, −2 when compared with the other groups. The present research shows, for the first time, that exercise training associated with the activation of ACE2 potentially reduces pulmonary fibrosis. PMID:27550926

  20. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    PubMed Central

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written informed consent was obtained prior to the investigation. 221 hypertensives (cases) and 221 normotensives (controls) were interviewed, subjected to a physical examination, and provided blood for biochemical and genetic tests. The ACE mRNA expression was analyzed by real time fluorescent quantitative Reverse Transcription PCR (FQ-RT-PCR). We performed logistic regression to assess associations of ACE I/D genotypes, ACE activity, and ACE mRNA expression levels with hypertension. Results The results of the multivariate logistic regression analysis showed that the additive model (ID, DD versus II) of the ACE genotype revealed an association with hypertension with adjusted OR of 1.43(95% CI: 1.04-1.97), and ACE ID genotype with adjusted OR of 1.72(95% CI: 1.01-2.92), DD genotype with adjusted OR of 1.94(95% CI: 1.01-3.73), respectively. In addition, our data also indicate that plasma ACE activity (adjusted OR was 1.13(95% CI: 1.08-1.18)) was significantly related to hypertension. However, the plasma ACE mRNA expressions were not different between the cases and controls. Conclusion ACE I/D polymorphism and ACE activity revealed significant influence on hypertension, while circulating ACE mRNA expression was not important factors associated with hypertension in this Chinese population. The detection of circulating ACE mRNA expression by FQ-RT-PCR might be a useful method for early screening and monitoring of EH. PMID:24098401

  1. Chronic Toxoplasma gondii in Nurr1-Null Heterozygous Mice Exacerbates Elevated Open Field Activity

    PubMed Central

    Eells, Jeffrey B.; Varela-Stokes, Andrea; Guo-Ross, Shirley X.; Kummari, Evangel; Smith, Holly M.; Cox, Erin; Lindsay, David S.

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice. PMID:25855987

  2. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    PubMed

    Eells, Jeffrey B; Varela-Stokes, Andrea; Guo-Ross, Shirley X; Kummari, Evangel; Smith, Holly M; Cox, Erin; Lindsay, David S

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  3. Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice

    PubMed Central

    Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Maachi, Hasna; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2013-01-01

    We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1–7 (500 μg·kg−1·day−1 sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg−1·day−1 sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1–7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1–7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1–7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes. PMID:23552863

  4. Identification of Noninvasive Biomarkers for Alcohol-Induced Liver Disease Using Urinary Metabolomics and the Ppara-null Mouse

    PubMed Central

    Manna, Soumen K.; Patterson, Andrew D.; Yang, Qian; Krausz, Kristopher W.; Li, Henghong; Idle, Jeffrey R.; Fornace, Albert J.; Gonzalez, Frank J.

    2010-01-01

    Alcohol-induced liver disease (ALD) is a leading cause of non-accident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively non-specific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study the metabolic changes associated with alcohol-induced liver disease were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-β-D-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model. PMID:20540569

  5. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice.

    PubMed

    Yu, Hongwei; Li, Man; Tint, G Stephen; Chen, Jianliang; Xu, Guorong; Patel, Shailendra B

    2007-04-04

    Targeted disruption of the murine 3beta-hydroxysterol-Delta7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE) promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  6. Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice.

    PubMed

    Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J; Goedken, Michael J; Zhang, Yuxia; Kong, Bo; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H; Wang, Li

    2015-05-01

    Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. We studied mice with disruptions in Nr0b2 (called small heterodimer partner [SHP]-null mice), betaine-homocysteine S-methyltransferase (Bhmt), or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (National Institute on Alcohol Abuse and Alcoholism binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%) or high-fat diets (60%). Serum and livers were collected during a 24-hour light-dark cycle and analyzed by RNA-seq, metabolomic, and quantitative polymerase chain reaction, immunoblot, and chromatin immunoprecipitation assays. SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Expression of Bhmt and cystathionine γ-lyase was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control, but not SHP-null, mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. Disruption of Shp in mice alters timing of expression of genes that regulate

  7. Keratin 17 null mice exhibit age- and strain-dependent alopecia

    PubMed Central

    McGowan, Kevin M.; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A.

    2002-01-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins. PMID:12050118

  8. Keratin 17 null mice exhibit age- and strain-dependent alopecia.

    PubMed

    McGowan, Kevin M; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A

    2002-06-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.

  9. Comparative study on 2,2′,4,5,5′-pentachlorobiphenyl-mediated decrease in serum thyroxine level between C57BL/6 and its transthyretin-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yoshihisa, E-mail: kato@kph.bunri-u.ac.jp; Tamaki, Sekihiro; Haraguchi, Koichi

    The relationships between the changes in the levels of serum total thyroxine (T{sub 4}), serum T{sub 4}-transthyretin (TTR) complex, and accumulation of T{sub 4} in tissues by 2,2′,4,5,5′-pentachlorobiphenyl (PentaCB) were examined using wild-type C57BL/6 (WT) and its TTR-deficient (TTR-null) mice. The constitutive level of serum total T{sub 4} was much higher in WT mice than in TTR-null mice. In WT mice 4 days after a single intraperitoneal injection with PentaCB (112 mg/kg), serum total T{sub 4} level was significantly decreased along with a decrease in serum T{sub 4}–TTR complex, and the levels of serum total T{sub 4} in the PentaCB-treatedmore » WT mice were almost the same to those in PentaCB-untreated (control) TTR-null mice. In addition, a slight decrease in serum total T{sub 4} by PentaCB treatment was observed in TTR-null mice. Furthermore, clearance of [{sup 125}I]T{sub 4} from the serum after [{sup 125}I]T{sub 4}-administration was promoted by the PentaCB-pretreatment in either strain of mice, especially WT mice. On the other hand, accumulation level of [{sup 125}I]T{sub 4} in the liver, but not in extrahepatic tissues, was strikingly enhanced in the PentaCB-pretreated WT and TTR-null mice. Furthermore, in both strains of mice, PentaCB-pretreatment led to significant increases in the steady-state distribution volume of [{sup 125}I]T{sub 4} and the concentration ratio of the liver to serum. The present findings demonstrate that PentaCB-mediated decrease in serum T{sub 4} level occurs mainly through increase in accumulation level of T{sub 4} in the liver and further indicate that the increased accumulation of T{sub 4} in the liver of WT mice is primarily dependent on the PentaCB-mediated inhibition of serum T{sub 4}–TTR complex formation.« less

  10. A mutation within the SH2 domain of slp-76 regulates the tissue distribution and cytokine production of iNKT cells in mice.

    PubMed

    Danzer, Claudia; Koller, Anna; Baier, Julia; Arnold, Harald; Giessler, Claudia; Opoka, Robert; Schmidt, Stephanie; Willers, Maike; Mihai, Sidonia; Parsch, Hans; Wirtz, Stefan; Daniel, Christoph; Reinhold, Annegret; Engelmann, Swen; Kliche, Stefanie; Bogdan, Christian; Hoebe, Kasper; Mattner, Jochen

    2016-09-01

    TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice.

    PubMed

    Chukkapalli, Sasanka S; Velsko, Irina M; Rivera-Kweh, Mercedes F; Zheng, Donghang; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal

  12. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway.

    PubMed

    Zhang, Cheng; Wang, Jinju; Ma, Xiaotang; Wang, Wenjun; Zhao, Bin; Chen, Yanfang; Chen, Can; Bihl, Ji C

    2018-03-01

    Oxidative stress is one of the mechanisms of ageing-associated vascular dysfunction. Angiotensin-converting enzyme 2 (ACE2) and microRNA (miR)-18a have shown to be down-regulated in ageing cells. Our previous study has shown that ACE2-primed endothelial progenitor cells (ACE2-EPCs) have protective effects on endothelial cells (ECs), which might be due to their released exosomes (EXs). Here, we aimed to investigate whether ACE2-EPC-EXs could attenuate hypoxia/reoxygenation (H/R)-induced injury in ageing ECs through their carried miR-18a. Young and angiotensin II-induced ageing ECs were subjected to H/R and co-cultured with vehicle (medium), EPC-EXs, ACE2-EPCs-EXs, ACE2-EPCs-EXs + DX600 or ACE2-EPCs-EXs with miR-18a deficiency (ACE2-EPCs-EXs anti-miR-18a ). Results showed (1) ageing ECs displayed increased senescence, apoptosis and ROS production, but decreased ACE2 and miR-18a expressions and tube formation ability; (2) under H/R condition, ageing ECs showed higher rate of apoptosis, ROS overproduction and nitric oxide reduction, up-regulation of Nox2, down-regulation of ACE2, miR-18a and eNOS, and compromised tube formation ability; (3) compared with EPC-EXs, ACE2-EPC-EXs had better efficiencies on protecting ECs from H/R-induced changes; (4) The protective effects were less seen in ACE2-EPCs-EXs + DX600 and ACE2-EPCs-EXs anti-miR-18a groups. These data suggest that ACE-EPCs-EXs have better protective effects on H/R injury in ageing ECs which could be through their carried miR-18a and subsequently down-regulating the Nox2/ROS pathway. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    PubMed Central

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  14. Modeling of "Stripe" Wave Phenomena Seen by the CHARM II and ACES Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.

    2010-12-01

    Two recent sounding-rocket missions—CHARM II and ACES—have been launched from Poker Flat Research Range, carrying the Dartmouth High-Frequency Experiment (HFE) among their primary instruments. The HFE is a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz. The CHARM II sounding rocket was launched 9:49 UT on 15 February 2010 into a substorm, while the ACES mission consisted of two rockets, launched into quiet aurora at 9:49 and 9:50 UT on 29 January 2009. At approximately 350 km on CHARM II and the ACES High-Flyer, the HFE detected short (~2s) bursts of broadband (200-500 kHz) noise with a 'stripe' pattern of nulls imposed on it. These nulls have 10 to 20 kHz width and spacing, and many show a regular, non-linear frequency-time relation. These events are different from the 'stripes' discussed by Samara and LaBelle [2006] and Colpitts et al. [2010], because of the density of the stripes, the non-linearity, and the appearance of being an absorptive rather than emissive phenomenon. These events are similar to 'stripe' features reported by Brittain et al. [1983] in the VLF range, explained as an interference pattern between a downward-traveling whistler-mode wave and its reflection off the bottom of the ionosphere. Following their analysis method, we modeled our stripes as higher-frequency interfering whistlers reflecting off of a density gradient. This model predicts the near-hyperbolic frequency-time curves and high density of the nulls, and therefore shows promise at explaining the new observations.

  15. Airborne Solar Radiant Flux Measurements During ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Jonsson, Haflidi

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. In the ACE 2 program the solar radiant fluxes were measured on the Pelican aircraft and the UK Met Office C130. This poster will show results from the measurements for the aerosol effects during the clear column days. We will compare the results with calculations of the radiant fluxes.

  16. Genetic architecture of atherosclerosis dissected by QTL analyses in three F2 intercrosses of apolipoprotein E-null mice on C57BL6/J, DBA/2J and 129S6/SvEvTac backgrounds

    PubMed Central

    Makhanova, Natalia; Morgan, Andrew P.; Kayashima, Yukako; Makhanov, Andrei; Hiller, Sylvia; Zhilicheva, Svetlana; Xu, Longquan; Pardo-Manuel de Villena, Fernando; Maeda, Nobuyo

    2017-01-01

    Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of

  17. Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4

    PubMed Central

    Flores, Carlos A; Melvin, James E; Figueroa, Carlos D; Sepúlveda, Francisco V

    2007-01-01

    Intestinal fluid secretion is driven by apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR)-mediated efflux of Cl– that is concentrated in cells by basolateral Na+−K+−2Cl– cotransporters (NKCC1). An absolute requirement for Cl– efflux is the parallel activation of K+ channels which maintain a membrane potential that sustains apical anion secretion. Both cAMP and Ca2+ are intracellular signals for intestinal Cl– secretion. The K+ channel involved in cAMP-dependent secretion has been identified as the KCNQ1–KCNE3 complex, but the identity of the K+ channel driving Ca2+-activated Cl– secretion is controversial. We have now used a Kcnn4 null mouse to show that the intermediate conductance IK1 K+ channel is necessary and sufficient to support Ca2+-dependent Cl– secretion in large and small intestine. Ussing chambers were used to monitor transepithelial potential, resistance and equivalent short-circuit current in colon and jejunum from control and Kcnn4 null mice. Na+, K+ and water content of stools was also measured. Distal colon and small intestinal epithelia from Kcnn4 null mice had normal cAMP-dependent Cl– secretory responses. In contrast, they completely lacked Cl– secretion in response to Ca2+-mobilizing agonists. Ca2+-activated electrogenic K+ secretion was increased in colon epithelium of mice deficient in the IK1 channel. Na+ and water content of stools was diminished in IK1-null animals. The use of Kcnn4 null mice has allowed us to demonstrate that IK1 K+ channels are solely responsible for driving intestinal Ca2+-activated Cl– secretion. The absence of this channel leads to a marked reduction in water content in the stools, probably as a consequence of decreased electrolyte and water secretion. PMID:17584847

  18. FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly

    PubMed Central

    Jurak Begonja, Antonija; Hoffmeister, Karin M.; Hartwig, John H.

    2011-01-01

    Filamin A (FlnA) is a large cytoplasmic protein that crosslinks actin filaments and anchors membrane receptors and signaling intermediates. FlnAloxP PF4-Cre mice that lack FlnA in the megakaryocyte (MK) lineage have a severe macrothrombocytopenia because of accelerated platelet clearance. Macrophage ablation by injection of clodronate-encapsulated liposomes increases blood platelet counts in FlnAloxP PF4-Cre mice and reveals the desintegration of FlnA-null platelets into microvesicles, a process that occurs spontaneously during storage. FlnAloxP PF4-Cre bone marrows and spleens have a 2.5- to 5-fold increase in MK numbers, indicating increased thrombopoiesis in vivo. Analysis of platelet production in vitro reveals that FlnA-null MKs prematurely convert their cytoplasm into large CD61+ platelet-sized particles, reminiscent of the large platelets observed in vivo. FlnA stabilizes the platelet von Willebrand factor receptor, as surface expression of von Willebrand factor receptor components is normal on FlnA-null MKs but decreased on FlnA-null platelets. Further, FlnA-null platelets contain multiple GPIbα degradation products and have increased expression of the ADAM17 and MMP9 metalloproteinases. Together, the findings indicate that FlnA-null MKs prematurely release large and fragile platelets that are removed rapidly from the circulation by macrophages. PMID:21652675

  19. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice

    PubMed Central

    Kaufmann, Martin; Lee, Seong Min; Pike, J. Wesley

    2015-01-01

    Vitamin D receptor (VDR)-mediated 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent gene expression is compromised in the VDR null mouse. The biological consequences include: hypocalcemia, hypophosphatemia, elevated parathyroid hormone (PTH) and 1,25(OH)2D3, and consequential skeletal abnormalities. CYP24A1 is a cytochrome P450 enzyme that is involved in the side chain oxidation and destruction of both 1,25(OH)2D3 and 25-hydroxyvitamin D3 (25-OH-D3). In the current studies, we used liquid chromatography-tandem mass spectrometry technology to compare the metabolic profiles of VDR null mice fed either a normal or a calcium and phosphate-enriched rescue diet and to assess the consequence of transgenic expression of either mouse or human VDR genes in the same background. Serum 1,25(OH)2D3 levels in VDR null mice on normal chow were highly elevated (>3000 pg/mL) coincident with undetectable levels of catabolites such as 24,25-(OH)2D3 and 25-OH-D3-26,23-lactone normally observed in wild-type mice. The rescue diet corrected serum Ca++, PTH, and 1,25(OH)2D3 values and restored basal expression of Cyp24a1 as evidenced by both renal expression of Cyp24a1 and detection of 24,25-(OH)2D3 and the 25-OH-D3-26,23-lactone. Unexpectedly, this diet also resulted in supranormal levels of 3-epi-24,25-(OH)2D3 and 3-epi-25-OH-D3-26,23-lactone. The reappearance of serum 24,25-(OH)2D3 and renal Cyp24a1 expression after rescue suggests that basal levels of Cyp24a1 may be repressed by high PTH. Introduction of transgenes for either mouse or human VDR also normalized vitamin D metabolism in VDR null mice, whereas this metabolic pattern was unaffected by a transgene encoding a ligand binding-deficient mutant (L233S) human VDR. We conclude that liquid chromatography-tandem mass spectrometry-based metabolic profiling is an ideal analytical method to study mouse models with alterations in calcium/phosphate homeostasis. PMID:26441239

  20. ACE phenotyping in Gaucher disease.

    PubMed

    Danilov, Sergei M; Tikhomirova, Victoria E; Metzger, Roman; Naperova, Irina A; Bukina, Tatiana M; Goker-Alpan, Ozlem; Tayebi, Nahid; Gayfullin, Nurshat M; Schwartz, David E; Samokhodskaya, Larisa M; Kost, Olga A; Sidransky, Ellen

    2018-04-01

    Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. ACE Gene I/D Polymorphism and Obesity in 1,574 Patients with Type 2 Diabetes Mellitus.

    PubMed

    Pan, Yan-Hong; Wang, Min; Huang, Yan-Mei; Wang, Ying-Hui; Chen, Yin-Ling; Geng, Li-Jun; Zhang, Xiao-Xi; Zhao, Hai-Lu

    2016-01-01

    Association between ACE gene I/D polymorphism and the risk of overweight/obesity remains controversial. We investigated the possible relationship between ACE gene I/D polymorphism and obesity in Chinese type 2 diabetes mellitus (T2DM) patients. In this study, obesity was defined as a body mass index (BMI) value ≥ 25 kg/m 2 and subjects were classified into 4 groups (lean, normal, overweight, and obese). PCR (polymerase chain reaction) was used to detect the ACE gene I/D polymorphism in T2DM patients. Metabolic measurements including blood glucose, lipid profile, and blood pressure were obtained. Frequencies of the ACE genotypes (DD, ID, and II) were not significant among the 4 groups of BMI-defined patients ( P = 0.679) while ACE II carriers showed higher systolic blood pressure (SBP) and pulse pressure (PP) (all P < 0.050). Hyperglycemia, hypertension, and dyslipidemia in these T2DM patients were found to be significantly associated with BMI. In conclusion, the relationship of ACE gene I/D polymorphism with obesity is insignificant in Chinese patients with T2DM. SBP and PP might be higher in the ACE II carriers than in the DD and ID carriers.

  2. "Null-E" magnetic bearings

    NASA Astrophysics Data System (ADS)

    Filatov, Alexei Vladimirovich

    2002-09-01

    active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.

  3. ACE

    NASA Technical Reports Server (NTRS)

    Lumia, R.

    1999-01-01

    This document describes the progress made during the fourth year of the Center for Autonomous Control Engineering (ACE). We currently support 30 graduate students, 52 undergraduate students, 9 faculty members, and 4 staff members. Progress will be divided into two categories. The first category explores progress for ACE in general. The second describes the results of each specific project supported within ACE.

  4. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY; Wu, Wei

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitormore » has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in

  5. Reduced expression of Na(v)1.6 sodium channels and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in Scn8a.

    PubMed

    Vega, Ana V; Henry, Diane L; Matthews, Gary

    2008-09-05

    The voltage-gated sodium channel alpha subunit Na(v)1.6, encoded by the Scn8a gene, accumulates at high density at mature nodes of Ranvier of myelinated axons, replacing the Na(v)1.2 channels found at nodes earlier in development. To investigate this preferential expression of Na(v)1.6 at adult nodes, we examined isoform-specific expression of sodium channels in mice heterozygous for a null mutation in Scn8a. Immunoblots from these +/- mice had 50% of the wild-type level of Na(v)1.6 protein, and their optic-nerve nodes of Ranvier had correspondingly less anti-Na(v)1.6 immunofluorescence. Protein level and nodal immunofluorescence of the Na(v)1.2 alpha subunit increased in Scn8a(+/-) mice, keeping total sodium channel expression approximately constant despite partial loss of Na(v)1.6 channels. The results are consistent with a model in which Na(v)1.6 and Na(v)1.2 compete for binding partners at sites of high channel density, such as nodes of Ranvier. We suggest that Na(v)1.6 channels normally occupy most of the molecular machinery responsible for channel clustering because they have higher binding affinity, and not because they are exclusively recognized by mechanisms for transport and insertion of sodium channels in myelinated axons. The reduced amount of Na(v)1.6 protein in Scn8a(+/-) mice is apparently insufficient to saturate the nodal binding sites, allowing Na(v)1.2 channels to compete more successfully.

  6. Placental Glucose and Amino Acid Transport in Calorie-Restricted Wild-Type and Glut3 Null Heterozygous Mice

    PubMed Central

    Ganguly, Amit; Collis, Laura

    2012-01-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3+/−) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3+/− mice. In glut3+/− mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3+/− mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3+/− fetuses against maternal CR-imposed reduction of macromolecular nutrients. PMID:22700768

  7. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    PubMed

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  8. Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice.

    PubMed

    Wu, Yingjie; Sun, Hui; Yakar, Shoshana; LeRoith, Derek

    2009-09-01

    IGF-I plays a vital role in growth and development and acts in an endocrine and an autocrine/paracrine fashion. The purpose of the current study was to clarify whether elevated levels of IGF-I in serum can rescue the severe growth retardation and organ development and function of igf-I null mice. To address that, we overexpressed a rat igf-I transgene specifically in the liver of igf-I null mice. We found that in the total absence of tissue IGF-I, elevated levels of IGF-I in serum can support normal body size at puberty and after puberty but are insufficient to fully support the female reproductive system (evident by irregular estrous cycle, impaired development of ovarian corpus luteum, reduced number of uterine glands and endometrial hypoplasia, all leading to decreased number of pregnancies and litter size). We conclude that most autocrine/paracrine actions of IGF-I that determine organ growth and function can be compensated by elevated levels of endocrine IGF-I. However, in mice, full compensatory responses are evident later in development, suggesting that autocrine/paracrine IGF-I is critical for neonatal development. Furthermore, we show that tissue IGF-I is necessary for the development of the female reproductive system and cannot be compensated by elevated levels of serum IGF-I.

  9. Advanced Colloids Experiment (Microscopy) - ACE-M2R

    NASA Technical Reports Server (NTRS)

    Weitz, David; Meyer, William V.; Sicker, Ronald J.; Bailey, Kelly Ann; Eustace, John G.

    2017-01-01

    Increment 53 - 54 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  10. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    PubMed Central

    Lopez, Pablo HH; Aja, Susan; Aoki, Kazuhiro; Seldin, Marcus M; Lei, Xia; Ronnett, Gabriele V; Wong, G William; Schnaar, Ronald L

    2017-01-01

    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity. PMID:27683310

  11. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    PubMed

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  12. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  13. Deletion of calponin 2 in macrophages attenuates the severity of inflammatory arthritis in mice.

    PubMed

    Huang, Qi-Quan; Hossain, M Moazzem; Sun, Wen; Xing, Lianping; Pope, Richard M; Jin, J-P

    2016-10-01

    Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target. Copyright © 2016 the American Physiological Society.

  14. Marketing ACE in Victoria.

    ERIC Educational Resources Information Center

    2001

    This publication presents options raised through various forums for marketing adult and community education (ACE) in Victoria, Australia, and suggested strategies. After an introduction (chapter 1), chapters 2 and 3 provide a broad view of the current situation for marketing ACE. Chapter 2 discusses general issues in the current position--ACE…

  15. The (2, 0) superalgebra, null M-branes and Hitchin's system

    NASA Astrophysics Data System (ADS)

    Kucharski, P.; Lambert, N.; Owen, M.

    2017-10-01

    We present an interacting system of equations with sixteen supersymmetries and an SO(2) × SO(6) R-symmetry where the fields depend on two space and one null dimensions that is derived from a representation of the six-dimensional (2, 0) superalgebra. The system can be viewed as two M5-branes compactified on {S}-^1× T^2 or equivalently as M2-branes on R+× R^2 , where ± refer to null directions. We show that for a particular choice of fields the dynamics can be reduced to motion on the moduli space of solutions to the Hitchin system. We argue that this provides a description of intersecting null M2-branes and is also related by U-duality to a DLCQ description of four-dimensional maximally supersymmetric Yang-Mills.

  16. Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes.

    PubMed

    Márquez, Eva; Riera, Marta; Pascual, Julio; Soler, María José

    2014-06-01

    Podocytes are key cells in the glomerular filtration barrier with a major role in the development of diabetic nephropathy. Podocytes are insulin-sensitive cells and have a functionally active local renin-angiotensin system. The presence and activity of angiotensin-converting enzyme 2 (ACE2), the main role of which is cleaving profibrotic and proinflammatory angiotensin-II into angiotensin-(1-7), have been demonstrated in podocytes. Conditionally immortalized mouse podocytes were cultured with insulin in the presence and absence of albumin. We found that insulin increases ACE2 gene and protein expression, by real-time PCR and Western blotting, respectively, and enzymatic activity within the podocyte and these increases were maintained over time. Furthermore, insulin favored an "anti-angiotensin II" regarding ACE/ACE2 gene expression balance and decreased fibronectin gene expression as a marker of fibrosis in the podocytes, all studied by real-time PCR. Similarly, insulin incubation seemed to protect podocytes from cell death, studied by a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. However, all these effects disappeared in the presence of albumin, which may mimic albuminuria, a main feature of DN pathophysiology. Our results suggest that modulation of renin-angiotensin system balance, fibrosis, and apoptosis by insulin in the podocyte may be an important factor in preventing the development and progression of diabetic kidney disease, but the presence of albuminuria seems to block these beneficial effects. Copyright © 2014 the American Physiological Society.

  17. ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy.

    PubMed

    Vorselaars, Adriane D M; van Moorsel, Coline H M; Zanen, Pieter; Ruven, Henk J T; Claessen, Anke M E; van Velzen-Blad, Heleen; Grutters, Jan C

    2015-02-01

    In sarcoidosis, the search for disease activity markers that correlate with treatment response is ongoing. The aim of this study was to investigate the pattern of two proposed markers, serum angiotensin-converting enzyme (ACE) and soluble IL-2 receptor (sIL-2R) during methotrexate (MTX) therapy in sarcoidosis patients. We analysed 114 sarcoidosis patients who used MTX for six months, consisting of a subgroup of 76 patients with a pulmonary indication for treatment and a subgroup of 38 patients with an extra-pulmonary indication. ACE and sIL-2R serum levels were measured at baseline and after six months of treatment. Correlation coefficients (R) and odds ratios (ORs) were calculated to study the correlation and predictive effect of serum ACE and sIL-2R levels for pulmonary improvement. High baseline levels of ACE correlated significantly with lung function improvement after treatment (R = 0.45, p < 0.0001; stronger in the pulmonary subgroup R 0.57, p < 0.0001). ACE baseline levels >90 U/l predicted a 10% improvement in overall lung function (OR 3.55; CI 1.34-9.38), with the highest prediction level for 10% improvement in DLCO (OR 4.63; CI 1.23-17.4). After six months of MTX, mean ACE decreased with 17.2 U/l (p < 0.0001) and sIL-2R with 1850 pg/ml (p < 0.0001). Decreases in both ACE and sIL-2R correlated with an increase in lung function. The strongest correlation was found with change in DLCO in the pulmonary subgroup (ACE R = 0.63, P < 0.0001; sIL-2R R = 0.56, P < 0.0001). Baseline and serial serum ACE and sIL-2R levels correlate well with lung function improvement during MTX treatment. Serial measurements of these biomarkers are helpful in monitoring treatment effects in sarcoidosis patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre.

    PubMed

    Frutkin, Andrew D; Shi, Haikun; Otsuka, Goro; Levéen, Per; Karlsson, Stefan; Dichek, David A

    2006-10-01

    Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type II TGF-beta receptor (tgfbr2flox) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2flox. Surprisingly, SMMHC-Cre mice recombined tgfbr2flox at low levels in SMC and at high levels in the testis. Recombination of tgfbr2flox in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2null. In contrast, mice expressing Cre from a SM22alpha promoter (SM22-Cre) efficiently recombined tgfbr2flox in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2flox/flox zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2flox- and would have conversion of tgfbr2flox/flox to tgfbr2null/null in SMC-produced no live SM22-Cre : tgfbr2flox/flox pups (P<0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge.

  19. Altered Ca2+ Kinetics Associated with α-Actinin-3 Deficiency May Explain Positive Selection for ACTN3 Null Allele in Human Evolution

    PubMed Central

    Houweling, Peter J.; Quinlan, Kate G. R.; Murphy, Robyn; Wagner, Sören; Friedrich, Oliver; North, Kathryn N.

    2015-01-01

    Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more “energy efficient” in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR) are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i) an increased rate of decay of the twitch transient; (ii) a fourfold increase in the rate of SR Ca2+ leak; (iii) a threefold increase in the rate of SR Ca2+ pumping; and (iv) enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments during

  20. Altered trophoblast proliferation is insufficient to account for placental dysfunction in Egfr null embryos

    PubMed Central

    Dackor, J.; Strunk, K. E.; Wehmeyer, M. M.; Threadgill, D. W.

    2007-01-01

    Homozygosity for the Egfrtm1Mag null allele in mice leads to genetic background dependent placental abnormalities and embryonic lethality. Molecular mechanisms or genetic modifiers that differentiate strains with surviving versus non-surviving Egfr nullizygous embryos have yet to be identified. Egfr transcripts in wildtype placenta was quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA expression was found to coincide with Egfrtm1Mag homozygous lethality. Immunohistochemical analysis of ERBB family receptors, ERBB2, ERBB3, and ERBB4, showed similar expression between Egfr wildtype and null placentas indicating that Egfr null trophoblast do not up-regulate these receptors to compensate for EGFR deficiency. Significantly fewer numbers of bromodeoxyuridine (BrdU) positive trophoblast were observed in Egfr nullizygous placentas and Cdc25a and Myc, genes associated with proliferation, were significantly down-regulated in null placentas. However, strains with both mild and severe placental phenotypes exhibit reduced proliferation suggesting that this defect alone does not account for strain-specific embryonic lethality. Consistent with this hypothesis, intercrosses generating mice null for cell cycle checkpoint genes (Trp53, Rb1, Cdkn1a, Cdkn1b or Cdkn2c) in combination with Egfr deficiency did not increase survival of Egfr nullizygous embryos. Since complete development of the spongiotrophoblast compartment is not required for survival of Egfr nullizygous embryos, reduction of this layer that is commonly observed in Egfr nullizygous placentas likely accounts for the decrease in proliferation. PMID:17822758

  1. Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype.

    PubMed

    Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M

    2002-08-01

    mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.

  2. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.

    PubMed

    Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L

    2000-09-01

    ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.

  3. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.

    PubMed

    Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki

    2013-01-01

    The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.

  4. A Single Nucleotide Polymorphism Uncovers a Novel Function for the Transcription Factor Ace2 during Candida albicans Hyphal Development

    PubMed Central

    Orellana-Muñoz, Sara; Gutiérrez-Escribano, Pilar; Arnáiz-Pita, Yolanda; Dueñas-Santero, Encarnación; Suárez, M. Belén; Bougnoux, Marie-Elisabeth; del Rey, Francisco; Sherlock, Gavin; d’Enfert, Christophe; Correa-Bordes, Jaime; de Aldana, Carlos R. Vázquez

    2015-01-01

    Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP) present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C. albicans lineages

  5. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.

    PubMed

    Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing

    2015-12-01

    The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright

  6. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. The panel on which they are working is identical to the panel (one of four) seen in the foreground on the ACE spacecraft. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low- energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  7. The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire

    PubMed Central

    Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.

    2011-01-01

    The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607

  8. Association analysis of TNFR2, VDR, A2M, GSTT1, GSTM1, and ACE genes with rheumatoid arthritis in South Asians and Caucasians of East Midlands in the United Kingdom.

    PubMed

    Ghelani, Anant M; Samanta, Ash; Jones, Adrian C; Mastana, Sarabjit S

    2011-10-01

    Genetic associations of TNFR2, VDR (Bsm I and Fok I), A2M, GSTT(1), GSTM(1) and ACE in South Asian and Caucasian patients with rheumatoid arthritis (RA) were assessed in this study. DNA samples from South Asians (134 cases, 149 controls) and Caucasians (137 cases, 150 controls) from the East Midlands of the United Kingdom were genotyped for seven polymorphisms. All cases were rheumatoid-factor positive. Significant genetic associations were observed with TNFR2 R-R (OR = 3.16, CI 1.20-9.26, P < 0.05), A2M 1-1 (OR = 2.09, CI 1.21-3.64, P < 0.05) and GST T(1)null (OR = 1.97, CI 1.07-3.68, P < 0.05) among Caucasian patients. In South Asians, VDR Bsm I B-B genotype (OR = 2.08, CI 1.23-3.52, P < 0.05), A2M 2-2 genotype (OR = 3.99, CI 1.19-17.18, P < 0.05), and GST T(1)null genotype (OR = 2.81, CI 1.40-5.77, P < 0.002) genotypes were associated with RA. In the majority of cases, recessive and multiplicative modes of inheritance explained the observed associations. This study demonstrates that ethnicity affects the genetic associations in RA.

  9. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will contribute to the understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  10. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  11. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE

    PubMed Central

    Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M

    2007-01-01

    Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene. PMID:17597519

  12. Association of Increased Serum ACE Activity with Logical Memory Ability in Type 2 Diabetic Patients with Mild Cognitive Impairment.

    PubMed

    Tian, Sai; Han, Jing; Huang, Rong; Xia, Wenqing; Sun, Jie; Cai, Rongrong; Dong, Xue; Shen, Yanjue; Wang, Shaohua

    2016-01-01

    Background: Angiotensin-converting enzyme (ACE) is involved in the chronic complications of type 2 diabetes mellitus (T2DM) and Alzheimer's disease. This study aimed to assess the pathogenetic roles of ACE and the genetic predisposition of its insertion/deletion (I/D) polymorphism in mild cognitive impairment (MCI) among T2DM patients. Methods: A total of 210 T2DM patients were enrolled. Among these patients, 116 satisfied the MCI diagnostic criteria and 94 exhibited healthy cognition. The cognitive functions of the patients were extensively assessed. The serum level and activity of ACE were measured via enzyme-linked immunosorbent assay and ultraviolet spectrophotography. The single-nucleotide polymorphisms of I/D gene of ACE were analyzed. Results: The serum level and activity of ACE in diabetic MCI patients ( p = 0.022 and p = 0.008, respectively) were both significantly higher than those in the healthy controls. A significant negative correlation was found between their ACE activity and logical memory test score (LMT) ( p = 0.002). Multiple stepwise regression iterated the negative correlation between ACE activity and LMT score ( p = 0.035). Although no significant difference was found in the genotype or allele distribution of ACE I/D polymorphism between the groups, the serum levels and activity of ACE were higher in the DD group than in the ID and II groups ( p < 0.05). Conclusions: Serum ACE activity could better predict logical memory in T2DM patients than ACE level. Further investigations on a large population size are necessary to test whether the D-allele of the ACE gene polymorphism is susceptible to memory deterioration.

  13. Association of Increased Serum ACE Activity with Logical Memory Ability in Type 2 Diabetic Patients with Mild Cognitive Impairment

    PubMed Central

    Tian, Sai; Han, Jing; Huang, Rong; Xia, Wenqing; Sun, Jie; Cai, Rongrong; Dong, Xue; Shen, Yanjue; Wang, Shaohua

    2016-01-01

    Background: Angiotensin-converting enzyme (ACE) is involved in the chronic complications of type 2 diabetes mellitus (T2DM) and Alzheimer's disease. This study aimed to assess the pathogenetic roles of ACE and the genetic predisposition of its insertion/deletion (I/D) polymorphism in mild cognitive impairment (MCI) among T2DM patients. Methods: A total of 210 T2DM patients were enrolled. Among these patients, 116 satisfied the MCI diagnostic criteria and 94 exhibited healthy cognition. The cognitive functions of the patients were extensively assessed. The serum level and activity of ACE were measured via enzyme-linked immunosorbent assay and ultraviolet spectrophotography. The single-nucleotide polymorphisms of I/D gene of ACE were analyzed. Results: The serum level and activity of ACE in diabetic MCI patients (p = 0.022 and p = 0.008, respectively) were both significantly higher than those in the healthy controls. A significant negative correlation was found between their ACE activity and logical memory test score (LMT) (p = 0.002). Multiple stepwise regression iterated the negative correlation between ACE activity and LMT score (p = 0.035). Although no significant difference was found in the genotype or allele distribution of ACE I/D polymorphism between the groups, the serum levels and activity of ACE were higher in the DD group than in the ID and II groups (p < 0.05). Conclusions: Serum ACE activity could better predict logical memory in T2DM patients than ACE level. Further investigations on a large population size are necessary to test whether the D-allele of the ACE gene polymorphism is susceptible to memory deterioration. PMID:28066203

  14. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy.

    PubMed

    Huang, Carol

    2013-03-01

    Abstract  β-Cell mass increases during pregnancy in adaptation to the insulin resistance of pregnancy. This increase is accompanied by an increase in β-cell proliferation, a process that requires intact prolactin receptor (Prlr) signalling. Previously, it was found that during pregnancy, heterozygous prolactin receptor-null (Prlr(+/-)) mice had lower number of β-cells, lower serum insulin and higher blood glucose levels than wild-type (Prlr(+/+)) mice. An unexpected observation was that the glucose homeostasis of the experimental mouse depends on the genotype of her mother, such that within the Prlr(+/+) group, the Prlr(+/+) offspring derived from Prlr(+/+) mothers (Prlr(+/+(+/+))) had higher β-cell mass and lower blood glucose than those derived from Prlr(+/-) mothers (Prlr(+/+(+/-))). Pathways that are known to regulate β-cell proliferation during pregnancy include insulin receptor substrate-2, Akt, menin, the serotonin synthetic enzyme tryptophan hydroxylase-1, Forkhead box M1 and Forkhead box D3. The aim of the present study was to determine whether dysregulation in these signalling molecules in the islets could explain the maternal effect on the phenotype of the offspring. It was found that the pregnancy-induced increases in insulin receptor substrate-2 and Akt expression in the islets were attenuated in the Prlr(+/+(+/-)) mice in comparison to the Prlr(+/+(+/+)) mice. The expression of Forkhead box D3, which plays a permissive role for β-cell proliferation during pregnancy, was also lower in the Prlr(+/+(+/-)) mice. In contrast, the pregnancy-induced increases in phospho-Jak2, tryptophan hydroxylase-1 and FoxM1, as well as the pregnancy-associated reduction in menin expression, were comparable between the two groups. There was also no difference in expression levels of genes that regulate insulin synthesis and secretion (i.e. glucose transporter 2, glucokinase and pancreatic and duodenal homeobox-1) between these two groups. Taken together, these

  15. Elastase-2, an angiotensin II-generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction.

    PubMed

    Becari, Christiane; Silva, Marcondes A B; Durand, Marina T; Prado, Cibele M; Oliveira, Eduardo B; Ribeiro, Mauricio S; Salgado, Helio C; Salgado, Maria Cristina O; Tostes, Rita C

    2017-05-01

    Angiotensin II (Ang II), whose generation largely depends on angiotensin-converting enzyme (ACE) activity, mediates most of the renin-angiotensin-system (RAS) effects. Elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II-generation in resistance arteries are unknown. We hypothesized that ELA-2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. Concentration-effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA-2 knockout (ELA-2KO) mice subjected to left anterior descending coronary artery ligation (MI). MI size was similar in WT and ELA-2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA-2KO mice. Ang I-induced contractions increased in WT mice subjected to MI (MI-WT) compared with sham-WT mice. No differences were observed in Ang I reactivity between arteries from ELA-2KO and ELA-2KO subjected to MI (MI-ELA-2KO). Ang I contractions increased in arteries from MI-WT versus MI-ELA-2KO mice. Chymostatin attenuated Ang I-induced vascular contractions in WT mice, but did not affect Ang I responses in ELA-2KO arteries. These results provide the first evidence that ELA-2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA-2 as a key player in ACE-independent dysregulation of the RAS. © 2017 The British Pharmacological Society.

  16. Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant Fanconi Anemia Genes

    PubMed Central

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. PMID:24200853

  17. ACE phenotyping in human heart.

    PubMed

    Tikhomirova, Victoria E; Kost, Olga A; Kryukova, Olga V; Golukhova, Elena Z; Bulaeva, Naida I; Zholbaeva, Aigerim Z; Bokeria, Leo A; Garcia, Joe G N; Danilov, Sergei M

    2017-01-01

    Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10-15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. "Conformational fingerprint" of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.

  18. ACE phenotyping in human heart

    PubMed Central

    Tikhomirova, Victoria E.; Kost, Olga A.; Kryukova, Olga V.; Golukhova, Elena Z.; Bulaeva, Naida I.; Zholbaeva, Aigerim Z.; Bokeria, Leo A.; Garcia, Joe G. N.

    2017-01-01

    Aims Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. Methods and results We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10–15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. “Conformational fingerprint” of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Conclusions Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk. PMID:28771512

  19. Loss of the clock protein PER2 shortens the erythrocyte life span in mice.

    PubMed

    Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa

    2017-07-28

    Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Altered Anterior Segment Biometric Parameters in Mice Deficient in SPARC.

    PubMed

    Ho, Henrietta; Htoon, Hla M; Yam, Gary Hin-Fai; Toh, Li Zhen; Lwin, Nyein Chan; Chu, Stephanie; Lee, Ying Shi; Wong, Tina T; Seet, Li-Fong

    2017-01-01

    Secreted protein acidic and rich in cysteine (SPARC) and Hevin are structurally related matricellular proteins involved in extracellular matrix assembly. In this study, we compared the anterior chamber biometric parameters and iris collagen properties in SPARC-, Hevin- and SPARC-/Hevin-null with wild-type (WT) mice. The right eyes of 53 WT, 35 SPARC-, 56 Hevin-, and 63 SPARC-/Hevin-null mice were imaged using the RTVue-100 Fourier-domain optical coherence tomography system. The parameters measured were anterior chamber depth (ACD), trabecular-iris space area (TISA), angle opening distance (AOD), and pupil diameter. Biometric data were analyzed using analysis of covariance and adjusted for age, sex, and pupil diameter. Expression of Col1a1, Col8a1, and Col8a2 transcripts in the irises was measured by quantitative polymerase chain reaction. Collagen fibril thickness was evaluated by transmission electron microscopy. Mice that were SPARC- and SPARC-/Hevin-null had 1.28- and 1.25-fold deeper ACD, 1.45- and 1.53-fold larger TISA, as well as 1.42- and 1.51-fold wider AOD than WT, respectively. These measurements were not significantly different between SPARC- and SPARC-/Hevin-null mice. The SPARC-null iris expressed lower Col1a1, but higher Col8a1 and Col8a2 transcripts compared with WT. Collagen fibrils in the SPARC- and SPARC-/Hevin-null irises were 1.5- and 1.7-fold thinner than WT, respectively. The Hevin-null iris did not differ from WT in these collagen properties. SPARC-null mice have deeper anterior chamber as well as wider drainage angles compared with WT. Therefore, SPARC plays a key role in influencing the spatial organization of the anterior segment, potentially via modulation of collagen properties, while Hevin is not likely to be involved.

  1. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  2. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats.

    PubMed

    Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T; Wu, Jianping

    2015-09-01

    Egg ovotransferrin-derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide-mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW-treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW-treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE-2, ABCB-1, IRF-8, and CDH-1 while significantly decreased the expression ICAM-1 and VCAM-1 in mesenteric arteries. Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Association of angiotensin-converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India.

    PubMed

    Raza, Syed Tasleem; Fatima, Jalees; Ahmed, Faisal; Abbas, Shania; Zaidi, Zeashan Haider; Singh, Seema; Mahdi, Farzana

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is growing in an epidemic manner across the world with an expected doubling of the incidence to millions of affected individuals in the last decades. At present, adequate data are not available regarding the ACE and FABP2 polymorphisms and their susceptibility with T2DM cases in the North Indian population. Thus we conceived the need for further study of ACE (I/D) and FABP2 (Ala54Thr) genes polymorphism and its susceptibility to T2DM in the North Indian population. In this study, a total of 300 subjects (including 190 T2DM cases and 110 controls) participated. ACE and FABP2 gene polymorphisms in the cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism. The frequencies of ACE I/I, I/D and D/D genotypes in T2DM cases and controls were 28.73%, 55.17%, 16.09% and 13.63%, 57.95%, 28.40%, respectively. The frequencies of FABP2 Ala54Ala, Ala54Thr and Thr54Thr in T2DM cases were 18.39%, 66.66%, 14.94% and 22.72%, 61.36%, 15.90% in controls, respectively. ACE I/I genotype was significantly more frequent in cases as compared to controls (p = 0.003, χ(2) = 9.13). It appears that the ACE I/I genotype frequency was significantly higher in the T2DM cases as compared to the controls. © The Author(s) 2013.

  4. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-null Mice

    PubMed Central

    Jani, Priyam H.; Gibson, Monica P.; Liu, Chao; Zhang, Hua; Wang, Xiaofang; Lu, Yongbo; Qin, Chunlin

    2016-01-01

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1−/−) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1−/− mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as “Dmp1−/−;Dspp-Tg mice”). We characterized the long bones of the Dmp1−/−;Dspp-Tg mice at different ages and compared them with those from Dmp1−/− and Dmp1+/− (normal control) mice. Our analyses showed that the long bones of Dmp1−/−;Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1−/− mice. The long bones of Dmp1−/−;Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1−/− mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1−/− mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that

  5. ACE blood test

    MedlinePlus

    ... to help diagnose and monitor a disorder called sarcoidosis . People with sarcoidosis may have their ACE level tested regularly to ... normal ACE level may be a sign of sarcoidosis. ACE levels may rise or fall as sarcoidosis ...

  6. ACE H2 Hardware Configuration and Mix Part 1

    NASA Image and Video Library

    2016-01-04

    ISS046e005678 (01/04/2016) ---- ESA (European Space Agency) astronaut Tim Peake works on the Advanced Colloids Experiment 2 (ACE H2) Hardware Configuration and Mix Part 1. Peake sent out a Twitter message with this image: Stirring samples using a bar magnet to turn a tiny metal rod - preparing for today's @ISS_Research. #Principia".

  7. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: Susceptibility and complications.

    PubMed

    Settin, Ahmad; El-Baz, Rizk; Ismaeel, Azza; Tolba, Wafaa; Allah, Wafaa A

    2015-12-01

    Polymorphisms of angiotensin converting enzyme (ACE) and methylene-tetrahydrofolate reductase (MTHFR) genes have been proposed to be associated with type 2 diabetes mellitus (T2DM) with conflicting results. This work was planned in order to check for the association of these polymorphisms with the susceptibility for and complications of T2DM among Egyptian cases. This is a case controlled study involving 203 patients with T2DM and 311 healthy controls. Polymorphic variants of ACE I>D and MTHFR (677 C>T and 1298 A>C) were determined using the polymerase chain reaction (PCR) restriction analysis technique. The susceptibility to T2DM was higher among subjects having the MTHFR 677TT (odds ratio (OR)=2.2, p=0.01), MTHFR 1298 AA (OR=1.84, p=0.001) and ACE (ID+II) (OR=2.0, p=0.0007) genotypes. Logistic regression analysis showed that MTHFR 677T allele was a risk factor for diabetic retinopathy (DR) (OR=3.47, p<0.001), diabetic polyneuropathy (DPN) (OR=5.2, p<0.0001) and ischemic heart disease (IHD) (OR=2.9, p<0.05), while MTHFR 1298 C allele was a risk factor for DR (OR=4.2, p<0.001) and the ACE DD genotype was a risk factor for DPN (OR=3.1, p<0.001). The MTHFR 677 TT genotype was associated with T2DM susceptibility and complications (DR, DPN and IHD). The MTHFR 1298 CC, AC and ACE DD genotypes were associated with DR and DPN. © The Author(s) 2014.

  8. A mouse model for ulcerative colitis based on NOD-scid IL2R γnull mice reconstituted with peripheral blood mononuclear cells from affected individuals.

    PubMed

    Palamides, Pia; Jodeleit, Henrika; Föhlinger, Michael; Beigel, Florian; Herbach, Nadja; Mueller, Thomas; Wolf, Eckhard; Siebeck, Matthias; Gropp, Roswitha

    2016-09-01

    Animal models reflective of ulcerative colitis (UC) remain a major challenge, and yet are crucial to understand mechanisms underlying the onset of disease and inflammatory characteristics of relapses and remission. Mouse models in which colitis-like symptoms are induced through challenge with toxins such as oxazolone, dextran sodium sulfate (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) have been instrumental in understanding the inflammatory processes of UC. However, these neither reflect the heterogeneous symptoms observed in the UC-affected population nor can they be used to test the efficacy of inhibitors developed against human targets where high sequence and structural similarity of the respective ligands is lacking. In an attempt to overcome these problems, we have developed a mouse model that relies on NOD-scid IL2R γ(null) mice reconstituted with peripheral blood mononuclear cells derived from UC-affected individuals. Upon challenge with ethanol, mice developed colitis-like symptoms and changes in the colon architecture, characterized by influx of inflammatory cells, edema, crypt loss, crypt abscesses and epithelial hyperplasia, as previously observed in immune-competent mice. TARC, TGFβ1 and HGF expression increased in distal parts of the colon. Analysis of human leucocytes isolated from mouse spleen revealed an increase in frequencies of CD1a+, CD64+, CD163+ and TSLPR+ CD14+ monocytes, and antigen-experienced CD44+ CD4+ and CD8+ T-cells in response to ethanol. Analysis of human leucocytes from the colon of challenged mice identified CD14+ monocytes and CD11b+ monocytes as the predominant populations. Quantitative real-time PCR (RT-PCR) analysis from distal parts of the colon indicated that IFNγ might be one of the cytokines driving inflammation. Treatment with infliximab ameliorated symptoms and pathological manifestations, whereas pitrakinra had no therapeutic benefit. Thus, this model is partially reflective of the human disease and might help

  9. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  10. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased

  11. ACE-Inhibition Benefit on Lung Function in Heart Failure is Modulated by ACE Insertion/Deletion Polymorphism.

    PubMed

    Contini, Mauro; Compagnino, Elisa; Cattadori, Gaia; Magrì, Damiano; Camera, Marina; Apostolo, Anna; Farina, Stefania; Palermo, Pietro; Gertow, Karl; Tremoli, Elena; Fiorentini, Cesare; Agostoni, Piergiuseppe

    2016-04-01

    The benefit of angiotensin converting enzyme (ACE) inhibition in chronic heart failure (HF) is partially due to its effects on pulmonary function and particularly on lung diffusion, the latter being counteracted by acetylsalicylic acid (ASA). Tissue ACE activity is largely determined by an insertion/deletion (I/D) polymorphism resulting in three possible genotypes (DD, ID and II). It is not clear if ACE inhibitor therapy could exert different effects in these genotypes. The aim of the study was to understand whether I/D polymorphism interferes with ACE inhibitor's protection of the lungs in HF during acute fluid overload. 100 HF patients (left ventricular ejection fraction ≤40 %) in stable clinical conditions, treated with enalapril but without ASA performed pulmonary function tests including lung diffusion (DLco) and its subcomponents, membrane diffusion (Dm) and capillary volume (Vcap), and a cardiopulmonary exercise test before and immediately after rapid infusion of 500 cc saline. ACE I/D genotype prevalence was: DD = 28, ID =55 and II = 17 cases. No significant differences in major pulmonary function and exercise parameters were observed before saline infusion among ACE genotypes. After fluid challenge, DD patients presented a higher DLco and Dm reduction than ID and II (DLco -2.3 ± 1.3 vs. -0.8 ± 1.9 and -0.6 ± 1 mL/mmHg/min, p < 0.0001 and p < 0.01; Dm -7 ± 5 vs. -3.2 ± 7.4 and -1.3 ± 5 mL/mmHg/min, p < 0.05, respectively) and a higher increase in VE/VCO2 slope than II (1.8 ± 1.9 vs. -0.8 ± 2.3, p = 0.01). ACE DD genotype is associated with higher vulnerability of the alveolar-capillary membrane to acute fluid overload in HF patients treated with ACE inhibitors.

  12. Purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate by IMAC-Ni2.

    PubMed

    Wu, Shanguang; Feng, Xuezhen; Lu, Yuan; Lu, Yuting; Liu, Saisai; Tian, Yuhong

    2017-10-01

    Casein proteins were hydrolyzed by papain to identify inhibitory peptides of angiotensin I-converting enzyme (ACE). The hydrolysate was fractionized by immobilized metal affinity chromatography (IMAC-Ni 2+ ). The fraction with high ACE inhibitory activity was enriched and further chromatographed on a reverse-phase column to yield four fractions. Among the fractions, the L4 fraction exhibited the highest ACE inhibitory activity and was identified by sequence analysis as Trp-Tyr-Leu-His-Tyr-Ala (WYLHYA), with IC 50 value of 16.22 ± 0.83 µM in vitro. This peptide was expected to be applied as an ingredient for preventing hypertension and IMAC-Ni 2+ may provide a simple method for purification of ACE inhibitory peptides.

  13. ACE2 activation by xanthenone prevents leptin-induced increases in blood pressure and proteinuria during pregnancy in Sprague-Dawley rats.

    PubMed

    Ibrahim, Hisham Saleh; Froemming, Gabrielle Ruth Anisah; Omar, Effat; Singh, Harbindar Jeet

    2014-11-01

    This study investigates the effect of ACE2 activation on leptin-induced changes in systolic blood pressure (SBP), proteinuria, endothelial activation and ACE2 expression during pregnancy in Sprague-Dawley rats. Pregnant rats were given subcutaneous injection of either saline, or leptin, or leptin plus xanthenone (ACE2 activator), or xanthenone (XTN) alone. SBP, serum ACE, ACE2, endothelin-1, E-selectin and ICAM-1 levels were estimated; also their gene expressions were determined in the kidney and aorta respectively. Compared to control, SBP was higher in the leptin-only treated group (P<0.001) and lower in rats treated with xanthenone alone (P<0.01). Proteinuria, markers of endothelial activation were significantly higher than controls in leptin-only treated rats (P<0.05). ACE2 activity and expression were lower in leptin-only treated rats when compared to controls (P<0.05). It seems, leptin administration during pregnancy significantly increases SBP, proteinuria, endothelial activation, but decreases ACE2 level and expression. These effects are prevented by concurrent administration of xanthenone. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hypersensitivities for acetaldehyde and other agents among cancer cells null for clinically relevant Fanconi anemia genes.

    PubMed

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. ACE I/D genotype-related increase in ACE plasma activity is a better predictor for schizophrenia diagnosis than the genotype alone.

    PubMed

    Gadelha, Ary; Yonamine, Camila M; Ota, Vanessa K; Oliveira, Vitor; Sato, João Ricardo; Belangero, Sintia I; Bressan, Rodrigo A; Hayashi, Mirian A F

    2015-05-01

    Angiotensin-I converting enzyme (ACE) is a key component of the renin-angiotensin system (RAS). Although the several contradictory data, ACE has been associated with schizophrenia (SCZ) pathophysiology. Here the ACE activity of SCZ patients and healthy controls (HCs), and its possible correlations with the ACE polymorphism genotype and symptomatic dimensions, was investigated. ACE activity of 86 SCZ patients and 100 HCs paired by age, gender and educational level was measured, using the FRET peptide substrate and the specific inhibitor lisinopril. The ACE insertion/deletion (I/D) genotypes were assessed by the restriction fragment length polymorphism (RFLP) technique. Significantly higher ACE activity was observed in SCZ patients compared to HCs (t=-5.09; p<0.001). The area under the receiver operating characteristic (ROC) curve was 0.701. Mean ACE activity levels were higher for the D-allele carriers (F=5.570; p=0.005), but no significant difference was found among SCZ patients and HCs for genotypes frequencies (Chi-squared=2.08; df=2; p=0.35). Interestingly, we found that the difference between the measured ACE activity for each SCZ patient and the expected average mean value for each respective genotype group (for control subjects) was a better predictor of SCZ than the ACE dichotomized values (high/low) or ACE I/D. Our results suggest that higher levels of ACE activity are associated with SCZ with stronger impact when the genetic background of each individual is considered. This may explain the heterogeneity of the results on ACE previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sensorimotor Gating in Neurotensin-1 Receptor Null Mice

    PubMed Central

    Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.

    2009-01-01

    BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359

  17. [Application of Chinese version of ACE-Ⅲ in type 2 diabetes mellitus patients with mild cognitive impairment].

    PubMed

    Xin, J W; Xiao, X L; Chen, X C; Pan, X D

    2017-11-28

    Objective: To investigate the application and best cut-off value of Chinese version of Addenbrooke's cognitive examination-Ⅲ(ACE-Ⅲ) in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment. Methods: A total of 18 T2DM patients with normal cognitive function (NCI group) and 40 T2DM patients with mild cognitive impairment (MCI group) treated in outpatient clinic or ward of Department of Neurology and Endocrinology in Fujian Medical University Union Hospital between January 2015 and February 2016 were enrolled. Mini Mental State Scale (MMSE), Montreal cognitive assessment scale (MoCA), Activity of Daily Living Scale (ADL) and the Chinese version of ACE-Ⅲ were used to assess cognitive function of subjects and to assess the value of ACE-Ⅲ in the diagnosis of T2DM patients with mild cognitive impairment. Results: The Cronbach's alpha of the Chinese version of ACE-Ⅲ is 0.768. ACE-Ⅲ and MoCA were correlative ( r =0.768, P <0.001). The area under the receiver operating characteristic (ROC) curve for ACE-Ⅲ was 0.906 (95% CI : 0.827-0.985). When the cut-off value for diagnosis was 87.5, the maximum Youden index was 0.769, with a sensitivity of 0.825 and a specificity of 0.944. Patients in MCI group got a lower score in the sub-items of attention/orientation, memory, verbal fluency, language and visual space of ACE-Ⅲ compared to those in NCI group, and the differences were statistically significant ( t =5.336, P <0.001; t =5.530, P <0.001; t =4.556, P <0.001; t =5.301, P <0.001; t =2.821, P =0.008). Conclusion: The Chinese version of ACE-Ⅲ had good internal consistency reliability, and it could effectively detect impairment of general cognitive function and single cognitive domains in T2DM patients.

  18. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    PubMed

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  19. Effects of early-life exposure to THIP on brainstem neuronal excitability in the Mecp2-null mouse model of Rett syndrome before and after drug withdrawal.

    PubMed

    Zhong, Weiwei; Johnson, Christopher M; Cui, Ningren; Oginsky, Max F; Wu, Yang; Jiang, Chun

    2017-01-01

    Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2 -/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABA A receptors (GABA A R). Indeed, our previous studies have shown that early-life exposure of Mecp2-null mice to the extrasynaptic GABA A R agonist THIP alleviates several RTT-like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. However, how the chronic THIP affects the Mecp2 -/Y mice at the cellular level remains elusive. Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two types of brainstem neurons in Mecp2 -/Y mice. In neurons of the locus coeruleus (LC), known to be involved in breathing regulation, the hyperexcitability showed clear age-dependence, which was associated with age-dependent deterioration of the RTT-like breathing irregularities. Both the neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2-null mice. The effects of THIP on both LC and Me5 neuronal excitability remained 1 week after withdrawal. Persistent alleviation of breathing abnormalities in Mecp2 -/Y mice was also observed a week after THIP withdrawal. These results suggest that early-life exposure to THIP, a potential therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2 -/Y mice, which occurs in the absence of THIP in the recording solution, lasts at least 1 week after withdrawal, and may contribute to the RTT-like symptom mitigation. © 2017 The Authors

  20. Loss of prokineticin receptor 2 (Prokr2) signaling predisposes mice to torpor

    PubMed Central

    PH, Jethwa; H, I’Anson; A, Warner; HM, Prosser; MH, Hastings; ES, Maywood; FJP, Ebling

    2009-01-01

    The genes encoding prokineticin 2 polypeptide (Prok2) and its cognate receptor (Prokr2/Gpcr73l1) are widely expressed in both the suprachiasmatic nucleus (SCN) and its hypothalamic targets, and this signaling pathway has been implicated in the circadian regulation of behavior and physiology. We have previously observed that the targeted null mutation of Prokr2 disrupts circadian co-ordination of cycles of locomotor activity and thermoregulation. We have now observed spontaneous but sporadic bouts of torpor in the majority of these transgenic mice lacking Prokr2 signaling. During these torpor bouts, which lasted for up to 8h, body temperature and locomotor activity decreased markedly. Oxygen consumption and carbon dioxide production also decreased, and there was a decrease in RQ. These spontaneous torpor bouts generally began towards the end of the dark phase or in the early light phase when the mice were maintained on a 12:12 light-dark cycle, and persisted when mice were exposed to continuous darkness. Periods of food deprivation (16-24h) induced a substantial decrease in body temperature in all mice, but the duration and depth of hypothermia was significantly greater in mice lacking Prokr2 signaling compared to heterozygous and wild-type litter mates. Likewise, when tested in metabolic cages, food deprivation produced greater decreases in oxygen consumption and carbon dioxide production in the transgenic mice than the controls. We conclude that Prokr2 signaling plays a role in the hypothalamic regulation of energy balance, and loss of this pathway results in physiological and behavioral responses normally only detected when mice are in negative energy balance. PMID:18417646

  1. FIRE III ACE

    Atmospheric Science Data Center

    2013-01-23

    FIRE III ACE Data Sets The First International Satellite Cloud ... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...

  2. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.

    PubMed

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-08-16

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.

  3. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  4. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents?

    PubMed

    Wang, Pei; Fedoruk, Matthew N; Rupert, Jim L

    2008-01-01

    In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma

  5. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP

    PubMed Central

    Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW

    2005-01-01

    Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431

  6. [Molecular cloning and characterization of an acetylcholinesterase gene Dd-ace-2 from sweet potato stem nematode Ditylenchus destructor].

    PubMed

    Ding, Zhong; Peng, Deliang; Huang, Wenkun; He, Wenting; Gao, Bida

    2008-02-01

    A cDNA, named Dd-ace-2, encoding an acetylcholinesterase (AChE, EC3.1.1.7), was isolated from sweet-potato-stem nematode, Ditylenchus destructor. The nucleotide and amino acid sequences among different nematode species were compared and analyzed with DNAMAN5.0, MEGA3.0 softwares. The results showed that the complete nucleotide sequence of Dd-ace-2 gene of Ditylenchus destructor contains 2425 base pairs from which deduced 734 amino acids (GenBank accession No. EF583058). The homology rates of amino acid sequences of Dd-ace-2 gene between Ditylenchus destructor and Meloidogyne incognita, Caenorhabditis elegans, Dictyocaulus viviparous were 48.0%, 42.7%, 42.1% respectively. The mature acetylcholinesterase sequences of Ditylenchus destructor may encode by the first 701 residues of deduced 734 amino acids.The conserved motifs involved in the catalytic triad, the choline binding site and 10 aromatic residues lining the catalytic gorge were present in the Dd-ace-2 deduced protein. Phylogenetic analysis based on AChEs of other nematodes and species showed that the deduced AChE formed the same cluster with ACE-2s.

  7. Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability.

    PubMed

    Kim, Ye-Ryung; Volpert, Giora; Shin, Kyong-Oh; Kim, So-Yeon; Shin, Sun-Hye; Lee, Younghay; Sung, Sun Hee; Lee, Yong-Moon; Ahn, Jung-Hyuck; Pewzner-Jung, Yael; Park, Woo-Jae; Futerman, Anthony H; Park, Joo-Won

    2017-12-01

    Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long-chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very-long acyl chain ceramides with concomitant increase of long chain bases and C16-ceramides, were more susceptible to dextran sodium sulphate-induced colitis, and their survival rate was markedly decreased compared with that of wild-type littermates. Using mixed bone-marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule-A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. In vitro experiments using Caco-2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2-knockdown via CRISPR-Cas9 technology impaired barrier function. In vivo myriocin administration, which normalized long-chain bases and C16-ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC-dextran levels, indicating that altered SLs including deficiency of very-long-chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner

    PubMed Central

    Zhou, Peng; Hummel, Alyssa D.; Pywell, Cameron M.; Dong, X. Charlie; Duffield, Giles E.

    2014-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2−/− mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2−/− mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2−/− male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2−/− male mice lost the enhanced glucose tolerance feature observed in the other Id2−/− groups, and there was a sex-specific difference in white adipose tissue storage of Id2−/− mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2−/− males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner. PMID:25108156

  9. Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2.

    PubMed

    Sun, Lixia; Wu, Shanguang; Zhou, Liqin; Wang, Feng; Lan, Xiongdiao; Sun, Jianhua; Tong, Zhangfa; Liao, Dankui

    2017-02-15

    Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish ( Saurida elongata ) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC - Ni 2+ ). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC 50 of 0.116 mg·mL -1 ) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC 50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate.

  10. [Angiotensin converting enzyme 2 and its emerging role in the regulation of the renin angiotensin system].

    PubMed

    Soler, María José; Lloveras, Josep; Batlle, Daniel

    2008-07-12

    The renin-angiotensin system (RAS) plays a key role in the regulation of cardiovascular and renal function. Thus, RAS blockade with an angiotensin-converting enzyme (ACE) and/or angiotensin receptor blocker decreases blood pressure, cardiovascular events, and delays the progression of kidney disease. The discovery of ACE2, a homologue of ACE, capable of degrading angiotensin II to angiotensin 1-7, may offer new insights into the RAS. In this review we discuss the possible protective role of ACE2 in different organs, namely heart, lungs and kidneys. The role of this enzyme is inferred from recent studies performed using genetically manipulated mice that lack the ACE2 gene and also mice treated with pharmacological ACE2 inhibitors. These results suggest that ACE2 might be a new therapeutic target within the RAS.

  11. Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response

    PubMed Central

    Jackson, Sha-Ron; Lee, Jooeun; Reddy, Raghava; Williams, Genevieve N.; Kikuchi, Alexander; Freiberg, Yael; Warburton, David

    2011-01-01

    Telomerase mutations and significantly shortened chromosomal telomeres have recently been implicated in human lung pathologies. Natural telomere shortening is an inevitable consequence of aging, which is also a risk factor for development of lung disease. However, the impact of shortened telomeres and telomerase dysfunction on the ability of lung cells to respond to significant challenge is still largely unknown. We have previously shown that lungs of late generation, telomerase null B6.Cg-Terctm1Rdp mice feature alveolar simplification and chronic stress signaling at baseline, a phenocopy of aged lung. To determine the role telomerase plays when the lung is challenged, B6.Cg-Terctm1Rdp mice carrying shortened telomeres and wild-type controls were subjected to partial pneumonectomy. We found that telomerase activity was strongly induced in alveolar epithelial type 2 cells (AEC2) of the remaining lung immediately following surgery. Eighty-six percent of wild-type animals survived the procedure and exhibited a burst of early compensatory growth marked by upregulation of proliferation, stress response, and DNA repair pathways in AEC2. In B6.Cg-Terctm1Rdp mice carrying shortened telomeres, response to pneumonectomy was characterized by decreased survival, diminished compensatory lung growth, attenuated distal lung progenitor cell response, persistent DNA damage, and cell growth arrest. Overall, survival correlated strongly with telomere length. We conclude that functional telomerase and properly maintained telomeres play key roles in both long-term survival and the early phase of compensatory lung growth following partial pneumonectomy. PMID:21460122

  12. [Conformational Fingerprinting Using Monoclonal Antibodies
    (on the Example of Angiotensin I-Converting Enzyme-ACE)].

    PubMed

    Danilov, S M

    2017-01-01

    During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface-due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept - conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.

  13. ACE Inhibition with Captopril Retards the Development of Signs of Neurodegeneration in an Animal Model of Alzheimer’s Disease

    PubMed Central

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-01-01

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration. PMID:23959119

  14. Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice.

    PubMed

    Agarwal, Anil K; Tunison, Katie; Dalal, Jasbir S; Nagamma, Sneha S; Hamra, F Kent; Sankella, Shireesha; Shao, Xinli; Auchus, Richard J; Garg, Abhimanyu

    2017-11-01

    Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases. Copyright © 2017 Endocrine Society.

  15. Hepcidin expression does not rescue the iron-poor phenotype of Kupffer cells in Hfe-null mice after liver transplantation.

    PubMed

    Garuti, Cinzia; Tian, Yinghua; Montosi, Giuliana; Sabelli, Manuela; Corradini, Elena; Graf, Rolf; Ventura, Paolo; Vegetti, Alberto; Clavien, Pierre-Alain; Pietrangelo, Antonello

    2010-07-01

    Hemochromatosis is a common hereditary disease caused by mutations in HFE and characterized by increased absorption of iron in the intestine. However, the intestine does not appear to be the site of mutant HFE activity in the disease; we investigated the role of the liver-the source of the iron regulatory hormone hepcidin-in pathogenesis in mice. We exchanged livers between Hfe wild-type (+/+) and Hfe null (-/-) mice by orthotopic liver transplantation (OLT) and assessed histopathology, serum and tissue iron parameters, and hepatic hepcidin messenger RNA expression. At 6-8 months after OLT, Hfe(-/-) mice that received Hfe(-/-) livers maintained the hemochromatosis phenotype: iron accumulation in hepatocytes but not Kupffer cells (KC), increased transferrin levels, and low levels of iron in the spleen. Hfe(+/+) mice that received Hfe(-/-) livers had increased levels of iron in serum and liver and low levels of iron in spleen. However, they did not develop the iron-poor KCs that characterize hemochromatosis: KCs appeared iron rich, although hepatic hepcidin expression was low. Transplantation of Hfe(+/+) livers into Hfe(-/-) mice prevented hepatic iron accumulation but did not return spleen and plasma levels of iron to normal; KCs still appeared to be iron poor, despite normal hepcidin expression. In Hfe(-/-) mice, transplantation of livers from Hfe(+/+) mice reversed the iron-loading phenotype associated with hemochromatosis (regardless of Hfe expression in intestine). However, KCs still had low levels of iron that were not affected by hepatic hepcidin expression. These findings indicate an independent, iron-modifying effect of HFE in KCs. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum.

    PubMed

    Allen, Jeremy P; Hathway, Gareth J; Clarke, Neil J; Jowett, Mike I; Topps, Stephanie; Kendrick, Keith M; Humphrey, Patrick P A; Wilkinson, Lawrence S; Emson, Piers C

    2003-05-01

    The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.

  17. Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome.

    PubMed

    Bae, Eun Hui; Fang, Fei; Williams, Vanessa R; Konvalinka, Ana; Zhou, Xiaohua; Patel, Vaibhav B; Song, Xuewen; John, Rohan; Oudit, Gavin Y; Pei, York; Scholey, James W

    2017-06-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-β signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Association between ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133), FTO (rs9939609) Genes Polymorphism and Type 2 Diabetes with Dyslipidemia.

    PubMed

    Raza, Syed Tasleem; Abbas, Shania; Siddiqi, Zeba; Mahdi, Farzana

    2017-01-01

    Diabetic dyslipidemia is one of the leading causes of coronary artery disease (CAD) death. Genetic and environmental factors play an important role in the development of type 2 diabetes mellitus (T2DM) and dyslipidemia. The present study was aimed to investigate the association of ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133) and FTO (rs9939609) genes polymorphism in T2DM with dyslipidemia. Totally, 559 subjects including 221 T2DM cases with dyslipidemia, 158 T2DM without dyslipidemia and 180 controls were enrolled. ACE genes polymorphism was evaluated by polymerase chain reaction (PCR), while MTHFR , FABP2 , FTO genes polymorphisms were evaluated by PCR and restriction fragment length polymorphism (RFLP). Significant association of ACE and MTHFR genes polymorphisms were found in both group of cases [T2DM with dyslipidemia (P<0.001, and P=0.008, respectively) and T2DM without dyslipidemia (P=0.003, and P=0.010, respectively)] while FABP2 and FTO genes polymorphisms were significantly associated with T2DM without dyslipidemia (P=0.038, and P= 0.019, respectively). This study concludes that ACE , FABP2 , FTO and MTHFR genes are associated with T2DM. Additionally, it also seems that ACE and MTHFR genes might be further associated with the development of dyslipidemia in T2DM cases.

  19. Swanson in Node 2 with ACE samples

    NASA Image and Video Library

    2014-07-14

    ISS040-E-060673 (14 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with test samples for the Advanced Colloids Experiment (ACE) at a work station in the Harmony node of the International Space Station.

  20. Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response.

    PubMed

    Klempin, Friederike; Mosienko, Valentina; Matthes, Susann; Villela, Daniel C; Todiras, Mihail; Penninger, Josef M; Bader, Michael; Santos, Robson A S; Alenina, Natalia

    2018-04-20

    Physical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis. ACE2 metabolizes Ang II to Ang-(1-7) and is essential for the intestinal uptake of tryptophan (Trp), the 5-HT precursor. In ACE2-deficient mice, we observed a decrease in brain 5-HT levels and no increase in the number of BrdU-positive cells following exercise. Targeting the Ang II/AT1 axis by blocking the receptor, or experimentally increasing Trp/5-HT levels in the brain of ACE2-deficient mice, did not rescue the running-induced effect. Furthermore, mice lacking the Ang-(1-7) receptor, Mas, presented a normal neurogenic response to exercise. Our results identify ACE2 as a novel factor required for exercise-dependent modulation of adult neurogenesis and essential for 5-HT metabolism.

  1. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    PubMed

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  2. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade.

    PubMed

    Park, David S; Lee, Hyangkyu; Frank, Philippe G; Razani, Babak; Nguyen, Andrew V; Parlow, Albert F; Russell, Robert G; Hulit, James; Pestell, Richard G; Lisanti, Michael P

    2002-10-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.

  3. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  4. Nrf2 activation prevents cadmium-induced acute liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-nullmore » mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1

  5. Percentiles of the null distribution of 2 maximum lod score tests.

    PubMed

    Ulgen, Ayse; Yoo, Yun Joo; Gordon, Derek; Finch, Stephen J; Mendell, Nancy R

    2004-01-01

    We here consider the null distribution of the maximum lod score (LOD-M) obtained upon maximizing over transmission model parameters (penetrance values, dominance, and allele frequency) as well as the recombination fraction. Also considered is the lod score maximized over a fixed choice of genetic model parameters and recombination-fraction values set prior to the analysis (MMLS) as proposed by Hodge et al. The objective is to fit parametric distributions to MMLS and LOD-M. Our results are based on 3,600 simulations of samples of n = 100 nuclear families ascertained for having one affected member and at least one other sibling available for linkage analysis. Each null distribution is approximately a mixture p(2)(0) + (1 - p)(2)(v). The values of MMLS appear to fit the mixture 0.20(2)(0) + 0.80chi(2)(1.6). The mixture distribution 0.13(2)(0) + 0.87chi(2)(2.8). appears to describe the null distribution of LOD-M. From these results we derive a simple method for obtaining critical values of LOD-M and MMLS. Copyright 2004 S. Karger AG, Basel

  6. Association of GSTM1, GSTT1, GSTP1-ILE105VAL and ACE I/D polymorphisms with ankylosing spondylitis.

    PubMed

    İnal, Esra Erkol; Görükmez, Orhan; Eroğlu, Selma; Görükmez, Özlem; Solak, Özlem; Topak, Ali; Yakut, Tahsin

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown origin. The aim of this study is to clarify the relationships between susceptibility and severity of AS and GST-mu1 (GSTM1), GST-theta1 (GSTT1), GST-pi1 (GSTP1)-Ile105Val and angiotensin-converting enzyme (ACE) I/D polymorphisms in AS patients. One hundred thirty-eight AS patients and seventy-one healthy controls were enrolled in this study. Erythrocyte sedimentation rate and C-reactive protein (CRP) levels of the AS patients were recorded. The scores of the numeric rating scale (NRS) pain, the Bath Ankylosing Spondylitis Activity Index, the Bath Ankylosing Spondylitis Metrology Index and the Bath Ankylosing Spondylitis Functional Index were calculated. The genotypes distributions and allele frequencies of GSTM1, GSTT1, GSTP1-Ile105Val and ACE I/D polymorphisms were compared between patients and healthy controls. The Multiplex polymerase chain reaction (PCR) and the PCR-restriction fragment length polymorphism methods were used to detect the polymorphisms of ACE I/D, the GSTT1 and GSTM1 genes and the GSTP1-Ile105Val polymorphism, respectively. There were significantly higher levels of the GSTT1 null and the ACE II genotypes in AS patients compared to those in healthy controls (p = 0.002 and 0.005, respectively). We found significantly higher levels of CRP and the NRS pain scores in the patients with ACE ID or DD genotypes compared to those in the patients with ACE II genotypes (p = 0.005 and 0.035, respectively). The present results showed that genes involved in protection from oxidative stress and ACE gene may influence disease development and course in AS.

  7. Natural killer T cell facilitated engraftment of rat skin but not islet xenografts in mice.

    PubMed

    Gordon, Ethel J; Kelkar, Vinaya

    2009-01-01

    We have studied cellular components required for xenograft survival mediated by anti-CD154 monoclonal antibody (mAb) and a transfusion of donor spleen cells and found that the elimination of CD4(+) but not CD8(+) cells significantly improves graft survival. A contribution of other cellular components, such as natural killer (NK) cells and natural killer T (NKT) cells, for costimulation blockade-induced xenograft survival has not been clearly defined. We therefore tested the hypothesis that NK or NKT cells would promote rat islet and skin xenograft acceptance in mice. Lewis rat islets or skin was transplanted into wild type B6 mice or into B6 mice that were Jalpha18(null), CD1(null), or beta2 microglobulin (beta2M)(null) NK 1.1 depleted, or perforin(null). Graft recipients were pretreated with an infusion of donor derived spleen cells and a brief course of anti-CD154 mAb treatments. Additional groups received mAb or cells only. We first observed that the depletion of NK1.1 cells does not significantly interfere with graft survival in C57BL/6 (B6) mice. We used NKT cell deficient B6 mice to test the hypothesis that NKT cells are involved in islet and skin xenograft survival in our model. These mice bear a null mutation in the gene for the Jalpha18 component of the T-cell receptor. The component is uniquely associated with NKT cells. We found no difference in islet xenograft survival between Jalpha18(null) and wild type B6 mice. In contrast, median skin graft survival appeared shorter in Jalpha18(null) recipients. These data imply a role for Jalpha18(+) NKT cells in skin xenograft survival in treated mice. In order to confirm this inference, we tested skin xenograft survival in B6 CD1(null) mice because NKT cells are CD1 restricted. Results of these trials demonstrate that the absence of CD1(+) cells adversely affects rat skin graft survival. An additional assay in beta2M(null) mice demonstrated a requirement for major histocompatibility complex (MHC) class I

  8. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae

    PubMed Central

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F.; de Ridder, Dick; Pronk, Jack T.; van Maris, Antonius J. A.; Daran, Jean-Marc

    2013-01-01

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments. PMID:24145419

  9. Urea and urine concentrating ability in mice lacking AQP1 and AQP3.

    PubMed

    Zhao, Dan; Bankir, Lise; Qian, Liman; Yang, Dayu; Yang, Baoxue

    2006-08-01

    Aquaporin-1 (AQP1) and aquaporin-3 (AQP3) water channels expressed in the kidney play a critical role in the urine concentrating mechanism. Mice with AQP1 or AQP3 deletion have a urinary concentrating defect. To better characterize this defect, we studied the influence of an acute urea load (300 mumol ip) in conscious AQP1-null, AQP3-null, and wild-type mice. Urine was collected and assayed every 2 h, from 2 h before (baseline) to 8 h after the urea load. Mice of all genotypes excreted the urea load in approximately 4 h with the same time course. Interestingly, despite their low baseline, the AQP3-null mice raised their urine osmolality and urea concentration progressively after the urea load to values almost equal to those in wild-type mice at 8 h. In contrast, urine non-urea solute concentration did not change. Urine volume fell in the last 4 h to about one-fourth of basal values. AQP1-null mice increased their urine flow rate much more than AQP3-null mice and showed no change in urine osmolality and urea concentration. The urea load strongly upregulated urea transporter UT-A3 expression in all three genotypes. These observations show that the lack of AQP3 does not interfere with the ability of the kidney to concentrate urea but impairs its ability to concentrate other solutes. This solute-selective response could result from the capacity of AQP3 to transport not only water but also urea. The results suggest a novel role for AQP3 in non-urea solute concentration in the urine.

  10. ACES--Today and Tomorrow.

    ERIC Educational Resources Information Center

    Hackney, Harold

    1991-01-01

    Presents text of Presidential Address delivered March 24, 1991, at the Association for Counselor Education and Supervision (ACES) luncheon, part of the American Association for Counseling and Development Convention held in Reno, Nevada. Comments on past, present, and future of ACES, particularly on future challenges and role of ACES. (ABL)

  11. Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.

    2012-01-01

    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897

  12. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice.

    PubMed

    Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle

    2016-05-04

    Hsp27-encoded by HspB1- is a member of the small heat shock proteins (sHsp, 12-43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse . Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1 -null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  13. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    PubMed Central

    Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle

    2016-01-01

    Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps. PMID:28248227

  14. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  15. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2

    PubMed Central

    Beazley, Kelly E.; Nurminskaya, Maria

    2016-01-01

    Use of the dietary supplement quercetin is on the rise. Because previous studies imply an inhibitory effect of quercetin on male fertility, we explored the effects of this flavonoid on fertility in female mice. Birth outcomes, and ovarian morphology in 4-week-old offspring, were assessed in mice receiving dietary quercetin (5 mg kg−1 day−1) for 9 months during two breeding periods: from 2 to 6 months (prime reproductive age) and 8 to11 months of age. Quercetin increased birth spacing, leading to a 60% reduction in the number of litters, but enhanced folliculogenesis in ovaries of female offspring. While in young females quercetin caused an almost 70% increase in litter size, in older animals this effect was reversed. Consistent with the inhibitory activity of quercetin on the enzyme transglutaminase 2 (TG2), genetic ablation of TG2 in mice mirrors the effects of quercetin on birth outcomes and follicular development. Further, TG2-null mice lack responsiveness to quercetin ingestion. Our study shows for the first time that dietary quercetin can cause reduced reproductive potential in female mice and implies that TG2 may regulate ovarian ageing. PMID:25557047

  16. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells

    PubMed Central

    Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa

    2015-01-01

    The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155

  17. Mucosal Maltase-Glucoamylase Plays a Crucial Role in Starch Digestion and Prandial Glucose Homeostasis of Mice1–3

    PubMed Central

    Nichols, Buford L.; Quezada-Calvillo, Roberto; Robayo-Torres, Claudia C.; Ao, Zihua; Hamaker, Bruce R.; Butte, Nancy F.; Marini, Juan; Jahoor, Farook; Sterchi, Erwin E.

    2009-01-01

    Starch is the major source of food glucose and its digestion requires small intestinal α-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in α-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal α-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of 13C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced α-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal α-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis. PMID:19193815

  18. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice

    PubMed Central

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150

  19. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice

    PubMed Central

    Niewiadomski, Julie; Zhou, James Q.; Roman, Heather B.; Liu, Xiaojing; Hirschberger, Lawrence L.; Locasale, Jason W.; Stipanuk, Martha H.

    2016-01-01

    To gain further insights into the effect of elevated cysteine levels on energy metabolism and the possible mechanisms by which cysteine may have these effects, we conducted studies in cysteine dioxygenase (Cdo1)–null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression holds in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggested impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2S production and impairments in energy metabolism suggest that H2S signaling could be involved. PMID:26995761

  20. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    PubMed

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved. © 2016 New York Academy of Sciences.

  1. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  2. Potential role of eNOS in the therapeutic control of myocardial oxygen consumption by ACE inhibitors and amlodipine.

    PubMed

    Loke, K E; Messina, E J; Shesely, E G; Kaley, G; Hintze, T H

    2001-01-01

    Our aim was to investigate the potential therapeutic role of endothelial nitric oxide synthase (eNOS) in the modulation of cardiac O(2) consumption induced by the angiotensin converting enzyme (ACE) inhibitor ramiprilat and amlodipine. Three different groups of mice were used; wild type, wild type in the presence of N-nitro-L-arginine methyl ester (L-NAME, 10(-4) mol/l) or genetically altered mice lacking the eNOS gene (eNOS -/-). Myocardial O(2) consumption was measured using a Clark-type O(2) electrode in an air-tight stirred bath. Concentration-response curves to ramiprilat (RAM), amlodipine (AMLO), diltiazem (DIL), carbachol (CCL), substance P (SP) and S-nitroso-N-acetyl-penicillamine (SNAP) were performed. The rate of decrease in O(2) concentration was expressed as a percentage of the baseline. Baseline O(2) consumption was not different between the three groups of mice. In tissues from wild type mice, RAM (10(-5) mol/l), AMLO (10(-5) mol/l), DIL (10(-4) mol/l), CCL (10(-4) mol/l), SP (10(-7) mol/l) and SNAP (10(-4) mol/l) reduced myocardial O(2) consumption by -32+/-4, -27+/-10, -20+/-6, -25+/-2, -22+/-4 and -42+/-4%, respectively. The responses to RAM, AMLO, CCL and SP were absent in tissues taken from eNOS -/- mice (-7.1+/-4.3, -5.0+/-6.0, -5.2+/-5.1 and -0.4+/-0.2%, respectively). In addition, L-NAME significantly (P<0.05) inhibited the reduction in O(2) consumption induced by RAM (-9.8+/-4.4%), AMLO (-1.0+/-6.0%), CCL (-8.8+/-3.7%) and SP (-6.6+/-4.9%) in cardiac tissues from wild type mice. In contrast, NO-independent responses to the calcium channel antagonist, DIL, and responses to the NO donor, SNAP, were not affected in cardiac tissues taken from eNOS -/- (DIL: -20+/-4%; SNAP: -46+/-6%) or L-NAME-treated (DIL: -17+/-2%; SNAP: -33+/-5%) mice. These results suggest that endogenous endothelial NO synthase derived NO serves an important role in the regulation of myocardial O(2) consumption. This action may contribute to the therapeutic action of ACE

  3. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  4. Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with ACE I/D polymorphism and association with vascular reactivity.

    PubMed

    Alves, Cléber Rene; Fernandes, Tiago; Lemos, José Ribeiro; Magalhães, Flávio de Castro; Trombetta, Ivani Credidio; Alves, Guilherme Barreto; Mota, Glória de Fátima Alves da; Dias, Rodrigo Gonçalves; Pereira, Alexandre Costa; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2018-01-01

    Previous studies have linked angiotensin-converting enzyme ( ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O 2 consumption (VO 2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two -way repeated-measures ANOVA were used. In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO 2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N-domain activity is dependent on the DD

  5. Impaired olfaction in mice lacking aquaporin-4 water channels.

    PubMed

    Lu, Daniel C; Zhang, Hua; Zador, Zsolt; Verkman, A S

    2008-09-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had approximately 12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 +/- 0.7 vs. 55 +/- 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 +/- 0.07 vs. 0.28 +/- 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K(+) buffering in the olfactory epithelium.

  6. Retracted: Association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in a Caucasian population.

    PubMed

    Liu, Guohui; Zhou, Tian-Biao; Jiang, Zongpei; Zheng, Dongwen

    2015-03-01

    The association of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism with type-2 diabetic nephropathy (T2DN) susceptibility and the risk of type-2 diabetes mellitus (T2DM) developing into T2DN in Caucasian populations is still controversial. A meta-analysis was performed to evaluate the association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in Caucasian populations. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic databases. Sixteen articles were identified for the analysis of the association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in Caucasian populations. ACE I/D gene polymorphism was not associated with T2DN susceptibility and the risk of patients with T2DM developing T2DN in Caucasian populations. Sensitivity analysis according to sample size of case (<100 vs. ≥100) was also performed, and the results were similar to the non-sensitivity analysis. ACE I/D gene polymorphism was not associated with T2DN susceptibility and the risk of patients with T2DM developing T2DN in Caucasian populations. However, more studies should be performed in the future. © The Author(s) 2014.

  7. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Milk-derived peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ACE) dependent cascade.

    PubMed

    Sawada, Yoko; Sakamoto, Yuri; Toh, Mariko; Ohara, Nozomi; Hatanaka, Yuiko; Naka, Ayano; Kishimoto, Yoshimi; Kondo, Kazuo; Iida, Kaoruko

    2015-12-01

    This study aimed to examine the effects of Val-Pro-Pro (VPP), a food-derived peptide with an angiotensin-converting enzyme (ACE) inhibitory property, on obesity-linked insulin resistance, and adipose inflammation in vivo and in vitro. C57BL/6J mice were fed high-fat high-sucrose diet and VPP (0.1% in water) for 4 months. For in vitro analysis, coculture of 3T3-L1 adipocytes overexpressing either ACE (3T3-ACE) or green fluorescent protein (3T3-GFP) and RAW264 macrophages was conducted with VPP. In diet-induced obese mice, VPP improved insulin sensitivity, concomitant with a significant decrease in tumor necrosis factor α (TNF-α) and IL-1β expression in adipose tissue, with a tendency (p = 0.06) toward decreased CC chemokine ligand 5 expression. Additionally, VPP administration inhibited macrophage accumulation and activation in fat tissues. In vitro, VPP attenuated TNF-α mRNA induced by ACE overexpression in 3T3-L1 adipocytes. TNF-α and IL-1β expression decreased following VPP treatment of RAW264 macrophage and 3T3-ACE adipocyte cocultures, but not in RAW264-3T3-GFP adipocyte cocultures. Our data suggest that VPP inhibits adipose inflammation in the interaction between adipocytes and macrophages, acting as an ACE inhibitor, thereby improving obesity-related insulin resistance. Thus, ingestion of VPP may be a viable protective and therapeutic strategy for insulin resistance and obesity-associated adipose inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single nucleotide polymorphisms of the angiotensin-converting enzyme (ACE) gene are associated with essential hypertension and increased ACE enzyme levels in Mexican individuals.

    PubMed

    Martínez-Rodríguez, Nancy; Posadas-Romero, Carlos; Villarreal-Molina, Teresa; Vallejo, Maite; Del-Valle-Mondragón, Leonardo; Ramírez-Bello, Julian; Valladares, Adan; Cruz-López, Miguel; Vargas-Alarcón, Gilberto

    2013-01-01

    To explore the role of the ACE gene polymorphisms in the risk of essential hypertension in Mexican Mestizo individuals and evaluate the correlation between these polymorphisms and the serum ACE levels. Nine ACE gene polymorphisms were genotyped by 5' exonuclease TaqMan genotyping assays and polymerase chain reaction (PCR) in 239 hypertensive and 371 non- hypertensive Mexican individuals. Haplotypes were constructed after linkage disequilibrium analysis. ACE serum levels were determined in selected individuals according to different haplotypes. Under a dominant model, rs4291 rs4335, rs4344, rs4353, rs4362, and rs4363 polymorphisms were associated with an increased risk of hypertension after adjusting for age, gender, BMI, triglycerides, alcohol consumption, and smoking. Five polymorphisms (rs4335, rs4344, rs4353, rs4362 and rs4363) were in strong linkage disequilibrium and were included in four haplotypes: H1 (AAGCA), H2 (GGATG), H3 (AGATG), and H4 (AGACA). Haplotype H1 was associated with decreased risk of hypertension, while haplotype H2 was associated with an increased risk of hypertension (OR = 0.77, P = 0.023 and OR = 1.41, P = 0.004 respectively). According to the codominant model, the H2/H2 and H1/H2 haplotype combinations were significantly associated with risk of hypertension after adjusted by age, gender, BMI, triglycerides, alcohol consumption, and smoking (OR = 2.0; P = 0.002 and OR = 2.09; P = 0.011, respectively). Significant elevations in serum ACE concentrations were found in individuals with the H2 haplotype (H2/H2 and H2/H1) as compared to H1/H1 individuals (P = 0.0048). The results suggest that single nucleotide polymorphisms and the "GGATG" haplotype of the ACE gene are associated with the development of hypertension and with increased ACE enzyme levels.

  10. The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice.

    PubMed

    Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury

    2017-03-01

    The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Boone, C.; Walker, K.; McLeod, S.; Nassar, R.

    2003-12-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at

  12. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  13. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    PubMed

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  14. An Angiotensin I-Converting Enzyme Mutation (Y465D) Causes a Dramatic Increase in Blood ACE via Accelerated ACE Shedding

    PubMed Central

    Gordon, Kerry; Nesterovitch, Andrew B.; Lünsdorf, Heinrich; Chen, Zhenlong; Castellon, Maricela; Popova, Isolda A.; Kalinin, Sergey; Mendonca, Emma; Petukhov, Pavel A.; Schwartz, David E.

    2011-01-01

    Background Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE. Methodology/Principal Findings HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another. Conclusions/Significance The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase). PMID:21998728

  15. PIERCE1 is critical for specification of left-right asymmetry in mice.

    PubMed

    Sung, Young Hoon; Baek, In-Jeoung; Kim, Yong Hwan; Gho, Yong Song; Oh, S Paul; Lee, Young Jae; Lee, Han-Woong

    2016-06-16

    The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the DNA damage response. In this study, we found that Pierce1-null mice exhibit severe laterality defects, including situs inversus totalis and heterotaxy with randomized situs and left and right isomerisms. The spectrum of laterality defects was closely correlated with randomized expression of Nodal and its downstream genes, Lefty1/2 and Pitx2. The phenotype of Pierce1-null mice most closely resembled that of mutant mice with impaired ciliogenesis and/or ciliary motility of the node. We also found the loss of asymmetric expression of Cerl2, the earliest flow-responding gene in the node of Pierce1-null embryos. The results suggest that Pierce1-null embryos have defects in generating a symmetry breaking signal including leftward nodal flow. This is the first report implicating a role for PIERCE1 in the symmetry-breaking step of left-right asymmetry specification.

  16. Adiponectin deficiency impairs liver regeneration through attenuating STAT3 phosphorylation in mice.

    PubMed

    Shu, Run-Zhe; Zhang, Feng; Wang, Fang; Feng, De-Chun; Li, Xi-Hua; Ren, Wei-Hua; Wu, Xiao-Lin; Yang, Xue; Liao, Xiao-Dong; Huang, Lei; Wang, Zhu-Gang

    2009-09-01

    Liver regeneration is a very complex and well-orchestrated process associated with signaling cascades involving cytokines, growth factors, and metabolic pathways. Adiponectin is an adipocytokine secreted by mature adipocytes, and its receptors are widely distributed in many tissues, including the liver. Adiponectin has direct actions in the liver with prominent roles to improve hepatic insulin sensitivity, increase fatty acid oxidation, and decrease inflammation. To test the hypothesis that adiponectin is required for normal progress of liver regeneration, 2/3 partial hepatectomy (PH) was performed on wild-type and adiponectin-null mice. Compared to wild-type mice, adiponectin-null mice displayed decreased liver mass regrowth, impeded hepatocyte proliferation, and increased hepatic lipid accumulation. Gene expression analysis revealed that adiponectin regulated the gene transcription related to lipid metabolism. Furthermore, the suppressed hepatocyte proliferation was accompanied with reduced signal transducer and activator of transcription protein 3 (STAT3) activity and enhanced suppressor of cytokine signaling 3 (Socs3) transcription. In conclusion, adiponectin-null mice exhibit impaired liver regeneration and increased hepatic steatosis. Increased expression of Socs3 and subsequently reduced activation of STAT3 in adiponectin-null mice may contribute to the alteration of the liver regeneration capability and hepatic lipid metabolism after PH.

  17. Buffering of protons released by mineral formation during amelogenesis in mice.

    PubMed

    Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K

    2016-10-01

    Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.

  18. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    PubMed

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

  19. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM) - a new function of ACE.

    PubMed

    Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn

    2008-12-01

    Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.

  20. ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women.

    PubMed

    Hagberg, James M; McCole, Steve D; Brown, Michael D; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Moore, Geoffrey E

    2002-03-01

    We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.

  1. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  2. Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with ACE I/D polymorphism and association with vascular reactivity

    PubMed Central

    Alves, Cléber Rene; Fernandes, Tiago; Lemos, José Ribeiro; Magalhães, Flávio de Castro; Trombetta, Ivani Credidio; Alves, Guilherme Barreto; da Mota, Glória de Fátima Alves; Dias, Rodrigo Gonçalves; Pereira, Alexandre Costa; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2018-01-01

    Introduction: Previous studies have linked angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. Materials and methods: A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O2 consumption (VO2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two-way repeated-measures ANOVA were used. Results: In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N

  3. Impaired olfaction in mice lacking aquaporin-4 water channels

    PubMed Central

    Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552

  4. Gender difference of serum angiotensin-converting enzyme (ACE) activity in DD genotype of ACE insertion/deletion polymorphism in elderly Chinese.

    PubMed

    Zhang, Ya-Feng; Cheng, Qiong; Tang, Nelson L S; Chu, Tanya T W; Tomlinson, Brian; Liu, Fan; Kwok, Timothy C Y

    2014-12-01

    In this study we investigated the gender difference of serum angiotensin-converting enzyme (ACE) activity in a population of Hong Kong-dwelling elderly Chinese. A total of 1767 (843 male, 924 female) Hong Kong-dwelling elderly Chinese were recruited. ACE I/D genotypes were identified by polymerase chain reaction amplification and serum ACE activity was determined using a commercially available kinetic kit. ACE I/D genotype distribution was compared by chi-square test, the correlation between ACE I/D polymorphism and serum ACE activity was analysed by ANOVA test and gender difference of serum ACE activity of different genotypes was compared by independent sample t-test. No statistically significant difference of genotype distribution between male and female subjects was found. Serum ACE activity was significantly correlated with ACE genotype. Overall, there was no gender difference of serum ACE activity; however, when sub-grouping the subjects by ACE I/D genotype, male subjects with DD genotype had higher serum ACE activity than female subjects with DD genotype. No significant gender difference of genotype distribution was found in elderly Chinese. Serum ACE activity was significantly correlated with ACE I/D polymorphism in elderly Chinese. Male subjects with DD genotype had higher serum ACE activity than female subjects with DD genotype. © The Author(s) 2013.

  5. PPARα-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice.

    PubMed

    Harada, Yukiko; Tanaka, Naoki; Ichikawa, Motoki; Kamijo, Yuji; Sugiyama, Eiko; Gonzalez, Frank J; Aoyama, Toshifumi

    2016-12-01

    It was reported that 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide and a possible endocrine disruptor, can disturb spermatogenesis, but the precise mechanism is not understood. Since 2,4-D is a weak peroxisome proliferator in hepatocytes and peroxisome proliferator-activated receptor α (PPARα) is also expressed in Leydig cells, this study aimed to investigate the link between PPARα and 2,4-D-mediated testicular dysfunction. 2,4-D (130 mg/kg/day) was administered to wild-type and Ppara-null mice for 2 weeks, and the alterations in testis and testosterone/cholesterol metabolism in Leydig cells were examined. Treatment with 2,4-D markedly decreased testicular testosterone in wild-type mice, leading to degeneration of spermatocytes and Sertoli cells. The 2,4-D decreased cholesterol levels in Leydig cells of wild-type mice through down-regulating the expression of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 and reductase, involved in de novo cholesterogenesis. However, the mRNAs encoding the important proteins involved in testosterone synthesis were unchanged by 2,4-D except for CYP17A1, indicating that exhausted cholesterol levels in the cells is a main reason for reduced testicular testosterone. Additionally, pregnancy rate and the number of pups between 2,4-D-treated wild-type male mice and untreated female mice were significantly lower compared with those between untreated couples. These phenomena were not observed in 2,4-D-treated Ppara-null males. Collectively, these results suggest a critical role for PPARα in 2,4-D-induced testicular toxicity due to disruption of cholesterol/testosterone homeostasis in Leydig cells. This study yields novel insights into the possible mechanism of testicular dysfunction and male infertility caused by 2,4-D.

  6. Association of CILP2 and ACE Gene Polymorphisms with Cardiovascular Risk Factors in Slovak Midlife Women

    PubMed Central

    Luptáková, Lenka; Benčová, Dominika; Siváková, Daniela; Cvíčelová, Marta

    2013-01-01

    The aim of this study is to assess the association of two polymorphisms, the cartilage intermediate layer protein 2 (CILP2) G/T and angiotensin converting enzyme (ACE) I/D, with blood pressure and anthropometrical and biochemical parameters related to the development of cardiovascular disease. The entire study sample comprised 341 women ranging in age from 39 to 65 years. The CILP2 genotypes were determined by PCR-RFLP and the ACE genotypes by PCR. The Bonferroni pairwise comparisons showed the effect of the CILP2 genotype on high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein B (apoB), apoB-to-apoA1 ratio, the total cholesterol (TC)-to-HDL-C ratio, non-HDL-C, and the LDL-C-to-HDL-C ratio (P < 0.05). Here, higher mean levels of HDL-C and lower mean levels of the remaining above mentioned lipid parameters were registered in the GT/TT genotype carriers than in GG carriers. Statistically significant association was identified between the ACE genotype and the following parameters: TC, LDL-C, and non-HDL-C (P < 0.05). The II genotype can lower serum level of TC (B = 0.40), LDL-C (B = 0.37), and non-HDL-C levels. The results of this study suggest that the minor T allele of CILP2 gene and I allele of ACE gene have a protective effect against elevated serum lipid and lipoprotein levels. PMID:24350279

  7. Listing of Available ACE Data Tables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlin, Jeremy Lloyd

    This document is divided into multiple sections. Section 2 lists some of the more frequently used ENDF/B reaction types that can be used with the FM input card. The remaining sections (described below) contain tables showing the available ACE data tables for various types of data. These ACE data libraries are distributed by the Radiation Safety Information Computational Center (RSICC) with MCNP6.

  8. A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice.

    PubMed

    Lv, Kun; Huang, Haiyang; Yi, Xing; Chertoff, Mark E; Li, Chaoyuan; Yuan, Baozhi; Hinton, Robert J; Feng, Jian Q

    2017-10-01

    Genetic mouse models are widely used for understanding human diseases but we know much less about the anatomical structure of the auditory ossicles in the mouse than we do about human ossicles. Furthermore, current studies have mainly focused on disease conditions such as osteomalacia and rickets in patients with hypophosphatemia rickets, although the reason that these patients develop late-onset hearing loss is unknown. In this study, we first analyzed Dmp1 lac Z knock-in auditory ossicles (in which the blue reporter is used to trace DMP1 expression in osteocytes) using X-gal staining and discovered a novel bony membrane surrounding the mouse malleus. This finding was further confirmed by 3-D micro-CT, X-ray, and alizarin red stained images. We speculate that this unique structure amplifies and facilitates sound wave transmissions in two ways: increasing the contact surface between the eardrum and malleus and accelerating the sound transmission due to its mineral content. Next, we documented a progressive deterioration in the Dmp1-null auditory ossicle structures using multiple imaging techniques. The auditory brainstem response test demonstrated a conductive hearing loss in the adult Dmp1-null mice. This finding may help to explain in part why patients with DMP1 mutations develop late-onset hearing loss, and supports the critical role of DMP1 in maintaining the integrity of the auditory ossicles and its bony membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Decreased Virus Population Diversity in p53-Null Mice Infected with Weakly Oncogenic Abelson Virus

    PubMed Central

    Marchlik, Erica; Kalman, Richard; Rosenberg, Naomi

    2005-01-01

    The Abelson murine leukemia virus (Ab-MLV), like other retroviruses that contain v-onc genes, arose following a recombination event between a replicating retrovirus and a cellular oncogene. Although experimentally validated models have been presented to address the mechanism by which oncogene capture occurs, very little is known about the events that influence emerging viruses following the recombination event that incorporates the cellular sequences. One feature that may play a role is the genetic makeup of the host in which the virus arises; a number of host genes, including oncogenes and tumor suppressor genes, have been shown to affect the pathogenesis of many murine leukemia viruses. To examine how a host gene might affect an emerging v-onc gene-containing retrovirus, we studied the weakly oncogenic Ab-MLV-P90A strain, a mutant that generates highly oncogenic variants in vivo, and compared the viral populations in normal mice and mice lacking the p53 tumor suppressor gene. While variants arose in both p53+/+ and p53−/− tumors, the samples from the wild-type animals contained a more diverse virus population. Differences in virus population diversity were not observed when wild-type and null animals were infected with a highly oncogenic wild-type strain of Ab-MLV. These results indicate that p53, and presumably other host genes, affects the selective forces that operate on virus populations in vivo and likely influences the evolution of oncogenic retroviruses such as Ab-MLV. PMID:16140739

  10. ALTUS Cumulus Electrification Study (ACES)

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Blakeslee, Richard; Russell, Larry W. (Technical Monitor)

    2002-01-01

    The ALTUS Cumulus Electrification Study (ACES) is an uninhabited aerial vehicle (UAV)-based project that will investigate thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES is being conducted to both investigate storm electrical activity and its relationship to storm morphology, and validate Tropical Rainfall Measurement Mission (TRMM) satellite measurements. In addition, as part of NASA's UAV-based science demonstration program, this project will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. Part of the demonstration involves getting approvals from the Federal Aviation Administration and the NASA airworthiness flight safety review board. ACES will employ the ALTUS II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on ALTUS, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES will contribute important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) offers a useful 'cloud-top' perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the ALTUS will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. In addition, concurrent ground-based observations will enable the UAV measurements to be more completely interpreted and evaluated in the context of the thunderstorm structure, evolution, and

  11. Chronic Desipramine Treatment Rescues Depression-Related, Social and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Senerth, Julia M.; Silverman, Jill L.; Matteson, Paul G.; Millonig, James H.; DiCicco-Bloom, Emanuel; Crawley, Jacqueline N.

    2014-01-01

    Engrailed-2 (En2) is a homeobox transcription factor that regulates neurodevelopmental processes including neuronal connectivity and elaboration of monoaminergic neurons in the ventral hindbrain. We previously reported abnormalities in brain noradrenergic concentrations in En2 null mutant mice that were accompanied by increased immobility in the forced swim test, relevant to depression. An EN2 genetic polymorphism has been associated with autism spectrum disorders (ASD), and mice with a deletion in En2 display social abnormalities and cognitive deficits that may be relevant to multiple neuropsychiatric conditions. The present study evaluated the ability of chronic treatment with desipramine (DMI), a selective norepinephrine reuptake inhibitor and classical antidepressant, to reverse behavioral abnormalities in En2 −/− mice. DMI treatment significantly reduced immobility in the tail suspension and forced swim tests, restored sociability in the three-chambered social approach task, and reversed impairments in contextual fear conditioning in En2 −/− mice. Our findings indicate that modulation of brain noradrenergic systems rescues the depression-related phenotype in En2 −/− mice and suggest new roles for norepinephrine in the pathophysiology of the social and cognitive deficits seen in neuropsychiatric disorders such as autism or schizophrenia. PMID:24730055

  12. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats

    PubMed Central

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-01-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. PMID:25766467

  13. Perception of sweet taste is important for voluntary alcohol consumption in mice.

    PubMed

    Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F

    2008-02-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.

  14. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    PubMed Central

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2012-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151

  15. Single Nucleotide Polymorphisms of the Angiotensin-Converting Enzyme (ACE) Gene Are Associated with Essential Hypertension and Increased ACE Enzyme Levels in Mexican Individuals

    PubMed Central

    Martínez-Rodríguez, Nancy; Posadas-Romero, Carlos; Villarreal-Molina, Teresa; Vallejo, Maite; Del-Valle-Mondragón, Leonardo; Ramírez-Bello, Julian; Valladares, Adan; Cruz-López, Miguel; Vargas-Alarcón, Gilberto

    2013-01-01

    Aim To explore the role of the ACE gene polymorphisms in the risk of essential hypertension in Mexican Mestizo individuals and evaluate the correlation between these polymorphisms and the serum ACE levels. Methods Nine ACE gene polymorphisms were genotyped by 5′ exonuclease TaqMan genotyping assays and polymerase chain reaction (PCR) in 239 hypertensive and 371 non- hypertensive Mexican individuals. Haplotypes were constructed after linkage disequilibrium analysis. ACE serum levels were determined in selected individuals according to different haplotypes. Results Under a dominant model, rs4291 rs4335, rs4344, rs4353, rs4362, and rs4363 polymorphisms were associated with an increased risk of hypertension after adjusting for age, gender, BMI, triglycerides, alcohol consumption, and smoking. Five polymorphisms (rs4335, rs4344, rs4353, rs4362 and rs4363) were in strong linkage disequilibrium and were included in four haplotypes: H1 (AAGCA), H2 (GGATG), H3 (AGATG), and H4 (AGACA). Haplotype H1 was associated with decreased risk of hypertension, while haplotype H2 was associated with an increased risk of hypertension (OR = 0.77, P = 0.023 and OR = 1.41, P = 0.004 respectively). According to the codominant model, the H2/H2 and H1/H2 haplotype combinations were significantly associated with risk of hypertension after adjusted by age, gender, BMI, triglycerides, alcohol consumption, and smoking (OR = 2.0; P = 0.002 and OR = 2.09; P = 0.011, respectively). Significant elevations in serum ACE concentrations were found in individuals with the H2 haplotype (H2/H2 and H2/H1) as compared to H1/H1 individuals (P = 0.0048). Conclusion The results suggest that single nucleotide polymorphisms and the “GGATG” haplotype of the ACE gene are associated with the development of hypertension and with increased ACE enzyme levels. PMID:23741507

  16. Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction.

    PubMed

    Duan, Yaqian; Beli, Eleni; Li Calzi, Sergio; Quigley, Judith L; Miller, Rehae C; Moldovan, Leni; Feng, Dongni; Salazar, Tatiana E; Hazra, Sugata; Al-Sabah, Jude; Chalam, Kakarla V; Le Phuong Trinh, Thao; Meroueh, Marya; Markel, Troy A; Murray, Matthew C; Vyas, Ruchi J; Boulton, Michael E; Parsons-Wingerter, Patricia; Oudit, Gavin Y; Obukhov, Alexander G; Grant, Maria B

    2018-05-15

    Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2 -/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2 -/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis towards myelopoiesis, and an impairment of lineage - c-kit + hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared to Akita mice, ACE2 -/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34 + cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34 + cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34 + cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represent a therapeutic strategy for prevention of diabetic retinopathy. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  17. Altered Body Weight Regulation in CK1ε Null and tau Mutant Mice on Regular Chow and High Fat Diets

    PubMed Central

    Zhou, Lili; Summa, Keith C.; Olker, Christopher; Vitaterna, Martha H.; Turek, Fred W.

    2016-01-01

    Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε −/− and CK1ε tau/tau mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε tau/tau mice on a 24 hr LD cycle, a separate set of CK1ε tau/tau mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε −/− and CK1ε tau/tau mutants on a 24 hr LD cycle and CK1ε tau/tau mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε tau/tau mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology. PMID:27144030

  18. Three-variable solution in the (2+1)-dimensional null-surface formulation

    NASA Astrophysics Data System (ADS)

    Harriott, Tina A.; Williams, J. G.

    2018-04-01

    The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.

  19. ACE DD genotype: a predisposing factor for abdominal aortic aneurysm.

    PubMed

    Fatini, C; Pratesi, G; Sofi, F; Gensini, F; Sticchi, E; Lari, B; Pulli, R; Dorigo, W; Azas, L; Pratesi, C; Gensini, G F; Abbate, R

    2005-03-01

    To examine the role of polymorphisms in angiotensin converting enzyme (ACE, I/D) and angiotensin II receptor (AT1R, A1166C) in the development of abdominal aortic aneurysm (AAA). We investigated 250 consecutive patients, 217 males and 33 females (median age 72, range 50-83), undergone AAA elective repair and 250 healthy controls, comparable for sex and age. ACE and AT1R polymorphisms were studied by PCR-RFLP analysis. The genotype distribution was in Hardy-Weinberg equilibrium for all polymorphisms. The genotype distribution and allele frequency of ACE I/D, but not AT1R A1166C polymorphism were significantly different between patients and controls (ACE I/D: p=0.0002 and p<0.0001, respectively, and AT1R A1166C: p=0.6 and p=0.4, respectively). An association between the ACE DD genotype and the predisposition to AAA was found (OR DD vs. ID+II=1.9 95% CI 1.3-2.9, p<0.0001). Multivariate analysis adjusted for age, sex, traditional vascular risk factors and other atherosclerotic localizations, showed ACE DD genotype to be independently related to the disease (OR DD vs. ID+II=2.4, 95% CI 1.3-4.2 p=0.003). Our findings document that ACE DD genotype represents a susceptibility factor for AAA.

  20. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  1. Evaluation of Association of ADRA2A rs553668 and ACE I/D Gene Polymorphisms with Obesity Traits in the Setapak Population, Malaysia.

    PubMed

    Shunmugam, Vicneswari; Say, Yee-How

    2016-02-01

    α-adrenergic receptor 2A (ADRA2A) and angiotensin-converting enzyme (ACE) genes have been variably associated with obesity and its related phenotypes in different populations worldwide. This cross-sectional study aims to investigate the association of adrenergic receptor α2A (ADRA2A) rs553668 and angiotensin-converting enzyme (ACE) I/D single nucleotide polymorphisms (SNPs) with obesity traits (body mass index-BMI; waist-hip ratio-WHR; total body fat percentage - TBF) in a Malaysian population. Demographic and clinical variables were initially collected from 230 subjects via convenience sampling among residents and workers in Setapak, Malaysia, but in the end only 214 multi-ethnic Malaysians (99 males; 45 Malays, 116 ethnic Chinese, and 53 ethnic Indians) were available for statistical analysis. Genotyping was performed by polymerase chain reaction using DNA extracted from mouthwash samples. The overall minor allele frequencies (MAFs) for ADRA2A rs553668 and ACE I/D were 0.55 and 0.56, respectively. Allele distribution of ACE I/D was significantly associated with ethnicity and WHR class. Logistic regression analysis showed that subjects with the ACE II genotype and I allele were, respectively, 2.15 and 1.55 times more likely to be centrally obese, but when adjusted for age and ethnicity, this association was abolished. Covariate analysis controlling for age, gender, and ethnicity also showed similar results, where subjects carrying the II genotype or I allele did not have significantly higher WHR. Combinatory genotype and allele analysis for ADRA2A rs553668 and ACE I/D showed that subjects with both ADRA2A rs553668 GG and ACE I/D II genotypes had significant lowest WHR compared to other genotype combinations. The ACE II genotype might be a protective factor against central adiposity risk among the Malaysian population when in combination with the ADRA2A rs553668 GG genotype.

  2. The angiotensin converting enzyme inhibitor, captopril, prevents the hyperactivity and impulsivity of neurokinin-1 receptor gene 'knockout' mice: sex differences and implications for the treatment of attention deficit hyperactivity disorder.

    PubMed

    Porter, Ashley J; Pillidge, Katharine; Grabowska, Ewelina M; Stanford, S Clare

    2015-04-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display behavioural abnormalities resembling attention deficit hyperactivity disorder (ADHD): locomotor hyperactivity, impulsivity and inattentiveness. The preferred ligand for NK1R, substance P, is metabolised by angiotensin converting enzyme (ACE), which forms part of the brain renin angiotensin system (BRAS). In view of evidence that the BRAS modulates locomotor activity and cognitive performance, we tested the effects of drugs that target the BRAS on these behaviours in NK1R-/- and wildtype mice. We first tested the effects of the ACE inhibitor, captopril, on locomotor activity. Because there are well-established sex differences in both ADHD and ACE activity, we compared the effects of captopril in both male and female mice. Locomotor hyperactivity was evident in male NK1R-/- mice, only, and this was abolished by treatment with captopril. By contrast, male wildtypes and females of both genotypes were unaffected by ACE inhibition. We then investigated the effects of angiotensin AT1 (losartan) and AT2 (PD 123319) receptor antagonists on the locomotor activity of male NK1R-/- and wildtype mice. Both antagonists increased the locomotor activity of NK1R-/- mice, but neither affected the wildtypes. Finally, we tested the effects of captopril on the performance of male NK1R-/- and wildtype mice in the 5-choice serial reaction-time task (5-CSRTT) and found that ACE inhibition prevented the impulsivity of NK1R-/- mice. These results indicate that certain behaviours, disrupted in ADHD, are influenced by an interaction between the BRAS and NK1R, and suggest that ACE inhibitors could provide a novel treatment for this disorder. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Conformational Changes of Blood ACE in Chronic Uremia

    PubMed Central

    Petrov, Maxim N.; Shilo, Valery Y.; Tarasov, Alexandr V.; Schwartz, David E.; Garcia, Joe G. N.; Kost, Olga A.; Danilov, Sergei M.

    2012-01-01

    Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy. PMID:23166630

  4. ACE Gene in Egyptian Ischemic Stroke Patients.

    PubMed

    Mostafa, Magdy A; El-Nabiel, Lobna M; Fahmy, Nagia Aly; Aref, Hany; Shreef, Edrees; Abd El-Tawab, Fathy; Abdulghany, Osama M

    2016-09-01

    Angiotensin-1-converting enzyme (ACE) is a crucial player in vascular homeostasis and in the pathogenesis of atherosclerosis and hypertension. The present study was conducted to determine whether there is an association between the ACE insertion/deletion (I/D) polymorphism and ischemic stroke in Egyptian population. Also, we analyzed the ACE gene I/D polymorphism as a risk factor for small-vessel (SV) versus large-vessel (LV) disease. Sixty patients with ischemic stroke were included: 30 with SV disease and 30 with LV disease. In addition, a control group of 30 apparent healthy subjects were studied. Clinical assessment, computed tomography, magnetic resonance imaging brain, and genetic study using the polymerase chain reaction of ACE gene were done for all subjects. We found that the distribution of ACE gene polymorphism frequency was significantly different between the 3 groups. The DD genotype was far more common in stroke patients compared to controls. It was also significantly more common in each of the patient groups compared to controls but rather similar in the 2 patient groups with SV and LV diseases. We found that the ACE gene deletion/deletion genotype is common in Egyptian patients with non-cardioembolic ischemic stroke but does not appear to be specific neither to SV nor to LV disease. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. ACE Objectives, Current Status and the 2017 Decadal Survey

    NASA Technical Reports Server (NTRS)

    Da Silva, Arlindo

    2018-01-01

    In this talk we present an overview of the Aerosol-Cloud-Ecosystems (ACE) preformulation studies, a tier-2 satellite mission recommended by the 2007 Decadal Survey. We discuss the current status of ACE measurement concepts and associated retrieval algorithms. We conclude with a brief discussion of the recommendations by the 2017 Decadal Survey and how ACE accomplishments can inform the future Aerosol and Cloud, Convection & Precipitation Designated Observables.

  6. Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains

    PubMed Central

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción

    2008-01-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835

  7. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*

    PubMed Central

    Bancroft, Tara; Bouaouina, Mohamed; Roberts, Sophia; Lee, Monica; Calderwood, David A.; Schwartz, Martin; Simons, Michael; Sessa, William C.; Kyriakides, Themis R.

    2015-01-01

    Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair. PMID:25389299

  8. ACE2 and the Homolog Collectrin in the Modulation of Nitric Oxide and Oxidative Stress in Blood Pressure Homeostasis and Vascular Injury.

    PubMed

    Yang, Guang; Chu, Pei-Lun; Rump, Lars C; Le, Thu H; Stegbauer, Johannes

    2017-04-20

    Hypertension is the leading risk factor causing mortality and morbidity worldwide. Angiotensin (Ang) II, the most active metabolite of the renin-angiotensin system, plays an outstanding role in the pathogenesis of hypertension and vascular injury. Activation of angiotensin converting enzyme 2 (ACE2) has shown to attenuate devastating effects of Ang II in the cardiovascular system by reducing Ang II degradation and increasing Ang-(1-7) generation leading to Mas receptor activation. Recent Advances: Activation of the ACE2/Ang-(1-7)/Mas receptor axis reduces hypertension and improves vascular injury mainly through an increased nitric oxide (NO) bioavailability and decreased reactive oxygen species production. Recent studies reported that shedding of the enzymatically active ectodomain of ACE2 from the cell surface seems to regulate its activity and serves as an interorgan communicator in cardiovascular disease. In addition, collectrin, an ACE2 homolog with no catalytic activity, regulates blood pressure through an NO-dependent mechanism. Large body of experimental data confirmed sustained beneficial effects of ACE2/Ang-(1-7)/Mas receptor axis activation on hypertension and vascular injury. Experimental studies also suggest that activation of collectrin might be beneficial in hypertension and endothelial dysfunction. Their role in clinical hypertension is unclear as selective and reliable activators of both axes are not yet available. This review will highlight the results of recent research progress that illustrate the role of both ACE and collectrin in the modulation of NO and oxidative stress in blood pressure homeostasis and vascular injury, providing evidence for the potential therapeutic application of ACE2 and collectrin in hypertension and vascular disease. Antioxid. Redox Signal. 26, 645-659.

  9. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    PubMed

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  10. FIRE III ACE Info

    Atmospheric Science Data Center

    2014-03-18

    ... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...

  11. Perilipin-2 Deletion Promotes Carbohydrate-Mediated Browning of White Adipose Tissue at Ambient Temperature.

    PubMed

    Libby, Andrew E; Bales, Elise S; Monks, Jenifer; Orlicky, David J; McManaman, James L

    2018-06-04

    Mice lacking Perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by western or high fat diets. In the current study, we found that compared to wild type (WT) mice on western diet, Plin2-null adipose tissue was more insulin sensitive, and that inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared to WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum FGF21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    PubMed

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  13. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  15. Broken chiral symmetry on a null plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, Silas R., E-mail: silas@physics.unh.edu

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-planemore » description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.« less

  16. Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.

    PubMed

    Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma

    2006-07-26

    A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.

  17. ACE ID genotype and the muscle strength and size response to unilateral resistance training.

    PubMed

    Pescatello, Linda S; Kostek, Matthew A; Gordish-Dressman, Heather; Thompson, Paul D; Seip, Richard L; Price, Thomas B; Angelopoulos, Theodore J; Clarkson, Priscilla M; Gordon, Paul M; Moyna, Niall M; Visich, Paul S; Zoeller, Robert F; Devaney, Joseph M; Hoffman, Eric P

    2006-06-01

    To examine associations among the angiotensin I-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism and the response to a 12-wk (2 d.wk) unilateral, upper-arm resistance training (RT) program in the trained (T, nondominant) and untrained (UT, dominant) arms. Subjects were 631 (mean+/-SEM, 24.2+/-0.2 yr) white (80%) men (42%) and women (58%). The ACE ID genotype was in Hardy-Weinberg equilibrium with frequencies of 23.1, 46.1, and 30.8% for ACE II, ID, and DD, respectively (chi=1.688, P=0.430). Maximum voluntary contraction (MVC) and one-repetition maximum (1RM) assessed peak elbow flexor muscle strength. Magnetic resonance imaging measured biceps muscle cross-sectional area (CSA). Multiple variable and repeated-measures ANCOVA tested whether muscle strength and size differed at baseline and pre- to post-RT among T and UT and ACE ID genotype. Baseline muscle strength and size were greater in UT than T (P<0.001) and did not differ among ACE ID genotype in either arm (P >or= 0.05). In T, MVC increases were greater for ACE II/ID (22%) than DD (17%) (P<0.05), whereas 1RM (51%) and CSA (19%) gains were not different among ACE ID genotype pre- to post-RT (P >or= 0.05). In UT, MVC increased among ACE II/ID (7%) (P<0.001) but was similar among ACE DD (2%) pre- to post-RT (P >or= 0.05). In UT, 1RM (11%) and CSA (2%) increases were greater for ACE DD/ID than ACE II (1RM, 7%; CSA, -0.1%) (P<0.05). ACE ID genotype explained approximately 1% of the MVC response to RT in T and approximately 2% of MVC, 2% of 1RM, and 4% of CSA response in UT (P<0.05). ACE ID genotype is associated with the contralateral effects of unilateral RT, perhaps more so than with the muscle strength and size adaptations that result from RT.

  18. Association of Angiotensin-Converting Enzyme ACE Gene Polymorphism with ACE Activity and Susceptibility to Vitiligo in Egyptian Population.

    PubMed

    Badran, Dahlia I; Nada, Hesham; Hassan, Ranya

    2015-05-01

    The insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene is associated with vitiligo in the Indians and Koreans, but not in those of English or Turkish background. We investigated the ACE (I/D) polymorphism in vitiligo patients for the first time in Egypt and compared serum ACE levels between vitiligo patients and controls. The present study was carried out in 100 vitiligo patients (40 males and 60 females) and in 100 healthy controls of an Egyptian population using the polymerase chain reaction genotyping method. The ACE genotype and allele frequency was significantly different between vitiligo patients and controls. Our results revealed a significant increase in the frequency of the ACE I allele (p=0.002; odds ratio: 1.99; 95% confidence intervals: 1.207-3.284) with an overrepresentation of I/D genotype in the vitiligo patient group. Furthermore, there was a significant difference between the segmental, nonsegmental, and focal vitiligo in ACE gene genotype distribution. Serum ACE levels were significantly increased in vitiligo patients compared to controls (p=0.034). This study suggests that, for the first time, ACE gene polymorphism confers susceptibility to vitiligo in the Egyptian population.

  19. Presenilin-1 familial Alzheimer’s disease mutation alters hippocampal neurogenesis and memory function in CCL2 null mice

    PubMed Central

    Kiyota, Tomomi; Morrison, Christine M; Tu, Guihua; Dyavarshetty, Bhagyalaxmi; Weir, Robert A; Zhang, Gang; Xiong, Huangui; Gendelman, Howard E

    2015-01-01

    Aberrations in hippocampal neurogenesis are associated with learning and memory, synaptic plasticity and neurodegeneration in Alzheimer’s disease (AD). However, the linkage between them, β-amyloidosis and neuroinflammation is not well understood. To this end, we generated a mouse overexpressing familial AD (FAD) mutant human presenilin-1 (PS1) crossed with a knockout (KO) of the CC-chemokine ligand 2 (CCL2) gene. The PS1/CCL2KO mice developed robust age-dependent deficits in hippocampal neurogenesis associated with impairments in learning and memory, synaptic plasticity and long-term potentiation. Neurogliogenesis gene profiling supported β-amyloid independent pathways for FAD-associated deficits in hippocampal neurogenesis. We conclude that these PS1/CCL2KO mice are suitable for studies linking host genetics, immunity and hippocampal function. PMID:26112421

  20. Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype.

    PubMed

    Lee, Seong Min; Bishop, Kathleen A; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley

    2014-06-01

    The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.

  1. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  2. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  3. Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice

    PubMed Central

    Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A.

    2012-01-01

    Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries. PMID:22262633

  4. Anoctamin 6 Contributes to Cl− Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea

    PubMed Central

    Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2016-01-01

    Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl− channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced ICl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A(inh)-AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical ICl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl− secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca2+]i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP2) increased. Identification of the PIP2-binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP2 directly to ANO6 in HEK293 cells indicate likely PIP2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl− current along with intestinal fluid accumulation, and binding of PIP2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP2, is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP2 signaling. PMID:27799301

  5. Systemic PPARγ deletion causes severe disturbance in fluid homeostasis in mice

    PubMed Central

    Zhou, Li; Panasiuk, Alexandra; Downton, Maicy; Zhao, Daqiang; Yang, Baoxue; Jia, Zhanjun

    2015-01-01

    The pharmacological action of peroxisome proliferator-activated receptor (PPAR)γ in promoting sodium and water retention is well documented as highlighted by the major side-effect of body weight gain and edema associated with thiazolidinedione use. However, a possible physiological role of PPARγ in regulation of fluid metabolism has not been reported by previous studies. Here we analyzed fluid metabolism in inducible whole-body PPARγ knockout mice. The null mice developed severe polydipsia and polyuria, reduced urine osmolality, and modest hyperphagia. The phenomenon persisted during 3 days of pair feeding and pair drinking, accompanied by progressive weight loss. After 24 h water deprivation, the null mice had a lower urine osmolality, a higher urine volume, a greater weight loss, and a greater rise in hematocrit than the floxed control. Urinary vasopressin (AVP) excretion was not different between the genotypes under basal condition or after WD. The response of urine osmolality to acute and chronic 1-desamino-8-d-arginine vasopressin treatment was attenuated in the null mice, but the total abundance or phosphorylation of aquaporin 2 (AQP2) in the kidney or AVP-induced cAMP production in inner medullary collecting duct suspensions was unaffected. Overall, PPARγ participates in physiological control of fluid homeostasis through an unknown mechanism involving cAMP/AQP2-independent enhancement of AVP response. PMID:26330489

  6. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    PubMed

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p < 0.001) and significantly lower body weights (p < 0.001). Colour photography and FFA did not reveal any vessel abnormalities in the diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  7. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.

    PubMed

    Coste, S C; Kesterson, R A; Heldwein, K A; Stevens, S L; Heard, A D; Hollis, J H; Murray, S E; Hill, J K; Pantely, G A; Hohimer, A R; Hatton, D C; Phillips, T J; Finn, D A; Low, M J; Rittenberg, M B; Stenzel, P; Stenzel-Poore, M P

    2000-04-01

    The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.

  8. Anoctamin 6 Contributes to Cl- Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea: AN ESSENTIAL ROLE FOR PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE (PIP2) SIGNALING IN CHOLERA.

    PubMed

    Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K; Hoque, Kazi Mirajul

    2016-12-23

    Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl - channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced I Cl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A (inh) -AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical I Cl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl - secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca 2+ ] i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) increased. Identification of the PIP 2 -binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP 2 directly to ANO6 in HEK293 cells indicate likely PIP 2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl - current along with intestinal fluid accumulation, and binding of PIP 2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP 2 , is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP 2 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  10. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.

    PubMed

    Mo, Lan; Liaw, Lucy; Evan, Andrew P; Sommer, Andre J; Lieske, John C; Wu, Xue-Ru

    2007-12-01

    Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.

  11. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion.

  12. Prolonged QT interval and lipid alterations beyond β-oxidation in very long-chain acyl-CoA dehydrogenase null mouse hearts

    PubMed Central

    Gélinas, Roselle; Thompson-Legault, Julie; Bouchard, Bertrand; Daneault, Caroline; Mansour, Asmaa; Gillis, Marc-Antoine; Charron, Guy; Gavino, Victor; Labarthe, François

    2011-01-01

    Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency frequently present cardiomyopathy and heartbeat disorders. However, the underlying factors, which may be of cardiac or extra cardiac origins, remain to be elucidated. In this study, we tested for metabolic and functional alterations in the heart from 3- and 7-mo-old VLCAD null mice and their littermate counterparts, using validated experimental paradigms, namely, 1) ex vivo perfusion in working mode, with concomitant evaluation of myocardial contractility and metabolic fluxes using 13C-labeled substrates under various conditions; as well as 2) in vivo targeted lipidomics, gene expression analysis as well as electrocardiogram monitoring by telemetry in mice fed various diets. Unexpectedly, when perfused ex vivo, working VLCAD null mouse hearts maintained values similar to those of the controls for functional parameters and for the contribution of exogenous palmitate to β-oxidation (energy production), even at high palmitate concentration (1 mM) and increased energy demand (with 1 μM epinephrine) or after fasting. However, in vivo, these hearts displayed a prolonged rate-corrected QT (QTc) interval under all conditions examined, as well as the following lipid alterations: 1) age- and condition-dependent accumulation of triglycerides, and 2) 20% lower docosahexaenoic acid (an omega-3 polyunsaturated fatty acid) in membrane phospholipids. The latter was independent of liver but affected by feeding a diet enriched in saturated fat (exacerbated) or fish oil (attenuated). Our finding of a longer QTc interval in VLCAD null mice appears to be most relevant given that such condition increases the risk of sudden cardiac death. PMID:21685264

  13. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    PubMed

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders

  14. Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism.

    PubMed

    Sala, Mariaelvina; Braida, Daniela; Lentini, Daniela; Busnelli, Marta; Bulgheroni, Elisabetta; Capurro, Valeria; Finardi, Annamaria; Donzelli, Andrea; Pattini, Linda; Rubino, Tiziana; Parolaro, Daniela; Nishimori, Katsuhiko; Parenti, Marco; Chini, Bice

    2011-05-01

    Oxytocin (OT) has been suggested as a treatment to improve social behavior in autistic patients. Accordingly, the OT (Oxt(-/-)) and the OT receptor null mice (Oxtr(-/-)) display autistic-like deficits in social behavior, increased aggression, and reduced ultrasonic vocalization. Oxtr(-/-) mice were characterized for general health, sociability, social novelty, cognitive flexibility, aggression, and seizure susceptibility. Because vasopressin (AVP) and OT cooperate in controlling social behavior, learning, and aggression, they were tested for possible rescue of the impaired behaviors. Primary hyppocampal cultures from Oxtr(+/+) and Oxtr(-/-) mouse embryos were established to investigate the balance between gamma-aminobutyric acid (GABA) and glutamate synapses and the expression levels of OT and AVP (V1a) receptors were determined by autoradiography. Oxtr(-/-) mice display two additional, highly relevant, phenotypic characteristics: 1) a resistance to change in a learned pattern of behavior, comparable to restricted interests and repetitive behavior in autism, and 2) an increased susceptibility to seizures, a frequent and clinically relevant symptom of autism. We also show that intracerebral administration of both OT and AVP lowers aggression and fully reverts social and learning defects by acting on V1a receptors and that seizure susceptibility is antagonized by peripherally administered OT. Finally, we detect a decreased ratio of GABA-ergic versus total presynapses in hippocampal neurons of Oxtr(-/-) mice. Autistic-like symptoms are rescued on administration of AVP and OT to young Oxtr(-/-) adult animals. The Oxtr(-/-) mouse is thus instrumental to investigate the neurochemical and synaptic abnormalities underlying autistic-like disturbances and to test new strategies of pharmacologic intervention. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. ACE and AGTR1 polymorphisms and left ventricular hypertrophy in endurance athletes.

    PubMed

    Di Mauro, Michele; Izzicupo, Pascal; Santarelli, Francesco; Falone, Stefano; Pennelli, Alfonso; Amicarelli, Fernanda; Calafiore, Antonio M; Di Baldassarre, Angela; Gallina, Sabina

    2010-05-01

    This study aimed to evaluate the role of angiotensin type 1 receptor gene (AGTR1) polymorphism (A1166C) in left ventricular hypertrophy (LVH) mediated by the angiotensin-converting enzyme (ACE) in endurance athletes. A group of 74 white, healthy male endurance athletes, aged between 25 and 40 yr, were enrolled in this study. All of them participated primarily in isotonic sports, training for at least >10 h x wk(-1), for at least 5 yr. The ACE genotype (insertion [I] or deletion [D] alleles) was ascertained by polymerase chain reaction (DD in 35, ID in 36, and II in 3). Group II was excluded from the analysis because of its small size. No difference was found between the two groups as regards age, blood pressure, HR, and echocardiographic data. The left ventricular mass index (LVMI) was significantly higher in group DD rather than in group ID (P = 0.029). The group DD showed a slightly higher prevalence of subjects with LVH (LVMI > 131 g x m(-2); 62.9%) than group ID (44.4%, P = 0.120). No association was found between ACE-DD and LVH (odds ratio (OR) = 2.12, 95% confidence interval = 0.82-5.46). Concerning the role of AGTR1 polymorphism, the highest LVMI was found in 15 athletes with ACE-DD and AGTR1-AC/CC genotypes (150 +/- 23 g x m(-2)); the lowest value of LVMI was found in the case of ACE-ID and AGTR1-AA (127 g x m(-2) +/- 18 g x m(-2)), whereas LVMI in subjects with ACE-DD + AGTR1-AA was similar to that in the ACE-ID + AGTR1-AC/CC group (134 +/- 18 g x m(-2) vs 133 +/- 20 g x m(-2), P = 0.880). The presence of ACE-DD + AGTR1 + AC/CC was strongly associated with LVH (OR = 4.6, P = 0.029). Moreover, subjects with LVH showed longer left ventricular isovolumetric relaxation time and higher end-systolic wall stress. The latter was strongly correlated to LVMI (r = 0.588), especially in the presence of ACE-DD + AGTR1 + AC/CC (r = 0.728). LVMI may be greater in the presence of ACE- DD and AGTR1-AC/CC polymorphisms.

  16. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    In the International Space Stations Destiny laboratory,NASA astronaut Karen Nyberg,Expedition 36 flight engineer,speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  17. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    PubMed

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  18. [ACE inhibitors and the kidney].

    PubMed

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  19. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    PubMed Central

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2null mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  20. Adaptive Nulling for the Terrestrial Planet Finder Interferometer

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Jeganathan, Muthu; Hirai, Akiko

    2006-01-01

    A description of adaptive nulling for Terrestrial Planet Finder Interferometer (TPFI) is presented. The topics include: 1) Nulling in TPF-I; 2) Why Do Adaptive Nulling; 3) Parallel High-Order Compensator Design; 4) Phase and Amplitude Control; 5) Development Activates; 6) Requirements; 7) Simplified Experimental Setup; 8) Intensity Correction; and 9) Intensity Dispersion Stability. A short summary is also given on adaptive nulling for the TPFI.

  1. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2.

    PubMed

    Zhu, T; Chen, X Z; Steel, A; Hediger, M A; Smith, D E

    2000-05-01

    To examine the mechanism of inhibition of glycylsarcosine (GlySar) transport by quinapril and enalapril, and whether or not angiotensin converting enzyme (ACE) inhibitors are transported by PEPT2 as well as by PEPT1. Xenopus laevis oocytes were cRNA-injected with rat PEPT1 or PEPT2 and the transport kinetics of radiolabeled GlySar were studied in the absence and presence of quinapril and enalapril. The two-microelectrode voltage-clamp technique was also performed to probe the electrogenic uptake of captopril, quinapril and enalapril. Kinetic analyses demonstrated that quinapril inhibited the uptake of GlySar in a noncompetitive manner in Xenopus oocytes injected with PEPT1 or PEPT2 (Ki = 0.8 or 0.4 mM, respectively). In contrast, a competitive interaction was observed between GlySar and enalapril (Ki = 10.8 mM for PEPT1 or 4.3 mM for PEPT2). Most significantly, captopril and enalapril, but not quinapril, induced inwardly-directed currents in both PEPT1- and PEPT2-expressed oocytes. These results are unique in providing direct evidence for the substrate recognition and transport of some ACE inhibitors by the high- and low-affinity oligopeptide transporters. Our findings point to differences between PEPT1 and PEPT2 in their affinity to, rather than in their specificity for, ACE inhibitors.

  2. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate

    PubMed Central

    Jurkowska, Halina; Roman, Heather B.; Hirschberger, Lawrence L.; Sasakura, Kiyoshi; Nagano, Tetsuo; Hanaoka, Kenjiro; Krijt, Jakub

    2016-01-01

    The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice. PMID:24609271

  3. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein

    PubMed Central

    Liu, Yan; Mo, Lan; Goldfarb, David S.; Evan, Andrew P.; Liang, Fengxia; Khan, Saeed R.; Lieske, John C.

    2010-01-01

    Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis. PMID:20591941

  4. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice

    PubMed Central

    Maier, Jennifer A.; Harfe, Brian D.

    2011-01-01

    Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629

  5. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019760 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  6. ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy.

    PubMed

    Rahimi, Zohreh

    2012-10-01

    Angiotensin converting enzyme (ACE) gene encodes ACE, a key component of renin angiotensin system (RAS), plays an important role in blood pressure homeostasis by generating the vasoconstrictor peptide angiotensin II. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. The presence of ACE insertion/deletion (I/D) polymorphism affects the plasma level of ACE. ACE DD genotype is associated with the highest systemic and renal ACE levels compared with the lowest ACE activity in carriers of II genotype. In this review focus has been performed on the study of ACE I/D polymorphism in various populations and its influence on the risk of onset and progression of diabetic nephropathy. Also, association between ACE I/D polymorphism and response to ACE inhibitor and angiotensin II receptor antagonists will be reviewed. Further, synergistic effect of this polymorphism and variants of some genes on the risk of development of diabetic nephropathy will be discussed.

  7. Wiseman in with ACE sample

    NASA Image and Video Library

    2014-05-30

    ISS040-E-006569 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.

  8. Wiseman in with ACE sample

    NASA Image and Video Library

    2014-05-30

    ISS040-E-006567 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.

  9. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed Central

    Blednov, Yuri A.; Walker, Danielle; Martinez, Marni; Harris., R. Adron

    2007-01-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the κ-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 hours) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest thath this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability). PMID:17307643

  10. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  11. Role of ACE and AGT gene polymorphisms in genetic susceptibility to diabetes mellitus type 2 in a Brazilian sample.

    PubMed

    Wollinger, L M; Dal Bosco, S M; Rempe, C; Almeida, S E M; Berlese, D B; Castoldi, R P; Arndt, M E; Contini, V; Genro, J P

    2015-12-29

    The aim of the current study was to investigate the association between the InDel polymorphism in the angiotensin I-converting enzyme gene (ACE) and the rs699 polymorphism in the angiotensinogen gene (AGT) and diabetes mellitus type 2 (DM2) in a sample population from Southern Brazil. A case-control study was conducted with 228 patients with DM2 and 183 controls without DM2. The ACE InDel polymorphism was genotyped by polymerase chain reaction (PCR) with specific primers, followed by electrophoresis on 1.5% agarose gel. The AGT rs699 polymorphism was genotyped using a real-time PCR assay. No significant association between the ACE InDel polymorphism and DM2 was detected (P = 0.97). However, regarding the AGT rs699 polymorphism, DM2 patients had a significantly higher frequency of the AG genotype and lower frequency of the GG genotype when compared to the controls (P = 0.03). Our results suggest that there is an association between the AGT rs699 polymorphism and DM2 in a Brazilian sample.

  12. Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2null Mice

    PubMed Central

    Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2null mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2null mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640

  13. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  14. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  15. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019830 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  16. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy.

    PubMed

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-10-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) - a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  17. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy

    PubMed Central

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-01-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) – a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. PMID:23980694

  18. Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F

    PubMed Central

    Putker, K.; Tanganyika-de Winter, C. L.; Boertje-van der Meulen, J. W.; van Vliet, L.; Overzier, M.; Plomp, J. J.; Aartsma-Rus, A.; van Putten, M.

    2017-01-01

    Limb-girdle muscular dystrophy types 2D and 2F (LGMD 2D and 2F) are autosomal recessive disorders caused by mutations in the alpha- and delta sarcoglycan genes, respectively, leading to severe muscle weakness and degeneration. The cause of the disease has been well characterized and a number of animal models are available for pre-clinical studies to test potential therapeutic interventions. To facilitate transition from drug discovery to clinical trials, standardized procedures and natural disease history data were collected for these mouse models. Implementing the TREAD-NMD standardized operating procedures, we here subjected LGMD2D (SGCA-null), LGMD2F (SGCD-null) and wild type (C57BL/6J) mice to five functional tests from the age of 4 to 32 weeks. To assess whether the functional test regime interfered with disease pathology, sedentary groups were taken along. Muscle physiology testing of tibialis anterior muscle was performed at the age of 34 weeks. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Mice successfully accomplished the functional tests, which did not interfere with disease pathology. Muscle function of SGCA- and SGCD-null mice was impaired and declined over time. Interestingly, female SGCD-null mice outperformed males in the two and four limb hanging tests, which proved the most suitable non-invasive tests to assess muscle function. Muscle physiology testing of tibialis anterior muscle revealed lower specific force and higher susceptibility to eccentric-induced damage in LGMD mice. Analyzing muscle histopathology and gene expression, we identified the diaphragm as the most affected muscle in LGMD strains. Cardiac fibrosis was found in SGCD-null mice, being more severe in males than in females. Our study offers a comprehensive natural history dataset which will be useful to design standardized tests and future pre

  19. The importance of proving the null.

    PubMed

    Gallistel, C R

    2009-04-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? (c) 2009 APA, all rights reserved

  20. The Importance of Proving the Null

    PubMed Central

    Gallistel, C. R.

    2010-01-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549

  1. The relationship between angiotensin-converting enzyme (ACE) insertion (I) / deletion (D) polymorphism, serum ACE activity and bone mineral density (BMD) in older Chinese.

    PubMed

    Zhang, Ya-Feng; Wang, Hong; Cheng, Qiong; Qin, Ling; Tang, Nelson Ls; Leung, Ping-Chong; Kwok, Timothy Cy

    2017-01-01

    In this study, we set out to investigate the relationship between angiotensin-converting enzyme ( ACE) I/D polymorphism, serum ACE activity and bone mineral density (BMD) in older Chinese. A standardized, structured, face-to-face interview was performed to collect demographic information. BMD was measured using dual-energy X-ray absorptiometry (DXA). I/D genotypes of ACE were determined by polymerase chain reaction (PCR) amplification. Serum ACE activity was determined photometrically by a commercially available kinetic kit. Multiple linear regression analysis was used to examine the relationship between ACE I/D polymorphism, serum ACE activity and BMD. A total of 1567 males and 1760 females were selected for analyzing the relationship between ACE I/D polymorphism and BMD. There was no significant difference in spine BMD, total hip BMD and femur neck BMD among different ACE I/D genotypes both in males and females. A total of 1699 males and 1739 females were selected for analyzing the relationship between serum ACE activity and BMD. There was also no significant difference in spine BMD, total hip BMD and femur neck BMD among different serum ACE activity groups both in males and females. There was no relationship between ACE I/D polymorphism, serum ACE activity and BMD in older Chinese.

  2. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.edu; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292; Haberzettl, Petra

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null thanmore » WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized

  3. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models

    PubMed Central

    Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María

    2017-01-01

    Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043

  4. Association of angiotensin-converting enzyme (ACE) gene polymorphism with elevated serum ACE activity and major depression in an Iranian population.

    PubMed

    Firouzabadi, Negar; Shafiei, Massoumeh; Bahramali, Ehsan; Ebrahimi, Soltan Ahmed; Bakhshandeh, Hooman; Tajik, Nader

    2012-12-30

    Genetic factors contribute substantially to the likelihood of developing major depressive disorder (MDD). The importance of renin-angiotensin system (RAS) elements in cognition and behaviour and their involvement in aetiology and treatment of depression imply that RAS gene polymorphism(s) associated with RAS overactivity might also be associated with depression. In the present study, genotype and allele frequencies of six common polymorphisms of genes encoding for RAS components were determined in DNAs extracted from venous blood of 191 depressed and 104 healthy individuals using polymerase chain reaction (PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and serum angiotensin-converting enzyme (ACE) activity was assayed using a high-performance liquid chromatography (HPLC) method. The results showed, for the first time, that GG genotype of ACE A2350G was significantly associated with MDD among Iranian participants (P=0.001; odds ratio (OR)=6.2; 95% confidence interval (CI)=2.1-18.3). Significant higher serum ACE activity (P=0.0001) as well as higher diastolic blood pressure (P=0.036) were observed in depressed patients compared to the healthy control group. Depressed patients carrying GG genotype of the A2350G polymorphism had a significantly higher serum ACE activity (P=0.02) than individuals with either AA or AG genotype. In conclusion, this study supports the hypothesis of RAS overactivity in depression in that the genotype associated with higher serum ACE activity in an Iranian population was also associated with MDD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Does acute care for the elderly (ACE) unit decrease the incidence of falls?

    PubMed

    Abdalla, Ahmed; Adhaduk, Mehul; Haddad, Raad A; Alnimer, Yanal; Ríos-Bedoya, Carlos F; Bachuwa, Ghassan

    2017-11-11

    To determine whether acute care for the elderly (ACE) units decrease the incidence of patient falls compared to general medical and surgical (GMS) units, a non-concurrent prospective study included individuals aged 65 and older admitted to ACE or GMS units over a 2-year span was done. There were 7069 admissions corresponded to 28,401 patient-days. A total of 149 falls were reported for an overall incidence rate (IR) of 5.2 falls per 1000 patient-days, 95% CI, 4.4/1000-6.1/1000 patient-days. The falls IR ratio for patients in ACE unit compared to those in non-ACE units after adjusting for age, sex, prescribed psychotropics and hypnotics, and Morse Fall Score was 0.27/1000 patient-days; 95% CI, 0.13-0.54; p < 0.001. So, an estimated 73% reduction in patient falls between ACE unit and non-ACE units. Hospitals may consider investing in ACE units to decrease the risk of falls and the associated medical and financial costs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Identification of Novel Saccharomyces cerevisiae Proteins with Nuclear Export Activity: Cell Cycle-Regulated Transcription Factor Ace2p Shows Cell Cycle-Independent Nucleocytoplasmic Shuttling

    PubMed Central

    Jensen, Torben Heick; Neville, Megan; Rain, Jean Christophe; McCarthy, Terri; Legrain, Pierre; Rosbash, Michael

    2000-01-01

    Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the NES receptor CRM1/Crm1p. We have carried out a yeast two-hybrid screen with Crm1p as a bait. The Crm1p-interacting clones were subscreened for nuclear export activity in a visual assay utilizing the Crm1p-inhibitor leptomycin B (LMB). This approach identified three Saccharomyces cerevisiae proteins not previously known to have nuclear export activity. These proteins are the 5′ RNA triphosphatase Ctl1p, the cell cycle-regulated transcription factor Ace2p, and a protein encoded by the previously uncharacterized open reading frame YDR499W. Mutagenesis analysis show that YDR499Wp contains an NES that conforms to the consensus sequence for leucine-rich NESs. Mutagenesis of Ctl1p and Ace2p were unable to identify specific NES residues. However, a 29-amino-acid region of Ace2p, rich in hydrophobic residues, contains nuclear export activity. Ace2p accumulates in the nucleus at the end of mitosis and activates early-G1-specific genes. We now provide evidence that Ace2p is nuclear not only in late M-early G1 but also during other stages of the cell cycle. This feature of Ace2p localization explains its ability to activate genes such as CUP1, which are not expressed in a cell cycle-dependent manner. PMID:11027275

  7. Frequency of APOE, MTHFR and ACE polymorphisms in the Zambian population

    PubMed Central

    2014-01-01

    Background Polymorphisms within the apolipoprotein-E (APOE), Methylenetetrahydrofolate reductase (MTHFR) and Angiotensin I-converting enzyme (ACE) genes has been associated with cardiovascular and cerebrovascular disorders, Alzheimer’s disease and other complex diseases in various populations. The aim of the study was to analyze the allelic and genotypic frequencies of APOE, MTHFR C677T and ACE I/D gene polymorphisms in the Zambian population. Results The allele frequencies of APOE polymorphism in the Zambian populations were 13.8%, 59.5% and 26.7% for the ε2, ε3 and ε4 alleles respectively. MTHFR C677T and ACE I/D allele frequencies were 8.6% and 13.8% for the T and D minor alleles respectively. The ε2ε2 genotype and TT genotype were absent in the Zambian population. The genetic distances between Zambian and other African and non-African major populations revealed an independent variability of these polymorphisms. Conclusion We found that the APOE ε3 allele and the I allele of the ACE were significantly high in our study population while there were low frequencies observed for the MTHFR 677 T and ACE D alleles. Our analysis of the APOE, MTHFR and ACE polymorphisms may provide valuable insight into the understanding of the disease risk in the Zambian population. PMID:24679048

  8. Compromised renal microvascular reactivity of angiotensin type 1 double null mice.

    PubMed

    Park, Sungmi; Bivona, Benjamin J; Harrison-Bernard, Lisa M

    2007-07-01

    Angiotensin type 1A (AT(1A)) and 1B (AT(1B)) receptor deletion (AT1DKO) results in renal microvascular disease, tubulointerstitial injury, and reduced blood pressure. To test the hypothesis that renal preglomerular responses to angiotensin (ANG) II are mediated by AT(1A) and AT(1B) receptors, experiments were performed in AT1DKO mice using the in vitro blood perfused juxtamedullary nephron technique. Kidneys were harvested from AT1DKO and wild-type (WT) mice and bathed with ANG II (1-100 nM), norepinephrine (NE; 100-1,000 nM), or acetylcholine (ACh; 10 microM). Baseline diameters of afferent (19.5 +/- 0.7 and 13.9 +/- 0.7 microm, n = 17 and 16) and efferent (15.5 +/- 2.1 and 10.8 +/- 1.0 microm, n = 4 and 7) arterioles of AT1DKO were significantly larger than WT. Afferent and efferent arteriolar responses to ANG II, 100, and 300 nM NE were absent in AT1DKO; although significant constriction to 1 microM NE was observed (-17 +/- 5 and -23 +/- 6%, respectively). Afferent arterioles of WT mice dilated significantly in response to ACh (15.1 +/- 0.6 to 17.0 +/- 1.2 microm, n = 6); however, arterioles from AT1DKO tended to contract (19.9 +/- 1.2 to 17.8 +/- 1.6 microm; n = 6, P = 0.06). In summary, loss of ANG II-induced contraction, reduced vasoconstriction to NE, and endothelial cell dysfunction contribute to the renal vascular phenotype of AT1DKO mice. We conclude that ANG II signaling via the AT(1) receptor plays a pivotal role in basal renal microvascular tone and effectiveness to respond to vasoconstrictor and vasodilator agonists.

  9. Improved ACE-FTS observations of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2016-04-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22), CH3Cl and CCl4. Recently there has been much community interest in carbon tetrachloride (CCl4), a substance regulated by the Montreal Protocol because it leads to the catalytic destruction of stratospheric ozone. Estimated sources and sinks of CCl4 remain inconsistent with observations of its abundance. Satellite observations of CCl4 in the stratosphere are particularly useful in validating stratospheric loss (photolysis) rates; in fact the atmospheric loss of CCl4 is essentially all due to photolysis in the stratosphere. However, the latest ACE-FTS v3.5 CCl4 retrieval is biased high by ˜ 20-30%. A new ACE-FTS retrieval scheme utilising new laboratory spectroscopic measurements of CCl4 and improved microwindow selection has recently been developed. This improves upon the v3.5 retrieval and resolves the issue of the high bias; this new scheme will form the basis for the upcoming v4 processing version of ACE-FTS data. This presentation will outline the improvements made in the retrieval, and a subset of data will be compared with modelled CCl4 distributions from SLIMCAT, a state-of-the-art three-dimensional chemical transport model. The use of ACE-FTS data to evaluate the modelled stratospheric loss rate of CCl4 will also be discussed. The evaluated model, which also includes a treatment of surface soil and ocean sinks, will then be used to quantify current uncertainties in the global budget of CCl4.

  10. Angiotensin (1-7) ameliorates the structural and biochemical alterations of ovariectomy-induced osteoporosis in rats via activation of ACE-2/Mas receptor axis.

    PubMed

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-05-23

    The local and systemic renin angiotensin system (RAS) influences the skeletal system micro-structure and metabolism. Studies suggested angiotensin 1-7 (Ang(1-7)) as the beneficial RAS molecule via Mas receptor activation. This study examines the function of Ang(1-7) in bone micro-architecture and metabolism in an ovariectomized (OVX) rodent model of osteoporosis. OVX rats showed structural and bone metabolic degeneration in parallel with suppressed expressions of the angiotensin converting enzyme-2 (ACE-2)/Ang(1-7)/Mas components. The infusion of Ang(1-7) markedly alleviated the altered bone metabolism and significantly enhanced both trabecular (metaphyseal) and cortical (metaphyseal-diaphyseal) morphometry. Urinary and bones minerals were also improved in OVX rats by Ang(1-7). The infusion of the heptapeptide enhanced ACE-2/Mas receptor expressions, while down-regulated AngII, ACE, and AngII type-1 receptor (AT1R) in OVX animals. Moreover, Ang(1-7) markedly improved osteoprotegerin (OPG) and lowered receptor activator NF-κB ligand (RANKL) expressions. The defensive properties of Ang(1-7) on bone metabolism, structure and minerals were considerably eradicated after blockage of Mas receptor with A-779. Ang(1-7)-induced up-regulated ACE-2/Ang(1-7)/Mas cascade and OPG expressions were abolished and the expressions of ACE/AngII/AT1R and RANKL were provoked by A-779. These findings shows for the first time the novel valuable therapeutic role of Ang(1-7) on bone health and metabolism through the ACE-2/Mas cascade.

  11. Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures.

    PubMed

    Bodda, Chiranjeevi; Tantra, Martesa; Mollajew, Rustam; Arunachalam, Jayamuruga P; Laccone, Franco A; Can, Karolina; Rosenberger, Albert; Mironov, Sergej L; Ehrenreich, Hannelore; Mannan, Ashraf U

    2013-07-01

    An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  13. Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg.

    PubMed

    van de Vrugt, Henri J; Koomen, Mireille; Bakker, Sietske; Berns, Mariska A D; Cheng, Ngan Ching; van der Valk, Martin A; de Vries, Yne; Rooimans, Martin A; Oostra, Anneke B; Hoatlin, Maureen E; Te Riele, Hein; Joenje, Hans; Arwert, Fré

    2011-12-10

    Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely. 2011 Elsevier B.V. All rights reserved.

  14. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  15. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo

    PubMed Central

    Jurkowska, Halina; Niewiadomski, Julie; Hirschberger, Lawrence L.; Roman, Heather B.; Mazor, Kevin M.; Liu, Xiaojing; Locasale, Jason W.; Park, Eunkyue

    2016-01-01

    The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation. PMID:26481005

  16. Role of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis in the hypotensive effect of azilsartan.

    PubMed

    Iwanami, Jun; Mogi, Masaki; Tsukuda, Kana; Wang, Xiao-Li; Nakaoka, Hirotomo; Ohshima, Kousei; Chisaka, Toshiyuki; Bai, Hui-Yu; Kanno, Harumi; Min, Li-Juan; Horiuchi, Masatsugu

    2014-07-01

    The possible counteracting effect of angiotensin (Ang)-converting enzyme (ACE)2/Ang-(1-7)/Mas axis against the ACE/Ang II/Ang II type 1 (AT1) receptor axis in blood pressure control has been previously described. We examined the possibility that this pathway might be involved in the anti-hypertensive effect of a newly developed AT1 receptor blocker (ARB), azilsartan, and compared azilsartan's effects with those of another ARB, olmesartan. Transgenic mice carrying the human renin and angiotensinogen genes (hRN/hANG-Tg) were given azilsartan or olmesartan. Systolic and diastolic blood pressure, as determined by radiotelemetry, were significantly higher in hRN/hANG-Tg mice than in wild-type (WT) mice. Treatment with azilsartan or olmesartan (1 or 5 mg kg(-1) per day) significantly decreased systolic and diastolic blood pressure, and the blood pressure-lowering effect of azilsartan was more marked than that of olmesartan. The urinary Na concentration decreased in an age-dependent manner in hRN/hANG-Tg mice. Administration of azilsartan or olmesartan increased urinary Na concentration, and this effect was weaker with olmesartan than with azilsartan. Azilsartan decreased ENaC-α mRNA expression in the kidney and decreased the ratio of heart to body weight. Olmesartan had a similar but less-marked effect. ACE2 mRNA expression was lower in the kidneys and hearts of hRN/hANG-Tg mice than in WT mice. This decrease in ACE2 mRNA expression was attenuated by azilsartan, but not by olmesartan. These results suggest that the hypotensive and anti-hypertrophic effects of azilsartan may involve activation of the ACE2/Ang-(1-7)/Mas axis with AT1 receptor blockade.

  17. Use of ACE inhibitors in Fontan: Rational or irrational?

    PubMed

    Wilson, Thomas G; Iyengar, Ajay J; Winlaw, David S; Weintraub, Robert G; Wheaton, Gavin R; Gentles, Thomas L; Ayer, Julian; Grigg, Leeanne E; Justo, Robert N; Radford, Dorothy J; Bullock, Andrew; Celermajer, David S; Dalziel, Kim; Schilling, Chris; d'Udekem, Yves

    2016-05-01

    Despite a lack of evidence supporting the use of angiotensin-converting enzyme (ACE) inhibitors in patients with a Fontan circulation, their use is frequent. We decided to identify the rationale for ACE inhibitor therapy in patients within the Australia and New Zealand Fontan Registry. All patients in the Registry taking an ACE inhibitor at last follow up were identified, and a review of medical records was undertaken to determine the rationale for treatment initiation and reasons for treatment continuation or dose increase. In 2015, 36% of the surviving patients in the Registry (462/1268) were taking an ACE inhibitor. Indications for initiation of therapy were ventricular systolic or diastolic dysfunction (29%), atrioventricular valve regurgitation (19%), preservation of normal ventricular function (7%), prolonged effusions at Fontan (6%), hypertension (6%), other (6%) and unknown (2%). No indication was stated in the remaining patients (25%). Those with hypoplastic left heart syndrome were more likely to be on an ACE inhibitor than those with an alternative primary morphology (70% vs 32%; p<0.001). Only 36% of the patients treated with an ACE inhibitor at last follow up (166/462) had an indication that would generally justify treatment in a two-ventricle circulation. It is likely that the use of ACE inhibitors in patients with a Fontan circulation is excessive within our region. The coordination of prospective, multicentre studies and initiatives such as the Australia and New Zealand Fontan Registry will facilitate further investigations to guide treatment decisions in the growing Fontan population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The Epidermis of Grhl3-Null Mice Displays Altered Lipid Processing and Cellular Hyperproliferation

    PubMed Central

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M

    2005-01-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin. PMID:19521564

  19. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.

    PubMed

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M

    2005-04-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.

  20. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) I: Endogenous Angiotensin Converting Enzyme (ACE) Inhibition

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    Angiotensin-converting enzyme (ACE) inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected) enzyme activities significantly increased by dilution of human serum samples (23.2±0.7 U/L at 4-fold dilution, 51.4±0.3 U/L at 32-fold dilution, n = 3, p = 0.001), suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655±145 U/L, 605±42 U/L, n = 3, p = 0.715, respectively). FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa) and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4±2.4 U/L, n = 4, control: 26.4±0.7 U/L, n = 4, p<0.001). Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity

  1. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice

    PubMed Central

    Jalali, Rozita; Lodder, Johannes C.; Zandieh-Doulabi, Behrouz; Micha, Dimitra; Melvin, James E.; Catalan, Marcelo A.; Mansvelder, Huibert D.; DenBesten, Pamela; Bronckers, Antonius

    2017-01-01

    Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication. PMID:29209227

  2. The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice.

    PubMed

    Barberi, Theresa J; Dunkle, Alexis; He, You-Wen; Racioppi, Luigi; Means, Anthony R

    2012-01-01

    Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.

  3. Association of the insertion allele of the common ACE gene polymorphism with type 2 diabetes mellitus among Kuwaiti cardiovascular disease patients.

    PubMed

    Al-Serri, Ahmad; Ismael, Fatma G; Al-Bustan, Suzanne A; Al-Rashdan, Ibrahim

    2015-12-01

    The D allele of the common angiotensin-converting enzyme (ACE) I/D gene polymorphism (rs4646994) predisposes to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). However, results on which allele predisposes to disease susceptibility remain controversial in Asian populations. This study was performed to evaluate the association of the common ACE I/D gene polymorphism with both T2DM and CVD susceptibility in an Arab population. We genotyped the ACE I/D polymorphisms by direct allele-specific PCR in 183 healthy controls and 400 CVD patients with diabetes (n=204) and without (n=196). Statistical analysis comparing between the different groups were conducted using R statistic package "SNPassoc". Two genetic models were used: the additive and co-dominant models. The I allele was found to be associated with T2DM (OR=1.84, p=0.00009) after adjusting for age, sex and body mass index. However, there was no association with CVD susceptibility (p>0.05). The ACE I allele is found to be associated with T2DM; however, no association was observed with CVD. The inconsistency between studies is suggested to be attributed to genetic diversity due to the existence of sub-populations found in Asian populations. © The Author(s) 2015.

  4. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi

    PubMed Central

    Henderson, Colin J.; Wolf, C. Roland; Kitteringham, Neil; Powell, Helen; Otto, Diana; Park, B. Kevin

    2000-01-01

    Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in part by the glutathione S-transferases (GST), such as GST Pi. To assess the role of GST in acetaminophen hepatotoxicity, we examined acetaminophen metabolism and liver damage in mice nulled for GstP (GstP1/P2(−/−)). Contrary to our expectations, instead of being more sensitive, GstP null mice were highly resistant to the hepatotoxic effects of this compound. No significant differences between wild-type (GstP1/P2(+/+)) mice and GstP1/P2(−/−) nulls in either the rate or route of metabolism, particularly to glutathione conjugates, or in the levels of covalent binding of acetaminophen-reactive metabolites to cellular protein were observed. However, although a similar rapid depletion of hepatic reduced glutathione (GSH) was found in both GstP1/P2(+/+) and GstP1/P2(−/−) mice, GSH levels only recovered in the GstP1/P2(−/−) mice. These data demonstrate that GstP does not contribute in vivo to the formation of glutathione conjugates of acetaminophen but plays a novel and unexpected role in the toxicity of this compound. This study identifies new ways in which GST can modulate cellular sensitivity to toxic effects and suggests that the level of GST Pi may be an important and contributing factor in the sensitivity of patients with acetaminophen-induced hepatotoxicity. PMID:11058152

  5. Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villard, E.; Soubrier, F.; Tiret, L.

    1996-06-01

    Plasma angiotensin I-converting enzyme (ACE) levels are highly genetically determined. A previous segregation-linkage analysis suggested the existence of a functional mutation located within or close to the ACE locus, in almost complete linkage disequilibrium (LD) with the ACE insertion/deletion (I/D) polymorphism and accounting for half the ACE variance. In order to identify the functional variant at the molecular level, we compared ACE gene sequences between four subjects selected for having contrasted ACE levels and I/D genotypes. We identified 10 new polymorphisms, among which 8 were genotyped in 95 healthy nuclear families, in addition to the I/D polymorphism. These polymorphisms couldmore » be divided into two groups: five polymorphisms in the 5{prime} region and three in the coding sequence and the 3{prime} UTR. Within each group, polymorphisms were in nearly complete association, whereas polymorphisms from the two groups were in strong negative LD. After adjustment for the I/D polymorphism, all polymorphisms of the 5{prime} group remained significantly associated with ACE levels, which suggests the existence of two quantitative trait loci (QTL) acting additively on ACE levels. Segregation-linkage analyses including one or two ACE-linked QTLs in LD with two ACE markers were performed to test this hypothesis. The two QTLs and the two markers were assumed to be in complete LD. Results supported the existence of two ACE-linked QTLs, which would explain 38% and 49% of the ACE variance in parents and offspring, respectively. One of these QTLs might be the I/D polymorphism itself or the newly characterized 4656(CT){sub 2/3} polymorphism. The second QTL would have a frequency of {approximately}.20, which is incompatible with any of the yet-identified polymorphisms. More extensive sequencing and extended analyses in larger samples and in other populations will be necessary to characterize definitely the functional variants. 30 refs., 1 fig., 6 tabs.« less

  6. Equine endometrial fibrosis correlates with 11beta-HSD2, TGF-beta1 and ACE activities.

    PubMed

    Ganjam, V K; Evans, T J

    2006-03-27

    Endometrial periglandular fibrosis (EPF) contributes to embryonic and fetal loss in mares. Equine EPF correlates inversely with conception and successful gestation. In the modified Kenney endometrial biopsy classification system, EPF categories I, IIA, IIB, and III correspond to minimal, mild, moderate, and severe fibrosis (+/-inflammation), respectively. Paraffin sections of biopsy specimens were stained with H&E, and picrosirius red (specific for fibrillar collagens types I and III), to determine %EPCVF. Endometrial ACE-binding activity, TGF-beta1 and 11beta-HSD2 activities were also measured. Ultrastructural changes in EPF categories IIB and III endometria strongly suggested myofibroblastic transformation. ACE-binding activity was highest in EPF category IIB; however, endometrial TGF-beta1 and 11beta-HSD2 activities were significantly correlated to the severity of EPF (P<0.05). We conclude that, locally generated angiotensin II initiates the expression of TGF-beta1 resulting in myofibroblastic transformation. 11Beta-HSD2 in concert appears to modulate the severity of endometrial fibrosis.

  7. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019783 (24 June 2013) --- In the International Space Station’s Destiny laboratory, a fisheye lens attached to an electronic still camera was used to capture this image of NASA astronaut Karen Nyberg, Expedition 36 flight engineer, as she conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  8. The ACE gene and human performance: 12 years on.

    PubMed

    Puthucheary, Zudin; Skipworth, James R A; Rawal, Jai; Loosemore, Mike; Van Someren, Ken; Montgomery, Hugh E

    2011-06-01

    Some 12 years ago, a polymorphism of the angiotensin I-converting enzyme (ACE) gene became the first genetic element shown to impact substantially on human physical performance. The renin-angiotensin system (RAS) exists not just as an endocrine regulator, but also within local tissue and cells, where it serves a variety of functions. Functional genetic polymorphic variants have been identified for most components of RAS, of which the best known and studied is a polymorphism of the ACE gene. The ACE insertion/deletion (I/D) polymorphism has been associated with improvements in performance and exercise duration in a variety of populations. The I allele has been consistently demonstrated to be associated with endurance-orientated events, notably, in triathlons. Meanwhile, the D allele is associated with strength- and power-orientated performance, and has been found in significant excess among elite swimmers. Exceptions to these associations do exist, and are discussed. In theory, associations with ACE genotype may be due to functional variants in nearby loci, and/or related genetic polymorphism such as the angiotensin receptor, growth hormone and bradykinin genes. Studies of growth hormone gene variants have not shown significant associations with performance in studies involving both triathletes and military recruits. The angiotensin type-1 receptor has two functional polymorphisms that have not been shown to be associated with performance, although studies of hypoxic ascent have yielded conflicting results. ACE genotype influences bradykinin levels, and a common gene variant in the bradykinin 2 receptor exists. The high kinin activity haplotye has been associated with increased endurance performance at an Olympic level, and similar results of metabolic efficiency have been demonstrated in triathletes. Whilst the ACE genotype is associated with overall performance ability, at a single organ level, the ACE genotype and related polymorphism have significant

  9. The relationship between ACE/AGT gene polymorphisms and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes.

    PubMed

    Qiao, Yong-Chao; Wang, Min; Pan, Yan-Hong; Zhang, Xiao-Xi; Tian, Fang; Chen, Yin-Ling; Zhao, Hai-Lu

    2018-01-01

    This study aims to investigate the association between renin-angiotensin system gene polymorphism and diabetic retinopathy (DR) in Chinese patients with type 2 diabetes. We consecutively included 1491 patients for the assessment of ACE I/D and AGT M/T gene polymorphisms in 345 DR cases and 1146 patients without retinopathy (DNR). Albuminuria was defined by urine albumin creatinine ratio and albumin excretion rate. Compared with the NDR patients, the DR cases displayed a higher proportion of diabetic nephropathy (32.68% vs. 6.52%, χ 2 = 150.713, p < 0.001). The DR cases and DNR individuals did not differ in the frequency of genotypes and alleles of ACE I/D and AGT M/T (all p > 0.05). Intriguingly, DR patients with obesity showed higher frequency of DD (χ 2 = 4.181, p = 0.041), but no significant difference exists in the other stratified BMI and hypertension analyses (all p > 0.05). Binary logistic regression displays that the association of the ACE and AGT gene polymorphisms in DR patients is not significant after adjusting for confounding covariates in all the comparisons. The ACE and AGT gene polymorphisms are not associated with the progress of diabetes developing into retinopathy in Chinese patients with type 2 diabetes. However, more investigations are needed to further prove the association.

  10. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  11. Interactions between ACE inhibitors and classical antiepileptic drugs in the mouse maximal electroshock seizures.

    PubMed

    Łukawski, Krzysztof; Jakubus, Tomasz; Janowska, Agnieszka; Czuczwar, Stanisław J

    2011-11-01

    This study evaluated the effect of two angiotensin-converting enzyme (ACE) inhibitors, enalapril and cilazapril, commonly used antihypertensive drugs, on the protective efficacy of the classical antiepileptics - carbamazepine (CBZ), phenytoin (PHT), valproate (VPA) and phenobarbital (PB). For this purpose, we used the maximal electroshock seizure (MES) test in mice. Additionally, adverse effects of combined treatment with ACE inhibitors and antiepileptic drugs in the passive avoidance task and chimney test were assessed. All drugs were administered intraperitoneally. Neither enalapril (10, 20 and 30 mg/kg) nor cilazapril (5, 10 and 20mg/kg) affected the threshold for electroconvulsions. Enalapril (30 mg/kg) but not cilazapril (20mg/kg), enhanced the protective action of VPA, decreasing its ED(50) value from 249.5 to 164.9 mg/kg (p<0.01). Free plasma (non-protein-bound) and total brain concentrations of VPA were not significantly influenced by enalapril. Therefore, the observed interaction could be pharmacodynamic in nature. The combinations of ACE inhibitors with other antiepileptics (CBZ, PHT, and PB) were ineffective in that their ED(50) values against MES were not significantly changed. Enalapril and cilazapril remained ineffective as regards memory retention in the passive avoidance task or motor performance in the chimney test. The current study suggests that there are no negative interactions between the studied ACE inhibitors and classical antiepileptic drugs. Enalapril was even documented to enhance the anticonvulsant activity of VPA. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Contemplating Synergistic Algorithms for the NASA ACE Mission

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.

    2013-01-01

    ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.

  14. Two-Year Body Composition Analyses of Long-Lived GHR Null Mice

    PubMed Central

    List, Edward O.; Palmer, Amanda J.; Chung, Min-Yu; Wright-Piekarski, Jacob; Lubbers, Ellen; O'Connor, Patrick; Okada, Shigeru; Kopchick, John J.

    2010-01-01

    Growth hormone receptor gene–disrupted (GHR−/−) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR−/− mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR−/− mice. Results show that GHR−/− mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR−/− mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR−/− mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region. PMID:19901018

  15. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.

    PubMed

    Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; Dull, Randal O; Minshall, Richard D; Kost, Olga A; Garcia, Joe G N

    2016-10-13

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.

  16. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    PubMed Central

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  17. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    PubMed

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  18. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

    PubMed

    Abdallah, Luna; Bonasera, Stephen J; Hopf, F Woodward; O'Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H; Bonci, Antonello; Tecott, Laurence H

    2009-06-24

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.

  19. Advanced Collaborative Emissions Study (ACES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less

  20. Cerebellar Ataxia, Seizures, Premature Death, and Cardiac Abnormalities in Mice with Targeted Disruption of the Cacna2d2 Gene

    PubMed Central

    Ivanov, Sergey V.; Ward, Jerrold M.; Tessarollo, Lino; McAreavey, Dorothea; Sachdev, Vandana; Fananapazir, Lameh; Banks, Melissa K.; Morris, Nicole; Djurickovic, Draginja; Devor-Henneman, Deborah E.; Wei, Ming-Hui; Alvord, Gregory W.; Gao, Boning; Richardson, James A.; Minna, John D.; Rogawski, Michael A.; Lerman, Michael I.

    2004-01-01

    CACNA2D2 is a putative tumor suppressor gene located in the human chromosome 3p21.3 region that shows frequent allelic imbalances in lung, breast, and other cancers. The α2δ-2 protein encoded by the gene is a regulatory subunit of voltage-dependent calcium channels and is expressed in brain, heart, and other tissues. Here we report that mice homozygous for targeted disruption of the Cacna2d2 gene exhibit growth retardation, reduced life span, ataxic gait with apoptosis of cerebellar granule cells followed by Purkinje cell depletion, enhanced susceptibility to seizures, and cardiac abnormalities. The Cacna2d2tm1NCIF null phenotype has much in common with that of Cacna1a mutants, such as cerebellar neuro-degeneration associated with ataxia, seizures, and premature death. A tendency to bradycardia and limited response of null mutants to isoflurane implicate α2δ-2 in sympathetic regulation of cardiac function. In summary, our findings provide genetic evidence that the α2δ-2 subunit serves in vivo as a component of P/Q-type calcium channels, is indispensable for the central nervous system function, and may be involved in hereditary cerebellar ataxias and epileptic disorders in humans. PMID:15331424

  1. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  2. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  3. Gastric Expression of Plasminogen Activator Inhibitor (PAI)-1 Is Associated with Hyperphagia and Obesity in Mice

    PubMed Central

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatković, Nikolina; Dimaline, Rod; Varro, Andrea

    2013-01-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H+/K+β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1–null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake. PMID:23254194

  4. Gastric expression of plasminogen activator inhibitor (PAI)-1 is associated with hyperphagia and obesity in mice.

    PubMed

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatkovic, Nikolina; Dimaline, Rod; Varro, Andrea; Dockray, Graham J

    2013-02-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H(+)/K(+)β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1-null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake.

  5. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    PubMed

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  6. Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry

    PubMed Central

    Grobe, Nadja; Weir, Nathan M.; Leiva, Orly; Ong, Frank S.; Bernstein, Kenneth E.; Schmaier, Alvin H.; Morris, Mariana

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) catalyzes conversion of ANG II to ANG-(1–7). The present study uses newly established proteomic approaches and genetic mouse models to examine the contribution of alternative renal peptidases to ACE2-independent formation of ANG-(1–7). In situ and in vitro mass spectrometric characterization showed that substrate concentration and pH control renal ANG II processing. At pH ≥6, ANG-(1–7) formation was significantly reduced in ACE2 knockout (KO) mice. However, at pH <6, formation of ANG-(1–7) in ACE2 KO mice was similar to that in wild-type (WT) mice, suggesting alternative peptidases for renal ANG II processing. Furthermore, the dual prolyl carboxypeptidase (PCP)-prolyl endopeptidase (PEP) inhibitor Z-prolyl-prolinal reduced ANG-(1–7) formation in ACE2 KO mice, while the ACE2 inhibitor MLN-4760 had no effect. Unlike the ACE2 KO mice, ANG-(1–7) formation from ANG II in PEP KO mice was not different from that in WT mice at any tested pH. However, at pH 5, this reaction was significantly reduced in kidneys and urine of PCP-depleted mice. In conclusion, results suggest that ACE2 metabolizes ANG II in the kidney at neutral and basic pH, while PCP catalyzes the same reaction at acidic pH. This is the first report demonstrating that renal ANG-(1–7) formation from ANG II is independent of ACE2. Elucidation of ACE2-independent ANG-(1–7) production pathways may have clinically important implications in patients with metabolic and renal disease. PMID:23392115

  7. Mixed Neurodevelopmental and Neurodegenerative Pathology in Nhe6-Null Mouse Model of Christianson Syndrome

    PubMed Central

    Xu, Meiyu; Ouyang, Qing; Gong, Jingyi; Pescosolido, Matthew F.; Mishra, Sasmita; Schmidt, Michael; Jones, Richard N.; Gamsiz Uzun, Ece D.; Lizarraga, Sofia B.

    2017-01-01

    Abstract Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). Symptoms include early developmental delay, seizures, intellectual disability, nonverbal status, autistic features, postnatal microcephaly, and progressive ataxia. Neuronal development is impaired in CS, involving defects in neuronal arborization and synaptogenesis, likely underlying diminished brain growth postnatally. In addition to neurodevelopmental defects, some reports have supported neurodegenerative pathology in CS with age. The objective of this study was to determine the nature of progressive changes in the postnatal brain in Nhe6-null mice. We examined the trajectories of brain growth and atrophy in mutant mice from birth until very old age (2 yr). We report trajectories of volume changes in the mutant that likely reflect both brain undergrowth as well as tissue loss. Reductions in volume are first apparent at 2 mo, particularly in the cerebellum, which demonstrates progressive loss of Purkinje cells (PCs). We report PC loss in two distinct Nhe6-null mouse models. More widespread reductions in tissue volumes, namely, in the hippocampus, striatum, and cortex, become apparent after 2 mo, largely reflecting delays in growth with more limited tissue losses with aging. Also, we identify pronounced glial responses, particularly in major fiber tracts such as the corpus callosum, where the density of activated astrocytes and microglia are substantially increased. The prominence of the glial response in axonal tracts suggests a primary axonopathy. Importantly, therefore, our data support both neurodevelopmental and degenerative mechanisms in the pathobiology of CS. PMID:29349289

  8. No association between ACE I/D polymorphism and cardiovascular hemodynamics during exercise in young women.

    PubMed

    Roltsch, M H; Brown, M D; Hand, B D; Kostek, M C; Phares, D A; Huberty, A; Douglass, L W; Ferrell, R E; Hagberg, J M

    2005-10-01

    The ACE I/D polymorphism has been shown to interact with habitual physical activity levels in postmenopausal women to associate with submaximal and with maximal exercise hemodynamics. This investigation was designed to assess the potential relationships between ACE genotype and oxygen consumption (VO2), cardiac output (Q), stroke volume (SV), heart rate (HR), blood pressure (BP), total peripheral resistance (TPR), and arteriovenous oxygen difference ([a-v]O2 diff) during submaximal and maximal exercise in young sedentary and endurance-trained women. Seventy-seven 18-35-yr-old women underwent a maximal exercise test and a number of cardiac output tests on a treadmill using the acetylene rebreathing technique. ACE genotype was not significantly associated with VO2max (II 41.4+/-1.2, ID 39.8+/-0.9, DD 39.8+/-1.1 ml/kg/min, p=ns) or maximal HR (II 191+/-2, ID 191+/-1, DD 193+/-2 bpm, p=ns). In addition, systolic and diastolic BP, (a-v)O2 diff, TPR, SV, and Q during maximal exercise were not significantly associated with ACE genotype. During submaximal exercise, SBP, Q, SV, HR, TPR, and (a-v)O2 diff were not significantly associated with ACE genotype. However, the association between diastolic BP during submaximal exercise and ACE genotype approached significance (p=0.08). In addition, there were no statistically significant interactions between ACE genotype and habitual physical activity (PA) levels for any of the submaximal or the maximal exercise hemodynamic variables. We conclude that the ACE I/D polymorphism was not associated, independently or interacting with habitual PA levels, submaximal, or maximal cardiovascular hemodynamics in young women.

  9. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice

    PubMed Central

    Xiao, Zhousheng; Dallas, Mark; Qiu, Ni; Nicolella, Daniel; Cao, Li; Johnson, Mark; Bonewald, Lynda; Quarles, L. Darryl

    2011-01-01

    We investigated whether polycystin-1 is a bone mechanosensor. We conditionally deleted Pkd1 in mature osteoblasts/osteocytes by crossing Dmp1-Cre with Pkd1flox/m1Bei mice, in which the m1Bei allele is nonfunctional. We assessed in wild-type and Pkd1-deficient mice the response to mechanical loading in vivo by ulna loading and ex vivo by measuring the response of isolated osteoblasts to fluid shear stress. We found that conditional Pkd1 heterozygotes (Dmp1-Cre;Pkd1flox/+) and null mice (Pkd1Dmp1-cKO) exhibited a ∼40 and ∼90% decrease, respectively, in functional Pkd1 transcripts in bone. Femoral bone mineral density (12 vs. 27%), trabecular bone volume (32 vs. 48%), and cortical thickness (6 vs. 17%) were reduced proportionate to the reduction of Pkd1 gene dose, as were mineral apposition rate (MAR) and expression of Runx2-II, Osteocalcin, Dmp1, and Phex. Anabolic load-induced periosteal lamellar MAR (0.58±0.14; Pkd1Dmp1-cKO vs. 1.68±0.34 μm/d; control) and increases in Cox-2, c-Jun, Wnt10b, Axin2, and Runx2-II gene expression were significantly attenuated in Pkd1Dmp1-cKO mice compared with controls. Application of fluid shear stress to immortalized osteoblasts from Pkd1null/null and Pkd1m1Bei/m1Bei-derived osteoblasts failed to elicit the increments in cytosolic calcium observed in wild-type controls. These data indicate that polycystin-1 is essential for the anabolic response to skeletal loading in osteoblasts/osteocytes.—Xiao, Z., Dallas, M., Qiu, N., Nicolella, D., Cao, L., Johnson, M., Bonewald, L., Quarles, L. D. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. PMID:21454365

  10. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less

  11. Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE).

    PubMed

    Yates, Christopher J; Masuyer, Geoffrey; Schwager, Sylva L U; Akif, Mohd; Sturrock, Edward D; Acharya, K Ravi

    2014-01-17

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg(522). Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu(403)-Lys(118) salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains.

  12. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    PubMed Central

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  13. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    PubMed

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  14. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  15. Ovariectomy modify local renin-angiotensin-aldosterone system gene expressions in the heart of ApoE (-/-) mice.

    PubMed

    Borges, Celina Carvalho; Penna-de-Carvalho, Aline; Medeiros Junior, Jorge L; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos A

    2017-12-15

    The evaluation of the local Renin-Angiotensin-Aldosterone system (RAAS) gene expressions in the heart of ovariectomized (OVX) apolipoprotein E deficient mice (ApoE). Four-months old C57BL/6 female mice (wild-type, wt, n=20), and ApoE female mice (n=20), were submitted to OVX or a surgical procedure without ovary removal (SHAM) and formed four groups (n=10/group): SHAM/wt, SHAM/ApoE, OVX/wt, and OVX/ApoE. OVX led to greater body mass, plasma triglycerides (TG) and total cholesterol, and resulted in insulin resistance and altered RAAS gene expressions in the heart tissue. The gene expression of angiotensin-converting enzyme (ACE)-2 was lower in OVX/wt than in SHAM/wt (P=0.0004), Mas receptor (MASr) was lower in OVX/wt compared to SHAM/wt (P<0.0001). Also, angiotensin II receptor type 1 (AT1r) was higher in OVX/wt than in SHAM/wt (P=0.0229), and AT2r was lower in OVX/wt than in SHAM/wt (P=0.0121). OVX and ApoE deficiency showed interaction potentializing the insulin resistance, increasing TG levels and altering ACE and MASr gene expressions. ACE gene expression was higher in OVX/ApoE than in OVX/wt (P<0.0001), and MASr gene expression was lower in OVX/ApoE than in OVX/wt (P<0.0001). The impact of OVX on local RAAS cascade in the heart of ApoE deficient animals, besides the metabolic changes culminating with insulin resistance, involves an upregulation of renin, ACE, and AT1r gene expressions. The findings may contribute to clarify the mechanisms of development of postmenopausal hypertension and the link between RAAS and apolipoprotein E. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Exercise-induced changes in insulin action are associated with ACE gene polymorphisms in older adults.

    PubMed

    Dengel, Donald R; Brown, Michael D; Ferrell, Robert E; Reynolds, Thomas H; Supiano, Mark A

    2002-10-29

    We evaluated the association between insulin resistance and the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) gene polymorphism in a group of older hypertensive subjects (63 +/- 1 yr, n = 35) before and after a 6-mo aerobic exercise program (AEX). Insulin sensitivity index (S(I)), assessed by the frequently sampled intravenous glucose tolerance test, was significantly (P = 0.0001) increased following AEX. In addition, there was a significant (P = 0.001) interaction between AEX and ACE genotype. S(I) increased significantly (P < 0.05) more in those with the II (2.5 +/- 0.8 microU x 10(-4) x min(-1) x ml(-1)) ACE genotype compared with both the DD and ID (0.7 +/- 0.1 and 0.7 +/- 0.2 microU x 10(-4) x min(-1) x ml(-1), respectively) ACE genotypes. Similarly, there was a significant (P = 0.036) decrease in the acute insulin response to glucose (AIR(G)) and a significant (P = 0.05) interaction between AEX and ACE genotype. AIR(G) decreased significantly (P < 0.05) more in those with the II (-17.6 +/- 5.6 mU/ml) ACE genotype compared with both the DD and ID (-1.4 +/- 6.2 and -3.6 +/- 2.5 mU/ml) ACE genotypes. In conclusion, we demonstrated that those older hypertensives with the ACE II genotype have the greatest improvement in insulin action following AEX.

  17. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  18. Prophylactic Role of Averrhoa carambola (Star Fruit) Extract against Chemically Induced Hepatocellular Carcinoma in Swiss Albino Mice.

    PubMed

    Singh, Ritu; Sharma, Jyoti; Goyal, P K

    2014-01-01

    Liver cancer remains one of the severe lethal malignancies worldwide and hepatocellular carcinoma (HCC) is the most common form. The current study was designed to evaluate the prophylactic role of the fruit of Averrhoa carambola (star fruit or Kamrak) on diethylnitrosamine- (DENA-) induced (15 mg/kg b.wt.; single i.p. injection) and CCl4-promoted (1.6 g/kg b.wt. in corn oil thrice a week for 24 weeks) liver cancer in Swiss albino mice. Administration of ACE was made orally at a dose of 25 mg/kg b.wt/day for 5 consecutive days and it was withdrawn 48 hrs before the first administration of DENA (preinitiational stage). CCl4 was given after 2 weeks of DENA administration. A cent percent tumor incidence was noted in carcinogen treated animals while ACE administration resulted in a considerable reduction in tumor incidence, tumor yield, and tumor burden. Further, ACE treatment brings out a significant reduction in lipid peroxidation (P < 0.001) along with an elevation in the activities of enzymatic antioxidants (superoxide dismutase, P < 0.001, and catalase, P < 0.001), nonenzymatic antioxidant (reduced glutathione, P < 0.001), and total proteins (P < 0.001) when compared to the carcinogen treated control. These results demonstrate that ACE prevents the DENA/CCl4 induced adverse physical and biochemical alterations during hepatic carcinogenesis in mice. This study suggests the prophylactic role of Averrhoa carambola against hepatocellular carcinoma in mice; therefore, it could be employed for the further screening as a good chemopreventive natural supplement against cancer.

  19. Prophylactic Role of Averrhoa carambola (Star Fruit) Extract against Chemically Induced Hepatocellular Carcinoma in Swiss Albino Mice

    PubMed Central

    Singh, Ritu; Sharma, Jyoti; Goyal, P. K.

    2014-01-01

    Liver cancer remains one of the severe lethal malignancies worldwide and hepatocellular carcinoma (HCC) is the most common form. The current study was designed to evaluate the prophylactic role of the fruit of Averrhoa carambola (star fruit or Kamrak) on diethylnitrosamine- (DENA-) induced (15 mg/kg b.wt.; single i.p. injection) and CCl4-promoted (1.6 g/kg b.wt. in corn oil thrice a week for 24 weeks) liver cancer in Swiss albino mice. Administration of ACE was made orally at a dose of 25 mg/kg b.wt/day for 5 consecutive days and it was withdrawn 48 hrs before the first administration of DENA (preinitiational stage). CCl4 was given after 2 weeks of DENA administration. A cent percent tumor incidence was noted in carcinogen treated animals while ACE administration resulted in a considerable reduction in tumor incidence, tumor yield, and tumor burden. Further, ACE treatment brings out a significant reduction in lipid peroxidation (P < 0.001) along with an elevation in the activities of enzymatic antioxidants (superoxide dismutase, P < 0.001, and catalase, P < 0.001), nonenzymatic antioxidant (reduced glutathione, P < 0.001), and total proteins (P < 0.001) when compared to the carcinogen treated control. These results demonstrate that ACE prevents the DENA/CCl4 induced adverse physical and biochemical alterations during hepatic carcinogenesis in mice. This study suggests the prophylactic role of Averrhoa carambola against hepatocellular carcinoma in mice; therefore, it could be employed for the further screening as a good chemopreventive natural supplement against cancer. PMID:24696677

  20. Diabetic Nephropathy Induced by Increased Ace Gene Dosage Is Associated with High Renal Levels of Angiotensin (1–7) and Bradykinin

    PubMed Central

    Bertoncello, Nádia; Moreira, Roseli Peres; Arita, Danielle Yuri; Aragão, Danielle S.; Watanabe, Ingrid Kazue Mizuno; Dantas, Patricia S.; Santos, Ralmony; Mattar-Rosa, Rodolfo; Yokota, Rodrigo; Cunha, Tatiana Sousa; Casarini, Dulce Elena

    2015-01-01

    Population studies have shown an association between diabetic nephropathy (DN) and insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene (ACE in humans, Ace in mice). The aim was to evaluate the modulation of Ace copies number and diabetes mellitus (DM) on renal RAS and correlate it with indicators of kidney function. Increased number of copies of the Ace gene, associated with DM, induces renal dysfunction. The susceptibility to the development of DN in 3 copies of animals is associated with an imbalance in activity of RAS enzymes leading to increased synthesis of Ang II and Ang-(1–7). Increased concentration of renal Ang-(1–7) appears to potentiate the deleterious effects triggered by Ang II on kidney structure and function. Results also show increased bradykinin concentration in 3 copies diabetic group. Taken together, results indicate that the deleterious effects described in 3 copies diabetic group are, at least in part, due to a combination of factors not usually described in the literature. Thus, the data presented here show up innovative and contribute to understanding the complex mechanisms involved in the development of DN, in order to optimize the treatment of patients with this complication. PMID:26442284

  1. Unique Kinase Catalytic Mechanism of AceK with a Single Magnesium Ion

    PubMed Central

    Li, Quanjie; Zheng, Jimin; Tan, Hongwei; Li, Xichen; Chen, Guangju; Jia, Zongchao

    2013-01-01

    Isocitrate dehydrogenase kinase/phosphatase (AceK) is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg2+-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed. PMID:23977203

  2. Elastase‐2, an angiotensin II‐generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction

    PubMed Central

    Silva, Marcondes A B; Durand, Marina T; Prado, Cibele M; Oliveira, Eduardo B; Ribeiro, Mauricio S; Salgado, Helio C; Salgado, Maria Cristina O; Tostes, Rita C

    2017-01-01

    Background and Purpose Angiotensin II (Ang II), whose generation largely depends on angiotensin‐converting enzyme (ACE) activity, mediates most of the renin‐angiotensin‐system (RAS) effects. Elastase‐2 (ELA‐2), a chymotrypsin‐serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II‐generation in resistance arteries are unknown. We hypothesized that ELA‐2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. Experimental Approach Concentration‐effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA‐2 knockout (ELA‐2KO) mice subjected to left anterior descending coronary artery ligation (MI). Key Results MI size was similar in WT and ELA‐2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA‐2KO mice. Ang I‐induced contractions increased in WT mice subjected to MI (MI‐WT) compared with sham‐WT mice. No differences were observed in Ang I reactivity between arteries from ELA‐2KO and ELA‐2KO subjected to MI (MI‐ELA‐2KO). Ang I contractions increased in arteries from MI‐WT versus MI‐ELA‐2KO mice. Chymostatin attenuated Ang I‐induced vascular contractions in WT mice, but did not affect Ang I responses in ELA‐2KO arteries. Conclusions and Implications These results provide the first evidence that ELA‐2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA‐2 as a key player in ACE‐independent dysregulation of the RAS. PMID:28222221

  3. AceDRG: a stereochemical description generator for ligands

    PubMed Central

    Emsley, Paul; Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas

    2017-01-01

    The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the ‘ideal’ bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files. PMID:28177307

  4. The transcription factor Ace2 and its paralog Swi5 regulate ethanol production during static fermentation through their targets Cts1 and Rps4a in Saccharomyces cerevisiae.

    PubMed

    Wu, Yao; Du, Jie; Xu, Guoqiang; Jiang, Linghuo

    2016-05-01

    Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability.

    PubMed

    Morè, Lorenzo; Künnecke, Basil; Yekhlef, Latefa; Bruns, Andreas; Marte, Antonella; Fedele, Ernesto; Bianchi, Veronica; Taverna, Stefano; Gatti, Silvia; D'Adamo, Patrizia

    2017-03-06

    RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression. © 2014 S. Karger AG, Basel.

  7. Adverse childhood experiences (ACEs) and later-life depression: perceived social support as a potential protective factor.

    PubMed

    Cheong, E Von; Sinnott, Carol; Dahly, Darren; Kearney, Patricia M

    2017-09-01

    To investigate associations between adverse childhood experiences (ACEs) and later-life depressive symptoms; and to explore whether perceived social support (PSS) moderates these. We analysed baseline data from the Mitchelstown (Ireland) 2010-2011 cohort of 2047 men and women aged 50-69 years. Self-reported measures included ACEs (Centre for Disease Control ACE questionnaire), PSS (Oslo Social Support Scale) and depressive symptoms (CES-D). The primary exposure was self-report of at least one ACE. We also investigated the effects of ACE exposure by ACE scores and ACE subtypes abuse, neglect and household dysfunction. Associations between each of these exposures and depressive symptoms were estimated using logistic regression, adjusted for socio-demographic factors. We tested whether the estimated associations varied across levels of PSS (poor, moderate and strong). 23.7% of participants reported at least one ACE (95% CI 21.9% to 25.6%). ACE exposures (overall, subtype or ACE scores) were associated with a higher odds of depressive symptoms, but only among individuals with poor PSS. Exposure to any ACE (vs none) was associated with almost three times the odds of depressive symptoms (adjusted OR 2.85; 95% CI 1.64 to 4.95) among individuals reporting poor PSS, while among those reporting moderate and strong PSS, the adjusted ORs were 2.21 (95% CI 1.52 to 3.22) and 1.39 (95% CI 0.85 to 2.29), respectively. This pattern of results was similar when exposures were based on ACE subtype and ACE scores, though the interaction was clearly strongest among those reporting abuse. ACEs are common among older adults in Ireland and are associated with higher odds of later-life depressive symptoms, particularly among those with poor PSS. Interventions that enhance social support, or possibly perceptions of social support, may help reduce the burden of depression in older populations with ACE exposure, particularly in those reporting abuse. © Article author(s) (or their employer

  8. Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension.

    PubMed

    Johnson, Jennifer A; Hemnes, Anna R; Perrien, Daniel S; Schuster, Manfred; Robinson, Linda J; Gladson, Santhi; Loibner, Hans; Bai, Susan; Blackwell, Tom R; Tada, Yuji; Harral, Julie W; Talati, Megha; Lane, Kirk B; Fagan, Karen A; West, James

    2012-03-01

    The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.

  9. Locally acting ACE-083 increases muscle volume in healthy volunteers.

    PubMed

    Glasser, Chad E; Gartner, Michael R; Wilson, Dawn; Miller, Barry; Sherman, Matthew L; Attie, Kenneth M

    2018-02-27

    ACE-083 is a locally acting follistatin-based therapeutic that binds myostatin and other muscle regulators and has been shown to increase muscle mass and force in neuromuscular disease mouse models. This first-in-human study examined these effects. In this phase 1, randomized, double-blind, placebo-controlled, dose-ranging study in healthy postmenopausal women, ACE-083 (50-200 mg) or placebo was administered unilaterally into rectus femoris (RF) or tibialis anterior (TA) muscles as 1 or 2 doses 3 weeks apart. Fifty-eight postmenopausal women were enrolled, 42 ACE-083 and 16 placebo. No serious adverse events (AE), dose-limiting toxicities, or discontinuations resulting from AEs occurred. Maximum (mean ± SD) increases in RF and TA muscle volume were 14.5% ± 4.5% and 8.9% ± 4.7%, respectively. No significant changes in mean muscle strength were observed. ACE-083 was well tolerated and resulted in significant targeted muscle growth. ACE-083 may have the potential to increase muscle mass in a wide range of neuromuscular disorders. Muscle Nerve, 2018. © 2018 The Authors Muscle & Nerve Published by Wiley Periodicals, Inc.

  10. Dietary rose hip exerts antiatherosclerotic effects and increases nitric oxide-mediated dilation in ApoE-null mice.

    PubMed

    Cavalera, Michele; Axling, Ulrika; Rippe, Catarina; Swärd, Karl; Holm, Cecilia

    2017-06-01

    Atherosclerosis is a disease in which atheromatous plaques develop inside arteries, leading to reduced or obstructed blood flow that in turn may cause stroke and heart attack. Rose hip is the fruit of plants of the genus Rosa, belonging to the Rosaceae family, and it is rich in antioxidants with high amounts of ascorbic acid and phenolic compounds. Several studies have shown that fruits, seeds and roots of these plants exert antidiabetic, antiobesity and cholesterol-lowering effects in rodents as well as humans. The aim of this study was to elucidate the mechanisms by which rose hip lowers plasma cholesterol and to evaluate its effects on atherosclerotic plaque formation. ApoE-null mice were fed either an HFD (CTR) or HFD with rose hip supplementation (RH) for 24 weeks. At the end of the study, we found that blood pressure and atherosclerotic plaques, together with oxidized LDL, total cholesterol and fibrinogen levels were markedly reduced in the RH group. Fecal cholesterol content, liver expression of Ldlr and selected reverse cholesterol transport (RCT) genes such as Abca1, Abcg1 and Scarb1 were significantly increased upon RH feeding. In the aorta, the scavenger receptor Cd36 and the proinflammatory Il1β genes were markedly down-regulated compared to the CTR mice. Finally, we found that RH increased nitric oxide-mediated dilation of the caudal artery. Taken together, these results suggest that rose hip is a suitable dietary supplement for preventing atherosclerotic plaques formation by modulating systemic blood pressure and the expression of RCT and inflammatory genes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    PubMed

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  12. Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis

    PubMed Central

    Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul

    1998-01-01

    Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117

  13. Secretoglobin Superfamily Protein SCGB3A2 Alleviates House Dust Mite-Induced Allergic Airway Inflammation in Mice.

    PubMed

    Yoneda, Mitsuhiro; Xu, Lei; Kajiyama, Hiroaki; Kawabe, Shuko; Paiz, Jorge; Ward, Jerrold M; Kimura, Shioko

    2016-01-01

    Secretoglobin (SCGB) 3A2, a novel, lung-enriched, cytokine-like, secreted protein of small molecular weight, was demonstrated to exhibit various biological functions including anti-inflammatory, antifibrotic and growth-factor activities. Anti-inflammatory activity was uncovered using the ovalbumin-induced allergic airway inflammation model. However, further validation of this activity using knockout mice in a different allergic inflammation model is necessary in order to establish the antiallergic inflammatory role for this protein. Scgb3a2-null (Scgb3a2-/-) mice were subjected to nasal inhalation of Dermatophagoides pteronyssinus extract for 5 days/week for 5 consecutive weeks; control mice received nasal inhalation of saline as a comparator. Airway inflammation was assessed by histological analysis, the number of inflammatory cells and various Th2-type cytokine levels in the lungs and bronchoalveolar lavage fluids by qRT-PCR and ELISA, respectively. Exacerbated inflammation was found in the airway of Scgb3a2-/- mice subjected to house dust mite (HDM)-induced allergic airway inflammation compared with saline-treated control groups. All the inflammation end points were increased in the Scgb3a2-/- mice. The Ccr4 and Ccl17 mRNA levels were higher in HDM-treated lungs of Scgb3a2-/- mice than wild-type mice or saline-treated Scgb3a2-/- mice, whereas no changes were observed for Ccr3 and Ccl11 mRNA levels. These results demonstrate that SCGB3A2 has an anti-inflammatory activity in the HDM-induced allergic airway inflammation model, in which SCGB3A2 may modulate the CCR4-CCL17 pathway. SCGB3A2 may provide a useful tool to treat allergic airway inflammation, and further studies on the levels and function of SCGB3A2 in asthmatic patients are warranted. © 2016 S. Karger AG, Basel.

  14. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    PubMed

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  15. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori.

    PubMed

    Yan, Hai-Yan; Mita, Kazuei; Zhao, Xia; Tanaka, Yoshikazu; Moriyama, Minoru; Wang, Huabin; Iwanaga, Masashi; Kawasaki, Hideki

    2017-04-15

    We previously reported regarding an ecdysone-inducible angiotensin-converting enzyme (ACE) gene. We found another four ACE genes in the Bombyx genome. The present study was undertaken to clarify the evolutionally changed function of the ACE of Bombyx mori. Core regions of deduced amino acid sequences of ACE genes were compared with those of other insect ACE genes. Five Bombyx genes have the conserved Zn 2+ -binding-site motif (HEXXH); however, BmAcer4 has only one and BmAcer3 has no catalytic ligand. BmAcer1 and BmAcer2 were expressed in several organs. BmAcer3 was expressed in testes, and BmAcer4 and BmAcer5 were expressed in compound eyes; however, the transcription levels of these three genes were very low. Quantitative RT-PCR and Western analysis were conducted to determine the tissue distribution and developmental expression of BmAcer1and BmAcer2. Transcripts of BmAcer1 and BmAcer2 were found in the reproductive organs during the larval and pupal stages. BmAcer1 was dominant in fat bodies during the feeding stage and showed high expression in the epidermis, wing discs, and pupal wing tissues after the wandering stage. Its expression patterns in epidermis, wing discs, and wing tissues resembled the hemolymph ecdysteroid titer in the larval and pupal stages. Acer1 was observed in the hemolymph at all stages, appearing to be the source of it are fat bodies, wings, and epidermis, and functioning after being secreted into the hemolymph. BmAcer2 was abundant in the midgut during the feeding stage and after the wandering stage and in silk glands after the pupal stage. We conclude that the evolution of BmAcer occurred through duplication, and, thereafter, functional diversification developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Atmospheric Chemistry Experiment (ACE): Status and Latest Results

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Boone, C. D.; McElroy, C. T.

    2017-12-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of numerous trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74°) orbit gives ACE coverage of tropical, mid-latitudes and polar regions. The primary instrument is a high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating in the 750-4400 cm-1 region, which provides the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. A second instrument, a dual spectrophotometer called MAESTRO, extends the wavelength coverage to the 400-1000 nm spectral region. Aerosols and clouds are being monitored through the extinction of solar radiation using two filtered imagers and by MAESTRO as well as by their infrared spectra. After 14 years in orbit, the ACE is still operating well. A short overview of the ACE mission will be presented (see http://www.ace.uwaterloo.ca for more information). The current version (v. 3.5/3.6) of ACE-FTS processing includes more than 30 molecules and twenty isotopologues; v.3.5/3.6 is now available in near-real time. This talk will focus on recent ACE results and the new version 4.0 of ACE-FTS processing.

  17. Hair Cell Loss, Spiral Ganglion Degeneration, and Progressive Sensorineural Hearing Loss in Mice with Targeted Deletion of Slc44a2/Ctl2.

    PubMed

    Kommareddi, Pavan; Nair, Thankam; Kakaraparthi, Bala Naveen; Galano, Maria M; Miller, Danielle; Laczkovich, Irina; Thomas, Trey; Lu, Lillian; Rule, Kelli; Kabara, Lisa; Kanicki, Ariane; Hughes, Elizabeth D; Jones, Julie M; Hoenerhoff, Mark; Fisher, Susan G; Altschuler, Richard A; Dolan, David; Kohrman, David C; Saunders, Thomas L; Carey, Thomas E

    2015-12-01

    SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3–10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB). Slc44a2(Δ/Δ) mice produced abnormally spliced Slc44a2 transcripts that contain a frame shift and premature stop codons. Neither full-length SLC44A2 nor a putative truncated protein could be detected in Slc44a2(Δ/Δ) mice, suggesting a likely null allele. Auditory brain stem responses (ABRs) of mice carrying the Slc44a2Δ allele on an FVB/NJ genetic background were tested longitudinally between the ages of 2 and 10 months. By 6 months of age,Slc44a2(Δ/Δ) mice exhibited hearing loss at 32 kHz,but at 12 and 24 kHz had sound thresholds similar to those of wild-type Slc44a2(+/+) and heterozygous +/Slc44a2Δ mice. After 6 months of age, Slc44a2(Δ/Δ) mutants exhibited progressive hearing loss at all frequencies and +/Slc44a2(Δ) mice exhibited moderate threshold elevations at high frequency. Histologic evaluation of Slc44a2(Δ/Δ) mice revealed extensive hair cell and spiral ganglion cell loss, especially in the basal turn of the cochlea. We conclude that Slc44a2 function is required for long-term hair cell survival and maintenance of hearing.

  18. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    PubMed

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.

  19. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.

  20. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine.

    PubMed

    Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E

    2016-02-15

    To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.

  1. Alzheimer's disease-like impaired cognition in endothelial-specific megalin-null mice.

    PubMed

    Dietrich, Marcelo; Antequera, Desiree; Pascual, Consuelo; Castro, Nerea; Bolos, Marta; Carro, Eva

    2014-01-01

    Megalin has been suggested to be involved in Alzheimer's disease (AD), mediating blood-brain barrier (BBB) transport of multiple ligands, including amyloid-β peptide (Aβ), but also neuroprotective factors. Because no transgenic model is currently available to study this concept, we have obtained transgenic mice blocking megalin expression at the BBB. These endothelial megalin deficient (EMD) mice developed increased anxiety behavior and impaired learning ability and recognition memory, similar to symptoms described in AD. Degenerating neurons were also observed in the cerebral cortex of EMD mice. In view of our findings we suggest that, in mice, megalin deficiency at the BBB leads to neurodegeneration.

  2. Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.

    PubMed

    Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T

    2018-06-01

    To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.

  3. ACE ID genotype affects blood creatine kinase response to eccentric exercise.

    PubMed

    Yamin, Chen; Amir, Offer; Sagiv, Moran; Attias, Eric; Meckel, Yoav; Eynon, Nir; Sagiv, Michael; Amir, Ruthie E

    2007-12-01

    Unaccustomed exercise may cause muscle breakdown with marked increase in serum creatine kinase (CK) activity. The skeletal muscle renin-angiotensin system (RAS) plays an important role in exercise metabolism and tissue injury. A functional insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene (rs4646994) has been associated with ACE activity. We hypothesized that ACE ID genotype may contribute to the wide variability in individuals' CK response to a given exercise. Young individuals performed maximal eccentric contractions of the elbow flexor muscles. Pre- and postexercise CK activity was determined. ACE genotype was significantly associated with postexercise CK increase and peak CK activity. Individuals harboring one or more of the I allele had a greater increase and higher peak CK values than individuals with the DD genotype. This response was dose-dependent (mean +/- SE U/L: II, 8,882 +/- 2,362; ID, 4,454 +/- 1,105; DD, 2,937 +/- 753, ANOVA, P = 0.02; P = 0.009 for linear trend). Multivariate stepwise regression analysis, which included age, sex, body mass index, and genotype subtypes, revealed that ACE genotype was the most powerful independent determinant of peak CK activity (adjusted odds ratio 1.3, 95% confidence interval 1.03-1.64, P = 0.02). In conclusion, we indicate a positive association of the ACE ID genotype with CK response to strenuous exercise. We suggest that the II genotype imposes increased risk for developing muscle damage, whereas the DD genotype may have protective effects. These findings support the role of local RAS in the regulation of exertional muscle injury.

  4. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less

  5. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases

    PubMed Central

    Zhuang, Xiao-dong; Liao, Li-zhen; Dong, Xiao-bian; Hu, Xun; Guo, Yue; Du, Zhi-min; Liao, Xin-xue; Wang, Li-chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice. PMID:26792980

  6. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases.

    PubMed

    Zhuang, Xiao-Dong; Liao, Li-Zhen; Dong, Xiao-Bian; Hu, Xun; Guo, Yue; Du, Zhi-Min; Liao, Xin-Xue; Wang, Li-Chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice.

  7. Deficiency in Monocarboxylate Transporter 1 (MCT1) in Mice Delays Regeneration of Peripheral Nerves following Sciatic Nerve Crush

    PubMed Central

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothstein, Jeffrey D.

    2014-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence and MCT1 tdTomato BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves in MCT1 heterozygous null mice are crushed and peripheral nerve regeneration quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly through failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940

  8. Renin-angiotensin system phenotyping as a guidance toward personalized medicine for ACE inhibitors: can the response to ACE inhibition be predicted on the basis of plasma renin or ACE?

    PubMed

    Schilders, Joyce E M; Wu, Haiyan; Boomsma, Frans; van den Meiracker, Anton H; Danser, A H Jan

    2014-08-01

    Not all hypertensive patients respond well to ACE inhibition. Here we determined whether renin-angiotensin system (RAS) phenotyping, i.e., the measurement of renin or ACE, can predict the individual response to RAS blockade, either chronically (enalapril vs. enalapril + candesartan) or acutely (enalapril ± hydrochlorothiazide, HCT). Chronic enalapril + candesartan induced larger renin rises, but did not lower blood pressure (BP) more than enalapril. Similar observations were made for enalapril + HCT vs. enalapril when given acutely. Baseline renin predicted the peak changes in BP chronically, but not acutely. Baseline ACE levels had no predictive value. Yet, after acute drug intake, the degree of ACE inhibition, like Δrenin, did correlate with ΔBP. Only the relationship with Δrenin remained significant after chronic RAS blockade. Thus, a high degree of ACE inhibition and a steep renin rise associate with larger acute responses to enalapril. However, variation was large, ranging >50 mm Hg for a given degree of ACE inhibition or Δrenin. The same was true for the relationships between Δrenin and ΔBP, and between baseline renin and the maximum reduction in BP in the chronic study. Our data do not support that RAS phenotyping will help to predict the individual BP response to RAS blockade. Notably, these conclusions were reached in a carefully characterized, homogenous population, and when taking into account the known fluctuations in renin that relate to gender, age, ethnicity, salt intake and diuretic treatment, it seems unlikely that a cut-off renin level can be defined that has predictive value.

  9. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants

    PubMed Central

    Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat

    2017-01-01

    Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109

  10. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.

    PubMed

    Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-03-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.

  11. Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice

    PubMed Central

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-01-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/− mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2−/− mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2−/− roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context. PMID:20934968

  12. FIR ACE samples

    NASA Image and Video Library

    2014-06-04

    ISS040-E-007368 (5 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, works with Advanced Colloids Experiment (ACE) samples in the Destiny laboratory of the International Space Station.

  13. 5 years after an ACE: what happens then?

    PubMed

    Chong, Clara; Featherstone, Neil; Sharif, Shazia; Cherian, Abraham; Cuckow, Peter; Mushtaq, Imran; De Coppi, Paolo; Cross, Kate; Curry, Joseph

    2016-04-01

    Antegrade continence enema (ACE) revolutionised the lives of children with chronic constipation and soiling. Parents often ask how long the ACE will be required. We looked at our patients 5 years after ACE formation to answer the question. We reviewed clinical notes of all patients undergoing ACE procedure during January 1990 to December 2010. Only patients with >5 years follow-up were included. Data are given as median (range). 133 patients were included with >5 years of follow-up. Primary pathology was anorectal anomaly (ARA) 64 (48%); spinal dysraphism (SD) 40 (30%); functional constipation (FC) 14 (10%); Hirschsprung's Disease (HD) 10 (8%) and others 5 (4%). Median follow-up was 7 years (5-17 years). Overall 74% still use their ACE; whilst 26% no longer access their stoma, of whom 47% recovered normal colonic function. 50% of HD patient recover colonic function. FC has the highest failure rate at 21%. Overall 86% achieved excellent clinical outcome with 74% of patient still using their ACE at 5 years. HD has the highest recovery rate of 50%. FC has a more unreliable clinical outcome with 21% recovered colonic function and 21% failed. Outcome varied dependent on the background diagnosis.

  14. T null and M null genotypes of the glutathione S-transferase gene are risk factor for CAD independent of smoking

    PubMed Central

    Abu-Amero, Khaled K; Al-Boudari, Olayan M; Mohamed, Gamal H; Dzimiri, Nduna

    2006-01-01

    Background The association of the deletion in GSTT1 and GSTM1 genes with coronary artery disease (CAD) among smokers is controversial. In addition, no such investigation has previously been conducted among Arabs. Methods We genotyped 1054 CAD patients and 762 controls for GSTT1 and GSTM1 deletion by multiplex polymerase chain reaction. Both CAD and controls were Saudi Arabs. Results In the control group (n = 762), 82.3% had the T wild M wildgenotype, 9% had the Twild M null, 2.4% had the Tnull M wild and 6.3% had the Tnull M null genotype. Among the CAD group (n = 1054), 29.5% had the Twild M wild genotype, 26.6% (p < .001) had the Twild M null, 8.3% (p < .001) had the Tnull M wild and 35.6% (p < .001) had the Tnull M null genotype, indicating a significant association of the Twild M null, Tnull M wild and Tnull M null genotypes with CAD. Univariate analysis also showed that smoking, age, hypercholesterolemia and hypertriglyceridemia, diabetes mellitus, family history of CAD, hypertension and obesity are all associated with CAD, whereas gender and myocardial infarction are not. Binary logistic regression for smoking and genotypes indicated that only M null and Tnullare interacting with smoking. However, further subgroup analysis stratifying the data by smoking status suggested that genotype-smoking interactions have no effect on the development of CAD. Conclusion GSTT1 and GSTM1 null-genotypes are risk factor for CAD independent of genotype-smoking interaction. PMID:16620396

  15. Fine-Mapping Angiotensin-Converting Enzyme Gene: Separate QTLs Identified for Hypertension and for ACE Activity

    PubMed Central

    Chung, Chia-Min; Wang, Ruey-Yun; Fann, Cathy S. J.; Chen, Jaw-Wen; Jong, Yuh-Shiun; Jou, Yuh-Shan; Yang, Hsin-Chou; Kang, Chih-Sen; Chen, Chien-Chung; Chang, Huan-Cheng; Pan, Wen-Harn

    2013-01-01

    Angiotensin-converting enzyme (ACE) has been implicated in multiple biological system, particularly cardiovascular diseases. However, findings associating ACE insertion/deletion polymorphism with hypertension or other related traits are inconsistent. Therefore, in a two-stage approach, we aimed to fine-map ACE in order to narrow-down the function-specific locations. We genotyped 31 single nucleotide polymorphisms (SNPs) of ACE from 1168 individuals from 305 young-onset (age ≤40) hypertension pedigrees, and found four linkage disequilibrium (LD) blocks. A tag-SNP, rs1800764 on LD block 2, upstream of and near the ACE promoter, was significantly associated with young-onset hypertension (p = 0.04). Tag-SNPs on all LD blocks were significantly associated with ACE activity (p-value: 10–16 to <10–33). The two regions most associated with ACE activity were found between exon13 and intron18 and between intron 20 and 3′UTR, as revealed by measured haplotype analysis. These two major QTLs of ACE activity and the moderate effect variant upstream of ACE promoter for young-onset hypertension were replicated by another independent association study with 842 subjects. PMID:23469169

  16. United States Air Force in Southeast Asia 1965-1973. Aces and Aerial Victories

    DTIC Science & Technology

    1976-01-01

    UNITED STATES IN SOUTHEAST ACES and AERIAL VICTORIES The United States Air Force in SoutheastAsia 1965*19?3 by R Frank Fuirefl William H...TYPE 3. DATES COVERED 00-00-1976 to 00-00-1976 4. TITLE AND SUBTITLE United States Air Force in Southeast Asia 1965-1973. Aces and Aerial... aces and aerial victories, 1965-1973. Includes index and glossary. 1. Vietnamese Conflict, 1961-1975-Aerial operations, American. 2. Viet- namese

  17. Race and Association of ACE/ARB Exposure with Outcome in Heart Failure

    PubMed Central

    El-Refai, Mostafa; Hrobowski, Tara; Peterson, Edward L.; Wells, Karen; Spertus, John A.; Williams, L. Keoki; Lanfear, David E.

    2015-01-01

    Purpose Angiotensin converting enzyme inhibitors (ACE) and angiotensin receptor blockers (ARB) have been established as a mainstay of heart failure (HF) treatment. Current data are limited and conflicting regarding the consistency of ACE/ARB benefit across race groups in HF. This study aims to clarify this point. Methods A retrospective study of insured patients with a documented ejection fraction of<50%, hospitalized for HF between January, 2000 and June, 2008. Pharmacy claims data was used to estimate ACE/ARB exposure over six-month rolling windows. The association between ACE/ARB exposure and all-cause hospitalization or death was assessed by proportional hazards regression, with adjustment for baseline covariates and beta blocker exposure. Further analyses were stratified by race, and included an ACE/ARB*Race interaction term. Results A total of 1,095 patients met inclusion criteria (619 African American individuals). Median follow up was 2.1 years. In adjusted models ACE/ARB exposure was associated with lower risk of death or hospitalization in both groups (African Americans HR 0.47, p<0.001; Caucasians HR 0.55, p<0.001). A formal test for interaction was consistent with similar effects in each group (p=0.861, β=0.04). Conclusion ACE/ARB exposure was equally associated with a protective effect in preventing death or re-hospitalization among HF patients with systolic dysfunction in both African American patients and Caucasians. PMID:24842464

  18. The ACE-DD genotype is associated with endothelial dysfunction in postmenopausal women.

    PubMed

    Méthot, Julie; Hamelin, Bettina A; Arsenault, Marie; Bogaty, Peter; Plante, Sylvain; Poirier, Paul

    2006-01-01

    To evaluate the effects of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D), the angiotensinogen M235T and the angiotensin II type 1 receptor A1166C polymorphisms, and hormone therapy used on endothelial function in postmenopausal women without manifestation of coronary artery disease. Sixty-four postmenopausal women (42 hormone therapy users and 22 hormone therapy nonusers) without clinical manifestation of coronary artery disease were evaluated using external vascular ultrasonography to measure endothelium-dependent (hyperemic response, flow-mediated dilatation) and -independent (nitroglycerin) dilatation. Genotypes were determined by polymerase chain reaction amplification. Women with the ACE-DD genotype displayed a lower flow-mediated dilatation compared to those with the ACE-II genotype (8.4% +/- 3.9% vs 12.6% +/- 5.4%, P = 0.04). Endothelial function was not associated with the angiotensinogen M235T and anglotensin II type 1 receptor A1166C polymorphisms. ACE polymorphism seems to modulate endothelial function among postmenopausal women without hormone therapy (8.2% +/- 5.1% vs 18.4% +/- 5.9% for the DD and the II genotype, respectively, P = 0.02). However, in hormone therapy users, flow-mediated dilatation was similar according to the ACE genotypes. Our findings suggest that ACE-I/D polymorphism is related to endothelial dysfunction in postmenopausal women. Furthermore, a potential interaction between estrogen users and ACE polymorphism on endothelial function may be present.

  19. ACE inhibitors and potassium foods--nurses' knowledge.

    PubMed

    Bertrand, Brenda; Livingston-Bowen, Carrie; Duffrin, Christopher; Mann, Amanda

    2014-01-01

    According to Joint Commission standards, patients should be educated about drug-nutrient interactions. Because nurses are well-suited to educating patients, this paper aims to assess their knowledge of ACE inhibitor drugs, nutrient interactions and high- and low-potassium foods. Licensed nurses from a teaching hospital in the US south eastern Atlantic region completed a self-administered questionnaire (n = 83). Means, standard deviations and 95 percent confidence intervals were calculated for continuous data and frequency and percentage distribution for discrete data. Student's t-test was used to evaluate responses by ACE inhibitor patient load and nursing education. Mean nurse knowledge of ACE inhibitors and potassium was 62 +/- 16 percent and identifying high- and low-potassium foods was 32 +/- 23 percent. Most identified five from 12 high-potassium foods and did not know the designation of six, one from 14 low-potassium foods and did not know the designation of 11. Knowledge scores and identifying high- and low-potassium foods were similar regardless of ACE inhibitor patient load and nursing education. ACE inhibitors are the fourth most commonly used drug class in the USA. Nurses are well positioned to recognize potential drug-nutrient interactions owing to changing or adding a drug, dose delivery method, dietary change or a patient's physical or clinical status that may indicate nutrient deficiency. The findings suggest that the nurses surveyed were proficient in identifying ACE inhibitors pharmacology, but that most were unable to identify foods that increase drug-nutrient interaction risk, and thus this is an area in which additional training might be beneficial. Case menus were used to portray real-life scenarios in which healthcare practitioners can provide patient education about ACE inhibitor drug and dietary potassium interactions.

  20. Assessing Cost-Effectiveness in Obesity (ACE-Obesity): an overview of the ACE approach, economic methods and cost results

    PubMed Central

    2009-01-01

    Background The aim of the ACE-Obesity study was to determine the economic credentials of interventions which aim to prevent unhealthy weight gain in children and adolescents. We have reported elsewhere on the modelled effectiveness of 13 obesity prevention interventions in children. In this paper, we report on the cost results and associated methods together with the innovative approach to priority setting that underpins the ACE-Obesity study. Methods The Assessing Cost Effectiveness (ACE) approach combines technical rigour with 'due process' to facilitate evidence-based policy analysis. Technical rigour was achieved through use of standardised evaluation methods, a research team that assembles best available evidence and extensive uncertainty analysis. Cost estimates were based on pathway analysis, with resource usage estimated for the interventions and their 'current practice' comparator, as well as associated cost offsets. Due process was achieved through involvement of stakeholders, consensus decisions informed by briefing papers and 2nd stage filter analysis that captures broader factors that influence policy judgements in addition to cost-effectiveness results. The 2nd stage filters agreed by stakeholders were 'equity', 'strength of the evidence', 'feasibility of implementation', 'acceptability to stakeholders', 'sustainability' and 'potential for side-effects'. Results The intervention costs varied considerably, both in absolute terms (from cost saving [6 interventions] to in excess of AUD50m per annum) and when expressed as a 'cost per child' estimate (from ACE