Sample records for aceite vegetal durante

  1. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Dayna M.; Marquez, Francisco M.

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gasesmore » to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO 2 emissions that could affect the environment were, in all cases, less than 4.1%.« less

  2. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    DOE PAGES

    Ortiz, Dayna M.; Marquez, Francisco M.

    2014-06-10

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gasesmore » to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO 2 emissions that could affect the environment were, in all cases, less than 4.1%.« less

  3. The contribution of brown vegetation to vegetation dynamics

    USDA-ARS?s Scientific Manuscript database

    Indices of vegetation dynamics that include both green vegetation (GV) and non-photosynthetic vegetation (NPV), that is, brown vegetation, were applied to MODIS surface reflectance data from 2000 to 2006 for the southwestern United States. These indices reveal that the cover of NPV, a measure of veg...

  4. Vegetable variety: an effective strategy to increase vegetable intake in adults

    PubMed Central

    Meengs, Jennifer S.; Roe, Liane S.; Rolls, Barbara J.

    2012-01-01

    Effective strategies are needed to increase vegetable intake in accordance with health recommendations. Previous research has shown that increasing the variety of foods leads to increased consumption, yet this strategy has not been investigated for promoting vegetable intake. This cross-over study tested whether filling half the plate with a variety of vegetables influences vegetable consumption and meal energy intake. Once a week for 4 weeks, a meal of pasta and cooked vegetables was consumed ad libitum by 66 adults (34 women; 32 men). The meals were varied in the type of vegetables offered; at three meals 600 g of a single vegetable was served (broccoli, carrots, or snap peas) and at one meal 200 g of each of the three vegetables was served side by side. The experiment was conducted in 2008 and 2009 and data were analyzed using a mixed linear model with repeated measures. The results showed that serving a variety of vegetables increased vegetable intake at the meal (P<0.0001). Subjects ate more vegetables when served the variety than when served any single type; the mean increase was 48±6 g, or more than one-half serving. This increase remained significant when intake of the variety of vegetables was compared to the preferred vegetable of each participant (mean 25±8 g; P=0.002). Vegetable intake was not significantly related to energy intake at the meal. The results of this study demonstrate that increasing the variety of low-energy-dense vegetables served at a meal can be used as a strategy to increase vegetable intake. PMID:22818729

  5. Vegetable variety: an effective strategy to increase vegetable intake in adults.

    PubMed

    Meengs, Jennifer S; Roe, Liane S; Rolls, Barbara J

    2012-08-01

    Effective strategies are needed to increase vegetable intake in accordance with health recommendations. Previous research has shown that increasing the variety of foods leads to increased consumption, yet this strategy has not been investigated for promoting vegetable intake. This crossover study, conducted in 2008 and 2009, tested whether filling half the plate with a variety of vegetables influences vegetable consumption and meal energy intake. Once a week for 4 weeks, a meal of pasta and cooked vegetables was consumed ad libitum by 66 adults (34 women, 32 men). The meals were varied in the type of vegetables offered: at three meals 600 g of a single vegetable was served (broccoli, carrots, or snap peas) and at one meal 200 g of each of the three vegetables was served side by side. Data were analyzed using a mixed linear model with repeated measures. In this study, serving a variety of vegetables increased vegetable intake at the meal (P<0.0001). Subjects ate more vegetables when served the variety than when served any single type; the mean increase was 48±6 g, or more than one-half serving. This increase remained significant when intake of the variety of vegetables was compared with the preferred vegetable of each participant (mean 25±8 g; P=0.002). Vegetable intake was not significantly related to energy intake at the meal. The results of this study demonstrate that increasing the variety of low-energy-dense vegetables served at a meal can be used as a strategy to increase vegetable intake. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  7. [Nitrate accumulation in vegetables and its residual in vegetable fields].

    PubMed

    Wang, Zhaohui; Zong, Zhiqiang; Li, Shengxiu; Chen, Baoming

    2002-05-01

    Determinations of 11 kinds, 48 varieties of vegetables were carried out at different seasons. The results showed that nitrate-N concentrations in 20 vegetables reached Pollution Level 4 (NO3(-)-N > 325 mg.kg-1), which accounted for 41.7% of the total number of the sampled vegetables and included all of the leafy, and most of the melon, root, onion and garlic vegetables. Among them, 5 leafy vegetables even exceeded Level 4 (NO3(-)-N > 700 mg.kg-1). Although leafy vegetables were usually apt to heavily accumulate nitrate, most of them were with nitrate-N concentrations lower than Level 3 (NO3(-)-N < 325 mg.kg-1) in leave blades. Further investigation showed that vegetable soils accumulated more nitrates in each layer from 0 cm to 200 cm than did cereal crop soil. The total amount of residual nitrate-N was 1358.8 kg.hm-2 in the 200 cm soil profile of usual vegetable fields, and 1411.8 kg.hm-2 and 1520.9 kg.hm-2 in the 2-yaers and the 5-years long plastic greenhouse fields respectively, however that in the cereal crop fields was only 245.4 kg.hm-2. Nitrate residual in vegetable soils formed serious threats to underground water in vegetable growing areas.

  8. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  9. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    PubMed

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New vegetable and fruit-vegetable juices treated by high pressure

    NASA Astrophysics Data System (ADS)

    Gabrovská, Dana; Ouhrabková, Jarmila; Rysová, Jana; Laknerová, Ivana; Fiedlerová, Vlasta; Holasová, Marie; Winterová, Renata; Průchová, Jiřina; Strohalm, Jan; Houška, Milan; Landfeld, Aleš; Erban, Vladimír; Eichlerová, Eva; Němečková, Irena; Kejmarová, Marie; Bočková, Pavlína

    2012-03-01

    The aim of this work was to find sensory suitable combinations of not commonly used vegetables, that is, cabbage, celeriac and parsnip, into mixed fruit-vegetable juices, two-species vegetable juices and vegetable juices with whey. These juices might have the potential to offer consumers new, interesting, tasty and nutritional products. Another interesting variation could be preparation of vegetable juices in combination with sweet whey. Nutritional and sensory evaluations were carried out using juices prepared in the laboratory. The total phenolic content, in addition to ascorbic acid and antioxidant activity, was determined. The developed juices with high nutritional value should increase very low fruit and vegetable consumption in the Czech population. The prepared juices were high pressure pasteurized (410 MPa). This technique retains the desired levels of important nutritional substances, while being destructive to live microbial cell structure. The germination of spores is suppressed by low pH value.

  11. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  12. Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype

    PubMed Central

    2013-01-01

    Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306

  13. [Object-oriented aquatic vegetation extracting approach based on visible vegetation indices.

    PubMed

    Jing, Ran; Deng, Lei; Zhao, Wen Ji; Gong, Zhao Ning

    2016-05-01

    Using the estimation of scale parameters (ESP) image segmentation tool to determine the ideal image segmentation scale, the optimal segmented image was created by the multi-scale segmentation method. Based on the visible vegetation indices derived from mini-UAV imaging data, we chose a set of optimal vegetation indices from a series of visible vegetation indices, and built up a decision tree rule. A membership function was used to automatically classify the study area and an aquatic vegetation map was generated. The results showed the overall accuracy of image classification using the supervised classification was 53.7%, and the overall accuracy of object-oriented image analysis (OBIA) was 91.7%. Compared with pixel-based supervised classification method, the OBIA method improved significantly the image classification result and further increased the accuracy of extracting the aquatic vegetation. The Kappa value of supervised classification was 0.4, and the Kappa value based OBIA was 0.9. The experimental results demonstrated that using visible vegetation indices derived from the mini-UAV data and OBIA method extracting the aquatic vegetation developed in this study was feasible and could be applied in other physically similar areas.

  14. Do processed vegetables reduce the socio-economic differences in vegetable purchases? A study in France.

    PubMed

    Plessz, Marie; Gojard, Séverine

    2013-10-01

    Vegetable consumption varies highly across households, based on household structure and socio-economic status, but little is known about the share of fresh vs. processed (e.g. frozen or canned) vegetables. Our aim was to compare the social and economic determinants of fresh and processed vegetable consumption. We reviewed detailed data on vegetable purchases for at-home consumption of 2600 French households during 2007. We took into account a wide range of processed vegetables (excluding potatoes) and made a distinction between fresh vegetables, processed vegetables and baby food containing vegetables. We conducted regression analyses to predict consumption of fresh and processed vegetables in kilograms per year and unit values in euros per kilogram. About 60% of the vegetables bought by the sample households were fresh. Fresh vegetable consumption increased with the respondent's income, age and educational level, and with the number of adults but not with the presence of children aged <6 years. The quantity of processed vegetables purchased increased with the household size but was not dependent on age, education or household income, although the richest households spent more per kilogram on processed vegetables. Households with a child aged <6 years also purchased 10 kg of baby foods containing vegetables. We found socio-economic inequalities in the quantities of fresh vegetables, in the spending on fresh and processed vegetables but not in the quantities of processed vegetables. This suggests that monitoring the price and nutritional quality of processed vegetables and providing this information to consumers could help them identify nutritious, affordable and convenient foods.

  15. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  16. The Alaska vegetation classification.

    Treesearch

    L.A. Viereck; C.T. Dyrness; A.R. Batten; K.J. Wenzlick

    1992-01-01

    The Alaska vegetation classification presented here is a comprehensive, statewide system that has been under development since 1976. The classification is based, as much as possible, on the characteristics of the vegetation itself and is designed to categorize existing vegetation, not potential vegetation. A hierarchical system with five levels of resolution is used...

  17. National Park Service Vegetation Mapping Inventory Program: Appalachian National Scenic Trail vegetation mapping project

    USGS Publications Warehouse

    Hop, Kevin D.; Strassman, Andrew C.; Hall, Mark; Menard, Shannon; Largay, Ery; Sattler, Stephanie; Hoy, Erin E.; Ruhser, Janis; Hlavacek, Enrika; Dieck, Jennifer

    2017-01-01

    The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program classifies, describes, and maps existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Northeast Temperate Network, and NPS Appalachian National Scenic Trail (APPA) have completed vegetation classification and mapping of APPA for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of APPA and to determine how best to map the vegetation types by using aerial imagery. Analyses of data from 1,618 vegetation plots were used to describe USNVC associations of APPA. Data from 289 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Data from 269 validation sites were collected to assess vegetation mapping prior to submitting the vegetation map for accuracy assessment (AA). Data from 3,265 AA sites were collected, of which 3,204 were used to test accuracy of the vegetation map layer. The collective of these datasets affirmed 280 USNVC associations for the APPA vegetation mapping project.To map the vegetation and land cover of APPA, 169 map classes were developed. The 169 map classes consist of 150 that represent natural (including ruderal) vegetation types in the USNVC, 11 that represent cultural (agricultural and developed) vegetation types in the USNVC, 5 that represent natural landscapes with catastrophic disturbance or some other modification to natural vegetation preventing accurate classification in the USNVC, and 3 that represent nonvegetated water (non-USNVC). Features were interpreted from viewing 4

  18. Development of freeze dried vegetables

    NASA Technical Reports Server (NTRS)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  19. Vegetables, but not pickled vegetables, are negatively associated with the risk of breast cancer.

    PubMed

    Yu, Hyejin; Hwang, Ji-Yun; Ro, Jungsil; Kim, Jeongseon; Chang, Namsoo

    2010-01-01

    This study investigated the association between pickled vegetable consumption and the risk of breast cancer using a validated food frequency questionnaire. A total of 358 patients with breast cancer who were matched to 360 healthy controls by age (using a 5-yr age distribution) were recruited from the National Cancer Center in South Korea. After adjusting for nondietary risk factors, total vegetable intake was inversely associated with risk of breast cancer. However, unlike nonpickled vegetables, pickled vegetable intake and its proportion relative to total vegetables were positively associated with the risk of breast cancer, and this association was more profound and consistent when pickled vegetable intake was considered as a proportion relative to total vegetables (odds ratio [OR] = 6.24, 95% confidence interval [CI] = 3.55-10.97; P for trend <0.001 for highest vs. lowest quartiles of intake) than as the absolute consumed amount (OR = 2.47, 95% CI = 1.45-4.21; P for trend = 0.015 for highest vs. lowest quartiles of intake). These results suggest that not only the amount of total vegetable intake but also the amounts of different types of vegetable (i.e., pickled or nonpickled) and their proportions relative to total vegetables are significantly associated with the risk of breast cancer.

  20. The vegetation outlook (VegOut): a new method for predicting vegetation seasonal greenness

    USGS Publications Warehouse

    Tadesse, T.; Wardlow, B.; Hayes, M.; Svoboda, M.; Brown, J.

    2010-01-01

    The vegetation outlook (VegOut) is a geospatial tool for predicting general vegetation condition patterns across large areas. VegOut predicts a standardized seasonal greenness (SSG) measure, which represents a general indicator of relative vegetation health. VegOut predicts SSG values at multiple time steps (two to six weeks into the future) based on the analysis of "historical patterns" (i.e., patterns at each 1 km grid cell and time of the year) of satellite, climate, and oceanic data over an 18-year period (1989 to 2006). The model underlying VegOut capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation, ENSO) expressed over the 18-year data record and also considers several environmental characteristics (e.g., land use/cover type and soils) that influence vegetation's response to weather conditions to produce 1 km maps that depict future general vegetation conditions. VegOut provides regionallevel vegetation monitoring capabilities with local-scale information (e.g., county to sub-county level) that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. In this paper, the VegOut approach is discussed and a case study over the central United States for selected periods of the 2008 growing season is presented to demonstrate the potential of this new tool for assessing and predicting vegetation conditions.

  1. Vegetation modulated landscape evolution: Effects of vegetation on landscape processes, drainage density and topography

    NASA Astrophysics Data System (ADS)

    Bras, R. L.; Istanbulluoglu, E.

    2004-12-01

    Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.

  2. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  3. Experimental trampling of vegetation. I. Relationship between trampling intensity and vegetation response

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times. Response to trampling was assessed by determining vegetation cover 2 weeks after trampling and 1 year after trampling.2. Response varied significantly with trampling intensity and vegetation type. Trampling...

  4. Vegetation diversity

    Treesearch

    Beth Schulz

    2011-01-01

    Vegetation is the source of primary production and a fundamental determinant of habitat and wildfire fuel profile characterization. As such, changes in vegetation can have cascading effects through an ecosystem. While individual species can be important indicators of a site’s potential productivity, economic value, and wildlife forage and shelter, changes in the...

  5. National Park Service Vegetation Mapping Inventory Program: Natchez Trace Parkway vegetation mapping project report

    USGS Publications Warehouse

    Hop, Kevin D.; Strassman, Andrew C.; Nordman, Carl; Pyne, Milo; White, Rickie; Jakusz, Joseph; Hoy, Erin E.; Dieck, Jennifer

    2016-01-01

    The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Gulf Coast Network, and NPS Natchez Trace Parkway (NATR; also referred to as Parkway) have completed vegetation classification and mapping of NATR for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of NATR and to determine how best to map them by using aerial imagery. Analyses of data from 589 vegetation plots had been used to describe an initial 99 USNVC associations in the Parkway; this classification work was completed prior to beginning this NATR vegetation mapping project. Data were collected during this project from another eight quick plots to support new vegetation types not previously identified at the Parkway. Data from 120 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Furthermore, data from 900 accuracy assessment (AA) sites were collected (of which 894 were used to test accuracy of the vegetation map layer). The collective of all these datasets resulted in affirming 122 USNVC associations at NATR.To map the vegetation and open water of NATR, 63 map classes were developed. including the following: 54 map classes represent natural (including ruderal) vegetation types in the USNVC, 5 map classes represent cultural (agricultural and developed) vegetation types in the USNVC, 3 map classes represent nonvegetation open-water bodies (non-USNVC), and 1 map class represents landscapes that

  6. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    PubMed

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Bras, Rafael L.

    2005-06-01

    Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases

  8. White vegetables: glycemia and satiety.

    PubMed

    Anderson, G Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E

    2013-05-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance.

  9. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  10. Vegetation Coverage Mapping and Soil Effect Correction in Estimating Vegetation Water Content and Dry Biomass from Satellites

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, D.

    2005-12-01

    Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in

  11. Survey of Nitrate Ion Concentrations in Vegetables Cultivated in Plant Factories: Comparison with Open-Culture Vegetables.

    PubMed

    Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo

    2017-01-01

    A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.

  12. Vegetation and Soils

    Treesearch

    Sammy L. King; Mark H. Eisenbies; David Gartner

    2000-01-01

    Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in...

  13. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  14. Monitoring vegetation phenology using MODIS

    USGS Publications Warehouse

    Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo

    2003-01-01

    Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.

  15. Microbiological Spoilage of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  16. Recall of vegetable eating affects future predicted enjoyment and choice of vegetables in British University undergraduate students.

    PubMed

    Robinson, Eric; Blissett, Jackie; Higgs, Suzanne

    2011-10-01

    Predictions about enjoyment of future experiences are influenced by recalling similar past experiences. However, little is known about the relationship between hedonic memories of past eating episodes and future eating behavior. We investigated recall of previous experiences of eating vegetables and the effect of recall on future predicted liking for and consumption of vegetables. British University undergraduate students were asked to retrieve memories of previous occasions when they ate vegetables and were asked to rate how enjoyable those experiences were (Study 1, n=54). The effect of different types of memory recall (including vegetable eating recall) and visualization of someone else eating vegetables (to control for priming effects) on predicted likelihood of choosing vegetables and predicted enjoyment of eating vegetables was examined (Study 2, n=95). Finally, the effect of recalling vegetable eating memories on actual food choice from a buffet was assessed (Study 3, n=63). It is reported that people recall positive memories of past vegetable consumption (P<0.05) and that reminding people of these experiences results in higher predicted future liking for vegetables (P<0.05) and choice of a larger portion size of vegetables (P<0.05) compared with recall of a personal nonfood memory, a nonvegetable food memory, or visualization of someone else enjoying eating vegetables (increase of approximately 70% in vegetable portion size compared to controls). The results suggest that recall of previous eating experiences could be a potential strategy for altering food choices. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  17. Vegetable behavioral tool demonstrates validity with MyPlate vegetable cups and carotenoid and inflammatory biomarkers.

    PubMed

    Townsend, Marilyn S; Shilts, Mical K; Styne, Dennis M; Drake, Christiana; Lanoue, Louise; Woodhouse, Leslie; Allen, Lindsay H

    2016-12-01

    Young children are not meeting recommendations for vegetable intake. Our objective is to provide evidence of validity and reliability for a pictorial vegetable behavioral assessment for use by federally funded community nutrition programs. Parent/child pairs (n=133) from Head Start and the Special Supplemental Nutrition Program for Women, Infants and Children [WIC] provided parent-administered vegetable tools, three child 24-hour diet recalls, child blood sample and measured heights/weights. The 10-item Focus on Veggies scale, with an alpha of .83 and a stability reliability coefficient of .74, was positively related to vegetables in cup equivalents [p≤.05]; dietary intakes of folate, vitamin C, β-carotene, potassium and magnesium [p≤.05-.01]; and soluble fiber [p≤.001]. The child vegetable scores were related to the parent's mediators [p≤.00001] and vegetable behaviors [p≤.00001]. Children's plasma inflammatory markers were negatively related to the 10 item scale [p≤.05] and are indicators of the child's health status. The positive relationship between the serum carotenoid index and a sub-scale of child vegetable behaviors offered additional support for criterion validity [p≤.05]. Finally, the inverse relationship of BMI-for-age percentile one year post baseline and a sub-scale of child vegetable behaviors supported the predictive validity [p≤.05]. Focus on Veggies, a simple assessment tool, can inform practitioners about the child's health status. A child with a high score, shows a healthful profile with a lower inflammation index, higher carotenoid index, lower BMI and higher vegetable intake. In conclusion, validity of Focus on Veggies has been demonstrated using vegetable cup equivalents and micronutrient intakes, anthropometry and blood biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  19. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  20. Vegetable soybean tolerance to pyroxasulfone

    USDA-ARS?s Scientific Manuscript database

    If registered for use on vegetable soybean, pyroxasulfone would fill an important gap in weed management systems in the crop. In order to determine the potential crop injury risk of pyroxasulfone on vegetable soybean, the objective of this work was to quantify vegetable soybean tolerance to pyroxasu...

  1. Hidden vegetables: an effective strategy to reduce energy intake and increase vegetable intake in adults.

    PubMed

    Blatt, Alexandria D; Roe, Liane S; Rolls, Barbara J

    2011-04-01

    The overconsumption of energy-dense foods leads to excessive energy intakes. The substitution of low-energy-dense vegetables for foods higher in energy density can help decrease energy intakes but may be difficult to implement if individuals dislike the taste of vegetables. We investigated whether incorporating puréed vegetables to decrease the energy density of entrées at multiple meals reduced daily energy intakes and increased daily vegetable intakes. In this crossover study, 20 men and 21 women ate ad libitum breakfast, lunch, and dinner in the laboratory once a week for 3 wk. Across conditions, entrées at meals varied in energy density from standard versions (100% condition) to reduced versions (85% and 75% conditions) by the covert incorporation of 3 or 4.5 times the amount of puréed vegetables. Entrées were accompanied by unmanipulated side dishes. Participants rated their hunger and fullness before and after meals. Subjects consumed a consistent weight of foods across conditions of energy density; thus, the daily energy intake significantly decreased by 202 ± 60 kcal in the 85% condition (P < 0.001) and by 357 ± 47 kcal in the 75% condition (P < 0.0001). Daily vegetable consumption significantly increased from 270 ± 17 g of vegetables in the 100% condition to 487 ± 25 g of vegetables in the 75% condition (P < 0.0001). Despite the decreased energy intake, ratings of hunger and fullness did not significantly differ across conditions. Entrées were rated as similar in palatability across conditions. Large amounts of puréed vegetables can be incorporated into various foods to decrease the energy density. This strategy can lead to substantial reductions in energy intakes and increases in vegetable intakes. This trial was registered at clinicaltrials.gov as NCT01165086.

  2. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vegetated shallows. 230.43 Section 230... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas... reducing light penetration and hence photosynthesis; and (5) changing the capacity of a vegetated shallow...

  3. Development of indicators of vegetation recovery based on time series analysis of SPOT Vegetation data

    NASA Astrophysics Data System (ADS)

    Lhermitte, S.; Tips, M.; Verbesselt, J.; Jonckheere, I.; Van Aardt, J.; Coppin, Pol

    2005-10-01

    Large-scale wild fires have direct impacts on natural ecosystems and play a major role in the vegetation ecology and carbon budget. Accurate methods for describing post-fire development of vegetation are therefore essential for the understanding and monitoring of terrestrial ecosystems. Time series analysis of satellite imagery offers the potential to quantify these parameters with spatial and temporal accuracy. Current research focuses on the potential of time series analysis of SPOT Vegetation S10 data (1999-2001) to quantify the vegetation recovery of large-scale burns detected in the framework of GBA2000. The objective of this study was to provide quantitative estimates of the spatio-temporal variation of vegetation recovery based on remote sensing indicators. Southern Africa was used as a pilot study area, given the availability of ground and satellite data. An automated technique was developed to extract consistent indicators of vegetation recovery from the SPOT-VGT time series. Reference areas were used to quantify the vegetation regrowth by means of Regeneration Indices (RI). Two kinds of recovery indicators (time and value- based) were tested for RI's of NDVI, SR, SAVI, NDWI, and pure band information. The effects of vegetation structure and temporal fire regime features on the recovery indicators were subsequently analyzed. Statistical analyses were conducted to assess whether the recovery indicators were different for different vegetation types and dependent on timing of the burning season. Results highlighted the importance of appropriate reference areas and the importance of correct normalization of the SPOT-VGT data.

  4. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  5. Natural vegetation of Oregon and Washington.

    Treesearch

    Jerry F. Franklin; C.T. Dyrness

    1973-01-01

    Major vegetational units of Oregon and Washington and their environmental relationships are described and illustrated. After an initial consideration of the vegetation components in the two States, major geographic areas and vegetation zones are detailed. Descriptions of each vegetation zone include composition and succession, as well as discussion of variations...

  6. Tertiary vegetation history

    Treesearch

    C. I. Millar

    1996-01-01

    The Tertiary period, from 2.5 to 65 million years ago, was the time oforigin of the modern Sierra Nevada landscape. Climates, geology,and vegetation changed drastically in the Sierra Nevada during thistime, and analyses of this period provide both context for and insightinto vegetation dynamics of the current and future Sierra. During theearly Tertiary, warm-humid,...

  7. Research in remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Schrumpf, Barry J.; Ripple, William J.; Isaacson, Dennis L.

    1988-01-01

    The research topics undertaken were primarily selected to further the understanding of fundamental relationships between electromagnetic energy measured from Earth orbiting satellites and terrestrial features, principally vegetation. Vegetation is an essential component in the soil formation process and the major factor in protecting and holding soil in place. Vegetation plays key roles in hydrological and nutrient cycles. Awareness of improvement or deterioration in the capacity of vegetation and the trends that those changes may indicate are, therefore, critical detections to make. A study of the relationships requires consideration of the various portions of the electromagnetic spectrum; characteristics of detector system; synergism that may be achieved by merging data from two or more detector systems or multiple dates of data; and vegetational characteristics. The vegetation of Oregon is sufficiently diverse as to provide ample opportunity to investigate the relationships suggested above several vegetation types.

  8. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  9. Health Benefits of Fruits and Vegetables1

    PubMed Central

    Slavin, Joanne L.; Lloyd, Beate

    2012-01-01

    Fruits and vegetables are universally promoted as healthy. The Dietary Guidelines for Americans 2010 recommend you make one-half of your plate fruits and vegetables. Myplate.gov also supports that one-half the plate should be fruits and vegetables. Fruits and vegetables include a diverse group of plant foods that vary greatly in content of energy and nutrients. Additionally, fruits and vegetables supply dietary fiber, and fiber intake is linked to lower incidence of cardiovascular disease and obesity. Fruits and vegetables also supply vitamins and minerals to the diet and are sources of phytochemicals that function as antioxidants, phytoestrogens, and antiinflammatory agents and through other protective mechanisms. In this review, we describe the existing dietary guidance on intake of fruits and vegetables. We also review attempts to characterize fruits and vegetables into groups based on similar chemical structures and functions. Differences among fruits and vegetables in nutrient composition are detailed. We summarize the epidemiological and clinical studies on the health benefits of fruits and vegetables. Finally, we discuss the role of fiber in fruits and vegetables in disease prevention. PMID:22797986

  10. Fruits and vegetables (image)

    MedlinePlus

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, vitamins, and minerals. ...

  11. Vegetation Impacts on Near Bank Flows

    NASA Astrophysics Data System (ADS)

    Hopkinson, L. C.; Wynn, T. M.

    2008-12-01

    Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. A significant sediment source to streams, streambank retreat, has largely been ignored. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research is to evaluate the effects of streambank vegetation on near bank flows and boundary shear stress. A flume experiment was conducted comparing three distinct streambank vegetation types: trees, shrubs, and grass. A second order prototype stream (Tom's Creek in Blacksburg, VA), with individual reaches dominated by the vegetation treatments was modeled using a fixed-bed Froude-scale modeling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Simulated vegetation (e.g. woven grass mat and wooden dowels) was attached in locations identified in a field survey. Velocity profiles perpendicular to the flume model boundary will be evaluated along five cross sections for each vegetation treatment. Reynolds, law of the wall, and turbulent kinetic energy shear stresses will be analyzed using velocity measurements made with a three-dimensional acoustic Doppler velocimeter (ADV). Velocity profiles perpendicular to the flume model streambank will also be evaluated. The velocity profiles will be compared among vegetation types to see if profiles are similar along the bank face. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for

  12. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  13. Riparian rehabilitation using vegetation patches: field and laboratory investigations linking hydrology, vegetation and geomorphology

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Gorrick, S.

    2010-12-01

    We present results of a riparian revegetation project on an oversized sand stream in eastern Australia. The Widden Brook in New South Wales has undergone extensive widening due to extraordinary floods in the 1950’s and is currently showing some signs of recovery. These include emergence of pool-riffle structure and stabilization of stream width, which are the result of upstream sediment control, riparian revegetation and livestock exclusion. Revegetation of a mild bend was carried out in 2004 using native plants in an arrangement that consisted of three vegetation patches. The same arrangement was tested in a reduced scale model in the laboratory, where extensive measurements of flow, sediment and bed changes provided insight into the links between hydrology, vegetation and geomorphology. Laboratory tests also included runs without vegetation and with a continuous vegetation cover. In terms of bank stability, the patches provided as much protection as the continuous vegetation. Based on the experiments, a series of analytical relationships were developed to help guide the design of vegetation patches focusing on the geomorphic stability of the whole reach instead of concentrating only on the near bank effects.

  14. Recommendations for Constructing Roadside Vegetation ...

    EPA Pesticide Factsheets

    Recommendations for external partners planting roadside vegetation. Intended for broad use, but immediate use will be to provide to project partners on the RESES roadside vegetation project and as an attachment to the RESES project QAPP Provide recommendations on the physical characteristics of roadside vegetation that can provide a local air quality benefit

  15. White Vegetables: Glycemia and Satiety12

    PubMed Central

    Anderson, G. Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E.

    2013-01-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance. PMID:23674805

  16. Retronasal olfaction in vegetable liking and disliking.

    PubMed

    Lim, Juyun; Padmanabhan, Arthi

    2013-01-01

    While previous research has suggested that bitterness is a key determinant of vegetable rejection, it is unknown what role odor may play. We therefore investigated the impact of retronasal odors on hedonic responses to 4 vegetables. Subjects (N = 132) tasted small samples with the nose open and closed and rated the degree of liking/disliking, as well as the perceived intensity of sweetness, bitterness, saltiness, and vegetable flavor. The subjects were classified as "likers" or "dislikers" of each vegetable. The degree to which "likers" liked and "dislikers" disliked the vegetables was significantly less in the nose-closed condition, indicating that retronasal odor was a significant driver of vegetable hedonics. In contrast, bitterness ratings for all 4 vegetables did not differ significantly between the groups. The perceived intensity of vegetable flavor also did not differ significantly between groups, implying that the quality of vegetable odors rather than their perceived intensity drove the hedonic ratings. In a follow-up experiment, returning subjects (N = 89) rated the degree of liking/disliking of the vegetable odors alone, which were presented retronasally. Liking/disliking of specific odors was positively correlated with that for the sampled vegetables across all stimuli (r = 0.32~0.57). Overall, these results suggest that retronasal odor plays an important role in vegetable liking/disliking.

  17. Consumer Acceptance Comparison Between Seasoned and Unseasoned Vegetables

    PubMed Central

    Feng, Yiming; Albiol Tapia, Marta; Okada, Kyle; Castaneda Lazo, Nuria Blanca; Chapman‐Novakofski, Karen; Phillips, Carter

    2018-01-01

    Abstract Recent findings show that approximately 87% of the U.S. population fail to meet the vegetable intake recommendations, with unpleasant taste of vegetables being listed as the primary reason for this shortfall. In this study, spice and herb seasoning was used to enhance palatability of vegetables, in order to increase consumer acceptance. In total, 749 panelists were screened and recruited as specific vegetable likers of the vegetable being tested or general vegetable likers. Four sessions were designed to evaluate the effect of seasoning within each type of vegetable, including broccoli, cauliflower, carrot, and green bean. Each panelist was only allowed to participate in one test session to evaluate only one vegetable type, so as to mitigate potential learning effect. Overall, the results showed that seasoned vegetables were significantly preferred over unseasoned vegetables (P < 0.001), indicating the sensory properties were significantly improved with seasoning. When general vegetable likers and specific vegetable likers were compared in terms of their preference between seasoned and unseasoned vegetables, the pattern varied across different vegetables; however, general trend of seasoned vegetable being preferred remained. The findings from this study demonstrate the effect of seasoning in enhancing consumer liking of vegetables, which may lead to increased consumption to be assessed in future studies. Practical Application To improve the sensory properties of vegetables, masking the bitter taste of vegetables using spice and herb seasoning are gaining increasing attention. Our findings suggest that the overall liking of vegetables could be improved by incorporating spice and herb seasonings that are specifically formulated for each vegetable. Ultimately, developing and commercializing spice and herb seasonings may aid to increase vegetable consumption, as well as expanding the vegetable seasoning market. PMID:29337353

  18. Consumer Acceptance Comparison Between Seasoned and Unseasoned Vegetables.

    PubMed

    Feng, Yiming; Albiol Tapia, Marta; Okada, Kyle; Castaneda Lazo, Nuria Blanca; Chapman-Novakofski, Karen; Phillips, Carter; Lee, Soo-Yeun

    2018-02-01

    Recent findings show that approximately 87% of the U.S. population fail to meet the vegetable intake recommendations, with unpleasant taste of vegetables being listed as the primary reason for this shortfall. In this study, spice and herb seasoning was used to enhance palatability of vegetables, in order to increase consumer acceptance. In total, 749 panelists were screened and recruited as specific vegetable likers of the vegetable being tested or general vegetable likers. Four sessions were designed to evaluate the effect of seasoning within each type of vegetable, including broccoli, cauliflower, carrot, and green bean. Each panelist was only allowed to participate in one test session to evaluate only one vegetable type, so as to mitigate potential learning effect. Overall, the results showed that seasoned vegetables were significantly preferred over unseasoned vegetables (P < 0.001), indicating the sensory properties were significantly improved with seasoning. When general vegetable likers and specific vegetable likers were compared in terms of their preference between seasoned and unseasoned vegetables, the pattern varied across different vegetables; however, general trend of seasoned vegetable being preferred remained. The findings from this study demonstrate the effect of seasoning in enhancing consumer liking of vegetables, which may lead to increased consumption to be assessed in future studies. To improve the sensory properties of vegetables, masking the bitter taste of vegetables using spice and herb seasoning are gaining increasing attention. Our findings suggest that the overall liking of vegetables could be improved by incorporating spice and herb seasonings that are specifically formulated for each vegetable. Ultimately, developing and commercializing spice and herb seasonings may aid to increase vegetable consumption, as well as expanding the vegetable seasoning market. © 2018 The Authors Journal of Food Science published by Wiley Periodicals, Inc

  19. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  20. Predicting gender differences in liking for vegetables and preference for a variety of vegetables among 11-year-old children.

    PubMed

    Lehto, Elviira; Ray, Carola; Haukkala, Ari; Yngve, Agneta; Thorsdottir, Inga; Roos, Eva

    2015-12-01

    We studied the factors that predict liking for vegetables and preference for a variety of vegetables among schoolchildren. Additionally, we examined if there were gender differences in the predictors that explain the hypothesized higher scores in liking vegetables and preferences among girls. The data from the PRO GREENS project included 424 Finnish children (response rate 77%) aged 11 to 12. The children completed validated measures about social and environmental factors related to their liking for vegetables and preferences both at baseline 2009 and follow-up 2010. The associations were examined with regression and mediation analyses. The strongest predictors of both girls' and boys' liking and preferences were higher levels of eating vegetables together with the family, previous vegetable intake and a lower level of perceived barriers. Liking was additionally predicted by a lower level of parental demand that their child should eat vegetables. Girls reported higher levels of liking and preferences in the follow-up. This gender difference was mainly explained by girls' lower level of perceived barriers related to vegetable intake and girls' higher previous vegetable intake. Interventions that aim to increase the low vegetable intake among boys by increasing their liking for vegetables and preference for a variety of vegetables could benefit from targeting perceived barriers, namely boys' perception and values concerning the consumption of vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  2. Consumer attitudes towards vegetable attributes: potential buyers of pesticide-free vegetables in Accra and Kumasi, Ghana.

    PubMed

    Probst, Lorenz; Aigelsperger, Lisa; Hauser, Michael

    2010-01-01

    Considering the inappropriate use of synthetic pesticides on vegetables in West Africa, the rationale behind this research was to assess the extent to which consumers can function as demanders of risk reduced vegetables and hence act as innovators towards vegetable safety. Using the cases of Kumasi and Accra in Ghana, the study examined possible consumer responses to product certification that communicates freedom from pesticides (e.g., organic certification). Generally, search attributes such as the fresh and healthy appearance of a vegetable were found to be central to consumer choice. While consumers stress the importance of health value, they are mostly unaware of agro-chemical risks related to vegetable consumption.

  3. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st

  4. CRMS vegetation analytical team framework: Methods for collection, development, and use of vegetation response variables

    USGS Publications Warehouse

    Cretini, Kari F.; Visser, Jenneke M.; Krauss, Ken W.; Steyer, Gregory D.

    2011-01-01

    This document identifies the main objectives of the Coastwide Reference Monitoring System (CRMS) vegetation analytical team, which are to provide (1) collection and development methods for vegetation response variables and (2) the ways in which these response variables will be used to evaluate restoration project effectiveness. The vegetation parameters (that is, response variables) collected in CRMS and other coastal restoration projects funded under the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) are identified, and the field collection methods for these parameters are summarized. Existing knowledge on community and plant responses to changes in environmental drivers (for example, flooding and salinity) from published literature and from the CRMS and CWPPRA monitoring dataset are used to develop a suite of indices to assess wetland condition in coastal Louisiana. Two indices, the floristic quality index (FQI) and a productivity index, are described for herbaceous and forested vegetation. The FQI for herbaceous vegetation is tested with a long-term dataset from a CWPPRA marsh creation project. Example graphics for this index are provided and discussed. The other indices, an FQI for forest vegetation (that is, trees and shrubs) and productivity indices for herbaceous and forest vegetation, are proposed but not tested. New response variables may be added or current response variables removed as data become available and as our understanding of restoration success indicators develops. Once indices are fully developed, each will be used by the vegetation analytical team to assess and evaluate CRMS/CWPPRA project and program effectiveness. The vegetation analytical teams plan to summarize their results in the form of written reports and/or graphics and present these items to CRMS Federal and State sponsors, restoration project managers, landowners, and other data users for their input.

  5. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, Michael; Moseley, Robert

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston,more » Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.« less

  6. Hidden vegetables: an effective strategy to reduce energy intake and increase vegetable intake in adults123

    PubMed Central

    Blatt, Alexandria D; Roe, Liane S

    2011-01-01

    Background: The overconsumption of energy-dense foods leads to excessive energy intakes. The substitution of low-energy-dense vegetables for foods higher in energy density can help decrease energy intakes but may be difficult to implement if individuals dislike the taste of vegetables. Objective: We investigated whether incorporating puréed vegetables to decrease the energy density of entrées at multiple meals reduced daily energy intakes and increased daily vegetable intakes. Design: In this crossover study, 20 men and 21 women ate ad libitum breakfast, lunch, and dinner in the laboratory once a week for 3 wk. Across conditions, entrées at meals varied in energy density from standard versions (100% condition) to reduced versions (85% and 75% conditions) by the covert incorporation of 3 or 4.5 times the amount of puréed vegetables. Entrées were accompanied by unmanipulated side dishes. Participants rated their hunger and fullness before and after meals. Results: Subjects consumed a consistent weight of foods across conditions of energy density; thus, the daily energy intake significantly decreased by 202 ± 60 kcal in the 85% condition (P < 0.001) and by 357 ± 47 kcal in the 75% condition (P < 0.0001). Daily vegetable consumption significantly increased from 270 ± 17 g of vegetables in the 100% condition to 487 ± 25 g of vegetables in the 75% condition (P < 0.0001). Despite the decreased energy intake, ratings of hunger and fullness did not significantly differ across conditions. Entrées were rated as similar in palatability across conditions. Conclusions: Large amounts of puréed vegetables can be incorporated into various foods to decrease the energy density. This strategy can lead to substantial reductions in energy intakes and increases in vegetable intakes. This trial was registered at clinicaltrials.gov as NCT01165086. PMID:21289225

  7. Indicators: Lakeshore Habitat/Riparian Vegetative Cover

    EPA Pesticide Factsheets

    Riparian and lakeshore vegetative cover consist of the vegetation corridor alongside streams, rivers, and lakes. Vegetative cover refers to overhanging or submerged tree limbs, shrubs, and other plants growing along the shore of the waterbody.

  8. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    PubMed

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  9. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  10. The use of a commercial vegetable juice as a practical means to increase vegetable intake: a randomized controlled trial

    PubMed Central

    2010-01-01

    Background Recommendations for daily dietary vegetable intake were increased in the 2005 USDA Dietary Guidelines as consumption of a diet rich in vegetables has been associated with lower risk of certain chronic health disorders including cardiovascular disease. However, vegetable consumption in the United States has declined over the past decade; consequently, the gap between dietary recommendations and vegetable intake is widening. The primary aim of this study is to determine if drinking vegetable juice is a practical way to help meet daily dietary recommendations for vegetable intake consistent with the 2005 Dietary Guidelines and the Dietary Approaches to Stop Hypertension (DASH) diet. The secondary aim is to assess the effect of a vegetable juice on measures of cardiovascular health. Methods We conducted a 12-week, randomized, controlled, parallel-arm study consisting of 3 groups of free-living, healthy volunteers who participated in study visits at the Ragle Human Nutrition Research Center at the University of California, Davis. All subjects received education on the DASH diet and 0, 8 or 16 fluid ounces of vegetable juice daily. Assessments were completed of daily vegetable servings before and after incorporation of vegetable juice and cardiovascular health parameters including blood pressure. Results Without the juice, vegetable intake in all groups was lower than the 2005 Dietary Guidelines and DASH diet recommendations. The consumption of the vegetable juice helped participants reach recommended intake. In general, parameters associated with cardiovascular health did not change over time. However, in the vegetable juice intervention groups, subjects who were pre-hypertensive at the start of the study showed a significant decrease in blood pressure during the 12-week intervention period. Conclusion Including 1-2 cups of vegetable juice daily was an effective and acceptable way for healthy adults to close the dietary vegetable gap. Increase in daily

  11. The use of a commercial vegetable juice as a practical means to increase vegetable intake: a randomized controlled trial.

    PubMed

    Shenoy, Sonia F; Kazaks, Alexandra G; Holt, Roberta R; Chen, Hsin Ju; Winters, Barbara L; Khoo, Chor San; Poston, Walker S C; Haddock, C Keith; Reeves, Rebecca S; Foreyt, John P; Gershwin, M Eric; Keen, Carl L

    2010-09-17

    Recommendations for daily dietary vegetable intake were increased in the 2005 USDA Dietary Guidelines as consumption of a diet rich in vegetables has been associated with lower risk of certain chronic health disorders including cardiovascular disease. However, vegetable consumption in the United States has declined over the past decade; consequently, the gap between dietary recommendations and vegetable intake is widening. The primary aim of this study is to determine if drinking vegetable juice is a practical way to help meet daily dietary recommendations for vegetable intake consistent with the 2005 Dietary Guidelines and the Dietary Approaches to Stop Hypertension (DASH) diet. The secondary aim is to assess the effect of a vegetable juice on measures of cardiovascular health. We conducted a 12-week, randomized, controlled, parallel-arm study consisting of 3 groups of free-living, healthy volunteers who participated in study visits at the Ragle Human Nutrition Research Center at the University of California, Davis. All subjects received education on the DASH diet and 0, 8 or 16 fluid ounces of vegetable juice daily. Assessments were completed of daily vegetable servings before and after incorporation of vegetable juice and cardiovascular health parameters including blood pressure. Without the juice, vegetable intake in all groups was lower than the 2005 Dietary Guidelines and DASH diet recommendations. The consumption of the vegetable juice helped participants reach recommended intake. In general, parameters associated with cardiovascular health did not change over time. However, in the vegetable juice intervention groups, subjects who were pre-hypertensive at the start of the study showed a significant decrease in blood pressure during the 12-week intervention period. Including 1-2 cups of vegetable juice daily was an effective and acceptable way for healthy adults to close the dietary vegetable gap. Increase in daily vegetable intake was associated with a

  12. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  13. Top Level Space Cost Methodology (TLSCM)

    DTIC Science & Technology

    1997-12-02

    Software 7 6. ACEIT . 7 C. Ground Rules and Assumptions 7 D. Typical Life Cycle Cost Distribution 7 E. Methodologies 7 1. Cost/budget Threshold 9 2. Analogy...which is based on real-time Air Force and space programs. Ref.(25:2- 8, 2-9) 6. ACEIT : Automated Cost Estimating Integrated Tools( ACEIT ), Tecolote...Research, Inc. There is a way to use the ACEIT cost program to get a print-out of an expanded WBS. Therefore, find someone that has ACEIT experience and

  14. Hiding vegetables to reduce energy density: an effective strategy to increase children's vegetable intake and reduce energy intake.

    PubMed

    Spill, Maureen K; Birch, Leann L; Roe, Liane S; Rolls, Barbara J

    2011-09-01

    Strategies are needed to increase children's intake of a variety of vegetables, including vegetables that are not well liked. We investigated whether incorporating puréed vegetables into entrées to reduce the energy density (ED; in kcal/g) affected vegetable and energy intake over 1 d in preschool children. In this crossover study, 3- to 5-y-old children (n = 40) were served all meals and snacks 1 d/wk for 3 wk. Across conditions, entrées at breakfast, lunch, dinner, and evening snack were reduced in ED by increasing the proportion of puréed vegetables. The conditions were 100% ED (standard), 85% ED (tripled vegetable content), and 75% ED (quadrupled vegetable content). Entrées were served with unmanipulated side dishes and snacks, and children were instructed to eat as much as they liked. The daily vegetable intake increased significantly by 52 g (50%) in the 85% ED condition and by 73 g (73%) in the 75% ED condition compared with that in the standard condition (both P < 0.0001). The consumption of more vegetables in entrées did not affect the consumption of the vegetable side dishes. Children ate similar weights of food across conditions; thus, the daily energy intake decreased by 142 kcal (12%) from the 100% to 75% ED conditions (P < 0.05). Children rated their liking of manipulated foods similarly across ED amounts. The incorporation of substantial amounts of puréed vegetables to reduce the ED of foods is an effective strategy to increase the daily vegetable intake and decrease the energy intake in young children. This trial was registered at clinicaltrials.gov as NCT01252433.

  15. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural

  16. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  17. Vegetation and acidification, Chapter 5

    Treesearch

    David R. DeWalle; James N. Kochenderfer; Mary Beth Adams; Gary W. Miller

    2006-01-01

    In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification...

  18. Fruit and vegetables and cancer risk.

    PubMed

    Key, T J

    2011-01-04

    The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes.

  19. Fruit and vegetables and cancer risk

    PubMed Central

    Key, T J

    2011-01-01

    The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes. PMID:21119663

  20. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  1. Pairing vegetables with a liked food and visually appealing presentation: promising strategies for increasing vegetable consumption among preschoolers.

    PubMed

    Correia, Danielle C S; O'Connell, Meghan; Irwin, Melinda L; Henderson, Kathryn E

    2014-02-01

    Vegetable consumption among preschool children is below recommended levels. New evidence-based approaches to increase preschoolers' vegetable intake, particularly in the child care setting, are needed. This study tests the effectiveness of two community-based randomized interventions to increase vegetable consumption and willingness to try vegetables: (1) the pairing of a vegetable with a familiar, well-liked food and (2) enhancing the visual appeal of a vegetable. Fifty-seven preschoolers enrolled in a Child and Adult Care Food Program-participating child care center participated in the study; complete lunch and snack data were collected from 43 and 42 children, respectively. A within-subjects, randomized design was used, with order of condition counterbalanced. For lunch, steamed broccoli was served either on the side of or on top of cheese pizza. For a snack, raw cucumber was served either as semicircles with chive and an olive garnish or arranged in a visually appealing manner (in the shape of a caterpillar). Paired t-tests were used to determine differences in consumption of meal components, and McNemar's test was performed to compare willingness to taste. Neither visual appeal enhancement nor pairing with a liked food increased vegetable consumption. Pairing increased willingness to try the vegetable from 79% to 95% of children (p=0.07). Greater vegetable intake occurred at snack than at lunch. Further research should explore the strategy of pairing vegetables with liked foods. Greater consumption at snack underscores snack time as a critical opportunity for increasing preschool children's vegetable intake.

  2. Stereophotogrammetry in studies of riparian vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes

    2014-05-01

    Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (<1 m), shrubs (1-4 m) or trees (>4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody

  3. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  4. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  5. BOUNDARY SHEAR STRESS ALONG VEGETATED STREAMBANKS

    EPA Science Inventory

    This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The resu...

  6. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass...) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby...

  7. The 2009 DOD Cost Research Workshop: Acquisition Reform

    DTIC Science & Technology

    2010-02-01

    2 ACEIT Enhancement, Help-Desk/Training, Consulting DASA-CE–3 Command, Control, Communications, Computers, Intelligence, Surveillance, and...Management Information System (OSMIS) online interactive relational database DASA-CE–2 Title: ACEIT Enhancement, Help-Desk/Training, Consulting Summary...support and training for the Automated Cost estimator Integrated Tools ( ACEIT ) software suite. ACEIT is the Army standard suite of analytical tools for

  8. Modeling Vegetation Growth Impact on Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Anurag, H.; Ng, G. H. C.; Tipping, R.

    2017-12-01

    Vegetation growth is affected by variability in climate and land-cover / land-use over a range of temporal and spatial scales. Vegetation also modifies water budget through interception and evapotranspiration and thus has a significant impact on groundwater recharge. Most groundwater recharge assessments represent vegetation using specified, static parameter, such as for leaf-area-index, but this neglects the effect of vegetation dynamics on recharge estimates. Our study addresses this gap by including vegetation growth in model simulations of recharge. We use NCAR's Community Land Model v4.5 with its BGC module (BGC is the new CLM4.5 biogeochemistry). It integrates prognostic vegetation growth with land-surface and subsurface hydrological processes and can thus capture the effect of vegetation on groundwater. A challenge, however, is the need to resolve uncertainties in model inputs ranging from vegetation growth parameters all the way down to the water table. We have compiled diverse data spanning meteorological inputs to subsurface geology and use these to implement ensemble model simulations to evaluate the possible effects of dynamic vegetation growth (versus specified, static vegetation parameterizations) on estimating groundwater recharge. We present preliminary results for select data-intensive test locations throughout the state of Minnesota (USA), which has a sharp east-west precipitation gradient that makes it an apt testbed for examining ecohydrologic relationships across different temperate climatic settings and ecosystems. Using the ensemble simulations, we examine the effect of seasonal to interannual variability of vegetation growth on recharge and water table depths, which has implications for predicting the combined impact of climate, vegetation, and geology on groundwater resources. Future work will include distributed model simulations over the entire state, as well as conditioning uncertain vegetation and subsurface parameters on remote sensing

  9. Vegetation-terrain feature relationships in southeast Arizona

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Mouat, D. A.

    1972-01-01

    There are no author-identified significant results in this report. Studies of relationships of vegetation distribution to geomorphic characteristics of the landscape and of plant phenological patterns to vegetation identification of satellite imagery indicate that there exists positive relationships between certain plant species and certain terrain features. Not all species were found to exhibit positive relationships with all terrain feature variables, but enough positive relationships seem to exist to indicate that terrain feature variable-vegetation relationship studies have a definite place in plant ecological investigations. Even more importantly, the vegetation groups examined appeared to be successfully discriminated by the terrain feature variables. This would seem to indicate that spatial interpretations of vegetation groups may be possible. While vegetational distributions aren't determined by terrain feature differences, terrain features do mirror factors which directly influence vegetational response and hence distribution. As a result, those environmental features which can be readily and rapidly ascertained on relatively small-scale imagery may prove to be valuable indicators of vegetation distribution.

  10. 21 CFR 139.160 - Vegetable noodle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... noodles, vegetable egg noodles, is the vegetable noodle product the units of which are ribbon-shaped. (c) Vegetable egg macaroni is the vegetable noodle product the units of which conform to the specifications of...

  11. 21 CFR 139.160 - Vegetable noodle products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... noodles, vegetable egg noodles, is the vegetable noodle product the units of which are ribbon-shaped. (c) Vegetable egg macaroni is the vegetable noodle product the units of which conform to the specifications of...

  12. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  13. Monitoring the vegetation resources in riparian areas

    Treesearch

    Alma H. Winward

    2000-01-01

    This document provides information on three sampling methods used to inventory and monitor the vegetation resources in riparian areas. The vegetation cross-section method evaluates the health of vegetation across the valley floor. The greenline method provides a measurement of the streamside vegetation. The woody species regeneration method measures the density and age...

  14. Chapter 3: Status and trends of vegetation

    Treesearch

    James M. Guldin; Frank R. Thompson; Lynda L. Richards; Kyra C. Harper

    1999-01-01

    This chapter provides information about the vegetation cover of the Assessment area. The types and areal extent of vegetation in the Highlands are of interest for many reasons. Vegetation cover largely determines the availability of habitat for terrestrial animals, plants, and other organisms. Vegetation cover strongly influences what uses {e.g., timber, forage,...

  15. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    PubMed

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  16. Vegetable parenting practices scale. Item response modeling analyses

    PubMed Central

    Chen, Tzu-An; O’Connor, Teresia; Hughes, Sheryl; Beltran, Alicia; Baranowski, Janice; Diep, Cassandra; Baranowski, Tom

    2015-01-01

    Objective To evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We also tested for differences in the ways item function (called differential item functioning) across child’s gender, ethnicity, age, and household income groups. Method Parents of 3–5 year old children completed a self-reported vegetable parenting practices scale online. Vegetable parenting practices consisted of 14 effective vegetable parenting practices and 12 ineffective vegetable parenting practices items, each with three subscales (responsiveness, structure, and control). Multidimensional polytomous item response modeling was conducted separately on effective vegetable parenting practices and ineffective vegetable parenting practices. Results One effective vegetable parenting practice item did not fit the model well in the full sample or across demographic groups, and another was a misfit in differential item functioning analyses across child’s gender. Significant differential item functioning was detected across children’s age and ethnicity groups, and more among effective vegetable parenting practices than ineffective vegetable parenting practices items. Wright maps showed items only covered parts of the latent trait distribution. The harder- and easier-to-respond ends of the construct were not covered by items for effective vegetable parenting practices and ineffective vegetable parenting practices, respectively. Conclusions Several effective vegetable parenting practices and ineffective vegetable parenting practices scale items functioned differently on the basis of child’s demographic characteristics; therefore, researchers should use these vegetable parenting practices scales with caution. Item response modeling should be incorporated in analyses of parenting

  17. Family members' influence on family meal vegetable choices

    PubMed Central

    Wenrich, Tionni R.; Brown, J. Lynne; Miller-Day, Michelle; Kelley, Kevin J.; Lengerich, Eugene J.

    2010-01-01

    Objective Characterize the process of family vegetable selection (especially cruciferous, deep orange, and dark green leafy vegetables); demonstrate the usefulness of Exchange Theory (how family norms and past experiences interact with rewards and costs) for interpreting the data. Design Eight focus groups, two with each segment (men/women vegetable-likers/dislikers based on a screening form). Participants completed a vegetable intake form. Setting Rural Appalachian Pennsylvania. Participants 61 low-income, married/cohabiting men (n=28) and women (n=33). Analysis Thematic analysis within Exchange Theory framework for qualitative data. Descriptive analysis, t-tests and chi-square tests for quantitative data. Results Exchange Theory proved useful for understanding that regardless of sex or vegetable-liker/disliker status, meal preparers see more costs than rewards to serving vegetables. Past experience plus expectations of food preparer role and of deference to family member preferences supported a family norm of serving only vegetables acceptable to everyone. Emphasized vegetables are largely ignored due to unfamiliarity; family norms prevented experimentation and learning through exposure. Conclusions and Implications Interventions to increase vegetable consumption of this audience could 1) alter family norms about vegetables served, 2) change perceptions of past experiences, 3) reduce social and personal costs of serving vegetables and 4) increase tangible and social rewards of serving vegetables. PMID:20452288

  18. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  19. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  20. Monitoring vegetation response to episodic disturbance events by using multitemporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  1. Can Dynamic Global Vegetation Models Reproduce Satellite Observed Extreme Browning and Greening Events in Vegetation Productivity?

    NASA Astrophysics Data System (ADS)

    van Eck, C. M.; Morfopoulos, C.; Betts, R. A.; Chang, J.; Ciais, P.; Friedlingstein, P.; Regnier, P. A. G.

    2016-12-01

    The frequency and severity of extreme climate events such as droughts, extreme precipitation and heatwaves are expected to increase in our changing climate. These extreme climate events will have an effect on vegetation either by enhanced or reduced productivity. Subsequently, this can have a substantial impact on the terrestrial carbon sink and thus the global carbon cycle, especially as extreme climate events are expected to increase in frequency and severity. Connecting observational datasets with modelling studies provides new insights into these climate-vegetation interactions. This study aims to compare extremes in vegetation productivity as derived from observations with that of Dynamic Global Vegetation Models (DGVMs). In this case GIMMS-NDVI 3g is selected as the observational dataset and both JULES (Joint UK Land Environment Simulator) and ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) as the DGVMs. Both models are forced with PGFv2 Global Meteorological Forcing Dataset according to the ISI-MIP2 protocol for historical runs. Extremes in vegetation productivity are the focal point, which are identified as NDVI anomalies below the 10th percentile or above the 90th percentile during the growing season, referred to as browning or greening events respectively. The monthly NDVI dataset GIMMS-NDVI 3g is used to obtain the location in time and space of the vegetation extremes. The global GIMMS-NDVI 3g dataset has been subdivided into IPCC's SREX-regions for which the NDVI anomalies are calculated and the extreme thresholds are determined. With this information we can identify the location in time and space of the browning and greening events in remotely-sensed vegetation productivity. The same procedure is applied to the modelled Gross Primary Productivity (GPP) allowing a comparison between the spatial and temporal occurrence of the browning and greening events in the observational dataset and the models' output. The capacity of the models to

  2. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The definition of vegetable juice in this paragraph is for the purpose of identity as a color additive only, and...

  3. Hiding vegetables to reduce energy density: an effective strategy to increase children's vegetable intake and reduce energy intake123

    PubMed Central

    Spill, Maureen K; Birch, Leann L; Roe, Liane S

    2011-01-01

    Background: Strategies are needed to increase children's intake of a variety of vegetables, including vegetables that are not well liked. Objective: We investigated whether incorporating puréed vegetables into entrées to reduce the energy density (ED; in kcal/g) affected vegetable and energy intake over 1 d in preschool children. Design: In this crossover study, 3- to 5-y-old children (n = 40) were served all meals and snacks 1 d/wk for 3 wk. Across conditions, entrées at breakfast, lunch, dinner, and evening snack were reduced in ED by increasing the proportion of puréed vegetables. The conditions were 100% ED (standard), 85% ED (tripled vegetable content), and 75% ED (quadrupled vegetable content). Entrées were served with unmanipulated side dishes and snacks, and children were instructed to eat as much as they liked. Results: The daily vegetable intake increased significantly by 52 g (50%) in the 85% ED condition and by 73 g (73%) in the 75% ED condition compared with that in the standard condition (both P < 0.0001). The consumption of more vegetables in entrées did not affect the consumption of the vegetable side dishes. Children ate similar weights of food across conditions; thus, the daily energy intake decreased by 142 kcal (12%) from the 100% to 75% ED conditions (P < 0.05). Children rated their liking of manipulated foods similarly across ED amounts. Conclusion: The incorporation of substantial amounts of puréed vegetables to reduce the ED of foods is an effective strategy to increase the daily vegetable intake and decrease the energy intake in young children. This trial was registered at clinicaltrials.gov as NCT01252433. PMID:21775554

  4. Profiles of California vegetation

    Treesearch

    William B. Critchfield

    1971-01-01

    This publication brings together 57 elevational profiles illustrating the dominant vegetation of much of the Sierra Nevada, southern Coast Ranges, and montane southern California as it existed in the 1930's. The profiles were drawn by Michael N. Dobrotin for the U.S. Forest Service's Vegetation Type Map survey, which mapped nearly half of the State's...

  5. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China.

    PubMed

    Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.

  6. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China

    PubMed Central

    Jia, Yonghong; Gao, Zhihai; Wei, Huaidong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777

  7. Comparison of Topographic Effects between the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.

    2007-12-01

    Vegetation indices play an important role in monitoring variations in vegetation. The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Group and the Normalized Difference Vegetation Index (NDVI) are both global-based vegetation indices aimed at providing consistent spatial and temporal information regarding global vegetation. However, many environmental factors such as atmospheric conditions and soil background may produce errors in these indices. The topographic effect is another very important factor, especially when the indices are used in areas of rough terrain. In this paper, we analyzed differences in the topographic effect between the EVI and the NDVI based on a non-Lambertian model and using two airborne-based images with a spatial resolution of 1.5m acquired from a mountainous area covered by a homogeneous Japanese cypress plantation. The results indicate that the soil adjustment factor "L" in the EVI makes it more sensitive to topographic conditions than is the NDVI. Based on these results, we strongly recommend that the topographic effect be removed from the EVI--as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)--when these indices are used in conjunction with a high spatial resolution image of an area of rough terrain, where the topographic effect on the vegetarian indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  8. Fermentation of philippine vegetable blends.

    PubMed

    Orillo, C A; Sison, E C; Luis, M; Pederson, C S

    1969-01-01

    Seven blends of Philipphine vegetables, two of which contained soybeans and one mongo bean sprouts, were prepared for fermentation and study of microbiological and chemical changes. The fermentations were typical lactic acid bacterial fermentations, initiated by Leuconostoc mesenteroides and continued by Lactobacillus brevis, Pediococcus cerevisiae, and L. plantarum. The combination of high acidity and low pH resembled other vegetable fermentations, such as sauerkraut. The procedure offers a method of preserving surplus vegetables, and, in addition, a method for incorporating and preserving the high-protein-containing soybeans.

  9. [Effects of road construction on regional vegetation types].

    PubMed

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  10. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  11. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  12. Prevalent vegetation growth enhancement in urban environment

    PubMed Central

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-01-01

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued. PMID:27185955

  13. Modeling vegetation rooting strategies on a hillslope

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2011-12-01

    The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.

  14. Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value

    PubMed Central

    Kyriacou, Marios C.; Rouphael, Youssef; Colla, Giuseppe; Zrenner, Rita; Schwarz, Dietmar

    2017-01-01

    Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock–scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the implications of grafting

  15. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    NASA Astrophysics Data System (ADS)

    Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, Arijit; Singh, Sarnam; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, Ch. Sudhakar; Gupta, Stutee; Pujar, Girish; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, Poonam; Singh, J. S.; Chitale, Vishwas; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, Deepak; Karnatak, Harish; Saran, Sameer; Giriraj, A.; Padalia, Hitendra; Kale, Manish; Nandy, Subrato; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, Chiranjibi; Singh, D. K.; Devagiri, G. M.; Talukdar, Gautam; Panigrahy, Rabindra K.; Singh, Harnam; Sharma, J. R.; Haridasan, K.; Trivedi, Shivam; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, Madhura; Nagabhatla, Nidhi; Prasad, Nupoor; Tripathi, O. P.; Prasad, P. Rama Chandra; Dash, Pushpa; Qureshi, Qamer; Tripathi, S. K.; Ramesh, B. R.; Gowda, Balakrishnan; Tomar, Sanjay; Romshoo, Shakil; Giriraj, Shilpa; Ravan, Shirish A.; Behera, Soumit Kumar; Paul, Subrato; Das, Ashesh Kumar; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, Uma; Menon, A. R. R.; Srivastava, Gaurav; Neeti; Sharma, Subrat; Mohapatra, U. B.; Peddi, Ashok; Rashid, Humayun; Salroo, Irfan; Krishna, P. Hari; Hajra, P. K.; Vergheese, A. O.; Matin, Shafique; Chaudhary, Swapnil A.; Ghosh, Sonali; Lakshmi, Udaya; Rawat, Deepshikha; Ambastha, Kalpana; Malik, Akhtar H.; Devi, B. S. S.; Gowda, Balakrishna; Sharma, K. C.; Mukharjee, Prashant; Sharma, Ajay; Davidar, Priya; Raju, R. R. Venkata; Katewa, S. S.; Kant, Shashi; Raju, Vatsavaya S.; Uniyal, B. P.; Debnath, Bijan; Rout, D. K.; Thapa, Rajesh; Joseph, Shijo; Chhetri, Pradeep; Ramachandran, Reshma M.

    2015-07-01

    A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge's life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).

  16. Climatic drivers of vegetation based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego

    2017-04-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content

  17. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China.

    PubMed

    Li, Xue-Wen; Xie, Yun-Feng; Li, Cang-Lin; Zhao, Hui-Nan; Zhao, Hui; Wang, Ning; Wang, Jin-Feng

    2014-01-15

    One of the largest vegetable cultivation field sites in Northeast China was selected to investigate the occurrence and distribution pattern of fluoroquinolones (FQs) in the soil-vegetable system. A total of 100 surface soil samples and 68 vegetable samples were collected from this study area. The antibiotic concentration was analyzed using high-performance liquid chromatography tandem mass spectrometry. Results indicated the presence of FQs in all soil samples. Ciprofloxacin (CIP) had the highest mean concentration, at 104.4 μg · kg(-1) in the soil, a level that represents a relatively high risk to the environment and to human health. However, in the vegetable samples, norfloxacin (NOR) was significantly higher than CIP and enrofloxacin (ENR), ranging from 18.2 to 658.3 μg · kg(-1). The transfer ability of NOR in soil-vegetables is greater than that of CIP and ENR. Moreover, we found that the solanaceous fruits had a higher antibiotic accumulation ability than the leafy vegetables. Taken together, these data indicate that greater attention should be paid to the region in which vegetables with higher accumulation ability are grown. © 2013.

  18. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  19. European vegetation during Marine Oxygen Isotope Stage-3

    NASA Astrophysics Data System (ADS)

    Huntley, Brian; Alfano, Mary J. o.; Allen, Judy R. M.; Pollard, Dave; Tzedakis, Polychronis C.; de Beaulieu, Jacques-Louis; Grüger, Eberhard; Watts, Bill

    2003-03-01

    European vegetation during representative "warm" and "cold" intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.

  20. Oscillations in a simple climate-vegetation model

    NASA Astrophysics Data System (ADS)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  1. Oscillations in a simple climate-vegetation model

    NASA Astrophysics Data System (ADS)

    Rombouts, J.; Ghil, M.

    2015-02-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various time scales is discussed.

  2. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    NASA Astrophysics Data System (ADS)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  3. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.

  4. Vegetative resistance to flow in South Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, April 1996

    USGS Publications Warehouse

    Carter, Virginia; Ruhl, H.; Rybicki, N.B.; Reel, J.T.; Gammon, P.T.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the south Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetative sampling are (1) to provide detailed information on species composition, vegetative characteristics, vegetative structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetative sampling was conducted in the Shark River Slough in April, 1996. The data collected and presented here include live, dead, and periphyton biomass, vegetation characteristics and structure, and leaf area index.

  5. Monitoring vegetation response to episodic disturbance events by using multi-temporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  6. The impact of flood variables on riparian vegetation

    NASA Astrophysics Data System (ADS)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  7. Vegetative resistance to flow in south Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, November, 1996

    USGS Publications Warehouse

    Carter, Virginia; Reel, J.T.; Rybicki, N.B.; Ruhl, H.; Gammon, P.T.; Lee, J.K.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the South Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetation sampling are (1) to provide detailed information on species composition, vegetation characteristics, vegetation structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetation was sampled at two sites in the Shark River Slough in November, 1996. The data collected and presented here include those for live and dead standing sawgrass, other dead material, periphyton biomass, vegetation characteristics and structure, and leaf area index.

  8. Post Fire Vegetation Recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Gouveia, Celia; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo M.

    2011-01-01

    Fires in Portugal, as in the Mediterranean ecosystems, have a complex effect on vegetation regeneration due to the different responses of vegetation to the variety of fire regimes and to the complexity of landscape structures. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In 2005, Portugal suffered a strong damage from forest fires that damaged an area of 300 000 ha of forest and shrub. This year are particularly interesting because it is associated the severe drought of 2005. The aim of the present study is to identify large burnt scars in Portugal during the 2005 fire seasons and monitoring vegetation behaviour throughout the pre and the post fire periods. The mono-parametric model developed by Gouveia et al. (2010), based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2009, was used.

  9. Fruit and Vegetable Intake During Infancy and Early Childhood

    PubMed Central

    Kim, Sonia A.; Yaroch, Amy L.; Scanlon, Kelley S.

    2014-01-01

    OBJECTIVES: To examine the association of timing of introduction and frequency of fruit and vegetable intake during infancy with frequency of fruit and vegetable intake at age 6 years in a cohort of US children. METHODS: We analyzed data on fruit and vegetable intake during late infancy, age of fruit and vegetable introduction, and frequency of fruit and vegetable intake at 6 years from the Infant Feeding Practices Study II and the Year 6 Follow-Up (Y6FU) Study. We determined the percent of 6-year-old children consuming fruits and vegetables less than once per day and examined associations with infant fruit and vegetable intake using logistic regression modeling, controlling for multiple covariates (n = 1078). RESULTS: Based on maternal report, 31.9% of 6-year-old children consumed fruit less than once daily and 19.0% consumed vegetables less than once daily. In adjusted analyses, children who consumed fruits and vegetables less than once daily during late infancy had increased odds of eating fruits and vegetables less than once daily at age 6 years (fruit, adjusted odds ratio: 2.48; vegetables, adjusted odds ratio: 2.40). Age of introduction of fruits and vegetables was not associated with intake at age 6 years. CONCLUSIONS: Our study suggests that infrequent intake of fruits and vegetables during late infancy is associated with infrequent intake of these foods at 6 years of age. These findings highlight the importance of infant feeding guidance that encourages intake of fruits and vegetables and the need to examine barriers to fruit and vegetable intake during infancy. PMID:25183758

  10. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis

    PubMed Central

    2013-01-01

    Background MADS-domain transcription factors play important roles during plant development. The Arabidopsis MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism. Results To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC and AP1, which interact with SVP during the vegetative and reproductive phases, respectively. Conclusions Our analyses resulted in the identification of pathways that are regulated by SVP including those controlling meristem development during vegetative growth and flower development whereas floral transition pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates many developmental pathways, some of which are common to both of its developmental roles whereas others are specific to only one of them. PMID:23759218

  11. Soil-vegetation feedbacks driving early ecosystems genesis

    NASA Astrophysics Data System (ADS)

    Gwenzi, Willis; Hinz, Christoph; McGrath, Gavan; Veneklaas, Erik

    2010-05-01

    During the early phase of terrestrial ecosystems genesis feedbacks between soil and vegetation may become a key driver determining whether and how the systems will converge to a stable state. This is particular true for water-limited ecosystems for which water availability determines biomass. Based on a review of how vegetation growth affects soil hydraulic properties, we propose a simple conceptual model that captures the feedbacks between soil water storage in soil and soil hydraulic behaviour and vegetation biomass. The feedbacks that we considered are (i) vegetation biomass and soil water storage, (ii) root growth and infiltration capacity, (iii) vegetation biomass and bare soil evaporation, and (iv) root growth and soil water drainage. In water-limited environments, these feedbacks are responsible for highly organized vegetation patterns in space and may also lead to oscillating behaviour of soil water storage and vegetation biomass in time. Biomass overshooting as a result of initially high soil water content is predicted, which is consistent with observations made in forested catchments after clearing or during re-vegetation of mine tailings. We furthermore study how the oscillation of rainfall and evaporative demand affects the biomass fluctuations in time. We can show that such systems may converge to either an equilibrium point or a limit cycle. Climate oscillation can cause period doubling and for large periods it may control the biomass dynamics.

  12. Eating vegetables first: the use of portion size to increase vegetable intake in preschool children.

    PubMed

    Spill, Maureen K; Birch, Leann L; Roe, Liane S; Rolls, Barbara J

    2010-05-01

    Serving larger portions of low-energy-dense vegetables at a meal could have beneficial effects on children's food and energy intakes. We investigated whether increasing the portion size of vegetables served at the start of a meal leads to increased vegetable consumption and decreased meal energy intake in children. In a crossover design, 3- to 5-y-old children in a daycare center were served a test lunch once a week for 4 wk (n = 51). In 3 of the meals, a first course of raw carrots varied in portion size (30, 60, or 90 g), and no first course was served in the control meal. Children consumed the first course ad libitum over 10 min and then were served a main course of pasta, broccoli, applesauce, and milk, which was also consumed ad libitum. Total vegetable consumption at the meal increased as the portion size of carrots increased (P < 0.0001). Doubling the portion size of the first course increased carrot consumption by 47%, or 12 +/- 2 g (P < 0.0001). Tripling the portion size of carrots, however, did not lead to a further increase in intake (P = 0.61). Meal energy intake was not significantly affected by the amount of carrots served in the first course. The effect of portion size on intake was not significantly influenced by the children's age or body weight status. Increasing the portion size of a vegetable served as a first course can be an effective strategy for increasing vegetable consumption in preschool children.

  13. Microbiota on spoiled vegetables and their characterization.

    PubMed

    Lee, Dong Hwan; Kim, Jin-Beom; Kim, Mihyun; Roh, Eunjung; Jung, Kyusuk; Choi, Minseon; Oh, Changsik; Choi, Jaehyuk; Yun, Jongchul; Heu, Sunggi

    2013-08-01

    Spoilage causes vegetables to deteriorate and develop unpleasant characteristics. Approximately 30 % of fresh vegetables are lost to spoilage, mainly due to colonization by bacteria. In the present study, a total of 44 bacterial isolates were obtained from a number of spoiled vegetables. The isolates were identified and classified into 20 different species of 14 genera based on fatty acid composition, biochemical tests, and 16S rDNA sequence analyses. Pseudomonas spp. were the species most frequently isolated from the spoiled vegetables. To evaluate the spoilage ability of each species, a variety of fresh vegetables were treated with each isolate and their degree of maceration was observed. In addition, the production of plant cell wall-degrading enzymes (PCWDEs), such as cellulase, xylanase, pectate lyase, and polygalacturonase, was compared among isolates to investigate their potential associations with spoilage. Strains that produce more PCWDEs cause spoilage on more diverse plants, and pectinase may be the most important enzyme among PCWDEs for vegetable spoilage. Most gram-negative spoilage bacteria produced acylated homoserine lactone, a quorum-sensing signal molecule, suggesting that it may be possible to use this compound effectively to prevent or slow down the spoilage of vegetables contaminated with diverse bacteria.

  14. Evaluation of a native vegetation masking technique

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.

    1984-01-01

    A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.

  15. Vegetable behavioral tool demonstrates validity with MyPlate vegetable cups and carotenoid and inflammatory biomarkers

    USDA-ARS?s Scientific Manuscript database

    Young children are not meeting recommendations for vegetable intake. Our objective is to provide evidence of validity and reliability for a pictorial vegetable behavioral assessment for use by federally funded community nutrition programs. Parent/child pairs (n=133) from Head Start and the Special S...

  16. Increasing portion sizes of fruits and vegetables in an elementary school lunch program can increase fruit and vegetable consumption.

    PubMed

    Miller, Nicole; Reicks, Marla; Redden, Joseph P; Mann, Traci; Mykerezi, Elton; Vickers, Zata

    2015-08-01

    Increasing portion size can increase children's consumption of food. The goal of this study was to determine whether increasing the portion sizes of fruits and vegetables in an elementary school cafeteria environment would increase children's consumption of them. We measured each child's consumption of the fruit and vegetables served in a cafeteria line on a control day (normal cafeteria procedures) and on two intervention days. When we increased the portion size of 3 of the 4 fruits and vegetables by about 50%, children who took those foods increased their consumption of them. Although this was an effective strategy for increasing fruit and vegetable consumption among students who took those foods, many children chose not to take any fruits or vegetables. Further efforts are needed to increase children's selection and consumption of fruits and vegetables in an environment of competing foods of higher palatability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. East African Cenozoic vegetation history.

    PubMed

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  18. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    PubMed

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p < 05, indicating that internalisation of microbes in the vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  19. The Hydromechanics of Vegetation for Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  20. Analysis of vegetation changes in Cidanau watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Khairiah, R. N.; Kunihiko, Y.; Prasetyo, L. B.; Setiawan, Y.

    2018-05-01

    Vegetation change detection is needed for conserve of quality and water cycle in Cidanau watershed. The NDVI was applied to quantify the vegetation changes of Cidanau watershed for three different years 1989, 2001, and 2015. Using NDVI we mapped the reflectance from chlorophyll and distinguished varying amounts of vegetation at the pixel level by index. In the present study, as a preliminary study, we proposed a vegetation change detection analysis based on the NDVI from 1989 through 2015. Multi-temporal satellite data i.e. Landsat imagery with 30 m spatial resolution are used in the present study. It is reported that agroforestry land exhibited the greatest reductions in highly dense vegetation class in 1989-2001 and also moderate vegetation class in 2001-2015. It’s mean that amount of vegetation present in agroforestry land is getting lower year by year.

  1. Fruit and vegetable intake during infancy and early childhood.

    PubMed

    Grimm, Kirsten A; Kim, Sonia A; Yaroch, Amy L; Scanlon, Kelley S

    2014-09-01

    To examine the association of timing of introduction and frequency of fruit and vegetable intake during infancy with frequency of fruit and vegetable intake at age 6 years in a cohort of US children. We analyzed data on fruit and vegetable intake during late infancy, age of fruit and vegetable introduction, and frequency of fruit and vegetable intake at 6 years from the Infant Feeding Practices Study II and the Year 6 Follow-Up (Y6FU) Study. We determined the percent of 6-year-old children consuming fruits and vegetables less than once per day and examined associations with infant fruit and vegetable intake using logistic regression modeling, controlling for multiple covariates (n = 1078). Based on maternal report, 31.9% of 6-year-old children consumed fruit less than once daily and 19.0% consumed vegetables less than once daily. In adjusted analyses, children who consumed fruits and vegetables less than once daily during late infancy had increased odds of eating fruits and vegetables less than once daily at age 6 years (fruit, adjusted odds ratio: 2.48; vegetables, adjusted odds ratio: 2.40). Age of introduction of fruits and vegetables was not associated with intake at age 6 years. Our study suggests that infrequent intake of fruits and vegetables during late infancy is associated with infrequent intake of these foods at 6 years of age. These findings highlight the importance of infant feeding guidance that encourages intake of fruits and vegetables and the need to examine barriers to fruit and vegetable intake during infancy. Copyright © 2014 by the American Academy of Pediatrics.

  2. 9 CFR 319.311 - Chow mein vegetables with meat, and chop suey vegetables with meat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... chop suey vegetables with meat. 319.311 Section 319.311 Animals and Animal Products FOOD SAFETY AND... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Canned, Frozen, or Dehydrated Meat Food Products § 319.311 Chow mein vegetables with meat, and...

  3. 9 CFR 319.311 - Chow mein vegetables with meat, and chop suey vegetables with meat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chop suey vegetables with meat. 319.311 Section 319.311 Animals and Animal Products FOOD SAFETY AND... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Canned, Frozen, or Dehydrated Meat Food Products § 319.311 Chow mein vegetables with meat, and...

  4. Thermal Performance of Vegetative Roofing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space.more » The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be

  5. Parasitic contamination of vegetables in Jos, Nigeria.

    PubMed

    Damen, J G; Banwat, E B; Egah, D Z; Allanana, J A

    2007-09-01

    Intestinal parasites are very common in developing countries including Nigeria. There are diverse ways of their transmission; the study attempts to determine the level of intestinal parasitic contamination on vegetables sold in Jos. Sample of 200 each of Tomatoes (Lycopersium sativus), Letus (Loctus satival) Carrot (Davcus carota L) Cabbage (Brassica Denceal) and Green leafy vegetables were analyzed using standardized Centrifugal-floatation technique methods. Of the 1250 samples of vegetables examined, 450 (36.0%) were positive for intestinal parasites, cabbage recorded the highest prevalence of 64% while tomatoes had the least prevalence of 20%. Vegetables in Jos are heavily contaminated with intestinal parasites and there is need for public enlightenment campaign on the danger of consuming inadequately washed and prepared vegetables.

  6. Investigation of North American Vegetation Variability under Recent Climate: A Study Using the SSiB4/TRIFFID Biophysical/Dynamic Vegetation Model

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.

    2015-01-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  7. Physiology of fresh-cut fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    The idea to pre-process fruits and vegetables in the fresh state started with fresh-cut salads and now has expanded to fresh-cut fruits and other vegetables. The fresh-cut portion of the fresh produce industry includes fruits, vegetables, sprouts, mushrooms and even herbs that are cut, cored, sliced...

  8. Effects of Telecoupling on Global Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  9. Can landscape memory affect vegetation recovery in drylands?

    NASA Astrophysics Data System (ADS)

    Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max

    2016-04-01

    Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).

  10. Calculation of the Actual Cost of Engine Maintenance

    DTIC Science & Technology

    2003-03-01

    Cost Estimating Integrated Tools ( ACEIT ) helps analysts store, retrieve, and analyze data; build cost models; analyze risk; time phase budgets; and...Tools ( ACEIT ).” n. pag. http://www.aceit.com/ 21 February 2003. • USAMC Logistics Support Activity (LOGSA). “Cost Analysis Strategy Assessment

  11. Ecosystems past: prehistory of California vegetation

    Treesearch

    C.I. Millar; W.B. Woolfenden

    2016-01-01

    The history of California's vegetation, from origins in the Mesozoic through Quaternary is outlined. Climatic and geologic history and the processes driving changes in vegetation over time are also described. 

  12. Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover

    NASA Astrophysics Data System (ADS)

    Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas

    2017-04-01

    Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).

  13. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  14. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE PAGES

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...

    2017-09-09

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  15. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  16. Seasonally asymmetric enhancement of northern vegetation productivity

    NASA Astrophysics Data System (ADS)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  17. Demonstrating vegetation dynamics using SIMPPLLE

    Treesearch

    Glenda Scott; Jimmie D. Chew

    1997-01-01

    Understanding vegetation dynamics, both spatially and temporally, is essential to the management of natural resources. SIMPPLLE has been designed to help us quantify and communicate these concepts: What levels of process, i.e., fire or insect and disease, to expect; how they spread; what the vegetative distribution and composition is over time; and how silvicultural...

  18. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Knight, Paul J.

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less

  19. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to

  20. Exploring vegetation in the fourth dimension.

    PubMed

    Mitchell, Fraser J G

    2011-01-01

    Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance. © 2010 Elsevier Ltd. All rights reserved.

  1. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    USGS Publications Warehouse

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  2. Vegetation types on acid soils of Micronesia

    Treesearch

    Marjorie C. Falanruw; Thomas G.. Cole; Craig D. Whitesell

    1987-01-01

    The soils and vegetation of the Caroline high islands, Federated States of Micronesia, are being mapped by the U.S. Department of Agriculture's Forest Service and Soil Conservation Service. By the end of 1987, vegetation maps and reports on Kosrae, Pohnpei, Yap, four Truk Islands, and Palau are expected to be available. To compare soil types with vegetation types...

  3. Role of vegetation on erosion processes: experimental investigation

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2014-05-01

    Investigations on soil-system ecology are ever more oriented toward quantitative information based on the study of the linkages between physical processes and ecological response in rivers. As it is known, in presence of vegetation, the hydrodynamics characteristics of flow are principally determined by the mutual interrelation between the flow velocity field and the hydraulic behavior (completely submerged or emergent) of the vegetation elements. Much effort has been made toward identifying the theoretical law to interpret the vertical profile of flow longitudinal velocity in vegetated channels. Many theoretical and experimental studies in laboratory channels have been carried out and especially the case of submerged flexible vegetation has been examined (Termini, 2012). The effects of vegetation on flow velocity are significant and of crucial importance for stabilizing sediments and reducing erosion. Vegetation has a complex effect on walls roughness and the study of the hydrodynamic conditions of flow is difficult. Although most studies based on the "boundary layer" scheme so that the hydrodynamic conditions inside and above the vegetated layer are considered separately, some authors (Ghisalberti and Nepft, 2002; Carollo et al., 2008) claim that the "mixing layer" scheme is more appropriate to define the velocity profile both inside and outside the vegetated layer. Experimental program has been recently carried out in two laboratory flumes constructed at the laboratory of Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali - University of Palermo (Italy) with real and flexible vegetation on the bed. In this paper, attention is paid to the influence of vegetation on the erosion processes both on the bed and on the channel banks. The structure of the detailed flow velocity field is analyzed and compared with that obtained in absence of vegetation. Attention is then devoted to the analysis of soil erosion mechanism. Carollo F.G., Ferro V

  4. Airphoto assessment of changes in aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Philipson, W. R.; Russel, A. E.

    1977-01-01

    Large scale, multiyear, color and color infrared aerial photographs were used to evaluate changes in aquatic vegetation that have accompanied a reduction in phosphorus inputs to a phosphorus-limited, eutrophic lake in New York State. The study showed that the distribution of emergent, floating and submersed vegetation could be determined with little or no concurrent ground data; that various emergent and floating types could be separated and, with limited field checks, identified; and that different submersed types are generally not separable. Major vegetative types are characterized by spectral and nonspectral features, and a classification is developed for compiling time-sequential vegetation maps.

  5. Fresh Fruit and Vegetable Program and Requests for Fruits and Vegetables Outside School Settings.

    PubMed

    Ohri-Vachaspati, Punam; Dachenhaus, Elizabeth; Gruner, Jessie; Mollner, Kristina; Hekler, Eric B; Todd, Michael

    2018-01-08

    Consumption of fruits and vegetables (F/V) among elementary school-aged children remains inadequate, especially among low-income children. The US Department of Agriculture's Fresh Fruit and Vegetable Program (FFVP) provides F/V as snacks to children during the school day, outside of school meals. School-based initiatives are successful in changing behaviors in school settings; however, their influence on behaviors outside of schools needs investigation. To examine whether FFVP participation is associated with F/V requests at stores, self-efficacy to ask for and choose F/V at home, and F/V consumption. Cross-sectional study. Fourth graders in six classrooms (n=296) from three urban, low-income school districts in Phoenix, AZ, were surveyed during 2015; one FFVP and one non-FFVP school from each district that were similar in school size, percent free/reduced-price meal eligibility, and race/ethnicity of enrolled students were selected. Children's self-reported F/V requests during shopping, their self-efficacy to ask for and choose F/V at home, and F/V consumption on the previous day (non-FFVP school day) were measured using questions adapted from validated surveys. Multivariable mixed-effect regression models, adjusting for clustering of students within classes and classes within schools were explored. In models adjusting for individual-level factors (ie, age and sex) only, several significant positive associations were observed between school FFVP participation and healthier F/V outcomes. After additionally adjusting for school-level factors (ie, total enrollment and % Hispanic/Latino students) significant associations were observed between school FFVP participation and more requests for vegetables during shopping (P<0.001), higher scores on self-efficacy to choose vegetables at home (P=0.004), stronger preferences for vegetables (P<0.001), and more frequent consumption of fruit (P=0.006). School FFVP participation was associated with more requests for vegetables

  6. Eating vegetables first: the use of portion size to increase vegetable intake in preschool children123

    PubMed Central

    Spill, Maureen K; Birch, Leann L; Roe, Liane S

    2010-01-01

    Background: Serving larger portions of low-energy-dense vegetables at a meal could have beneficial effects on children's food and energy intakes. Objective: We investigated whether increasing the portion size of vegetables served at the start of a meal leads to increased vegetable consumption and decreased meal energy intake in children. Design: In a crossover design, 3- to 5-y-old children in a daycare center were served a test lunch once a week for 4 wk (n = 51). In 3 of the meals, a first course of raw carrots varied in portion size (30, 60, or 90 g), and no first course was served in the control meal. Children consumed the first course ad libitum over 10 min and then were served a main course of pasta, broccoli, applesauce, and milk, which was also consumed ad libitum. Results: Total vegetable consumption at the meal increased as the portion size of carrots increased (P < 0.0001). Doubling the portion size of the first course increased carrot consumption by 47%, or 12 ± 2 g (P < 0.0001). Tripling the portion size of carrots, however, did not lead to a further increase in intake (P = 0.61). Meal energy intake was not significantly affected by the amount of carrots served in the first course. The effect of portion size on intake was not significantly influenced by the children's age or body weight status. Conclusion: Increasing the portion size of a vegetable served as a first course can be an effective strategy for increasing vegetable consumption in preschool children. PMID:20219955

  7. Mineral composition of non-conventional leafy vegetables.

    PubMed

    Barminas, J T; Charles, M; Emmanuel, D

    1998-01-01

    Six non-conventional leafy vegetables consumed largely by the rural populace of Nigeria were analyzed for mineral composition. Mineral contents appeared to be dependent on the type of vegetables. Amaranthus spinosus and Adansonia digitata leaves contained the highest level of iron (38.4 mg/100 g and 30.6 mg/100 g dw, respectively). These values are low compared to those for common Nigerian vegetables but higher than those for other food sources. All the vegetables contained high levels of calcium compared to common vegetables, thus they could be a rich source of this mineral. Microelement content of the leaves varied appreciably. Zinc content was highest in Moringa oleifera, Adansonia digitata and Cassia tora leaves (25.5 mg/100 g, 22.4 mg/100 g and 20.9 mg/100 g dw, respectively) while the manganese content was comparatively higher in Colocasia esculenta. The concentrations of the mineral elements in the vegetables per serving portion are presented and these values indicate that the local vegetables could be valuable and important contributors in the diets of the rural and urban people of Nigeria. The mean daily intake of P, Mg, Ca, Fe, Cu and Zn were lower than their recommended dietary allowances (RDAs). However, the manganese daily intake was found not to differ significantly (p = 0.05) from the RDA value.

  8. Vegetable Purée: A Pilot Study to Increase Vegetable Consumption among School Lunch Participants in US Elementary Schools

    ERIC Educational Resources Information Center

    Vale, Angela; Schumacher, Julie Raeder; Cullen, Robert W.; Gam, Hae Jin

    2014-01-01

    Purpose/Objectives: Recent US Department of Agriculture regulations increased the amount and variety of vegetables required for school lunches. Vegetables are the most wasted components of lunch while entrées are selected and consumed by the majority of children. This study examined how adding vegetable purée to an elementary school lunch entrée…

  9. Australian consumer awareness of health benefits associated with vegetable consumption.

    PubMed

    Rekhy, Reetica; Khan, Aila; Eason, Jocelyn; Mactavish-West, Hazel; Lister, Carolyn; Mcconchie, Robyn

    2017-04-01

    The present study investigated the perceived health benefits of specific vegetable consumption to guide the use of nutrition and health claims on vegetable marketing collateral. Free elicitation and consumer ranking data were collected through an online survey of 1000 adults from across Australia and analysed for the perceived importance of vegetables in the daily diet, number of serves consumed per day, knowledge about health-related benefits of specific vegetables and perceived health benefits of vegetable consumption. The importance of vegetables in the diet and daily vegetable consumption was higher in people from an English-speaking background, females, people aged 45 years and over and people living in non-metropolitan areas. Digestion was selected as the major health benefit from consumption of specific vegetables. However, understanding of the health benefits of specific vegetable consumption was relatively low among consumers. Half of the respondents were not sure of the health benefits associated with specific vegetables, except for carrots and spinach. Some respondents volunteered nutrient content or other information. There was no clear indication that consumers understand the specific health benefits conferred by consumption of vegetables. Nutrient and health benefit labelling therefore has the capacity to enhance knowledge of vegetable consumers. It is recommended that health benefit labelling be tailored to promote greater consumption of vegetables in those demographic groups where vegetable consumption was lower. The present study assists the Australian vegetable industry in helping consumers make more informed consumption choices. © 2016 Dietitians Association of Australia.

  10. Antibacterial activity of vegetables and juices.

    PubMed

    Lee, Yee-Lean; Cesario, Thomas; Wang, Yang; Shanbrom, Edward; Thrupp, Lauri

    2003-01-01

    We evaluated the antibacterial activities of various fruit and vegetable extracts on common potential pathogens including antibiotic-resistant strains. Standardized bacterial inocula were added to serial dilutions of sterile vegetable and fruit extracts in broth, with final bacterial concentrations of 10(4-5) cells/mL. After overnight incubation at 35 degrees C, antibacterial activity was measured by minimum inhibitory and minimum bactericidal dilutions (for raw juices) or concentrations (for tea). Among the vegetable and fruit extracts tested, all green vegetables showed no antibacterial activity on Staphylococcus epidermidis and Klebsiella pneumoniae. All purple and red vegetable and fruit juices had antibacterial activities in dilutions ranging from 1:2 to 1:16. Garlic juice had significant activity, with bactericidal action in dilutions ranging up to 1:128 of the original juice. Tea also had significant activity, with bactericidal action in concentrations ranging up to 1.6 mg/mL, against a spectrum of pathogens including resistant strains such as methicillin- and ciprofloxacin-resistant staphylococci, vancomycin-resistant enterococci, and ciprofloxacin-resistant Pseudomonas aeruginosa. Tea and garlic have the potential for exploration of broader applications as antibacterial agents.

  11. A morphometric analysis of vegetation patterns in dryland ecosystems

    PubMed Central

    Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-01-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414

  12. A morphometric analysis of vegetation patterns in dryland ecosystems.

    PubMed

    Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  13. A morphometric analysis of vegetation patterns in dryland ecosystems

    NASA Astrophysics Data System (ADS)

    Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  14. Farming of Vegetables in Space-Limited Environments

    NASA Astrophysics Data System (ADS)

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  15. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  16. COASTAL SUBMERGED VEGETATION: AQUATIC HABITAT RESEARCH

    EPA Science Inventory

    Aquatic vegetation is one of the most widespread and important types of aquatic habitat, in part because of the exceptional productivity of the plants. Aquatic vegetation also strongly influences local physical and chemical habitat conditions of significance to fish and shellfis...

  17. Global relation between microwave satellite vegetation products and vegetation productivity

    NASA Astrophysics Data System (ADS)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and

  18. Pesticide residues in imported, organic, and "suspect" fruits and vegetables.

    PubMed

    Winter, Carl K

    2012-05-09

    Consumers are frequently urged to avoid imported foods as well as specific fruits and vegetables due to health concerns from pesticide residues and are often encouraged to choose organic fruits and vegetables rather than conventional forms. Studies have demonstrated that while organic fruits and vegetables have lower levels of pesticide residues than do conventional fruits and vegetables, pesticide residues are still frequently detected on organic fruits and vegetables; typical dietary consumer exposure to pesticide residues from conventional fruits and vegetables does not appear to be of health significance. Similarly, research does not demonstrate that imported fruits and vegetables pose greater risks from pesticide residues than do domestic fruits and vegetables or that specific fruits and vegetables singled out as being the most highly contaminated by pesticides should be avoided in their conventional forms.

  19. Comparison modeling for alpine vegetation distribution in an arid area.

    PubMed

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

  20. Time-varying trends of global vegetation activity

    NASA Astrophysics Data System (ADS)

    Pan, N.; Feng, X.; Fu, B.

    2016-12-01

    Vegetation plays an important role in regulating the energy change, water cycle and biochemical cycle in terrestrial ecosystems. Monitoring the dynamics of vegetation activity and understanding their driving factors have been an important issue in global change research. Normalized Difference Vegetation Index (NDVI), an indicator of vegetation activity, has been widely used in investigating vegetation changes at regional and global scales. Most studies utilized linear regression or piecewise linear regression approaches to obtain an averaged changing rate over a certain time span, with an implicit assumption that the trend didn't change over time during that period. However, no evidence shows that this assumption is right for the non-linear and non-stationary NDVI time series. In this study, we adopted the multidimensional ensemble empirical mode decomposition (MEEMD) method to extract the time-varying trends of NDVI from original signals without any a priori assumption of their functional form. Our results show that vegetation trends are spatially and temporally non-uniform during 1982-2013. Most vegetated area exhibited greening trends in the 1980s. Nevertheless, the area with greening trends decreased over time since the early 1990s, and the greening trends have stalled or even reversed in many places. Regions with browning trends were mainly located in southern low latitudes in the 1980s, whose area decreased before the middle 1990s and then increased at an accelerated rate. The greening-to-browning reversals were widespread across all continents except Oceania (43% of the vegetated areas), most of which happened after the middle 1990s. In contrast, the browning-to-greening reversals occurred in smaller area and earlier time. The area with monotonic greening and browning trends accounted for 33% and 5% of the vegetated area, respectively. By performing partial correlation analyses between NDVI and climatic elements (temperature, precipitation and cloud cover

  1. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2011-05-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  2. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

    2011-12-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  3. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  4. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  5. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  6. Suppression of vegetation in LANDSAT ETM+ remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Vegetation cover is an impediment to the interpretation of multispectral remote sensing images for geological applications, especially in densely vegetated terrains. In order to enhance the underlying geological information in such terrains, it is desirable to suppress the reflectance component of vegetation. One form of spectral unmixing that has been successfully used for vegetation reflectance suppression in multispectral images is called "forced invariance". It is based on segregating components of the reflectance spectrum that are invariant with respect to a specific spectral index such as the NDVI. The forced invariance method uses algorithms such as software defoliation. However, the outputs of software defoliation are single channel data, which are not amenable to geological interpretations. Crippen and Blom (2001) proposed a new forced invariance algorithm that utilizes band statistics, rather than band ratios. The authors demonstrated the effectiveness of their algorithms on a LANDSAT TM scene from Nevada, USA, especially in open canopy areas in mixed and semi-arid terrains. In this presentation, we report the results of our experimentation with this algorithm on a densely to sparsely vegetated Landsat ETM+ scene. We selected a scene (Path 119, Row 39) acquired on 18th July, 2004. Two study areas located around the city of Hangzhou, eastern China were tested. One of them covers uninhabited hilly terrain characterized by low rugged topography, parts of the hills are densely vegetated; another one covers both inhabited urban areas and uninhabited hilly terrain, which is densely vegetated. Crippen and Blom's algorithm is implemented in the following sequential steps: (1) dark pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship between vegetation index and digital number (DN) values for each band; (4) calculation of a smooth best-fit curve for the above relationships; and finally, (5) selection of a target average DN

  7. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  8. FT Duplication Coordinates Reproductive and Vegetative Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles ofmore » vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.« less

  9. Cover crops in vegetable production systems

    USDA-ARS?s Scientific Manuscript database

    Current vegetable production systems require an intensive amount Current vegetable production systems require an intensive amount of work and inputs, and if not properly managed could have detrimental effects on soil and the environment. Practices such as intensive tillage, increased herbicide use, ...

  10. Vegetative buffer strips for reducing herbicide transport in runoff: effects of buffer width, vegetation, and season

    USDA-ARS?s Scientific Manuscript database

    The effect of vegetative buffer strip (VBS) width, vegetation, and season of the year on herbicide transport in runoff has not been well documented for runoff prone soils. A multi-year replicated plot-scale study was conducted on an eroded claypan soil with the following objectives: 1) assess the ef...

  11. On the move: Recent happenings in vegetation research

    Treesearch

    Colin C. Hardy

    1999-01-01

    Scientists either directly or indirectly associated with previous Bitterroot Ecosystem Research Management Project (BEMRP) vegetation studies continue to pursue both fundamental and applied vegetation research projects in the interior West. Most of the "recent happenings" in vegetation research relate to restoration of forested ecosystems, including...

  12. The effects of vegetation and climate change on catchment erosion over millennial time scales: Insights from coupled dynamic vegetation and landscape evolution models

    NASA Astrophysics Data System (ADS)

    Schmid, Manuel; Ehlers, Todd; Werner, Christian; Hickler, Thomas

    2017-04-01

    Recent studies hypothesize that vegetation and the morphology of landscapes are strongly coupled. On a small scale, plants influence the erosivity of soil and sediments and therefore systematically impact catchment erosion and topography. Previous landscape evolution modeling studies primarily focus on changes in fluvial and hillslope erosion due to variations in climate and tectonics, without explicit consideration of vegetation effects. In this study, we complement previous work by investigating the effects of vegetation and vegetation change on hillslope and fluvial processes by combining LPJ-GUESS, a dynamic global vegetation model, with a modified version of the Landlab surface process model. The LandLab model was extended to account for vegetation-dependent sediment fluxes for both hillslope and detachment-limited fluvial erosion. The models are coupled by using predicted changes in surface vegetation from LPJ-GUESS for different climate scenarios as input for vegetation dependent erosional coefficients in Landlab. Simulations were conducted with the general climate and vegetation conditions representative between 25° and 40°S along the Coastal Cordillera of Chile. This region is the focus of the EarthShape research program (www.earthshape.net). These areas present a natural climatic and associated vegetation gradient that ranges from hyper-arid (Atacama desert) to humid-temperate conditions without a dry season and pristine temperate Araucaria forest. All study areas considered have a similar and uniform granite substrate, which minimizes lithologic variations and their effect on catchment erosion. Simulations are in progress that were designed to independently determine the climatic or vegetation controls on topography and erosion histories over the last 21 kyr. Our preliminary findings suggest that an increase in the surface vegetation results in a modulation of the mean hillslope angle and the average drainage density. In addition, we find that a

  13. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Vegetation information. 779.19 Section 779.19... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 779.19 Vegetation information. (a) The permit application shall, if required by the regulatory authority...

  14. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Vegetation information. 783.19 Section 783.19... UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 783.19 Vegetation information. (a) The permit application shall, if required by the regulatory authority...

  15. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Vegetation information. 783.19 Section 783.19... UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 783.19 Vegetation information. (a) The permit application shall, if required by the regulatory authority...

  16. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Vegetation information. 779.19 Section 779.19... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 779.19 Vegetation information. (a) The permit application shall, if required by the regulatory authority...

  17. Serving large portions of vegetable soup at the start of a meal affected children's energy and vegetable intake.

    PubMed

    Spill, Maureen K; Birch, Leann L; Roe, Liane S; Rolls, Barbara J

    2011-08-01

    This study tested whether varying the portion of low-energy-dense vegetable soup served at the start of a meal affects meal energy and vegetable intakes in children. Subjects were 3- to 5-year-olds (31 boys and 41 girls) in daycare facilities. Using a crossover design, children were served lunch once a week for four weeks. On three occasions, different portions of tomato soup (150, 225, and 300 g) were served at the start of the meal, and on one occasion no soup was served. Children had 10 min to consume the soup before being served the main course. All foods were consumed ad libitum. The primary outcomes were soup intake as well as energy and vegetable intake at the main course. A mixed linear model tested the effect of soup portion size on intake. Serving any portion of soup reduced entrée energy intake compared with serving no soup, but total meal energy intake was only reduced when 150 g of soup was served. Increasing the portion size increased soup and vegetable intake. Serving low-energy-dense, vegetable soup as a first course is an effective strategy to reduce children's intake of a more energy-dense main entrée and increase vegetable consumption at the meal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Relation between modern pollen rain, vegetation and climate in northern China: Implications for quantitative vegetation reconstruction in a steppe environment.

    PubMed

    Ge, Yawen; Li, Yuecong; Bunting, M Jane; Li, Bing; Li, Zetao; Wang, Junting

    2017-05-15

    Vegetation reconstructions from palaeoecological records depend on adequate understanding of relationships between modern pollen, vegetation and climate. A key parameter for quantitative vegetation reconstructions is the Relative Pollen Productivity (RPP). Differences in both environmental and methodological factors are known to alter the RPP estimated significantly, making it difficult to determine whether the underlying pollen productivity does actually vary, and if so, why. In this paper, we present the results of a replication study for the Bashang steppe region, a typical steppe area in northern China, carried out in 2013 and 2014. In each year, 30 surface samples were collected for pollen analysis, with accompanying vegetation survey using the "Crackles Bequest Project" methodology. Sampling designs differed slightly between the two years: in 2013, sites were located completely randomly, whilst in 2014 sampling locations were constrained to be within a few km of roads. There is a strong inter-annual variability in both the pollen and the vegetation spectra therefore in RPPs, and annual precipitation may be a key influence on these variations. The pollen assemblages in both years are dominated by herbaceous taxa such as Artemisia, Amaranthaceae, Poaceae, Asteraceae, Cyperaceae, Fabaceae and Allium. Artemisia and Amaranthaceae pollen are significantly over-represented for their vegetation abundance. Poaceae, Cyperaceae and Fabaceae seem to have under-represented pollen for vegetation with correspondingly lower RPPs. Asteraceae seems to be well-represented, with moderate RPPs and less annual variation. Estimated Relevant Source Area of Pollen (RSAP) ranges from 2000 to 3000m. Different sampling designs have an effect both on RSAP and RPPs and random sample selection may be the best strategy for obtaining robust estimates. Our results have implications for further pollen-vegetation relationship and quantitative vegetation reconstruction research in typical steppe

  19. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water—technical documentation. Version 1.0.

    Treesearch

    Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton

    2001-01-01

    Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...

  20. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  1. Forest Vegetation Simulator translocation techniques with the Bureau of Land Management's Forest Vegetation Information system database

    Treesearch

    Timothy A. Bottomley

    2008-01-01

    The BLM uses a database, called the Forest Vegetation Information System (FORVIS), to store, retrieve, and analyze forest resource information on a majority of their forested lands. FORVIS also has the capability of easily transferring appropriate data electronically into Forest Vegetation Simulator (FVS) for simulation runs. Only minor additional data inputs or...

  2. Estimation of vegetative mercury emissions in China.

    PubMed

    Quan, Jiannong; Zhang, Xiaoshan; Shim, Shang Gyoo

    2008-01-01

    Vegetative mercury emissions were estimated within the framework of Biogenic Emission Inventory System (BEIS3 V3.11). In this estimation, the 19 categories of U.S. Geological Survey landcover data were incorporated to generate the vegetation-specific mercury emissions in a 81-km Lambert Conformal model grid covering the total Chinese continent. The surface temperature and cloud-corrected solar radiation from a Mesoscale Meteorological model (MM5) were retrieved and used for calculating the diurnal variation. The implemented emission factors were either evaluated from the measured mercury flux data for forest, agriculture and water, or assumed for other land fields without available flux data. Annual simulations using the MM5 data were performed to investigate the seasonal emission variation. From the sensitivity analysis using two sets of emission factors, the vegetative mercury emissions in China domain were estimated to range from a lower limit of 79 x 10(3) kg/year to an upper limit of 177 x 10(3) kg/year. The modeled vegetative emissions were mainly generated from the eastern and southern China. Using the estimated data, it is shown that mercury emissions from vegetation are comparable to that from anthropogenic sources during summer. However, the vegetative emissions decrease greatly during winter, leaving anthropogenic sources as the major sources of emission.

  3. Plant functional diversity affects climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  4. Fruit and vegetable consumption: benefits and barriers.

    PubMed

    Maclellan, Debbie L; Gottschall-Pass, Katherine; Larsen, Roberta

    2004-01-01

    Few people on Prince Edward Island meet the goal of consuming five or more servings of vegetables and fruit a day. The main objective of this qualitative study was to explore the perceptions of the nutritional benefits and barriers to vegetable and fruit intake among adult women in Prince Edward Island. Participants were 40 women aged 20-49, with or without children at home, who were or were not currently meeting the objective of eating five or more fruit and vegetable servings a day. In-home, one-on-one interviews were used for data collection. Thematic analysis was conducted on the transcribed interviews. Data were examined for trustworthiness in the context of credibility, transferability, and dependability. Most participants identified one or more benefits of eating fruit and vegetables; however, comments tended to be non-specific. The main barriers that participants identified were effort, lack of knowledge, sociopsychological and socioenvironmental factors, and availability. Internal influences, life events, and food rules were identified as encouraging women to include vegetables and fruit in their diets. Given the challenges of effecting meaningful dietary change, dietitians must look for broader dietary behavioural interventions that are sensitive to women's perceptions of benefits and barriers to fruit and vegetable intake.

  5. Fruits, vegetables, 100% juices, and cognitive function.

    PubMed

    Lamport, Daniel J; Saunders, Caroline; Butler, Laurie T; Spencer, Jeremy Pe

    2014-12-01

    Although reviews of the association between polyphenol intake and cognition exist, research examining the cognitive effects of fruit, vegetable, and juice consumption across epidemiological and intervention studies has not been previously examined. For the present review, critical inclusion criteria were human participants, a measure of fruit, vegetable, or 100% juice consumption, an objective measure of cognitive function, and a clinical diagnosis of neuropsychological disease. Studies were excluded if consumption of fruits, vegetables, or juice was not assessed in isolation from other food groups, or if there was no statistical control for education or IQ. Seventeen of 19 epidemiological studies and 3 of 6 intervention studies reported significant benefits of fruit, vegetable, or juice consumption for cognitive performance. The data suggest that chronic consumption of fruits, vegetables, and juices is beneficial for cognition in healthy older adults. The limited data from acute interventions indicate that consumption of fruit juices can have immediate benefits for memory function in adults with mild cognitive impairment; however, as of yet, acute benefits have not been observed in healthy adults. Conclusions regarding an optimum dietary intake for fruits, vegetables, and juices are difficult to quantify because of substantial heterogeneity in the categorization of consumption of these foods. © 2014 International Life Sciences Institute.

  6. Vegetation dynamics

    Treesearch

    Sammy L. King; Terry J. Antrobus; Sarah Billups

    2000-01-01

    A disturbance can be defined as "any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment" (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes...

  7. Area of vegetation loss: a new index of campsite impact

    Treesearch

    David N. Cole

    1989-01-01

    Expressions of the amount of vegetation lost on campsites should reflect both the proportion of vegetation lost and the area1 extent of vegetation loss. A new index-area of vegetation loss-incorporates these two elements by multiplying campsite area by absolute vegetation loss. Guidelines on how to take the measurements needed to calculate this index are provided...

  8. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the

  9. Serving large portions of vegetable soup at the start of a meal affected children’s energy and vegetable intake

    PubMed Central

    Spill, Maureen K.; Birch, Leann L.; Roe, Liane S.; Rolls, Barbara J.

    2011-01-01

    This study tested whether varying the portion of low-energy-dense vegetable soup served at the start of a meal affects meal energy and vegetable intakes in children. Subjects were 3- to 5-year-olds (31 boys and 41 girls) in daycare facilities. Using a crossover design, children were served lunch once a week for four weeks. On three occasions, different portions of tomato soup (150, 225, and 300 g) were served at the start of the meal, and on one occasion no soup was served. Children had 10 minutes to consume the soup before being served the main course. All foods were consumed ad libitum. The primary outcomes were soup intake as well as energy and vegetable intake at the main course. A mixed linear model tested the effect of soup portion size on intake. Serving any portion of soup reduced entrée energy intake compared with serving no soup, but total meal energy intake was only reduced when 150 g of soup was served. Increasing the portion size increased soup and vegetable intake. Serving low-energy-dense, vegetable soup as a first course is an effective strategy to reduce children’s intake of a more energy-dense main entrée and increase vegetable consumption at the meal. PMID:21596073

  10. A structural classification for inland northwest forest vegetation.

    Treesearch

    Kevin L. O' Hara; Penelope A. Latham; Paul Hessburg; Bradley G. Smith

    1996-01-01

    Existing approaches to vegetation classification range from those bassed on potential vegetation to others based on existing vegetation composition, or existing structural or physiognomic characteristics. Examples of these classifications are numerous, and in some cases, date back hundreds of years (Mueller-Dumbois and Ellenberg 1974). Small-scale or stand level...

  11. State Indicator Report on Fruits and Vegetables, 2009

    ERIC Educational Resources Information Center

    Centers for Disease Control and Prevention, 2009

    2009-01-01

    The "State Indicator Report on Fruits and Vegetables, 2009" provides for the first time information on fruit and vegetable (F&V) consumption and policy and environmental support within each state. Fruits and vegetables, as part of a healthy diet, are important for optimal child growth, weight management, and chronic disease…

  12. A preliminary classification system for vegetation of Alaska.

    Treesearch

    Leslie A. Viereck; C.T. Dyrness

    1980-01-01

    A hierarchical system, with five levels of resolution, is proposed for classifying Alaska vegetation. The system, which is agglomerative, starts with 415 known Alaska plant communities which are listed and referenced. At the broadest level of resolution the system contains five formations - forest, tundra, shrubland, herbaceous vegetation, and aquatic vegetation.

  13. Water quality function of an extensive vegetated roof.

    PubMed

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p < 0.1) in 39.9% of meadow areas (accounting for 26.2% of vegetated areas) and 36.7% of steppe areas (28.1% of vegetated areas). Vegetation growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  15. Modeling vegetative filter performance with VFSMOD

    Treesearch

    Matthew J. Helmers; Dean E. Eisenhauer; Michael G. Dosskey; Thomas G. Franti

    2002-01-01

    The model VFSMOD was used to investigate the effect of varying watershed characteristics and buffer dimensions on the sediment trapping efficiency of vegetative filters. This investigation allows for a better understanding of how watershed characteristics, buffer dimensions, and storm characteristics impact the performance of vegetative filters. Using VFSMOD,...

  16. Powdered hide model for vegetable tanning

    USDA-ARS?s Scientific Manuscript database

    Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...

  17. Propriedades de estruturas temporais rápidas submilimétricas durante uma grande explosão solar

    NASA Astrophysics Data System (ADS)

    Raulin, J.-P.; Kaufmann, P.; Gimenez de Castro, C. G.; Pacini, A. A.; Makhmutov, V.; Levato, H.; Rovira, M.

    2003-08-01

    Apresentamos novas propriedades de variações rápidas da emissão submilimétrica durante uma das maiores explosões solares do ciclo solar 23. Os dados analisados neste estudo foram obtidos com o Telescópio Solar Submilimétrico (SST), que observa o Sol em 212 GHz e 405 GHz, e comparados com emissões em Raios-X duros e Raios-gama (fótons de energia > 10 MeV), que foram obtidas pelo experimento GRS do Yohkoh. Aplicamos diferentes metodologias para detectar e caracterizar, ao longo do evento, os pulsos submilimétricos (duração de 50-300 ms) detectados acima de uma componente mais lenta (alguns minutos). Os resultados mostram que durante a fase impulsiva, num instante próximo ao tempo do máximo do evento, houve um aumento da ocorrência de maiores e de mais rápidas estruturas temporais. Também identificamos uma boa correlação com as emissões em raios-X e raios-gama (até a faixa de energia 10-100 MeV), indicando que os pulsos rápidos submilimétricos refletiram injeções primárias de energia durante o evento.O espectro do fluxo desses pulsos é crescente com a freqüência entre 212 and 405 GHz, na maioria dos casos, ao contrário do observado para a componente gradual. As posições calculadas para as estruturas rápidas são discretas, compactas e localizadas em toda a área da região ativa, o que é previsto nos modelos de explosões solares decorrentes de instabilidades múltiplas em diferentes pequenas regiões. Por outro lado, a posição calculada para a componente lenta é estável durante a fase impulsiva. Assim, a comparação entre as características do espectro de fluxo e da localização da emissão, para os pulsos rápidos e para a componente gradual, sugere que as respectivas emissões são de natureza diferente.

  18. Listeria monocytogenes - Danger for health safety vegetable production.

    PubMed

    Kljujev, Igor; Raicevic, Vera; Jovicic-Petrovic, Jelena; Vujovic, Bojana; Mirkovic, Milica; Rothballer, Michael

    2018-04-22

    The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 10 6  cells/mm 3 absolutely dry root) and spinach (1.39 × 10 6  cells/mm 3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the

  19. Perceived access to fruits and vegetables associated with increased consumption.

    PubMed

    Caldwell, Erin M; Miller Kobayashi, M; DuBow, W M; Wytinck, S M

    2009-10-01

    To examine the association between fruit and vegetable access in the community and change in fruit and vegetable consumption among participants in community-based health promotion programmes. Fruit and vegetable consumption and perceived access to fresh fruit and vegetables were measured by self-administered questionnaires at programme start, end and 1-year follow-up. Community produce availability was determined by grocery store assessments measuring the display space devoted to fruit and vegetable offerings, as well as price, variety and freshness. A total of nine communities were studied; 130 participants completed the fruit and vegetable portions of the questionnaires and could be linked to grocery store assessments. Participants made modest but significant increases in fruit and vegetable consumption from programme start to end: the average increase was 2.88 (95% CI 1.52, 4.25) servings weekly; the average increase from start to follow-up was 2.52 (95% CI 1.09, 3.95) servings weekly. Greater perceived access to fruits and vegetables was significantly associated with higher increases in fruit and vegetable consumption from programme start to programme end. Greater availability of produce was associated with greater increases in fruit and vegetable servings from programme start to programme end as measured by store assessments. Environmental factors, such as access to fruits and vegetables, can modify the effects of community interventions. Interventions with the goal of increasing fruit and vegetable consumption should consider focusing on increasing access to fresh fruits and vegetables in target communities. Similarly, researchers may want to study access as an intervention, not just a contextual variable.

  20. Sensory determinants of stated liking for vegetable names and actual liking for canned vegetables: A cross-country study among European adolescents.

    PubMed

    Dinnella, Caterina; Morizet, David; Masi, Camilla; Cliceri, Danny; Depezay, Laurence; Appleton, Katherine M; Giboreau, Agnés; Perez-Cueto, Federico J A; Hartwell, Heather; Monteleone, Erminio

    2016-12-01

    Sensory properties are reported as one of the main factors hindering an appropriate vegetable intake by the young. In the present work the sensory determinants of likings for vegetables were explored in adolescents of four European countries (Denmark, n = 88; France, n = 206; Italy, n = 110 and United Kingdom, n = 93). A questionnaire was designed to study cross country differences in stated liking for and familiarity with a list of vegetables popular among European markets (between-vegetable approach). A within-vegetable comparison approach with actual tasting was used to analyze differences and similarities in liking for canned pea and sweet corn samples across the countries. A close positive relationship between stated liking and familiarity was found. Irrespective of the country, one group of highly liked vegetables (carrots, tomatoes, green salad) was identified, characterized by innately liked tastes (sweet, umami), delicate flavour and bright appealing colour. A second group of highly disliked vegetables consists of cauliflowers and broccoli, characterized by disliked sensations such as bitter taste and objectionable flavour. Internal Preference Maps from actual liking scores indicate that the generally disliked tastes (bitter, sour), are clearly correlated with a negative hedonic response for both peas and sweet corn. The hedonic valence of a generally well accepted taste such as salty and texture descriptors depends on the type of vegetable. Internal preference maps from actual liking data indicate that flavour and appearance descriptors of the distinct sensory properties of each type of vegetable positively affect liking, while the intensity of unusual flavours is related to sample disliking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: a long-term study on safety and health risk assessment.

    PubMed

    Park, Duck Woong; Kim, Kwang Gon; Choi, Eun Ah; Kang, Gyeong Ri; Kim, Tae Sun; Yang, Yong Shik; Moon, Su Jin; Ha, Dong Ryong; Kim, Eun Sun; Cho, Bae Sik

    2016-01-01

    South Korea has a unique food culture. South Koreans enjoy wrapping meat and eating or making kimchi (traditionally fermented Korean food) and eating using raw leafy vegetables, stalk and stem vegetables. Therefore, there is a high chance of being exposed to pesticide residues of vegetables. The objective of this study was to investigate pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea. A total of 8496 samples were mainly collected from Gwangju and Jeonnam area (the largest production region of leafy vegetables, stalk and stem vegetables) in South Korea from 2010 to 2014. A total of 230 pesticides were used for multi-residue analysis of pesticides. Among 8496 samples, 61 different pesticides (1029 times) were detected in 890 samples, of which 118 samples (1.4%) exceeded the Korea maximum residue limits (MRLs). Samples exceeding the MRLs were mostly found in leafy vegetables (brassica lee ssp. namai, leafy lettuce, spinach, perilla leaves, crown daisy, marsh mallow, aster scaber, pimpinella brachycarpa) and Chinese chive. Procymidone, dimethomorph and azoxystrobin were the most frequently found pesticides. A risk assessment of pesticides exceeding the MRLs was evaluated by calculating the estimated daily intake (EDI) and the acceptable daily intake (ADI). The ratio of EDI to ADI was 0.003-30.4%.

  2. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  3. NOAA-AVHRR image mosaics applied to vegetation identification

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria d. G.; Ruddorff, Bernardo F.; Shimabukuro, Yosio E.

    2001-06-01

    In this paper, the maximum-value composite of images procedure from Normalized Difference Vegetation Index is used to get a cloud free image mosaic. The image mosaic is used to identify vegetation targets such as tropical forest, savanna and caatinga as well to make the vegetation cover mapping of Minas Gerais state, Brazil.

  4. Vegetation Change in Blue Oak Woodlands in California

    Treesearch

    Barbara A. Holzman; Barbara H. Allen-Diaz

    1991-01-01

    A preliminary report of a statewide project investigating vegetation change in blue oak (Quercus douglasii) woodlands in California is presented. Vegetation plots taken in the 1930s, as part of a statewide vegetation mapping project, were relocated and surveyed. Species composition, cover and tree stand structure data from the earlier study were...

  5. Terrestrial Water Storage and Vegetation Resilience to Drought

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Reager, J. T., II; Konings, A. G.

    2017-12-01

    The expected increased occurrences of hydrologic extreme events such as droughts in the coming decades motivates studies to better understand and predict the response of vegetation to such extreme conditions. Previous studies have addressed vegetation resilience to drought, defined as its ability to recover from a perturbation (Hirota et al., 2011; Vicente-Serrano et al., 2012), but appear to only focus on precipitation and a couple of vegetation indices, hence lacking a key element: terrestrial water storage (TWS). In this study, we combine and compare multiple remotely-sensed hydro-ecological datasets providing information on climatic and hydrological conditions (Tropical Rainfall Measuring Mission (TRMM), Gravity Recovery and Climate Experiment (GRACE)) and indices characterizing the state of the vegetation (vegetation water content using Vegetation Optical Depth (VOD) from SMAP (Soil Moisture Active and Passive), Gross Primary Production (GPP) from FluxCom and Specific Fluorescence Intensity (SFI, from GOSat)) to assess the ability of vegetation to face and recover from droughts across the globe. Our results suggest that GRACE hydrological data bridge the knowledge gap between precipitation deficit and vegetation response. All products are aggregated at a 0.5º spatial resolution and a monthly temporal resolution to match the GRACE Mascon product. Despite these coarse spatiotemporal resolutions, we find that the relationship between existing remotely-sensed eco-hydrologic data varies spatially, both in terms of strength of relationship and time lag, showing the response time of vegetation characteristics to hydrological changes and highlighting the role of water storage. A special attention is given to the Amazon river basin, where two well documented droughts occurred in 2005 and 2010, and where a more recent drought occurred in 2015/2016. References : Hirota, Marina, et al. "Global resilience of tropical forest and savanna to critical transitions." Science

  6. A qualitative and quantitative analysis of vegetable pricing in supermarket

    NASA Astrophysics Data System (ADS)

    Miranda, Suci

    2017-06-01

    The purpose of this study is to analyze the variables affecting the determination of the sale price of vegetable which is constant over time in a supermarket qualitatively and quantitavely. It focuses on the non-organic vegetable with a fixed selling price over time such as spinach, beet, and parsley. In qualitative analysis, the sale price determination is influenced by the vegetable characteristics: (1) vegetable segmentation (low to high daily consumed); (2) vegetable age (how long it can last related to freshness); which both characteristic relates to the inventory management and ultimately to the sale price in supermarket. While quantitatively, the vegetables are divided into two categories: the leaf vegetable group that the leaves are eaten as a vegetable with the aging product (a) = 0 and the shelf life (t) = 0, and the non-leafy vegetable group with the aging group (a) = a+1 and the shelf life (t) = t+1. The vegetable age (a) = 0 means they only last for one day when they are ordered then they have to terminate. Whereas a+1 is that they have a longer life for more than a day such as beet, white radish, and string beans. The shelf life refers to how long it will be placed in a shelf in supermarket in line with the vegetable age. According to the cost plus pricing method using full price costing approach, production costs, non-production costs, and markup are adjusted differently for each category. There is a holding cost added to the sale price of the non-leafy vegetable, yet it is assumed a 0 holding cost for the leafy vegetable category. The amount of expected margin of each category is correlated to the vegetable characteristics.

  7. Vulnerability of forest vegetation to anthropogenic climate change in China.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang

    2018-04-15

    China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation

  9. Importance of vegetation distribution for future carbon balance

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.

    2015-12-01

    Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40

  10. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  11. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  12. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  13. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  14. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  15. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  16. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vegetable juice. 73.260 Section 73.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive...

  17. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vegetable juice. 73.260 Section 73.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive...

  18. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vegetable juice. 73.260 Section 73.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive...

  19. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... coloring foods. (b) Uses and restrictions. Vegetable juice may be safely used for the coloring of foods... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vegetable juice. 73.260 Section 73.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...

  20. Fourth international circumpolar arctic vegetation mapping workshop

    USGS Publications Warehouse

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  1. Self-crafting vegetable snacks: testing the IKEA-effect in children.

    PubMed

    Raghoebar, Sanne; van Kleef, Ellen; de Vet, Emely

    2017-01-01

    The purpose of this paper is to test whether the IKEA-effect (Norton et al. , 2012) - better liking for self-crafted products than for identical products crafted by others - can be exploited to increase liking and consumption of vegetable snacks in children. A between-subjects experiment was conducted at an after school care facility. In total, 86 children aged four to six either crafted a peacock with vegetables or with non-food objects following an example. After the task, children ate snack vegetables ad libitum, and rated their liking for the vegetables and pride in crafting the peacock. No significant main effect of the vegetable snack creation on consumption and liking was observed. Also, perceived pride did not mediate the effect of self-crafting vegetable snacks on consumption of and liking for vegetables. Vegetable consumption did not differ between children who were either simply exposed to vegetable snacks while crafting or those who were crafting the vegetable snacks themselves. The equal consumption might suggest that this is caused by simple exposure, but more research is needed comparing self-crafting and exposure to a condition where there is no initial exposure to vegetables. Although the IKEA-effect has been demonstrated in adults, this is one of the first studies evaluating the IKEA-effect in children and as a means to increase liking for a generally disliked product in this target group, i.e. vegetables. The IKEA-effect could not be replicated under these more stringent conditions, where the experimental set-up enabled disentangling exposure and crafting effects.

  2. Intake of Raw Fruits and Vegetables Is Associated With Better Mental Health Than Intake of Processed Fruits and Vegetables

    PubMed Central

    Brookie, Kate L.; Best, Georgia I.; Conner, Tamlin S.

    2018-01-01

    Background: Higher intakes of fruits and vegetables, rich in micronutrients, have been associated with better mental health. However, cooking or processing may reduce the availability of these important micronutrients. This study investigated the differential associations between intake of raw fruits and vegetables, compared to processed (cooked or canned) fruits and vegetables, and mental health in young adults. Methods: In a cross-sectional survey design, 422 young adults ages 18–25 (66.1% female) living in New Zealand and the United States completed an online survey that assessed typical consumption of raw vs. cooked/canned/processed fruits and vegetables, negative and positive mental health (depressive symptoms, anxiety, negative mood, positive mood, life satisfaction, and flourishing), and covariates (including socio-economic status, body mass index, sleep, physical activity, smoking, and alcohol use). Results: Controlling for covariates, raw fruit and vegetable intake (FVI) predicted reduced depressive symptoms and higher positive mood, life satisfaction, and flourishing; processed FVI only predicted higher positive mood. The top 10 raw foods related to better mental health were carrots, bananas, apples, dark leafy greens like spinach, grapefruit, lettuce, citrus fruits, fresh berries, cucumber, and kiwifruit. Conclusions: Raw FVI, but not processed FVI, significantly predicted higher mental health outcomes when controlling for the covariates. Applications include recommending the consumption of raw fruits and vegetables to maximize mental health benefits. PMID:29692750

  3. Submersed Aquatic Vegetation Modeling Output Online

    USGS Publications Warehouse

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason J.

    2005-01-01

    Introduction The ability to predict the distribution of submersed aquatic vegetation in the Upper Mississippi River on the basis of physical or chemical variables is useful to resource managers. Wildlife managers have a keen interest in advanced estimates of food quantity such as American wildcelery (Vallisneria americana) population status to give out more informed advisories to hunters before the fall hunting season. Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed. In years when submersed aquatic vegetation is predicted to be scarce in important wildlife habitats, managers can get the message out to hunters well before the hunting season (Jim Nissen, Upper Mississippi River National Wildlife and Fish Refuge, La Crosse District Manager, La Crosse, Wisconsin, personal communication). We developed a statistical model to predict the probability of occurrence of submersed aquatic vegetation in Pool 8 of the Upper Mississippi River on the basis of a few hydrological, physical, and geomorphic variables. Our model takes into consideration flow velocity, wind fetch, bathymetry, growing-season daily water level, and light extinction coefficient in the river (fig. 1) and calculates the probability of submersed aquatic vegetation existence in Pool 8 in individual 5- x 5-m grid cells. The model was calibrated using the data collected in 1998 (516 sites), 1999 (595 sites), and 2000 (649 sites) using a stratified random sampling protocol (Yin and others, 2000b). To validate the model, we chose the data from the Long Term Resource Monitoring Program (LTRMP) transect sampling in backwater areas (Rogers and Owens 1995; Yin and others, 2000a) and ran the model for each 5- x 5-m grid cell in every growing season from 1991 to 2001. We tallied all the cells and came up with an annual average percent frequency of submersed aquatic vegetation

  4. Patterns of vegetation in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.; Woodward, R. A.

    1986-01-01

    Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.

  5. Monitoring vegetation greenness with satellite data

    Treesearch

    Robert E. Burgan; Roberta A. Hartford

    1993-01-01

    Vegetation greenness can be monitored at 1-km resolution for the conterminous United States through data obtained from the Advanced Very High Resolution Radiometer on the NOAA-11 weather satellites. The data are used to calculate biweekly composites of the Normalized Difference Vegetation Index. The resulting composite images are updated weekly and made available to...

  6. A Riparian Vegetation Ecophysiological Response Model

    Treesearch

    Jeffrey P. Leighton; Roland J. Risser

    1989-01-01

    A mathematical model is described that relates mature riparian vegetation ecophysiological response to changes in stream level. This model was developed to estimate the physiological response of riparian vegetation to reductions in streamflow. Field data from two sites on the North Fork of the Kings River were used in the model development. The physiological response...

  7. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet.

    PubMed

    Li, Fei; Hullar, Meredith A J; Schwarz, Yvonne; Lampe, Johanna W

    2009-09-01

    In the human gut, commensal bacteria metabolize food components that typically serve as energy sources. These components have the potential to influence gut bacterial community composition. Cruciferous vegetables, such as broccoli and cabbage, contain distinctive compounds that can be utilized by gut bacteria. For example, glucosinolates can be hydrolyzed by certain bacteria, and dietary fibers can be fermented by a range of species. We hypothesized that cruciferous vegetable consumption would alter growth of certain bacteria, thereby altering bacterial community composition. We tested this hypothesis in a randomized, crossover, controlled feeding study. Fecal samples were collected from 17 participants at the end of 2 14-d intake periods: a low-phytochemical, low-fiber basal diet (i.e. refined grains without fruits or vegetables) and a high ("double") cruciferous vegetable diet [basal diet + 14 g cruciferous vegetables/(kg body weightd)]. Fecal bacterial composition was analyzed by the terminal restriction fragment length polymorphism (tRFLP) method using the bacterial 16S ribosomal RNA gene and nucleotide sequencing. Using blocked multi-response permutation procedures analysis, we found that overall bacterial community composition differed between the 2 consumption periods (delta = 0.603; P = 0.011). The bacterial community response to cruciferous vegetables was individual-specific, as revealed by nonmetric multidimensional scaling ordination analysis. Specific tRFLP fragments that characterized each of the diets were identified using indicator species analysis. Putative species corresponding to these fragments were identified through gene sequencing as Eubacterium hallii, Phascolarctobacterium faecium, Burkholderiales spp., Alistipes putredinis, and Eggerthella spp. In conclusion, human gut bacterial community composition was altered by cruciferous vegetable consumption, which could ultimately influence gut metabolism of bioactive food components and host

  8. Impact of small-scale vegetation structure on tephra layer preservation

    PubMed Central

    Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.

    2016-01-01

    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415

  9. Department of the Army Cost Analysis Manual

    DTIC Science & Technology

    2002-05-01

    TOOLS ( ACEIT ) ........................................................171 SECTION II - AUTOMATED COST DATA BASE (ACDB...Integrated Tools ( ACEIT ) model and since it is widely used to prepare POEs, CCAs and ICEs, it would expedite the comparative analysis of the submission if...IPT Co-chairs. The documentation produced by the Cost/CRB IPT (in ACEIT ) will be the basis for information contained in the CAB. Any remaining

  10. Department of the Army Cost Analysis Manual

    DTIC Science & Technology

    2001-05-01

    SECTION I - AUTOMATED COST ESTIMATING INTEGRATED TOOLS ( ACEIT ) ................................................................179 SECTION II - AUTOMATED...Management & Comptroller) endorsed the Automated Cost Estimating Integrated Tools ( ACEIT ) model and since it is widely used to prepare POEs, CCAs and...CRB IPT (in ACEIT ) will be the basis for information contained in the CAB. Any remaining unresolved issues from the IPT process will be raised at the

  11. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    PubMed

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries.

    PubMed

    Cesário, Rute; Hintelmann, Holger; Mendes, Ricardo; Eckey, Kevin; Dimock, Brian; Araújo, Beatriz; Mota, Ana Maria; Canário, João

    2017-07-01

    Neurotoxic methylmercury (MMHg) is formed from inorganic divalent mercury (Hg 2+ ). However, it is poorly understood to what extent different mercury (Hg) pools contribute to existent MMHg levels. In this study, ambient concentrations of total Hg (THg) and MMHg as well as rates of methylation and demethylation were measured simultaneously in sediments with and without salt-marsh plant vegetation, which were collected in Guadiana and Tagus estuaries, Portugal. Concurrent processes of Hg methylation and MMHg demethylation were directly monitored and compared by spiking sediments cores with stable isotope tracers of 199 Hg 2+ and CH 3 201 Hg + followed by gas chromatographic separation and isotope-specific detection using inductively coupled plasma mass spectrometry. Compared to the Guadiana estuary, where concentrations were comparatively low, THg and MMHg levels varied between vegetated and non-vegetated sediments collected at the Rosário site (ROS) of the Tagus estuary. Methylation (K M ) and demethylation rates (K D ) were also different between estuaries being dependent on the presence of vegetation. In addition, the type of macrophyte species influenced K M and K D values. In fact, the highest K M value was found in Sarcocornia fruticosa vegetated sediments at the Castro Marim site in Guadiana (CM, 0.160 day -1 ) and the lowest K M was observed in non-vegetated sediments at the Alcochete site in Tagus (ALC, 0.009 day -1 ). K D varied by a factor of three among sites with highest rates of demethylation observed in non-vegetated sediments in Guadiana (12 ± 1.3 day -1 , corresponding to a half-life of 1.4 ± 0.2 h). This study clearly shows that the presence of vegetation in sediments favors the formation of MMHg. Moreover, this effect might be site specific and further studies are needed to confirm the findings reported here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Understory vegetation

    Treesearch

    Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus

    2003-01-01

    This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...

  14. Physically Modeling Stream Channel Adjustment to Woody Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2003-12-01

    Stream restoration designs often use vegetation to promote bank and channel stability, to facilitate point-bar development, and to encourage natural colonization of riparian species. Here we examine the adjustment of an alluvial channel to in-stream and riparian vegetation using a distorted Froude-scale flume model with a movable boundary. A decimeter-scale trapezoidal channel comprised of 0.8-mm diameter sand was systematically vegetated with emergent, rigid dowels (3-mm in diameter) in rectangular and hemispherical patterns with varying vegetation densities while conserving the shape of the zone and the geometry of the vegetal patterns. Alternate sides of the channel were vegetated at the prescribed spacing of equilibrium alternate bars, ca. 5 to 7 times the channel width. Using flow conditions just below the threshold of sediment motion, flow obstruction, deflection, and acceleration caused bed erosion, bank failure, and morphologic channel adjustments that were wholly attributable to the managed plantings. As vegetation density increased, the magnitude and rate of scaled channel adjustment increased, which included increased channel widths, bankline steepening and meandering, and thalweg meandering. As the modeled channel began to meander, the stream bed aggraded and flow depth decreased markedly, creating a continuously connected, inter-reach complex of mid-channel bars. This study demonstrates the utility of using managed vegetations in stream corridor design and meander development, and it provides the practitioner with guidance on the magnitude of channel adjustment as it relates to vegetation density, shape, and spacing.

  15. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].

    PubMed

    Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng

    2012-12-01

    This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.

  16. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    USGS Publications Warehouse

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p < 0.001), indicating improvement over the alternate DVP metric (R2 = 0.73, p < 0.001) and substantial improvement over the two conventional VI metrics (R2 = 0.62 and 0.56, p < 0.001). The results suggest DVP-based methods, and the NDPI in particular, can be effective for subpixel discrimination and mapping of exposed perennial C4 grass cover within mixed-composition landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  17. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  18. Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; Neelin, J. David; Lau, William K.-M.

    1999-01-01

    The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.

  19. Harnessing the Power of Cruciferous Vegetables: Developing a Biomarker for Brassica Vegetable Consumption Using Urinary 3,3'-Diindolylmethane.

    PubMed

    Fujioka, Naomi; Ransom, Benjamin W; Carmella, Steven G; Upadhyaya, Pramod; Lindgren, Bruce R; Roper-Batker, Astia; Hatsukami, Dorothy K; Fritz, Vincent A; Rohwer, Charles; Hecht, Stephen S

    2016-10-01

    Glucobrassicin in Brassica vegetables gives rise to indole-3-carbinol (I3C), a compound with potent anticancer effects in preclinical models. We previously showed that the urinary metabolite 3,3'-diindolylmethane (DIM) could discriminate between volunteers fed high and low doses of Brassica vegetables. However, the quantitative relationship between glucobrassicin exposure and urinary DIM level is unclear. We conducted a clinical trial to examine the hypotheses that a range of glucobrassicin exposure from Brassica vegetables is reflected in urinary DIM and that this effect plateaus. Forty-five subjects consumed vegetables, a mixture of brussels sprouts and/or cabbage, at one of seven discrete dose levels of glucobrassicin ranging from 25 to 500 μmol, once daily for 2 consecutive days. All urine was collected for 24 hours after each vegetable-eating session. Urinary DIM was measured using our published liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (LC/ESI-MS/MS-SRM) method. Urinary DIM excretion increased predictably with increasing glucobrassicin dose and plateaued between 200 and 300 μmol of glucobrassicin. The association between glucobrassicin dose and urinary DIM was strong and positive (R 2 = 0.68). The majority of DIM was excreted in the first 12 hours after vegetable consumption. We conclude that urinary DIM is a reliable biomarker of glucobrassicin exposure and I3C uptake and that feeding glucobrassicin beyond 200 μmol did not consistently lead to more urinary DIM, suggesting a plateau in potential chemopreventive benefit. Cancer Prev Res; 9(10); 788-93. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Rendering Future Vegetation Change across Large Regions of the US

    NASA Astrophysics Data System (ADS)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for

  1. Consumption of fruits, vegetables, and seaweeds (sea vegetables) and pancreatic cancer risk: the Ohsaki Cohort Study.

    PubMed

    Shigihara, Michiko; Obara, Taku; Nagai, Masato; Sugawara, Yumi; Watanabe, Takashi; Kakizaki, Masako; Nishino, Yoshikazu; Kuriyama, Shinichi; Tsuji, Ichiro

    2014-04-01

    Studies on the effects of consumption of fruits, vegetables, and seaweeds on the incidence of pancreatic cancer are not conclusive. We examined the association (if any) between the consumption of fruits, vegetables, and seaweeds and the risk of pancreatic cancer in Japan. Data from 32,859 participants registered in the Ohsaki National Health Insurance Cohort Study who were 40-79 years old and free of cancer at baseline were analyzed. Consumption of fruits, vegetables, and seaweeds was assessed at baseline using a self-administered food frequency questionnaire (containing 40 items). Incidences of pancreatic cancer were identified by computer linkage with the Miyagi Prefectural Cancer Registry. During 11 years of follow-up, 137 pancreatic cancers (67 men and 70 women) were identified. The hazard ratios (95% confidence interval) of pancreatic cancer risk for the highest versus the lowest tertile were 0.82 (0.40-1.68, trend P=0.57) in men and 0.64 (0.35-1.20, trend P=0.22) in women for total consumption of fruits, 0.89 (0.46-1.73, trend P=0.76) in men and 0.67 (0.33-1.35, trend P=0.23) in women for total consumption of vegetables, and 0.92 (0.46-1.84, trend P=0.81) in men for consumption of seaweeds (results for the consumption of seaweeds in women were not analyzed because of poor reliability), respectively. Total consumption of fruits, vegetables, and seaweeds was not associated with a reduced risk of pancreatic cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improving the Projections of Vegetation Biogeography by Integrating Climate Envelope Models and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Case, M. J.; Kim, J. B.

    2015-12-01

    Assessing changes in vegetation is increasingly important for conservation planning in the face of climate change. Dynamic global vegetation models (DGVMs) are important tools for assessing such changes. DGVMs have been applied at regional scales to create projections of range expansions and contractions of plant functional types. Many DGVMs use a number of algorithms to determine the biogeography of plant functional types. One such DGVM, MC2, uses a series of decision trees based on bioclimatic thresholds while others, such as LPJ, use constraining emergent properties with a limited set of bioclimatic threshold-based rules. Although both approaches have been used widely, we demonstrate that these biogeography outputs perform poorly at continental scales when compared to existing potential vegetation maps. Specifically, we found that with MC2, the algorithm for determining leaf physiognomy is too simplistic to capture arid and semi-arid vegetation in much of the western U.S., as well as is the algorithm for determining the broadleaf and needleleaf mix in the Southeast. With LPJ, we found that the bioclimatic thresholds used to allow seedling establishment are too broad and fail to capture regional-scale biogeography of the plant functional types. In response, we demonstrate a new approach to determining the biogeography of plant functional types by integrating the climatic thresholds produced for individual tree species by a series of climate envelope models with the biogeography algorithms of MC2 and LPJ. Using this approach, we find that MC2 and LPJ perform considerably better when compared to potential vegetation maps.

  3. Undesirable roadside vegetation.

    DOT National Transportation Integrated Search

    2012-11-01

    Research was conducted to determin if the current list of undesired vegetation in the current Maintenance Rating Program handbook adequately listed species present in areas where turf scores were consistently low, it the different climate zones of Fl...

  4. Evaluating vegetation management practices for woody and herbaceous vegetation : final report.

    DOT National Transportation Integrated Search

    2017-03-01

    To determine vegetation management practices, ODOT Districts can implement to increase efficiency : and cost-effectiveness that contribute to worker safety and foster safe highway use by the traveling : public. ODOT would benefit from a Roadside Inte...

  5. Integrated vegetation management (IVM) for INDOT roadsides.

    DOT National Transportation Integrated Search

    2014-03-01

    With over 90,000 miles of road in Indiana, it is important that adjoining vegetation be maintained for safety concerns, road structure : maintenance and aesthetics. Mowing is currently the main form of vegetation management on INDOT (Indiana Departme...

  6. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  7. Similarity of vegetation dynamics during interglacial periods

    PubMed Central

    Cheddadi, Rachid; de Beaulieu, Jacques-Louis; Jouzel, Jean; Andrieu-Ponel, Valérie; Laurent, Jeanne-Marine; Reille, Maurice; Raynaud, Dominique; Bar-Hen, Avner

    2005-01-01

    The Velay sequence (France) provides a unique, continuous, palynological record spanning the last four climatic cycles. A pollen-based reconstruction of temperature and precipitation displays marked climatic cycles. An analysis of the climate and vegetation changes during the interglacial periods reveals comparable features and identical major vegetation successions. Although Marine Isotope Stage (MIS) 11.3 and the Holocene had similar earth precessional variations, their correspondence in terms of vegetation dynamics is low. MIS 9.5, 7.5, and especially 5.5 display closer correlation to the Holocene than MIS 11.3. Ecological factors, such as the distribution and composition of glacial refugia or postglacial migration patterns, may explain these discrepancies. Comparison of ecosystem dynamics during the past five interglacials suggests that vegetation development in the current interglacial has no analogue from the past 500,000 years. PMID:16162676

  8. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  9. Early Pliocene vegetation distribution in Europe

    NASA Astrophysics Data System (ADS)

    Popescu, S.; Warny, S.; Suc, J.

    2010-12-01

    The Early Pliocene corresponds to a global warm climate documented by marine & terrestrial records. Reconstruction of climatic parameters, based on terrestrial proxies, indicate at European mid-latitudes a MAT higher of about 1-5°C than today and MAP higher of about 400-1000 mm. This global warm situation was interrupted between 4.7 - 4.5 Ma by a cooling event related to small fluctuations of the Antarctic ice-sheet that modify the floristic assemblages. according to pollen recors, the Northern Mediterranean area is characterized by dominance of arboreal pollen, suggesting a dense forest cover, on contrary to the Southern Mediterranean where herbs were prevalent, signifying a widespread development of open vegetation during the early Pliocene. Such a contrast in landscape between the North and the South of the Mediterranean is to be related to the latitudinal gradient in humidity. In the North Mediterranean area, the vegetation organization was also closely linked to the relief. Coastal plains were inhabited by Taxodiaceae swamps replaced in some places by marshes. With respect to the geographic position, several plant ecosystems can distinguished: (1) salt marshes, along the Atlantic coastline (zone A); (2) marshes mostly made of Cyperaceae evidenced on the Mediterranean coastline. Such juxtaposed assemblages resemble the modern vegetation of the Mississippi Delta and Florida. Peculiar vegetation assemblages characterize the Mediterranean coastal plains. In the southeastern Mediterranean region (Zone B), the open vegetation was composed by herbs including subdesertic elements. Mediterranean xerophytes are only numerically represented in the area of Tarragona and Sicily, their assemblage resemble the modern thermo-mediterranean formation. Close to the mountains (Zone C) vegetation is organized according to an altitudinal gradient. The low altitude vegetation was composed by Taxodiaceae (Sequoia) while Cathaya and Cedrus dominated the mid-altitude belt. Abies and

  10. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  11. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  12. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, P.R.; Widney, T.W.; Goolsby, P.T.

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspected Party and the Inspection Team. Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for a hypothetical challenge inspection under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primarymore » emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. The Exercise Manual supplements the ACE-IT software by providing general information on on-site inspections and detailed information for the CWC challenge inspection exercise. The detailed information includes the pre-inspection briefing, maps, list of sensitive items, medical records, and shipping records.« less

  14. Post-fire vegetation dynamics in Portugal

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2009-04-01

    The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then

  15. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  16. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  17. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  18. VEGETATION AND POLLEN RELATIONSHIP IN EASTERN CANADA

    EPA Science Inventory

    The relationship between the vegetation and modern pollen assemblages in eastern Canada is summarized and analyzed using isopoll maps, ordination, and cluster analysis. he major vegetation zones recognized in the region are the shrub tundra, forest tundra (divided into shrub and ...

  19. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  20. The role of vegetation in shaping dune morphology

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Moore, L. J.; Young, D.

    2012-12-01

    Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them

  1. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  2. Vegetation associations

    Treesearch

    W. F. Mueggler

    1985-01-01

    Aspen trees grow along moist stream bottoms as well as on dry ridges and southerly exposures, on talus slopes, and on shallow to deep soils of varied origins. Quaking aspen is one of the few plant species that can grow in all mountain vegetational zones from the alpine to the basal plain (Daubenmire 1943). As a consequence, aspen dominated communities are found...

  3. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  4. An Examination of the Demographic and Career Progression of Air Force Institute of Technology Cost Analysis Graduates.

    DTIC Science & Technology

    1997-09-01

    program include the ACEIT software training and the combination of Department of Defense (DOD) application, regression, and statistics. The weaknesses...and Integrated Tools ( ACEIT ) software and training could not be praised enough. AFIT vs. Civilian Institutions. The GCA program provides a Department...very useful to the graduates and beneficial to their careers. The main strengths of the program include the ACEIT software training and the combination

  5. Cost Benefit Analysis: Cost Benefit Analysis for Human Effectiveness Research: Bioacoustic Protection

    DTIC Science & Technology

    2001-07-21

    APPENDIX A. ACRONYMS ACCES Attenuating Custom Communication Earpiece System ACEIT Automated Cost estimating Integrated Tools AFSC Air Force...documented in the ACEIT cost estimating tool developed by Tecolote, Inc. The factor used was 14 percent of PMP. 1.3 System Engineering/ Program...The data source is the ASC Aeronautical Engineering Products Cost Factor Handbook which is documented in the ACEIT cost estimating tool developed

  6. Cost Estimating Cases: Educational Tools for Cost Analysts

    DTIC Science & Technology

    1993-09-01

    only appropriate documentation should be provided. In other words, students should not submit all of the documentation possible using ACEIT , only that...case was their lack of understanding of the ACEIT software used to conduct the estimate. Specifically, many students misinterpreted the cost...estimating relationships (CERs) embedded in the 49 software. Additionally, few of the students were able to properly organize the ACEIT documentation output

  7. Survival, growth, and body residues of hyalella azteca (Saussure) exposed to fipronil contaminated sediments from non-vegetated and vegetated microcosms.

    PubMed

    Kröger, Robert; Lizotte, Richard E; Moore, Matthew T

    2009-09-01

    We assessed chronic effects of fipronil and metabolite contaminated sediments from non-vegetated and Thallia dealbata vegetated wetland microcosms on Hyalella azteca during wet and dry exposures. Mean sediment concentrations (ng g(-1)) ranged from 0.72-1.26, 0.01-0.69, 0.07-0.23, and 0.49-7.87 for fipronil, fipronil-sulfide, fipronil-sulfone, and fipronil-desulfinyl, respectively. No significant differences in animal survival or growth were observed between non-vegetated and vegetated microcosms during wet or dry exposures. Mean animal body residue concentrations (ng g(-1)) ranged from 28.4-77.6, 0-30.7, and 8.3-43.8 for fipronil, fipronil-sulfide, and fipronil-sulfone. Fipronil-desulfinyl was not detected in any animal samples.

  8. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  9. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  10. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  11. Ecological investigations: vegetation studies, preliminary findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olgeirson, E.R.; Martin, R.B.

    1978-09-01

    The objective of the vegetation studies conducted on the research site is to produce a descriptive data base that can be applied to determinations of carrying capacity of the site and surrounding area. Additional information obtained about parameters that influence vegetation growth and maintenance of soil nutrients, and moisture and temperature regimes help define dynamic relationships that must be understood to effect successful revegetation and habitat rehabilitation. The descriptive vegetation baseline also provides a point of departure for design of future monitoring programs, and predictive models and strategies to be used in dealing with impact mitigation; in turn, monitoring programsmore » and predictive modeling form the bases for making distinctions between natural trends and man-induced perturbations.« less

  12. Parent outcome expectancies for purchasing fruit and vegetables: a validation.

    PubMed

    Baranowski, Tom; Watson, Kathy; Missaghian, Mariam; Broadfoot, Alison; Baranowski, Janice; Cullen, Karen; Nicklas, Theresa; Fisher, Jennifer; O'Donnell, Sharon

    2007-03-01

    To validate four scales -- outcome expectancies for purchasing fruit and for purchasing vegetables, and comparative outcome expectancies for purchasing fresh fruit and for purchasing fresh vegetables versus other forms of fruit and vegetables (F&V). Survey instruments were administered twice, separated by 6 weeks. Recruited in front of supermarkets and grocery stores; interviews conducted by telephone. One hundred and sixty-one food shoppers with children (18 years or younger). Single dimension scales were specified for fruit and for vegetable purchasing outcome expectancies, and for comparative (fresh vs. other) fruit and vegetable purchasing outcome expectancies. Item Response Theory parameter estimates revealed easily interpreted patterns in the sequence of items by difficulty of response. Fruit and vegetable purchasing and fresh fruit comparative purchasing outcome expectancy scales were significantly correlated with home F&V availability, after controlling for social desirability of response. Comparative fresh vegetable outcome expectancy scale was significantly bivariately correlated with home vegetable availability, but not after controlling for social desirability. These scales are available to help better understand family F&V purchasing decisions.

  13. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  14. Riparian vegetation controls on channels formed in non-cohesive sediment

    NASA Astrophysics Data System (ADS)

    Gran, K.; Tal, M.; Paola, C.

    2002-05-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments

  15. Nutritive and health-promoting value of organic vegetables.

    PubMed

    Sobieralski, Krzysztof; Siwulski, Marek; Sas-Golak, Iwona

    2013-01-01

    In recent years in Poland we may observe a considerable development of organic vegetable production. Increased interest in organic products results from an opinion of the consumers on their high quality and health safety. However, results of research comparing nutritive value and contents of biologically active compounds in vegetables from organic and conventional farms are ambiguous. Most studies confirm higher contents of certain vitamins and antioxidants in organic vegetables, as well as their lower contents of nitrates and pesticide residue in comparison to vegetables grown in the conventional manner. There are also reports which did not confirm such differences or showed opposite trends. Research results at present do not make it possible to formulate a general conclusion on a higher health-promoting value of organic vegetables in comparison to those grown by conventional farming methods. It is necessary to continue research in order to explain the effect of organic raw materials on human health in a more comprehensive manner.

  16. Salt marsh vegetation promotes efficient tidal channel networks

    PubMed Central

    Kearney, William S.; Fagherazzi, Sergio

    2016-01-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165

  17. Dietary fruits and vegetables and cardiovascular diseases risk.

    PubMed

    Alissa, Eman M; Ferns, Gordon A

    2017-06-13

    Diet is likely to be an important determinant of cardiovascular disease (CVD) risk. In this article, we will review the evidence linking the consumption of fruit and vegetables and CVD risk. The initial evidence that fruit and vegetable consumption has a protective effect against CVD came from observational studies. However, uncertainty remains about the magnitude of the benefit of fruit and vegetable intake on the occurrence of CVD and whether the optimal intake is five portions or greater. Results from randomized controlled trials do not show conclusively that fruit and vegetable intake protects against CVD, in part because the dietary interventions have been of limited intensity to enable optimal analysis of their putative effects. The protective mechanisms of fruit and vegetables may not only include some of the known bioactive nutrient effects dependent on their antioxidant, anti-inflammatory, and electrolyte properties, but also include their functional properties, such as low glycemic load and energy density. Taken together, the totality of the evidence accumulated so far does appear to support the notion that increased intake of fruits and vegetables may reduce cardiovascular risk. It is clear that fruit and vegetables should be eaten as part of a balanced diet, as a source of vitamins, fiber, minerals, and phytochemicals. The evidence now suggests that a complicated set of several nutrients may interact with genetic factors to influence CVD risk. Therefore, it may be more important to focus on whole foods and dietary patterns rather than individual nutrients to successfully impact on CVD risk reduction. A clearer understanding of the relationship between fruit and vegetable intake and cardiovascular risk would provide health professionals with significant information in terms of public health and clinical practice.

  18. Attribution of trends in global vegetation greenness from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.

    2012-12-01

    Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;

  19. The influence of extensive vegetated roofs on runoff water quality.

    PubMed

    Berndtsson, Justyna Czemiel; Emilsson, Tobias; Bengtsson, Lars

    2006-02-15

    The influence of extensive sedum-moss vegetated roofs on runoff water quality was studied for four full scale installations located in southern Sweden. The aim of the study was to ascertain whether the vegetated roof behaves as a sink or a source of pollutants and whether the age of a vegetated roof influences runoff quality. The runoff quality from vegetated roofs was also compared with the runoff quality from non-vegetated roofs located in study areas. The following metals and nutrients were investigated: Cd, Cr, Cu, Fe, K, Mn, Pb, Zn, NO3-N, NH4-N, Tot-N, PO4-P, and Tot-P. The results show that, with the exception of nitrogen, vegetated roofs behave as source of contaminants. While in lower concentrations than normally found in urban runoff, some metals appear in concentrations that would correspond to moderately polluted natural water. Nitrate nitrogen is retained by the vegetation or soil or both. Apart from the oldest, the studied vegetated roofs contribute phosphate phosphorus to the runoff. The maintenance of the vegetation systems on the roofs has to be carefully designed in order to avoid storm-water contamination; for instance, the use of easily dissolvable fertilizers should be avoided.

  20. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms

    PubMed Central

    Tang, Guo-Yi; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Liu, Qing

    2017-01-01

    Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases. PMID:28796173

  1. Influence of seasoning on vegetable selection, liking and intent to purchase.

    PubMed

    Manero, Joanna; Phillips, Carter; Ellison, Brenna; Lee, Soo-Yeun; Nickols-Richardson, Sharon M; Chapman-Novakofski, Karen M

    2017-09-01

    Low vegetable intake continues to be a health concern, and strategies to increase vegetable intake have resulted in only small increases. One strategy that has received less attention is the use of seasonings. This study's objective was to determine the impact of seasoning on vegetable selection, liking, and intent to purchase. We conducted a 3-week study in a public café on a university campus. Customers buying a main dish could select a vegetable side (seasoned [SS] or steamed [ST]) at no cost. Based on café data and power analysis (alpha 0.05, 80% power), 2 days per vegetable pair were conducted with carrot, broccoli, and green bean pairs randomized 3 days/week 1 and 3, with normal service week 2. Selection was greater for SS vs ST, n = 335 vs. 143 for all 3 vegetables combined; n = 97 vs 47 for carrots; n = 114 vs. 55 for broccoli; n = 124 vs. 41 for green beans (p < 0.001 Chi-Square). Liking responses were similar for SS vs ST and were high for all vegetables. Response distribution was not significantly different for SS vs ST vegetables when people were asked if they would purchase the vegetable that they selected. More customers chose the 'somewhat likely' and 'very likely' (n = 353) than the 'not likely' and 'definitely would not' (n = 121) purchase responses. Regression showed that people who did not often consume a vegetable with lunch while dining out were 1.59 times more likely to select the SS vegetables over the ST (p = 0.007). Given a choice, consumers were more likely to select a seasoned vegetable. With low vegetable consumption as a predictor of seasoned vegetable choice, offering seasoned vegetables may increase intake in those with poor vegetable intake in a café setting. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Modeling of microwave scattering from vegetated covered terrain

    NASA Technical Reports Server (NTRS)

    Lang, R. H.

    1982-01-01

    General formulation of resonant backscattering from vegetation, mean field and Green's function in three media, and electromagnetic backscattering coefficients from a layer of vegetation are discussed.

  3. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  4. Abrupt vegetation transitions characterise long-term Amazonian peatland development

    NASA Astrophysics Data System (ADS)

    Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.

    2012-04-01

    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet

  5. A practical scientific approach to riparian vegetation rehabilitation in Australia.

    PubMed

    Webb, Ashley A; Erskine, Wayne D

    2003-08-01

    The clearance of indigenous riparian vegetation and removal of large woody debris (LWD) from streams combined with the planting of exotic plant species has resulted in widespread detrimental impacts on the fluvial geomorphology and aquatic ecology of Australian rivers. Vegetation exerts a significant influence on fluvial geomorphology by affecting resistance to flow, bank strength, sediment storage, bed stability and stream morphology and is important for aquatic ecosystem function. As the values of indigenous riparian vegetation are becoming better recognised by Australian river managers, large amounts of money and resources are being invested in the planting of indigenous riparian vegetation as part of river rehabilitation programs. This paper summarises the results of an investigation into the survival, growth and regeneration rates of a series of trial native riparian vegetation plantings on in-channel benches in the Hunter Valley of southeastern Australia. The trials were poorly designed for statistical analysis and the paper highlights a number of shortcomings in the methods used. As a result, a new approach to riparian vegetation rehabilitation is outlined that promotes the use of scientific principles and understanding. Appropriate species should be selected using a combination of remnant vegetation surveys, historical records, palynology and field trials. A number of important factors should be considered in the rehabilitation of riparian vegetation to achieve worthwhile results. These include flood disturbance, vegetation zonation, vegetation succession, substrate composition, corridor planting width, planting techniques, native plant regeneration, LWD recruitment and adaptive ecosystem management. This approach, if adopted, revised and improved by river managers, should result in greater success than has been achieved by previous riparian vegetation rehabilitation efforts in Australia.

  6. Health-promoting components of fruits and vegetables in the diet.

    PubMed

    Liu, Rui Hai

    2013-05-01

    Regular consumption of fruits, vegetables, whole grains, and other plant foods has been negatively correlated with the risk of the development of chronic diseases. There is a huge gap between the average consumption of fruits and vegetables in Americans and the amount recommended by the 2010 Dietary Guidelines for Americans. The key is to encourage consumers to increase the total amount to 9 to 13 servings of fruits and vegetables in all forms available. Fresh, processed fruits and vegetables including frozen and canned, cooked, 100% fruit juices and 100% vegetable juices, as well as dry fruits are all considered as servings of fruits and vegetables per day. A wide variety of fruits, vegetables, whole grains, and other plant foods provide a range of nutrients and different bioactive compounds including phytochemicals, vitamins, minerals, and fibers. Potatoes serve as one of the low-fat foods with unique nutrients and phytochemical profiles, particularly rich in vitamin C, vitamin B-6, potassium, manganese, and dietary fibers. Potatoes provide 25% of vegetable phenolics in the American diet, the largest contributors among the 27 vegetables commonly consumed in the United States, including flavonoids (quercetin and kaempferol), phenolic acids (chlorogenic acid and caffeic acid), and carotenoids (lutein and zeaxanthin). More and more evidence suggests that the health benefits of fruits, vegetables, whole grains, and other plant foods are attributed to the synergy or interactions of bioactive compounds and other nutrients in whole foods. Therefore, consumers should obtain their nutrients, antioxidants, bioactive compounds, and phytochemicals from a balanced diet with a wide variety of fruits, vegetables, whole grains, and other plant foods for optimal nutrition, health, and well-being, not from dietary supplements.

  7. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  8. Estimating wheat growth with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    In this study, we computed the Radar Vegetation Index (RVI) using observations made with a ground based multi-frequency polarimetric scatterometer system over an entire wheat growth period. The temporal variations of the backscattering coefficients for L-, C-, and X-band, RVI, vegetation water conte...

  9. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography

    NASA Astrophysics Data System (ADS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  10. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)

    USGS Publications Warehouse

    Wilson, Natalie R.; Norman, Laura

    2018-01-01

    Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports and even increases vegetation health despite ongoing drought conditions in this arid watershed. However, the extent of restoration impacts is still unknown despite qualitative observations of improvement in surrounding vegetation amount and vigor. We analyzed spatial and temporal trends in vegetation greenness and soil moisture by applying the normalized difference vegetation index (NDVI) and normalized difference infrared index (NDII) to one dry summer season Landsat path/row from 1984 to 2016. The study area was divided into zones and spectral data for each zone was analyzed and compared with precipitation record using statistical measures including linear regression, Mann– Kendall test, and linear correlation. NDVI and NDII performed differently due to the presence of continued grazing and the effects of grazing on canopy cover; NDVI was better able to track changes in vegetation in areas without grazing while NDII was better at tracking changes in areas with continued grazing. Restoration impacts display higher greenness and vegetation water content levels, greater increases in greenness and water content through time, and a decoupling of vegetation greenness and water content from spring precipitation when compared to control sites in nearby tributary and upland areas. Our results confirm the potential of erosion control structures to affect areas up to 5 km downstream of restoration sites over time and to affect 1 km upstream of the sites.

  11. Predicting adolescents' intake of fruits and vegetables.

    PubMed

    Lytle, Leslie A; Varnell, Sherri; Murray, David M; Story, Mary; Perry, Cheryl; Birnbaum, Amanda S; Kubik, Martha Y

    2003-01-01

    To explore potential predictors of adolescents' fruit and vegetable intake by expanding on current theory and drawing from other adolescent research. This research reports on baseline and interim data from a school-based intervention study. Data were collected through surveys administered to students at the beginning and end of their 7th grade year. The students attended 16 public schools in Minnesota. Data were collected on 3878 students; approximately half were female and 67% were white. All students in the 7th grade cohort were invited to participate in the surveys and over 94% completed both surveys. Our dependent variable, fruit and vegetable intake, was assessed by a validated fruit and vegetable food frequency scale. Predictive factors assessed included parenting style, spirituality/religiosity, depressive symptoms, and other commonly assessed predictors. Generalized linear mixed model regression. Omnibus test of association using P <.05 is reported. Subjective norms, barriers, knowledge, usual food choice, parenting style, spirituality/religiosity, and depressive symptoms were statistically significant predictors of intake. The model explained about 31% of the variance in fruit and vegetable consumption. To better understand adolescents' fruit and vegetable intake, we must explore novel predictors. Our results need to be replicated, and more exploratory research in this field is needed.

  12. Fruit and vegetable intake in the Czech child population.

    PubMed

    Jakubikova, Marie; Dofkova, Marcela; Ruprich, Jiri

    2011-06-01

    To describe fruit and vegetable intake of pre-school and school children in the Czech Republic and to provide information about their preferences and dietary habits. Cross-sectional dietary survey conducted by the method of repeated 24 h recall on two non-consecutive days. Usual intakes were calculated for three age categories (4-6, 7-10 and 11-14 years). The whole area of the Czech Republic. A subgroup of 602 children aged 4-14 years was extracted from the representative sample of respondents participating in a national dietary survey (SISP) realized in the years 2003 and 2004. Estimated average usual intakes of fruit and vegetables were 209 (sd 69) g/d in children aged 4-6 years, 230 (sd 84) g/d in children aged 7-10 years, and 284 (sd 133) g/d and 261 (sd 140) g/d respectively in boys and girls aged 11-14 years. Only 22 % of children had total daily intake of fruit and vegetables of five or more servings on the day of the survey. Fruits were consumed almost two times more often than vegetables in all age groups studied. The majority of fruit consumption comprised apples and bananas, which made up more than 60 % of the whole fruit intake. Fruiting vegetables were the most frequently consumed group of vegetables. Fruit and vegetable intakes in all age categories were under recommended levels and the diversity of fruit and vegetables consumed by the Czech children was relatively low.

  13. Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations

    Treesearch

    Timothy B. Harrington; M. Boyd Edwards

    1999-01-01

    In six 8- to 11-year-old plantations of longleaf pine (Pinus palustris Mill.) near Aiken, S.C., responses of understory vegetation, light, and soil water availability and litterfall were studied in relation to pine thinning (May 1994), herbicidal treatment of nonpine woody vegetation (1995-1996), or the combined treatments (treatment responses...

  14. Contributions of seed bank and vegetative propagules to vegetation composition on prairie dog colonies in western South Dakota

    Treesearch

    Emily R. Helms; Lan Xu; Jack L. Butler

    2012-01-01

    Characterizing the contributions of the seed bank and vegetative propagules will enhance our understanding of community resiliency associated with prairie dog disturbances. Our objective was to determine the effects of ecological condition (EC) and distance from burrows on the soil seed bank and vegetative propagules. Based on species composition of the extant...

  15. The interaction between vegetation and channel dynamics based on experimental findings

    NASA Astrophysics Data System (ADS)

    Teske, R.; Van Dijk, W. M.; Van De Lageweg, W.; Kleinhans, M. G.

    2012-12-01

    Strong feedbacks exist between river channel dynamics, floodplain development and riparian vegetation. Several experimental studies showed how uniformly sown vegetation causes a shift from a braided river to a single-thread and sometimes meandering river. The objective of this study is to test what the effect of fluvially distributed seeds and vegetation settling is on channel pattern change and channel dynamics. The experiments were carried out in a flume of 3 m wide and 10 m long. We tested where the vegetation deposited in a braided and meandering river and how the morphology changed. We used a simple hydrograph of 0.25 hour high flow and 3.75 hour low flow, where alfalfa seeds were added during high flow. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by a high-resolution laser-line scanner and a Digital Single Lens Reflex (DSLR) camera used for channel floodplain segmentation, water depth approximation and vegetation distribution. In an initially braided river, vegetation settled on the higher banks and stabilized the banks. In an initially meandering river, vegetation settled in the inner scrolls, and also on the outer banks when water level exceeded bankfull conditions. In agreement with earlier work, the outer bank was stabilized; erosion rate decreased and bends became sharper. The inner bend vegetation stabilized a part of the point bar and hydraulic resistance of the vegetation steered water in the channel and to the non-vegetated part of the inner bend. As result the meander bend became braided as water flows along the vegetation. Vegetation formed patches that grew over time and reduced channel dynamics. We conclude that self-settling vegetation decreased local bank erosion and that vegetated islands leads to a multi-thread system instead of single-threaded.

  16. Nutrient Density and the Cost of Vegetables from Elementary School Lunches.

    PubMed

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. © 2016 American Society for Nutrition.

  17. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    PubMed

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  18. Hydrological effect of vegetation against rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ollauri, Alejandro; Mickovski, Slobodan B.

    2017-06-01

    The hydrological effect of vegetation on rainfall-induced landslides has rarely been quantified and its integration into slope stability analysis methods remains a challenge. Our goal was to establish a reproducible, novel framework to evaluate the hydrological effect of vegetation on shallow landslides. This was achieved by accomplishing three objectives: (i) quantification in situ of the hydrological mechanisms by which woody vegetation (i.e. Salix sp.) might impact slope stability under wetting and drying conditions; (ii) to propose a new approach to predict plant-derived matric suctions under drying conditions; and (iii) to evaluate the suitability of the unified effective stress principle and framework (UES) to quantify the hydrological effect of vegetation against landslides. The results revealed that plant water uptake was the main hydrological mechanism contributing to slope stability, as the vegetated slope was, on average, 12.84% drier and had matric suctions three times higher than the fallow slope. The plant-related mechanisms under wetting conditions had a minimal effect on slope stability. The plant aerial parts intercepted up to 26.73% of the rainfall and concentrated a further 10.78% of it around the stem. Our approach successfully predicted the plant-derived matric suctions and UES proved to be adequate for evaluating the hydrological effect of vegetation on landslides. Although the UES framework presented here sets the basis for effectively evaluating the hydrological effect of vegetation on slope stability, it requires knowledge of the specific hydro-mechanical properties of plant-soil composites and this in itself needs further investigation.

  19. Vegetation classification, mapping, and monitoring at Voyageurs National Park, Minnesota: An application of the U.S. National Vegetation Classification

    USGS Publications Warehouse

    Faber-Langendoen, D.; Aaseng, N.; Hop, K.; Lew-Smith, M.; Drake, J.

    2007-01-01

    Question: How can the U.S. National Vegetation Classification (USNVC) serve as an effective tool for classifying and mapping vegetation, and inform assessments and monitoring? Location: Voyageurs National Park, northern Minnesota, U.S.A and environs. The park contains 54 243 ha of terrestrial habitat in the sub-boreal region of North America. Methods: We classified and mapped the natural vegetation using the USNVC, with 'alliance' and 'association' as base units. We compiled 259 classification plots and 1251 accuracy assessment test plots. Both plot and type ordinations were used to analyse vegetation and environmental patterns. Color infrared aerial photography (1:15840 scale) was used for mapping. Polygons were manually drawn, then transferred into digital form. Classification and mapping products are stored in publicly available databases. Past fire and logging events were used to assess distribution of forest types. Results and Discussion: Ordination and cluster analyses confirmed 49 associations and 42 alliances, with three associations ranked as globally vulnerable to extirpation. Ordination provided a useful summary of vegetation and ecological gradients. Overall map accuracy was 82.4%. Pinus banksiana - Picea mariana forests were less frequent in areas unburned since the 1930s. Conclusion: The USNVC provides a consistent ecological tool for summarizing and mapping vegetation. The products provide a baseline for assessing forests and wetlands, including fire management. The standardized classification and map units provide local to continental perspectives on park resources through linkages to state, provincial, and national classifications in the U.S. and Canada, and to NatureServe's Ecological Systems classification. ?? IAVS; Opulus Press.

  20. Genetically engineered plants with increased vegetative oil content

    DOEpatents

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  1. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with...

  2. Modelling of backscatter from vegetation layers

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Engheta, N.; Papas, C. H.; Elachi, C.; Zebker, H.

    1985-01-01

    A simple way to build up a library of models which may be used to distinguish between the different types of vegetation and ground surfaces by means of their backscatter properties is presented. The curve of constant power received by the antenna (Gamma sphere) is calculated for the given Stokes Scattering Operator, and model parameters are adopted of the most similar library model Gamma sphere. Results calculated for a single scattering model resembling coniferous trees are compared with the Gamma spheres of a model resembling tropical region trees. The polarization which would minimize the effect of either the ground surface or the vegetation layer can be calculated and used to analyze the backscatter from the ground surface/vegetation layer combination, and enhance the power received from the desired part of the combination.

  3. Arsenic uptake and speciation in vegetables grown under greenhouse conditions.

    PubMed

    Smith, E; Juhasz, A L; Weber, J

    2009-04-01

    The accumulation of arsenic (As) by vegetables is a potential human exposure pathway. The speciation of As in vegetables is an important consideration due to the varying toxicity of different As species. In this study, common Australian garden vegetables were hydroponically grown with As-contaminated irrigation water to determine the uptake and species of As present in vegetable tissue. The highest concentrations of total As were observed in the roots of all vegetables and declined in the aerial portions of the plants. Total As accumulation in the edible portions of the vegetables decreased in the order radish > mung bean > lettuce = chard. Arsenic was present in the roots of radish, chard, and lettuce as arsenate (As(V)) and comprised between 77 and 92% of the total As present, whereas in mung beans, arsenite (As(III)) comprised 90% of the total As present. In aerial portions of the vegetables, As was distributed equally between both As(V) and As(III) in radish and chard but was present mainly as As(V) in lettuce. The presence of elevated As in vegetable roots suggests that As species may be complexed by phytochelatins, which limits As translocation to aerial portions of the plant.

  4. Bonneville - Hood River Vegetation Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined thatmore » the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.« less

  5. Calculation of the Moments of Polygons.

    DTIC Science & Technology

    1987-06-01

    2.1) VowUK-1N0+IDIO TUUNTKPlNO.YKNO C Calculate AREA YKXK-YKPIND*IKNO-YKNO*XKP1NO AIKA-hEEA4YKXX C Calculate ACEIT ACENT (1)- ACEIT ( 1) VSUNI4TKIK... ACEIT (2) -ACENT(2) .VSUNYKXK C Calculate SECHON 3ECNON (1) -SCNON( 1) TKXK*(XX~PIdO*VSUNXKKO**2) SECNO(2) -SEn N(2) .yrf* (XKP114*YKP1MO.XKO*YXO+VB1hi

  6. Fruit and vegetable shopping practices and social support scales: A validation.

    PubMed

    Baranowski, Tom; Missaghian, Mariam; Broadfoot, Alison; Watson, Kathy; Cullen, Karen; Nicklas, Theresa; Fisher, Jennifer; Baranowski, Janice; O'Donnell, Sharon

    2006-01-01

    To assess the psychometric characteristics of new scales of shopping practices and social support for purchasing fruits and vegetables. Participants were recruited in front of diverse grocery stores. Telephone data collection was done on 2 occasions, separated by 6 weeks. 166 food shoppers with children at home participated. New scales of food shopping practices and social support for purchasing fruits and vegetables were psychometrically analyzed and related to a measure of home fruit or vegetable availability as a test of construct validity. Both classical test and item response theory procedures were used. Correlations related the new measures to home fruit and vegetable availability. Single dimension scales were specified for fruit and vegetable shopping practices (35% of the variance), fruit purchase social support (53% of the variance), and vegetable purchase social support (52% of the variance). Item response theory difficulty estimates varied from -0.64 to 0.73 for fruit and vegetable shopping practices, from -0.55 to 0.33 for fruit purchase social support, and from -0.55 to 0.34 for vegetable social support. Each scale significantly correlated with home fruit and vegetable availability (construct validity), even after controlling for social desirability of response (0.19 for shopping practices, 0.37 for fruit purchasing social support, and 0.28 for vegetable purchasing social support). Person separation reliability was 0.80 for food shopping practices, 0.74 for fruit purchasing social support, and 0.73 for vegetable purchasing social support. The scales performed well. These scales are now available to help better understand fruit and vegetable shopping practices, fruit purchase social support, and vegetable purchase social support.

  7. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  8. Trend analysis of vegetation in Louisiana's Atchafalaya river basin

    USGS Publications Warehouse

    O'Neil, Calvin P.; deSteiguer, J. Edward; North, Gary W.

    1978-01-01

    The purpose of the study was to determine vegetation succession trends; produce a current vegetation map of the basin; and to develop a mathematical model capable of predicting vegetation changes based on hydrologic factors. A statistical relationship of forests and hydrological variables with forest succession constraints predicted forest acreage totals for 16 forest categories within 70% or better of actual values in two-thirds of the cases. Using time-lapsed photography covering 42 years, 23 categories were described. The succession trend of vegetation since 1930, by sedimentation, had been toward mixed hardwoods, except for isolated areas. Satellite MSS Band 7 imagery was used to map the current vegetation into three main categories and for assessment of acreage. Additionally, a geological anomaly was recognized on satellite imagery indication an effect on drainage and sedimentation.

  9. Stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake and related psychosocial factors.

    PubMed

    Chee Yen, Wong; Mohd Shariff, Zalilah; Kandiah, Mirnalini; Mohd Taib, Mohd Nasir

    2014-06-01

    Understanding individual's intention, action and maintenance to increase fruit and vegetable intake is an initial step in designing nutrition or health promotion programs. This study aimed to determine stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake, self-efficacy, perceived benefits and perceived barriers. This cross-sectional study was conducted among 348 public university staff in Universiti Putra Malaysia. A pre-tested self-administered questionnaire and two days 24-hour diet recall were used. Half of the respondents (50%) were in preparation stage, followed by 43% in action/maintenance, 7% in pre-contemplation/contemplation stages. Respondents in action/maintenance stages had significantly higher self-efficacy (F = 9.17, P < 0.001) and perceived benefits (F = 5.07, P < 0.01) while respondents in pre-contemplation/contemplation and preparation stages had significantly higher perceived barriers (F = 4.83, P < 0.05). Perceived benefits tend to outweigh perceived barriers pre-ceding to taking action. Self-efficacy is important in motivating individuals to increase fruit and vegetable intake as self-efficacy and perceived barriers crossed over between preparation and action/maintenance. Respondents in action/maintenance stages had the highest adjusted mean serving of fruit and vegetable intake (F = 4.52, P < 0.05) but the intake did not meet recommendation. Intervention strategies should emphasize on increasing perceived benefits and building self-efficacy by providing knowledge and skills to consume a diet high in fruits and vegetables in order to promote healthy changes in having high fruit and vegetable intake.

  10. [Contamination and health risk for heavy metals via consumption of vegetables grown in fragmentary vegetable plots from a typical nonferrous metals mine city].

    PubMed

    Li, Ru-Zhong; Pan, Cheng-Rong; Xu, Jing-Jing; Chen, Jing; Jiang, Yan-Min

    2013-03-01

    A systematic survey of As, Ni, Cu, Pb, Cd and Zn concentrations in eight kinds of vegetables (involving 226 samples) and their corresponding soils at 35 sampling sites in the fragmentary vegetable plots of a typical nonferrous metals mine city, Tongling, was carried out for assessing heavy metal pollution, bio-accumulation ability and potential health risk to local inhabitants due to exposure via consumption of vegetables. The results showed that: (1) The soils of the studied vegetable plots were seriously contaminated by heavy metals and the mean concentrations of As, Ni, Cu, Pb, Cd and Zn reached 96.96, 56.64, 1 247.82, 313.59, 6.743 and 600.96 mg x kg(-1), respectively, all significantly exceeding the soil background value of Tongling city; (2) The mean values of integrated pollution index corresponding to eight varieties of vegetables were all higher than the threshold value (i. e. 3.0) of heavy pollution; (3) In general, the largest bioaccumulation factor of heavy metals in vegetables was As, followed by Ni and Cu, and the order of pollution degree of heavy metals in vegetables was Ni > Zn > Cu > Pb > As > Cd; (4) The target hazard quotients (THQs) of As, Ni, Cu, Pb, Cd and Zn were 17.92, 1.01, 10.14, 0.73, 0.21 and 1.93, respectively. Arsenic and copper were the major risk contributors for inhabitants since the THQs of them respectively mounted to 56.10% and 31.75% of the total THQ value according to the average vegetable consumption; (5) The estimated daily intake (DI) of As, Ni, Cu, Pb, Cd and Zn from vegetables was 324.38, 1 211.25, 24 326.25, 176.25, 12.75 and 34 800 microg x d(-1) for adult residents, respectively; and (6) The target cancer risk (TR) of vegetables polluted by As to individual human health was 8.06 x 10(-3), significantly higher than the management standard (i. e. 10(-6) - 10(-4)) of United States Environmental Protection Agency (US EPA) and the standard (i. e. 5.0 x 10(-5)) of International Commission on Radiological Protection (ICRP

  11. Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases

    PubMed Central

    Zheng, Jie; Zhou, Yue; Li, Sha; Zhang, Pei; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2017-01-01

    Many studies have indicated that consumption of vegetables and fruits are positively related to lower incidence of several chronic noncommunicable diseases. Although composition of fruit and vegetable juices is different from that of the edible portion of fruits and vegetables, they contain polyphenols and vitamins from fruits and vegetables. Drinking vegetable and fruit juices is very popular in many countries, and also an efficient way to improve consumption of fruits and vegetables. The studies showed that fruit and vegetable juices affect cardiovascular risk factors, such as lowering blood pressure and improving blood lipid profiles. The main mechanisms of action included antioxidant effects, improvement of the aspects of the cardiovascular system, inhibition of platelet aggregation, anti-inflammatory effects, and prevention of hyperhomocysteinemia. Drinking juices might be a potential way to improve cardiovascular health, especially mixtures of juices because they contain a variety of polyphenols, vitamins, and minerals from different fruits and vegetables. This review summarizes recent studies on the effects of fruit and vegetable juices on indicators of cardiovascular disease, and special attention is paid to the mechanisms of action. PMID:28273863

  12. A Reference Unit on Home Vegetable Gardening.

    ERIC Educational Resources Information Center

    McCully, James S., Comp.; And Others

    Designed to provide practical, up-to-date, basic information on home gardening for vocational agriculture students with only a limited knowledge of vegetable gardening, this reference unit includes step-by-step procedures for planning, planting, cultivating, harvesting, and processing vegetables in a small plot. Topics covered include plot…

  13. Weed Identification and Control in Vegetable Crops.

    ERIC Educational Resources Information Center

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  14. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  15. Status of Vegetation Classification in Redwood Ecosystems

    Treesearch

    Thomas M. Mahony; John D. Stuart

    2007-01-01

    Vegetation classifications, based primarily on physiognomic variability and canopy dominants and derived principally from remotely sensed imagery, have been completed for the entire redwood range (Eyre 1980, Fox 1989). However, systematic, quantitative, floristic-based vegetation classifications in old-growth redwood forests have not been completed for large portions...

  16. Uprooting of flexible riparian vegetation: field and laboratory observations

    NASA Astrophysics Data System (ADS)

    Solari, L.; Calvani, G.; Francalanci, S.

    2017-12-01

    Vegetation is a key element in fluvial systems, controlling river corridor form and dynamics. Plants actively interact with fluvial processes; their aboveground biomass can affect the flow field and sediment transport and therefore river morphological evolution, whereas their belowground biomass modifies the hydraulic and mechanical properties of the substrate, and consequently the moisture regime and erodibility of the soil (Gurnell, 2014; Solari et al., 2015). Vegetation biomass can either increase over time or can die through the mechanism of uprooting. Despite its important implications in river morphodynamics, vegetation uprooting due to sediment transport during flood events have been poorly investigated (Edmaier et al., 2011). Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction (Bywater-Reyes et al., 2015, among others). In this work, we focus on the uprooting of flexible juvenile seedlings vegetation due to flow and to bed erosion. First, we derive a physics-based model for the prediction of vegetation uprooting for given root geometry, soil strength characteristics, flow bed shear stress and bed erosion. The model is then tested in a laboratory flume using two different species of vegetation: Avena sativa and Salix purpurea. Various experiments were run considering increasing flow discharges and a quasi- parallel bed erosion. The vegetation model is then applied to a sediment bar in the Ombrone Pistoiese river where we observed the removal of Salix Purpurea during the flood of November 2016. We implemented a 2D hydraulic model to reconstruct the pattern of bed shear stresses on the bar and we compared the prediction of the vegetation model with the field surveys of Salix purpurea before and after the flood. Results suggest that juvenile seedlings can be easily removed by the flow provided sediment transport takes place.

  17. Advances in Studies on Natural Preservativesfor Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Gao, Haisheng; Shi, Pengbao; Zhao, Yuhua

    The author introduced g eneral research and application situations of natural preservatives for fruits and vegetables all over the world these years, and summarized application of vegetation of Murraya in Rutaceae, Cinnamomum in Lauraceae, Artemisia in Compositae and other families and genera on fruits and vegetables preservation and fresh-keeping. Decoction or extraction of Chinese traditional medicine, such as Alpinia Officinarum, Amarphalus Konjac K., stemona etc, could be used in fresh-keeping for orange, apple, strawberry, edible fungi and so on. Garlic could be used in fresh-keeping for orange. Phytic acid and fresh-keeping agents compounded with Phytic acid could extend storage periods of easily rotting fruits and vegetables, such as strawberry, banana, cantaloup, edible fungi and so on, and better keep original fresh condition. Extraction of Snow Fresh, Semper Fresh, Arthropod shell extraction, and halite also had better effect on preservation and fresh-keeping for fruits and vegetables. Main problems exsited in the application of natural preservatives for fruits and vegetables were showed in this article and the applying prospect were discussed too.

  18. Terrestrial vegetation redistribution and carbon balance under climate change

    PubMed Central

    Lucht, Wolfgang; Schaphoff, Sibyll; Erbrecht, Tim; Heyder, Ursula; Cramer, Wolfgang

    2006-01-01

    Background Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100. PMID:16930462

  19. Application of a coupled vegetation competition and groundwater simulation model to study effects of sea level rise and storm surges on coastal vegetation

    USGS Publications Warehouse

    Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye

    2015-01-01

    Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  20. Will European agricultural policy for school fruit and vegetables improve public health? A review of school fruit and vegetable programmes.

    PubMed

    de Sa, Joia; Lock, Karen

    2008-12-01

    For the first time, public health, particularly obesity, is being seen as a driver of EU agricultural policy. In 2007, European Ministers of Agriculture were asked to back new proposals for school fruit and vegetable programmes as part of agricultural reforms. In 2008, the European Commission conducted an impact assessment to assess the potential impact of this new proposal on health, agricultural markets, social equality and regional cohesion. A systematic review of the effectiveness of interventions to promote fruit and/or vegetable consumption in children in schools, to inform the EC policy development process. School schemes are effective at increasing both intake and knowledge. Of the 30 studies included, 70% increased fruits and vegetables (FV) intake, with none decreasing intake. Twenty-three studies had follow-up periods >1 year and provide some evidence that FV schemes can have long-term impacts on consumption. Only one study led to both increased fruit and vegetable intake and reduction in weight. One study showed that school fruit and vegetable schemes can also help to reduce inequalities in diet. Effective school programmes have used a range of approaches and been organized in ways which vary nationally depending on differences in food supply chain and education systems. EU agriculture policy for school fruits and vegetables schemes should be an effective approach with both public health and agricultural benefits. Aiming to increase FV intake amongst a new generation of consumers, it will support a range of EU policies including obesity and health inequalities.

  1. Substitution or addition? How overweight and obese adults incorporate vegetables into their diet during a randomized controlled vegetable feeding trial

    USDA-ARS?s Scientific Manuscript database

    Objective: When attempting to eat healthier, individuals may add vegetables to their diet (addition) without changing other eating behaviors. Alternatively, individuals adding vegetables may decrease consumption of other foods (substitution). Distinguishing between the two means of incorporation of ...

  2. Assessment of Vegetation Stress Using Reflectance or Fluorescence Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. E.; Middleton, E. M.; McMurtrey, J. E.; Corp, L. A.; Chappelle, E. W.

    2007-01-01

    Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation. Fluorescence and R spectra (400-800 nm) were measured on the same foliar samples in conjunction with photosynthetic pigments, carbon, and N content For separation of a wide range of treatment levels, hyperspectral (5-10 nm) R indices were superior compared with F or broadband R indices, with the derivative parameters optimal results. For the detection of changes in vegetation physiology, hyperspectral indices can provide a significant improvement over broadband indices. The relationship of treatment levels to R was linear, whereas that to F was curvilinear. Using reflectance measurements, it was not possible to identify the unstressed vegetation condition, which was accomplished in all three experiments using F indices. Large-scale monitoring of vegetation condition and the detection of vegetation stress could be improved by using hyperspectral R and F information, a possible strategy for future remote sensing missions.

  3. Effects of sand fences on coastal dune vegetation distribution

    NASA Astrophysics Data System (ADS)

    Grafals-Soto, Rosana

    2012-04-01

    Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.

  4. Marketing Vegetables in Elementary School Cafeterias to Increase Uptake.

    PubMed

    Hanks, Andrew S; Just, David R; Brumberg, Adam

    2016-08-01

    Children do not eat enough servings of vegetables, underscoring the need for effective interventions encouraging this behavior. The purpose of this research was to measure the impact that daily exposure to branded vegetable characters has on vegetable selection among boys and girls in elementary schools. In a large urban school district, 10 elementary schools agreed to participate in the study. They were randomly assigned to a control condition or 1 of 3 treatment conditions: (1) a vinyl banner displaying vegetable characters that was fastened around the base of the salad bar; (2) short television segments with health education delivered by vegetable characters; or (3) a combination of the vinyl banner and television segments. We collected 22 206 student-day observations over a 6-week period by tallying the number of boys and girls taking vegetables from the school's salad bar. Results show that 90.5% (from 12.6% to 24.0%; P = .04) more students took vegetables from the salad bar when exposed to the vinyl banner only, and 239.2% (from 10.2% to 34.6%; P < .001) more students visited the salad bar when exposed to both the television segments and vinyl banners. Both boys and girls responded positively to the vinyl banners (P < .05 in both cases). Evidence from this study highlights the positive impact of branded media on children's vegetable selection in the school cafeteria. Results from this study suggest potential opportunities for using branded media to encourage healthier choices for children. Copyright © 2016 by the American Academy of Pediatrics.

  5. Neogene biomarker record of vegetation change in eastern Africa

    PubMed Central

    Polissar, Pratigya J.; Jackson, Kevin E.; deMenocal, Peter B.

    2016-01-01

    The evolution of C4 grassland ecosystems in eastern Africa has been intensely studied because of the potential influence of vegetation on mammalian evolution, including that of our own lineage, hominins. Although a handful of sparse vegetation records exists from middle and early Miocene terrestrial fossil sites, there is no comprehensive record of vegetation through the Neogene. Here we present a vegetation record spanning the Neogene and Quaternary Periods that documents the appearance and subsequent expansion of C4 grasslands in eastern Africa. Carbon isotope ratios from terrestrial plant wax biomarkers deposited in marine sediments indicate constant C3 vegetation from ∼24 Ma to 10 Ma, when C4 grasses first appeared. From this time forward, C4 vegetation increases monotonically to present, with a coherent signal between marine core sites located in the Somali Basin and the Red Sea. The response of mammalian herbivores to the appearance of C4 grasses at 10 Ma is immediate, as evidenced from existing records of mammalian diets from isotopic analyses of tooth enamel. The expansion of C4 vegetation in eastern Africa is broadly mirrored by increasing proportions of C4-based foods in hominin diets, beginning at 3.8 Ma in Australopithecus and, slightly later, Kenyanthropus. This continues into the late Pleistocene in Paranthropus, whereas Homo maintains a flexible diet. The biomarker vegetation record suggests the increase in open, C4 grassland ecosystems over the last 10 Ma may have operated as a selection pressure for traits and behaviors in Homo such as bipedalism, flexible diets, and complex social structure. PMID:27274042

  6. Whole grain gluten-free vegetable spicy snacks

    USDA-ARS?s Scientific Manuscript database

    Four kinds of spicy snacks (gluten-free, whole grains with fresh vegetables, low in fat, sugar and salt) were evaluated. Acceptance of spicy snacks tested were Carrot-Garlic 77%, Broccoli-Garlic 68%, Spinach-Garlic 61% and Red Onion 53%. This is the first report of spicy gluten-free, 50% vegetable...

  7. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    USGS Publications Warehouse

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic

  8. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  9. Microbial keratitis following vegetative matter injury.

    PubMed

    Taneja, Mukesh; Ashar, Jatin N; Mathur, Anurag; Nalamada, Suma; Garg, Prashant

    2013-04-01

    The purpose of the present study was to analyze the microbiological profile of cases of keratitis following trauma with vegetative matter in a tertiary care center. A retrospective review of the medical records of 49 patients with keratitis following vegetative matter injury over a 3-month period was performed. All patients underwent corneal scraping for smears and inoculation onto various culture media. The microbiological profile was based on the smear and culture reports. For patients who were culture-negative, outcome after standard empirical antibacterial therapy as per hospital protocol was analyzed. Thirteen patients with corneal ulcers had fungal etiology, eight had bacterial etiology, and two had protozoal etiology, while 13 patients were polymicrobial and 13 were culture-negative. Polymicrobial infections were mainly bacterial (eight cases), and the remaining five cases had coexistent fungal and bacterial etiology. The treatment was directed to the specific organism and patients improved with medical or surgical therapy. Only a third of culture-negative cases showed fungal etiology on biopsy or histopathology after keratoplasty while a third showed improvement with therapy. Corneal infections following vegetative matter trauma show a varied etiological profile; however, bacterial and polymicrobial infections are more prevalent. Empirical anti-fungal therapy, as commonly practiced, must be avoided in cases with vegetative matter injury.

  10. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.

  11. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.

    PubMed

    Xu, Hao-Jie; Wang, Xin-Ping; Yang, Tai-Bao

    2017-02-01

    Central Eurasian vegetation is critical for the regional ecological security and the global carbon cycle. However, climatic impacts on vegetation growth in Central Eurasia are uncertain. The reason for this uncertainty lies in the fact that the response of vegetation to climate change showed nonlinearity, seasonality and differences among plant functional types. Based on remotely sensed vegetation index and in-situ meteorological data for the years 1982-2013, in conjunction with the latest land cover type product, we analyzed how vegetation growth trend varied across different seasons and evaluated vegetation response to climate variables at regional, biome and pixel scales. We found a persistent increase in the growing season NDVI over Central Eurasia during 1982-1994, whereas this greening trend has stalled since the mid-1990s in response to increased water deficit. The stalled trend in the growing season NDVI was largely attributed by summer and autumn NDVI changes. Enhanced spring vegetation growth after 2002 was caused by rapid spring warming. The response of vegetation to climatic factors varied in different seasons. Precipitation was the main climate driver for the growing season and summer vegetation growth. Changes in temperature and precipitation during winter and spring controlled the spring vegetation growth. Autumn vegetation growth was mainly dependent on the vegetation growth in summer. We found diverse responses of different vegetation types to climate drivers in Central Eurasia. Forests were more responsive to temperature than to precipitation. Grassland and desert vegetation responded more strongly to precipitation than to temperature in summer but more strongly to temperature than to precipitation in spring. In addition, the growth of desert vegetation was more dependent on winter precipitation than that of grasslands. This study has important implications for improving the performance of terrestrial ecosystem models to predict future vegetation

  12. Taste intensities of ten vegetables commonly consumed in the Netherlands.

    PubMed

    van Stokkom, V L; Teo, P S; Mars, M; de Graaf, C; van Kooten, O; Stieger, M

    2016-09-01

    Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by different methods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n=9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3mm (R1), 33.3mm (R2) and 66.7mm (R3) for each taste modality on a 100mm line scale. For saltiness, R1 and R3 differed (16.7mm and 56.7mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3mm). Significant differences (p<0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness. In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessing parents' receptiveness to a vegetable-focussed in-school nutrition intervention.

    PubMed

    Jongenelis, Michelle I; Pettigrew, Simone; Pratt, Iain S; Wright, Shannon; Myers, Gael

    2017-10-01

    Crunch&Sip is an Australian school-based initiative designed to increase the consumption of fruit, vegetables, and water among primary school children. To address the significant deficiencies in children's vegetable intake, the present study aimed to examine the responsiveness of parents (the main providers of food for Crunch&Sip) to a modified version of the program that focuses primarily on vegetable consumption. A total of 329 Western Australian parents completed an online questionnaire examining their support for a vegetable focus for Crunch&Sip and any perceived barriers, motivators, and facilitators. Most (80%) parents were supportive of a shift to a vegetable focus for Crunch&Sip. Belief in the effectiveness of Crunch&Sip at improving children's attitudes towards vegetables and increasing children's vegetable consumption was found to be significantly associated with levels of support. The most commonly nominated motivator was to improve their children's eating habits and the main facilitator was the perceived ability of teachers and peers to influence children's food consumption behaviours. Identified potential barriers included the difficulties associated with providing a variety of vegetables, maintaining freshness, and the preparation time required. The primary suggested strategy to overcome these barriers was for schools to conduct education sessions to provide information about vegetable provision options. The results suggest that parents can be supportive of school-based nutrition programs that specifically encourage the consumption of vegetables but they may require guidance to reduce the identified barriers related to vegetable provision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  15. Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2017-04-01

    Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape

  16. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  17. Spatial and spectral resolution necessary for remotely sensed vegetation studies

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1982-01-01

    An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).

  18. Liven Up Your Meals with Vegetables and Fruits

    MedlinePlus

    ... cook vegetables and fruits. Try grilling mushrooms, onions, peppers, or zucchini on a kabob skewer. Brush with ... vegetables to your pasta dish. Slip some herbs, peppers, spinach, red beans, onions, or cherry tomatoes into ...

  19. Potential in-class strategies to increase children's vegetable consumption.

    PubMed

    Sharp, Gemma; Pettigrew, Simone; Wright, Shannon; Pratt, Iain S; Blane, Sally; Biagioni, Nicole

    2017-06-01

    The Crunch&Sip programme is a school-based nutrition initiative designed to increase the fruit, vegetable and water intakes of primary-school children. In recognition of the notable deficits in children's vegetable consumption, the present study explored the receptivity of school staff to a realignment of the Crunch&Sip programme to feature a primary focus on vegetable consumption. This involved investigating school staff members' perceptions of relevant barriers, motivators and facilitators. A multi-method approach was adopted that involved four focus groups and a survey (administered in paper and online formats) containing a mixture of open- and closed-ended items. Western Australia. Staff from Western Australian schools participated in the focus groups (n 37) and survey (n 620). School staff were strongly supportive of modifying the Crunch&Sip programme to focus primarily on children's vegetable consumption and this was generally considered to be a feasible change to implement. Possible barriers identified included children's taste preferences and a perceived lack of parental support. Suggested strategies to overcome these barriers were education sessions for parents and children, teachers modelling vegetable consumption for their students and integrating vegetable-related topics into the school curriculum. School staff are likely to support the introduction of school-based nutrition programmes that specifically encourage the consumption of vegetables. Potential barriers may be overcome through strategies to engage parents and children.

  20. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  1. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Han, Ping; Luan, Yunxia; Ma, Xupu; Lu, Anxiang

    2016-10-15

    The increased use of plastic film in greenhouse vegetable production (GVP) could result in phthalate ester (PAE) contamination in vegetables. However, limited information is currently available on their occurrence and associated potential risks in GVP systems. The present study documents the occurrence and composition of 15 PAEs in soil, plastic film, and vegetable samples from eight large-scale GVP bases in Beijing, China. Results showed that PAEs are ubiquitous contaminants in these GVP bases. Total PAE concentrations ranged from 0.14 to 2.13mg/kg (mean 0.99mg/kg) in soils and from 0.15 to 6.94mg/kg (mean 1.49mg/kg) in vegetables. Di (2-ethylhexyl) phthalate, di-n-butyl phthalate, and diisobutyl phthalate were the most abundant components, which accounted for >90% of the total PAEs. This investigation also indicated that the widespread application of plastic film in GVP systems may be the primary source of these PAEs. The non-cancer and carcinogenic risks of target PAEs were estimated based on the exposures of vegetable intake. The hazard quotients of PAE in all vegetable samples were lower than 1 and the carcinogenic risks were also at acceptable levels for consumers. The data in this study can provide valuable information to understand the status of potential pollutants, specifically PAEs, in GVP systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brominated vegetable oil. 180.30 Section 180.30...

  3. Global vegetation productivity response to climatic oscillations during the satellite era.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Lombardozzi, Danica

    2016-10-01

    Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet, the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood. Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global vegetation productivity patterns. El Niño-Southern Oscillation (ENSO) phases (La Niña, neutral, and El Niño years) appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth's vegetated surface through directionally consistent influence on vegetation greenness. The Community Climate System Model (CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced variability. Several winter time internal climatic variation indices show strong potentials on predicting growing season vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield losses ahead of time. © 2016 John Wiley & Sons Ltd.

  4. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  5. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China

    PubMed Central

    Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values’ responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky

  6. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China.

    PubMed

    Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky

  7. Incorporating geometrically complex vegetation in a computational fluid dynamic framework

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick

    2015-04-01

    Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is

  8. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  9. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    PubMed

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  10. Increasing vegetable intake in Mexican-American youth: a randomized controlled trial.

    PubMed

    Johnston, Craig A; Palcic, Jennette L; Tyler, Chermaine; Stansberry, Sandra; Reeves, Rebecca S; Foreyt, John P

    2011-05-01

    Despite the health benefits, vegetable intake in youth remains below recommended levels. The purpose of our study was to compare two methods for increasing vegetable consumption. It was hypothesized that participants randomized to both the exposure-only and the pairing condition would increase their vegetable consumption and increase the variety of vegetables consumed. A total of 78 Mexican-American middle school-aged children from a charter school in Houston, TX, were randomized to a pairing condition (n=40) or an exposure-only condition (n=38) during the Spring 2009 semester. Children in the pairing condition were provided a preferred taste (peanut butter) paired with vegetables weekly at school during a nutrition class for 4 months. Children in the exposure-only condition received vegetables weekly during a nutrition class that covered the same material as the pairing condition. After 4 months, the pairing condition participants demonstrated significant increases in vegetable consumption (F=13.40, P<0.001) as well as variety of vegetables eaten (F=13.69, P<0.001) when compared to those in the exposure-only condition. The findings of this study suggest that the pairing of vegetables with a preferred taste, such as peanut butter, may be an effective technique in increasing consumption, especially in children who report being resistant to eating vegetables. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  11. Vegetation colonization of permafrost-related landslides, Ellesmere Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Cannone, Nicoletta; Lewkowicz, Antoni G.; Guglielmin, Mauro

    2010-12-01

    Relationships between vegetation colonization and landslide disturbance are analyzed for 12 active-layer detachments of differing ages located in three areas of the Fosheim Peninsula, Ellesmere Island (80°N). We discuss vegetation as an age index for landslides and a way to assess the time needed for complete recolonization of the surfaces since landslide detachment. Vegetation on undisturbed terrain is similar in the three areas but is more highly developed and complex inland due to a warmer summer climate. On a regional scale, the location of the area is as important as the effect of landslide age on vegetation colonization because of the influence of mesoclimatic conditions on vegetation development. On a landscape scale, there is a positive relationship between landslide age and vegetation development, as represented by total vegetation cover, floristic composition, and successional stage. Consequently, vegetation can be used at this scale as an indicator of landslide age. Fifty years are required to restore vegetation patches to a floristic composition similar to communities occurring in undisturbed conditions, but with lower floristic richness and a discontinuous cover and without well-developed layering. The shorter time needed for landslide recovery in the area with the warmest summer climate confirms the sensitivity of arctic vegetation to small differences in air temperature. This could trigger a set of interlinked feedbacks that would amplify future rates of climate warming.

  12. 7 CFR 319.56-10 - Importation of fruits and vegetables from Canada.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of fruits and vegetables from Canada. 319... Vegetables § 319.56-10 Importation of fruits and vegetables from Canada. (a) General permit for fruits and vegetables grown in Canada. Fruits and vegetables grown in Canada and offered for entry into the United...

  13. Vegetable Soup Activities.

    ERIC Educational Resources Information Center

    Shepard, Mary; Shepard, Ray

    Vegetable Soup is a new children's television series whose purpose is to counter the negative and destructive effects of racial isolation. This manual gives detailed instructions for discussion of activities that are presented during the television series such as: crafts, games, recipes, language activities, and children's questions. A list of…

  14. Influence of choice on vegetable intake in children: an in-home study.

    PubMed

    de Wild, Victoire W T; de Graaf, Cees; Boshuizen, Hendriek C; Jager, Gerry

    2015-08-01

    Children's vegetable consumption is still far below that recommended, and stimulating their intake is a challenge for caregivers. The objective of this study was to investigate whether choice-offering is an effective strategy to increase children's vegetable intake in an in-home situation. Seventy children (mean age 3.7; SD 1) randomly assigned to a choice or a no-choice condition, were exposed 12 times to six familiar target vegetables at home during dinner. In the choice group, two selected vegetables were offered each time, whereas the no-choice group only received one vegetable. Vegetable intake was measured by weighing children's plates before and after dinner. A mixed linear model with age, gender, and baseline vegetable liking as covariates was used to compare intake between the choice and the no-choice group. Mixed linear model analysis yielded estimated means for vegetable intake of 48.5 g +/- 30 in the no-choice group and 57.7 g +/- 31 for the choice group (P = 0.09). In addition, baseline vegetable liking (P <0.001) and age (P = 0.06) predicted vegetable intake to be higher when the child liked vegetables better and with older age. These findings suggest that choice-offering has some, but hardly robust, effect on increasing vegetable intake in children. Other factors such as age and liking of vegetables also mediate the effect of offering a choice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vegetation classification system for California: user's guide

    Treesearch

    Serena C. Hunter; Timothy E. Paysen

    1986-01-01

    The Vegetation Classification System for California is an unbiased system of defining and naming units of vegetation. The concept was devised by an interagency, interdisciplinary team (Paysen and others 1980, 1982). The system derives its uniqueness from its impartiality to any particular agency or resource discipline, thus providing a long-needed link between diverse...

  16. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  17. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  18. Building the United States National Vegetation Classification

    USGS Publications Warehouse

    Franklin, S.B.; Faber-Langendoen, D.; Jennings, M.; Keeler-Wolf, T.; Loucks, O.; Peet, R.; Roberts, D.; McKerrow, A.

    2012-01-01

    The Federal Geographic Data Committee (FGDC) Vegetation Subcommittee, the Ecological Society of America Panel on Vegetation Classification, and NatureServe have worked together to develop the United States National Vegetation Classification (USNVC). The current standard was accepted in 2008 and fosters consistency across Federal agencies and non-federal partners for the description of each vegetation concept and its hierarchical classification. The USNVC is structured as a dynamic standard, where changes to types at any level may be proposed at any time as new information comes in. But, because much information already exists from previous work, the NVC partners first established methods for screening existing types to determine their acceptability with respect to the 2008 standard. Current efforts include a screening process to assign confidence to Association and Group level descriptions, and a review of the upper three levels of the classification. For the upper levels especially, the expectation is that the review process includes international scientists. Immediate future efforts include the review of remaining levels and the development of a proposal review process.

  19. The response of vegetation to geochemical conditions

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.

    1983-01-01

    An understanding of the factors of vegetation response to changes in the geochemistry of the environment may give exploration geologists and other researchers an additional and effective tool for rock type discrimination. The factors of vegetation response can be grouped into three principal categories: structural or morphological factors, taxonomic factors which include indicator flora as well as vegetation assemblages, and spectral factors which represent the manner in which the vegetation interacts with electromagnetic radiation. The response of these factors over areas of anomalous mineralization is often unique and may be due to nutrient deficiencies and/or imbalances, toxicity and stress caused by anomalous mineral concentrations in the soil, low water retention, and plant competition. The successful use of geobotanical techniques results from the integration of the geobotanical observations with other techniques. The use of remote sensing in such a program must be predicated on those factors which can be discriminated within the constraints of the spatial, spectral, radiometric, and temporal resolutions of the sensing system and with appropriate analytical techniques.

  20. Classification of simple vegetation types using POLSAR image data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1993-01-01

    Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

  1. Experimental and field investigations on uprooting of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Calvani, Giulio; Francalanci, Simona; Solari, Luca; Gumiero, Bruna

    2017-04-01

    The morphology of a river reach is the result of many processes involving the motion of sediment (erosion, transport and deposition), the hydrological regime and the development and growth of vegetation. River evolution in the presence of vegetation depends on establishment of pioneer woody riparian seedlings on bars, and consequently on either their survival or death. Flooding events can cause young vegetation mortality by uprooting (Corenblit et al., 2007). These processes, despite their important implications on river morphodynamics, have been poorly investigated in the past. Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction, while few works considered the effect of flow direction on the uprooting process (Bywater-Reyes et al., 2015). In this work, we focused on vegetation uprooting due to flow and to bed erosion. We considered two different types of vegetation: Avena Sativa, grown from seeds in external boxes, was used to investigate instantaneous uprooting, and Salix Purpurea, collected in the field, for delayed uprooting (namely type I and type II mechanisms, according to Edmaier et al., 2011). The experiments were carried out in a 5 m long flume in the Hydraulic Laboratory in Florence. A 2 m long mobile bed was build inside the flume, and vegetation was arranged according to several configurations on it. Both types of vegetation were subject to constant discharges to investigate the effects of a general bed degradation in modifying the occurrence of uprooting. We also performed some experiments with Avena Sativa located in a fixed bed and subjected to an increasing flow discharge in order to simulate instantaneous uprooting due to the action of hydrodynamic forces. We measured flow velocity, flow discharge and water depth and characterized vegetation by stem and root diameter, height and root length. The experimental results have been interpreted in terms of a

  2. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  3. Nutrient Density and the Cost of Vegetables from Elementary School Lunches123

    PubMed Central

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. PMID:26773034

  4. Evaluating Vegetation in the National Wetland Condition Assessment

    EPA Science Inventory

    Vegetation is a key biotic indicator of wetland ecological condition and forms a critical element of the USEPA 2011 National Wetland Condition Assessment. Data describing plant species composition and abundance, vegetation structure, and ground surface characteristics were colle...

  5. Osmotic dehydration of fruits and vegetables: a review.

    PubMed

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.

  6. Alluvial Scrub Vegetation in Coastal Southern California

    Treesearch

    Ted L. Hanes; Richard D. Friesen; Kathy Keane

    1989-01-01

    Certain floodplain systems in southern California sustain a unique scrub vegetation rather than riparian woodlands due to a lack of perennial water. Alluvial scrub occurs on outwash fans and riverine deposits along the coastal side of major mountains of southern California. This vegetation type is adapted to severe floods and erosion, nutrient-poor substrates, and the...

  7. Fluorescence lidar multi-color imaging of vegetation

    NASA Technical Reports Server (NTRS)

    Johansson, J.; Wallinder, E.; Edner, H.; Svanberg, S.

    1992-01-01

    Multi-color imaging of vegetation fluorescence following laser excitation is reported for distances of 50 m. A mobile laser radar system equipped with a Nd:YAG laser transmitter and a 40 cm diameter telescope was used. Image processing allows extraction of information related to the physiological status of the vegetation and might prove useful in forest decline research.

  8. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp.

    PubMed

    Berthold-Pluta, Anna; Garbowska, Monika; Stefańska, Ilona; Pluta, Antoni

    2017-08-01

    Bacteria of the genus Cronobacter are emerging food-borne pathogens. Foods contaminated with Cronobacter spp. may pose a risk to infants or adults with suppressed immunity. This study was aimed at determining the microbiological quality of ready-to-eat (RTE) plant-origin food products available on the Polish market with special emphasis on the prevalence of Cronobacter genus bacteria. Analyses were carried out on 60 samples of commercial RTE type plant-origin food products, including: leaf vegetables (20 samples), sprouts (20 samples) and non-pasteurized vegetable, fruit and fruit-vegetable juices (20 samples). All samples were determined for the total count of aerobic mesophilic bacteria (TAMB) and for the presence of Cronobacter spp. The isolates of Cronobacter spp. were subjected to genetic identification and differentiation by 16S rDNA sequencing, PCR-RFLP analysis and RAPD-PCR and evaluation of antibiotic susceptibility by the disk diffusion assay. The TAMB count in samples of lettuces, sprouts and non-pasteurized fruit, vegetable and fruit-vegetable juices was in the range of 5.6-7.6, 6.7-8.4 and 2.9-7.7 log CFU g -1 , respectively. The presence of Cronobacter spp. was detected in 21 (35%) samples of the products, including in 6 (30%) samples of leaf vegetables (rucola, lamb's lettuce, endive escarola and leaf vegetables mix) and in 15 (75%) samples of sprouts (alfalfa, broccoli, small radish, lentil, sunflower, leek and sprout mix). No presence of Cronobacter spp. was detected in the analyzed samples of non-pasteurized fruit, vegetable and fruit-vegetable juices. The 21 strains of Cronobacter spp. isolated from leaf vegetable and sprouts included: 13 strains of C. sakazakii, 4 strains of C. muytjensii, 2 strains of C. turicensis, one strain of C. malonaticus and one strain of C. condimenti. All isolated C. sakazakii, C. muytjensii, C. turicensis and C. malonaticus strains were sensitive to ampicillin, cefepime, chloramphenicol, gentamycin

  9. Medicinal benefits of sulfated polysaccharides from sea vegetables.

    PubMed

    Kim, Se-Kwon; Li, Yong-Xin

    2011-01-01

    The cell walls of sea vegetables or marine algae are rich in sulfated polysaccharides (SPs) such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae. These SPs exhibit various biological activities such as anticoagulant, antiviral, antioxidative, and anticancer activities with potential health benefits. Therefore, SPs derived from sea vegetables have great potential in further development as nutraceuticals and medicinal foods. This chapter presents an overview of biological activities and potential medicinal benefits of SPs derived from sea vegetables. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  11. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    PubMed Central

    Rose, Peter; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686

  12. Linking vegetable preferences, health and local food systems through community-supported agriculture.

    PubMed

    Wilkins, Jennifer L; Farrell, Tracy J; Rangarajan, Anusuya

    2015-09-01

    The objective of the present study was to explore the influence of participation in community-supported agriculture (CSA) on vegetable exposure, vegetable intake during and after the CSA season, and preference related to locally produced vegetables acquired directly from CSA growers. Quantitative surveys were administered at three time points in two harvest seasons to four groups of CSA participants: new full-paying, returning full-paying, new subsidized and returning subsidized members. Questionnaires included a vegetable frequency measure and measures of new and changed vegetable preference. Comparisons were made between new and returning CSA members and between those receiving subsidies and full-paying members. The research was conducted in a rural county in New York, USA. CSA members who agreed to participate in the study. Analysis was based on 151 usable questionnaires. CSA participants reported higher intake of eleven different vegetables during the CSA season, with a sustained increase in some winter vegetables. Over half of the respondents reported trying at least one, and up to eleven, new vegetables. Sustained preferences for CSA items were reported. While those who choose to join a CSA may be more likely to acquire new and expanded vegetable preferences than those who do not, the CSA experience has the potential to enhance vegetable exposure, augment vegetable preference and increase overall vegetable consumption. Dietary patterns encouraged through CSA participation can promote preferences and consumer demand that support local production and seasonal availability. Emphasis on fresh and fresh stored locally produced vegetables is consistent with sustainable community-based food systems.

  13. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    PubMed

    Wang, Zhiwei; Wang, Qian; Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the

  14. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas

    PubMed Central

    Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the

  15. Patterns in Vegetable Consumption: Implications for Tailored School Meal Interventions

    ERIC Educational Resources Information Center

    Orlowski, Marietta; Lee, Miryoung; Spears, William; Narayan, Roopsi; Pobocik, Rebecca S.; Kennel, Julie; Krafka, Erin; Patton, Susan

    2017-01-01

    Background: Vegetable consumption is a challenging behavioral target; consumption rates are below recommended levels and when interventions produce improvements, increases in vegetable consumption are typically a fraction of the change in fruit consumption. We describe vegetable consumption within Ohio school meals and examine how fruit selection,…

  16. White Vegetables: A Forgotten Source of Nutrients: Purdue Roundtable Executive Summary12

    PubMed Central

    Weaver, Connie; Marr, Elizabeth T.

    2013-01-01

    Purdue University convened a scientific roundtable, “White Vegetables: A Forgotten Source of Nutrients,” in Chicago, IL, June 18–19, 2012, to bring together experts to address the contributions of white vegetables, including potatoes, as sources of key nutrients and other microconstituents within a dietary pattern supporting health and wellness. This paper summarizes the meeting and supplement papers, including discussion among participants. The group of researchers identified areas of ambiguity regarding classification of vegetables for research and dietary guidance, future research needs, and the imperative to draw on that research to enhance evidence-based dietary guidance about white vegetables, including potatoes. U.S. dietary guidance encourages consumption of a variety of fruits and vegetables, including at least 1 serving of a dark green and 1 orange vegetable daily. However, no such recommendation exists for white vegetables, such as potatoes, cauliflowers, turnips, onions, parsnips, mushrooms, corn, and kohlrabi. Vegetable subgrouping approaches need to be considered in the context of nutrients of concern and low fruits and vegetable consumption. This Roundtable and supplement provide a substantial body of evidence to demonstrate how the inclusion of white vegetables, such as potatoes, can increase shortfall nutrients, notably fiber, potassium, and magnesium, as well as help increase overall vegetable consumption among children, teens, and adults in the United States. In so doing, these increases can help consumers to effectively and economically meet the recommended 2010 Dietary Guidelines for Americans vegetable servings and improve nutrient intake for all age and sex categories. Although inclusion of many types of vegetables in the diet improves nutritional adequacy, a priority public health message is to increase vegetable consumption. Potatoes appear to be a pathway to increased vegetable consumption, thereby helping to meet the recommended

  17. The Acquisition Cost-Estimating Workforce. Census and Characteristics

    DTIC Science & Technology

    2009-01-01

    Abbreviations AAC Air Armament Center ACAT acquisition category ACEIT Automated Cost Estimating Integrated Tools AF Air Force AFB Air Force Base AFCAA Air...3 3 4 Automated Cost Estimating Integrated Tools ( ACEIT ) 0 1 12 6 Tecolotea training 0 0 10 5 Other 3 13 24 18 No training 18 4 29 18 Total 100 100...other sources, including AFIT, ACEIT ,9 or the contracting agency that employed them. The remain- ing 29 percent reported having received no training

  18. Outbreaks attributed to fresh leafy vegetables, United States, 1973-2012.

    PubMed

    Herman, K M; Hall, A J; Gould, L H

    2015-10-01

    Leafy vegetables are an essential component of a healthy diet; however, they have been associated with high-profile outbreaks causing severe illnesses. We reviewed leafy vegetable-associated outbreaks reported to the Centers for Disease Control and Prevention between 1973 and 2012. During the study period, 606 leafy vegetable-associated outbreaks, with 20 003 associated illnesses, 1030 hospitalizations, and 19 deaths were reported. On average, leafy vegetable-associated outbreaks were larger than those attributed to other food types. The pathogens that most often caused leafy vegetable-associated outbreaks were norovirus (55% of outbreaks with confirmed aetiology), Shiga toxin-producing Escherichia coli (STEC) (18%), and Salmonella (11%). Most outbreaks were attributed to food prepared in a restaurant or catering facility (85%). An ill food worker was implicated as the source of contamination in 31% of outbreaks. Efforts by local, state, and federal agencies to control leafy vegetable contamination and outbreaks should span from the point of harvest to the point of preparation.

  19. Sentinel-1 backscatter sensitivity to vegetation dynamics at the field scale.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Eder, Alexander; Bauer-Marschallinger, Bernhard; Cao, Senmao; Naeimi, Vahid; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang

    2017-04-01

    Vegetation monitoring is pivotal to improve our understanding of the role vegetation dynamics play in the global carbon-, energy- and hydrological cycle. And with the increasing stress on food supply due to the growing world populating and changing climate, vegetation monitoring is of great importance in agricultural areas. By closely tracking crop conditions, droughts and subsequent crop losses could be mitigated. Sensors operating in the microwave domain are sensitive to several surface characteristics, including soil moisture and vegetation. Hence, spaceborne microwave remote sensing provides the means to monitor vegetation and soil conditions on different scales, ranging from field scale to global scale. However, it also presents a challenge since multiple combinations of soil and vegetation characteristics can lead to a similar measurement. Copernicus Sentinel-1 (S-1) is a series of two satellites, developed by the European Space Agency (ESA) , which carry C-band Synthetic Aperture Radars. The C-SAR sensors provide VV, HH, VH and HV backscatter at a 5 m by 20 m spatial resolution. The temporal revisit time of the two satellites is 3-6 days. With their unique capacity for temporally dense and spatially detailed data, the S-1 satellite series provides for the first time the chance to investigate vegetation dynamics at high temporal and spatial resolution. The aim of this study is to assess the sensitivity of Sentinel-1 backscatter to vegetation dynamics. The study is performed in the Hydrological Open Air Laboratory (HOAL), which is a 66 hectare large catchment located in Petzenkirchen, Austria. In the HOAL several vegetation parameters were measured during the course of the growing season (2016) at the overpass time of S-1a. Vegetation height was obtained ten times for the whole catchment, using georeferenced photos made by a motorized paraglider and a Land Surface Model. In addition, vegetation water content, Leaf Area Index and soil moisture were measured in

  20. Health-Promoting Components of Fruits and Vegetables in the Diet12

    PubMed Central

    Liu, Rui Hai

    2013-01-01

    Regular consumption of fruits, vegetables, whole grains, and other plant foods has been negatively correlated with the risk of the development of chronic diseases. There is a huge gap between the average consumption of fruits and vegetables in Americans and the amount recommended by the 2010 Dietary Guidelines for Americans. The key is to encourage consumers to increase the total amount to 9 to 13 servings of fruits and vegetables in all forms available. Fresh, processed fruits and vegetables including frozen and canned, cooked, 100% fruit juices and 100% vegetable juices, as well as dry fruits are all considered as servings of fruits and vegetables per day. A wide variety of fruits, vegetables, whole grains, and other plant foods provide a range of nutrients and different bioactive compounds including phytochemicals, vitamins, minerals, and fibers. Potatoes serve as one of the low-fat foods with unique nutrients and phytochemical profiles, particularly rich in vitamin C, vitamin B-6, potassium, manganese, and dietary fibers. Potatoes provide 25% of vegetable phenolics in the American diet, the largest contributors among the 27 vegetables commonly consumed in the United States, including flavonoids (quercetin and kaempferol), phenolic acids (chlorogenic acid and caffeic acid), and carotenoids (lutein and zeaxanthin). More and more evidence suggests that the health benefits of fruits, vegetables, whole grains, and other plant foods are attributed to the synergy or interactions of bioactive compounds and other nutrients in whole foods. Therefore, consumers should obtain their nutrients, antioxidants, bioactive compounds, and phytochemicals from a balanced diet with a wide variety of fruits, vegetables, whole grains, and other plant foods for optimal nutrition, health, and well-being, not from dietary supplements. PMID:23674808

  1. Vegetation responses to sagebrush-reduction treatments measured by satellites

    USGS Publications Warehouse

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  2. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades

    USGS Publications Warehouse

    Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.

    2004-01-01

    Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.

  3. Vegetation analysis in the Laramie Basin, Wyoming from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Evans, M. A.; Redfern, F. R.

    1973-01-01

    The author has identified the following significant results. The application of ERTS-1 imagery to vegetation mapping and identification was tested and confirmed by field checking. ERTS-1 imagery interpretation and density contour mapping allows definition of minute vegetation features and estimation of vegetative biomass and species composition. Large- and small-scale vegetation maps were constructed for test areas in the Laramie Basin and Laramie mountains of Wyoming. Vegetative features reflecting grazing intensity, moisture availability, changes within the growing season, cutting of hay crops, and plant community constituents in forest and grassland are discussed and illustrated. Theoretical considerations of scattering, sun angle, slope, and instrument aperture upon image and map resolution were investigated. Future suggestions for applications of ERTS-1 data to vegetative analysis are included.

  4. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  5. The Alaska Arctic Vegetation Archive (AVA-AK)

    Treesearch

    Donald A. Walker; Amy L. Breen; Lisa A. Druckenmiller; Lisa W. Wirth; Will Fisher; Martha K. Raynolds; Jozef Šibík; Marilyn D. Walker; Stephan Hennekens; Keith Boggs; Tina Boucher; Marcel Buchhorn; Helga Bültmann; David J. Cooper; Fred J.A Daniëls; Scott J. Davidson; James J. Ebersole; Sara C. Elmendorf; Howard E. Epstein; William A. Gould; Robert D. Hollister; Colleen M. Iversen; M. Torre Jorgenson; Anja Kade; Michael T. Lee; William H. MacKenzie; Robert K. Peet; Jana L. Peirce; Udo Schickhoff; Victoria L. Sloan; Stephen S. Talbot; Craig E. Tweedie; Sandra Villarreal; Patrick J. Webber; Donatella Zona

    2016-01-01

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are...

  6. Vegetation of wetlands of the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    Five themes dominate the literature dealing with the vegetation of palustrine and lacustrine wetlands of the prairie pothole region: environmental conditions (water or moisture regime, salinity), agricultural disturbances (draining, grazing, burning, sedimentation, etc.), vegetation dynamics, zonation patterns, and classification of the wetlands.The flora of a prairie wetland is a function of its water regime, salinity, and disturbance by man. Within a pothole, water depth and duration determines distribution of species. In potholes deep enough to have standing water even during droughts, the central zone will be dominated by submersed species (open water). In wetlands that go dry during periods of drought or annually, the central zone will be dominated by either tall emergent species (deep marsh) or midheight emergents (shallow marsh), respectively. Potholes that are only flooded briefly in the spring are dominated by grasses, sedges, and forbs (wet meadow). Within a pothole, the depth of standing water in the deepest, usually central, part of the basin determines how many zones will be present. Lists of species associated with different water regimes and salinity levels are presented.Disturbances due to agricultural activities have impacted wetlands throughout the region. Drainage has eliminated many potholes, particularly in the southern and eastern parts of the region. Grazing, mowing, and burning have altered the composition of pothole vegetation. The composition of different vegetation types impacted by grazing, haying, and cultivation is presented in a series of tables. Indirect impacts of agriculture (increased sediment, nutrient, and pesticide inputs) are widespread over the region, but their impacts on the vegetation have never been studied.Because of the periodic droughts and wet periods, many palustrine and lacustrine wetlands undergo vegetation cycles associated with water-level changes produced by these wet-dry cycles. Periods of above normal

  7. Study of Wetland Ecosystem Vegetation Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  8. Effect of Phosphate levels on vegetables irrigated with wastewater

    NASA Astrophysics Data System (ADS)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  9. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  10. Toxicity of cadmium and its health risks from leafy vegetable consumption.

    PubMed

    Huang, Yingying; He, Chuntao; Shen, Chuang; Guo, Jingjie; Mubeen, Samavia; Yuan, Jiangang; Yang, Zhongyi

    2017-04-19

    Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.

  11. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The Kubelka-Munk model, a regression model, and a combination of these models were used to extract plant, soil, and shadow reflectance components of vegetated surfaces. The combination model was superior to the others; it explained 86% of the variation in band 5 reflectance of corn and sorghum, and 90% of the variation in band 6 reflectance of cotton. A fractional shadow term substantially increased the proportion of the digital count sum of squares explained when plant parameters alone explained 85% or less of the variation. Overall recognition of 94 agricultural fields using simultaneously acquired aircraft and spacecraft MSS data was 61.8 and 62.8%, respectively; recognition of vegetable fields larger than 10 acres and taller than 25 cm, rose to 88.9 and 100% for aircraft and spacecraft, respectively. Agriculture and rangeland, were well discriminated for the entire county but level 2 categories of vegetables, citrus, and idle cropland, except for citrus, were not.

  12. Validated scales to assess adult self-efficacy to eat fruits and vegetables.

    PubMed

    Mainvil, Louise A; Lawson, Rob; Horwath, Caroline C; McKenzie, Joanne E; Reeder, Anthony I

    2009-01-01

    An audience-centered approach was used to develop valid and reliable scales to measure adult self-efficacy to eat fruit and vegetables. Cross-sectional survey of a national population. New Zealand. A sample of 350 adults ages 25 to 60 years was randomly selected from a nationally representative sampling frame. Overall, 231 questionnaires were returned, producing a 72% response rate. The mean age of subjects was 42.7years; 58% were female; 80% were of European descent; 11% were indigenous Maori. The 76-item, self-administered questionnaire collected data on demographics, fruit and vegetable intakes, stages of change, decisional balance, and self-efficacy (24 items). Principal components analysis with oblimin rotation was performed. Principal components analysis yielded three distinct and reliable scales for self-efficacy to eat "vegetables," "fruit," and "fruit and vegetables" (Cronbach alpha = .80, .85, and .73, respectively). These scales were correlated, but only the "vegetable" scale was positively correlated with the "fruit and vegetable" scale (Kendall tau r = 0.30, -0.26 [fruit, "fruit and vegetables"], -0.38 [fruit, vegetable]). As predicted, self-efficacy was associated with intake (r = 0.30 [fruit], 0.34 [vegetables]). Assuming the factor structure is confirmed in independent samples, these brief psychometrically sound scales may be used to assess adult self-efficacy to eat fruit and to eat vegetables (separately) but not self-efficacy to eat "fruit and vegetables."

  13. Parasitic contamination of fresh vegetables sold at central markets in Khartoum state, Sudan.

    PubMed

    Mohamed, Mona Ali; Siddig, Emmanuel Edwar; Elaagip, Arwa Hassan; Edris, Ali Mahmoud Mohammed; Nasr, Awad Ahmed

    2016-03-11

    Fresh vegetables are considered as vital nutrients of a healthy diet as they supply the body with essential supplements. The consumption of raw vegetables is the main way for transmission of intestinal parasitic organisms. This study was aimed at detecting the parasitic contamination in fresh vegetables sold in two central open-aired markets in Khartoum state, Sudan. In this prospective cross-sectional study, a total of 260 fresh vegetable samples and 50 water samples used to sprinkle vegetable(s) were collected from two central open-aired markets (namely; Elshaabi and Central markets) during November 2011 to May 2012. The samples were microscopically examined for detection of parasitic life forms using standardized parasitological techniques for protozoans and helminthes worms. Of the 260 fresh vegetable samples, 35 (13.5 %) were microscopically positive for intestinal parasites whereas 7/50 (14 %) of water samples used to sprinkle vegetable(s) were found positives. Remarkably, high level of contamination in fresh vegetable samples was recorded in lettuce (Lactuca sativa) 36.4 % (4/11) while cayenne pepper (Capsicum annuum) and cucumber (Cucumis sativus) were not contaminated. The identified protozoans and helminthes were Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia, Ascaris lumbricoides, Strongyloides stercoralis, T. trichiura and hookworms. The most predominant parasite encountered was E. histolytica/dispar (42.9 %) whereas both T. trichiura and A. lumbricoides (2.9 %) were the least detected parasites. None of the fresh vegetables had single parasitic contamination. The highest percentages found in water samples used to sprinkle vegetable(s) was for Strongyloides larvae 60 % (3/5). It is worth-mentioned that the rate of contamination in Elshaabi market was higher compared with Central market. However, there was no significant correlation between the type of vegetables and existence of parasites in both markets and a high significant

  14. Outcome and Process Evaluation of a Norwegian School-Randomized Fruit and Vegetable Intervention: Fruits and Vegetables Make the Marks (FVMM)

    ERIC Educational Resources Information Center

    Bere, E.; Veierod, M. B.; Bjelland, M.; Klepp, K.-I.

    2006-01-01

    This study reports the effect of the Fruits and Vegetables Make the Marks intervention, a school-based fruit and vegetable intervention consisting of a home economics classroom component and parental involvement and encouraged participation in the Norwegian School Fruit Programme, all delivered during the school year of 2001-02. Nine randomly…

  15. Is repeated exposure the holy grail for increasing children's vegetable intake? Lessons learned from a Dutch childcare intervention using various vegetable preparations.

    PubMed

    Zeinstra, Gertrude G; Vrijhof, Milou; Kremer, Stefanie

    2018-02-01

    Children's failure to eat enough vegetables highlights the need for effective interventions encouraging this behaviour. The aim of this study was to investigate the effect of repeated exposure to three a priori unfamiliar vegetables, each prepared in two ways, on children's vegetable acceptance in a childcare setting. Two hundred fifty children (mean age 25 months; 57% boys) participated in a pre-test and a post-test, where they were offered pumpkin, courgette, and white radish. The intervention group (N = 125) participated in a 5-month exposure period, where they were exposed repeatedly (∼12x) to the vegetables: pumpkin blanched and as a cracker spread; courgette blanched and as soup; white radish raw and as a cracker spread. The control group (N = 125) maintained their normal routine. Mixed model analyses were used to analyse intake data and Chi-square analyses for willingness to taste. At pre-test, children ate about 20 g of pumpkin and courgette, whereas white radish intake was approximately 10 g. There was a significant positive effect of the intervention for pumpkin (+15 g; p < 0.001) and white radish (+16 g; p = 0.01). Results for willingness to taste were in the same direction. There was no repeated exposure effect for courgette (p = 0.54); this may have been due to its less distinct taste profile or familiarity with boiled courgette. From our findings, we conclude that repeated exposure to multiple unfamiliar vegetable tastes within the daily routine of a childcare setting is effective in improving children's willingness to taste and intake of some of these vegetables. However, repeated exposure may not be sufficient for more familiar or blander tasting vegetables. This implies that one size does not fit all and that additional strategies are needed to increase children's intake of these vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A model of goal directed vegetable parenting practices

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to explore factors underlying parents' motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. ...

  17. Vegetation anomalies caused by antecedent precipitation in most of the world

    NASA Astrophysics Data System (ADS)

    Papagiannopoulou, C.; Miralles, D. G.; Dorigo, W. A.; Verhoest, N. E. C.; Depoorter, M.; Waegeman, W.

    2017-07-01

    Quantifying environmental controls on vegetation is critical to predict the net effect of climate change on global ecosystems and the subsequent feedback on climate. Following a non-linear Granger causality framework based on a random forest predictive model, we exploit the current wealth of multi-decadal satellite data records to uncover the main drivers of monthly vegetation variability at the global scale. Results indicate that water availability is the most dominant factor driving vegetation globally: about 61% of the vegetated surface was primarily water-limited during 1981-2010. This included semiarid climates but also transitional ecoregions. Intra-annually, temperature controls Northern Hemisphere deciduous forests during the growing season, while antecedent precipitation largely dominates vegetation dynamics during the senescence period. The uncovered dependency of global vegetation on water availability is substantially larger than previously reported. This is owed to the ability of the framework to (1) disentangle the co-linearities between radiation/temperature and precipitation, and (2) quantify non-linear impacts of climate on vegetation. Our results reveal a prolonged effect of precipitation anomalies in dry regions: due to the long memory of soil moisture and the cumulative, non-linear, response of vegetation, water-limited regions show sensitivity to the values of precipitation occurring three months earlier. Meanwhile, the impacts of temperature and radiation anomalies are more immediate and dissipate shortly, pointing to a higher resilience of vegetation to these anomalies. Despite being infrequent by definition, hydro-climatic extremes are responsible for up to 10% of the vegetation variability during the 1981-2010 period in certain areas, particularly in water-limited ecosystems. Our approach is a first step towards a quantitative comparison of the resistance and resilience signature of different ecosystems, and can be used to benchmark Earth

  18. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia.

    PubMed

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-12-07

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and (c) intensively promoting organic food with respect to consumers' motives and concerns on health, safety, as well as environmental sustainability.

  19. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia

    PubMed Central

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-01-01

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and (c) intensively promoting organic food with respect to consumers’ motives and concerns on health, safety, as well as environmental sustainability. PMID:28231181

  20. A new world natural vegetation map for global change studies.

    PubMed

    Lapola, David M; Oyama, Marcos D; Nobre, Carlos A; Sampaio, Gilvan

    2008-06-01

    We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).

  1. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  2. Food Stamp Recipients Eat More Vegetables after Viewing Nutrition Videos.

    ERIC Educational Resources Information Center

    Joy, Amy Block; Feldman, Nancy; Fujii, Mary Lavender; Garcia, Linda; Hudes, Mark; Mitchell, Rita; Bunch, Sybille; Metz, Diane

    1999-01-01

    A study in three California counties found that food stamp recipients who viewed a videotape promoting vegetables had increased their knowledge of vegetables and greatly increased their consumption of potatoes and raw vegetables two to six weeks later. The feasibility of using videotaped nutrition instruction with low-income adults is discussed.…

  3. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Milk chocolate and vegetable fat coating. 163.155 Section 163.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...

  4. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Milk chocolate and vegetable fat coating. 163.155 Section 163.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...

  5. Modeling of two-dimensional overland flow in a vegetative filter

    Treesearch

    Matthew J. Helmers; Dean E. Eisenhauer; Thomas G. Franti; Michael G. Dosskey

    2002-01-01

    Water transports sediment and other pollutants through vegetative filters. It is often assumed that the overland flow is uniformly distributed across the vegetative filter, but this research indicates otherwise. The objective of this study was to model the two-dimensional overland water flow through a vegetative filter, accounting for variation in microtopography,...

  6. 29 CFR 780.922 - “Harvesting” of fruits or vegetables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âHarvestingâ of fruits or vegetables. 780.922 Section 780... Employment in Fruit and Vegetable Harvest Transportation; Exemption From Overtime Pay Requirements Under Section 13(b)(16) Exempt Transportation of Fruit Or Vegetable Harvest Employees § 780.922 “Harvesting” of...

  7. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    NASA Astrophysics Data System (ADS)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity

  8. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  9. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  10. Vegetable and fruit intake and mortality from chronic disease in New Zealand.

    PubMed

    Tobias, Martin; Turley, Maria; Stefanogiannis, Niki; Vander Hoorn, Stephen; Lawes, Carlene; Mhurchu, Cliona Ni; Rodgers, Anthony

    2006-02-01

    To estimate mortality attributable to inadequate vegetable and fruit intake in New Zealand in 1997, and the burden of disease that could be avoided in 2011 if modest increases in vegetable and fruit intake were to occur. Comparative risk assessment methodology was used to estimate both attributable and avoidable mortality due to inadequate vegetable and fruit consumption (< 600 g/day). Vegetables and fruit were defined as all fresh, frozen, canned, dried or juiced vegetables and fruit, except potatoes, nuts, seeds and pulses. Disease outcomes assessed were mortality from ischaemic heart disease, ischaemic stroke, and lung, oesophageal, stomach and colorectal cancers. In 1997, mean vegetable and fruit intake was 420 g/day in males and 404 g/day in females. Inadequate vegetable and fruit intake is estimated to have contributed to 1,559 deaths (6% of all deaths) in that year, including 1,171 from ischaemic heart disease, 179 from ischaemic stroke and 209 from cancer. Modest increases in vegetable and fruit intake (40 g/day above the historic trend) could prevent 334 deaths each year from 2011, mostly from ischaemic heart disease. Inadequate vegetable and fruit intake is an important cause of mortality in New Zealand. Small increases in vegetable and fruit intake could have a major impact on population health within a decade.

  11. Logistics: Implementation of Performance - Based Logistics for the Javelin Weapon System

    DTIC Science & Technology

    2005-03-07

    the c.ontext of each lice within the Automated Cost 24 Batimating-hTasgraled Tools ( ACEIT ) mode], the Army’s standard cost model, containing the EA was...fully validated the EA, The Javelin E.A was valihdted through an extensive review of the EA cost documentation in (te ACEIT file in coordination with... ACEIT file of the system cost estimate- This documentation was conndered to be suflicienT by the CEAC Director once the EA was determinmd to be valid

  12. Rheological Characterization of Vegetal Pear (Sechium edule)

    NASA Astrophysics Data System (ADS)

    Castillo-Reyes, José A.; Luna-Solano, Guadalupe; Cantú-Lozano, Denis

    2008-07-01

    The national production of Mexican vegetal pear (Sechium edule) is located at the present time in more than 130,000 ton/year. The vegetal pear that produced in the center zone of the state of Veracruz is known in international markets; however it is a product that practically has not been studied. This work identifies the rheological behavior of vegetal pear (Sechium edule). A rheometer MCR301 of Anton Paar was utilized for viscosity and shear stress measurements. The objective of this experimental was modeling the rheological behavior of vegetal pear suspensions at three concentrations (1, 2 and 3% w/w), three particle size (1.00, 1.19 and 1.40 mm), at the same conditions of temperature (25, 40 and 70 °C). The results showed that all the suspensions there was a phenomenological behavior as a dilatants fluid (n>1) the performance of flow was represented by the Herschel-Bulkley model, and present values of "yield stress" between from 0.1 to 15 Pa for the different experiments. During evaluation of the activation energy of the suspensions of vegetal pear was found that decreases from 154.4039 kJ/mol to 9.1086 kJ/mol for a particle size of 1.00 mm to 1.4 mm, which implies that the effect of temperature is higher with smaller grains, in this case 1.00 mm. Furthermore, we assessed the effect of particle size by the Péclet number, showing an increase of the viscosity when the Péclet number also increases.

  13. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    PubMed

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  14. Increasing fruits and vegetables in midlife women: a feasibility study.

    PubMed

    Gunn, Caroline A; Weber, Janet L; Coad, Jane; Kruger, Marlena C

    2013-07-01

    The positive link between bone health and fruit/vegetable consumption has been attributed to the lower renal acid load of a diet high in alkaline-forming fruit/vegetables. Other important dietary determinants of bone health include micronutrients and bioactives found in fruit/vegetables. We hypothesized that increased intake of fruit/vegetables to 9 or more servings a day would lower net endogenous acid production (NEAP) significantly (~20 mEq/d) and increase urine pH (0.5 pH units). This 8-week feasibility study investigated if 21 midlife women (age, 40-65 years) currently consuming 5 or less servings a day of fruit/vegetables could increase their intake to 9 or more servings a day to substantially lower NEAP and include specific vegetables daily. Three-day diet diaries were completed at baseline and the end of the study and assessed for NEAP (estimated) and number of servings from all food groups. Urine pH dipsticks were provided for the participants to assess and record their fasting urine pH daily (second void). Seventy-six percent of women achieved the study aim, which was to increase to 9 or more servings of fruit/vegetables for at least 5 d/wk. There was a reduction in the number of bread/cereal servings. Net endogenous acid production (estimated) was reduced significantly, with a mean urine pH increase of 0.68 pH units (95% confidence interval, 0.46-1.14); however, daily urine pH measures showed high variability. This study demonstrated that a group of midlife women can change their diet for 8 weeks by significantly increasing fruit/vegetable servings and include specific "bone friendly" vegetables daily, resulting in a significant decrease in estimated dietary NEAP and an increase in urine pH. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Revisiting "Vegetables" to combat modern epidemic of imbalanced glucose homeostasis.

    PubMed

    Tiwari, Ashok Kumar

    2014-04-01

    Vegetables have been part of human food since prehistoric times and are considered nutritionally necessary and good for health. Vegetables are rich natural resource of biological antioxidants and possess capabilities of maintaining glucose homeostasis. When taken before starch-rich diet, juice also of vegetables such as ridge gourd, bottle gourd, ash gourd, chayote and juice of leaves of vegetables such as radish, Indian Dill, ajwain, tropical green amaranth, and bladder dock are reported to arrest significantly the rise in postprandial blood glucose level. Juice of vegetables such as ash gourd, squash gourd, and tropical green amaranth leaves are observed to tone-down sweet-beverages such as sucrose, fructose, and glucose-induced postprandial glycemic excursion. On the other hand, juice of egg-plant and juice of leaves of Ceylon spinach, Joyweed, and palak are reported to augment starch-induced postprandial glycemic excursion; and juice of leaves of Ceylon spinach, Joyweed, and radish supplement to the glucose-induced postprandial glycemia. Vegetables possess multifaceted antihyperglycemic activities such as inhibition of pancreatic α-amylase and intestinal α-glucosidase, inhibition of protein-tyrosine phosphatase 1β in liver and skeletal muscles, and insulin mimetic and secretagogue activities. Furthermore, they are also reported to influence polyol pathway in favor of reducing development of oxidative stress, and consequently the development of diabetic complications. In the wake of emergence of modern maladaptive diet-induced hyperglycemic epidemic therefore, vegetables may offer cost-effective dietary regimen to control diet-induced glycemic over load and future development of diabetes mellitus. However, for vegetables have been reported to do both, mitigate as well as supplement to the diet-induced postprandial glycemic load, care is required in selection of vegetables when considered as medicament.

  16. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... requirements for label declaration of ingredients for sweet chocolate in § 163.123, except that one or more...

  17. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... requirements for label declaration of ingredients for sweet chocolate in § 163.123, except that one or more...

  18. Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management

    Treesearch

    C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown

    2006-01-01

    Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...

  19. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  20. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    NASA Astrophysics Data System (ADS)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  1. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  2. A model for microwave emission from vegetation-covered fields

    NASA Technical Reports Server (NTRS)

    Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.

    1982-01-01

    The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.

  3. Research progress of extreme climate and its vegetation response

    NASA Astrophysics Data System (ADS)

    Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao

    2017-08-01

    The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.

  4. Thermophilic Campylobacter spp. in salad vegetables in Malaysia.

    PubMed

    Chai, Lay Ching; Robin, Tunung; Ragavan, Usha Menon; Gunsalam, Jurin Wolmon; Bakar, Fatimah Abu; Ghazali, Farinazleen Mohamad; Radu, Son; Kumar, Malakar Pradeep

    2007-06-10

    The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.

  5. Interglacial vegetation succession: A view from southern Europe

    NASA Astrophysics Data System (ADS)

    Tzedakis, P. C.; Bennett, K. D.

    Factors influencing interglacial vegetation development in southern Europe are considered in a series of comparisons of the vegetation and climatic signatures of selected periods. Multivariate analysis provides a method for standardizing comparison of interglacial vegetation successions, and insolation values and geological evidence supply information on the climatic character of individual periods. Application of this comparative approach to a long pollen record from northwest Greece presents an opportunity to examine a series of interglacial successions under constant background site characteristics, secure chronostratigraphical positions and minimal differences in species' immigration rates. The record of four interglacial period equivalent to marine oxygen isotopic substages 5e, 7c, 9c and 11c is examined. The comparison shows that the two earliest periods are characterized by similar vegetation development despite differences in climatic regimes. Dependence on initial conditions is one of the emergent aspects of the comparisons, suggesting that the nature of surviving populations during a cold stage may be critical in determining the course of interglacial succession.

  6. Multi-discipline resource inventory of soils, vegetation and geology

    NASA Technical Reports Server (NTRS)

    Simonson, G. H. (Principal Investigator); Paine, D. P.; Lawrence, R. D.; Norgren, J. A.; Pyott, W. Y.; Herzog, J. H.; Murray, R. J.; Rogers, R.

    1973-01-01

    The author has identified the following significant results. Computer classification of natural vegetation, in the vicinity of Big Summit Prairie, Crook County, Oregon was carried out using MSS digital data. Impure training sets, representing eleven vegetation types plus water, were selected from within the area to be classified. Close correlations were visually observed between vegetation types mapped from the large scale photographs and the computer classification of the ERTS data (Frame 1021-18151, 13 August 1972).

  7. Modelling of vegetation-driven morphodynamics in braided rivers.

    NASA Astrophysics Data System (ADS)

    Stecca, Guglielmo; Fedrizzi, Davide; Hicks, Murray; Measures, Richard; Zolezzi, Guido; Bertoldi, Walter; Tal, Michal

    2017-04-01

    River planform results from the complex interaction between flow, sediment transport and vegetation, and can evolve following a change in these controls. The braided planform of New Zealand's Lower Waitaki River, for instance, is endangered by the action of artificially-introduced alien vegetation, which spread across the braidplain following the reduction in magnitude of floods by hydropower dam construction. This vegetation, by encouraging flow concentration into the main channel, would likely promote a shift towards a single-thread morphology if it was not artificially removed within a central fairway. The purpose of this work is to study the evolution of braided rivers such as the Waitaki under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not yet readily available. Our starting point is the physics-based GIAMT2D numerical model, which solves two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We have further developed this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, adjusting local flow roughness, critical shear stress for sediment transport, and bank erodibility accordingly. Our goal is to use the model to study decadal-scale evolution of a reach on the Waitaki River and predict planform characteristics under different vegetation management scenarios. Here we present the results of a preliminary application of the model to reproduce the morphodynamic evolution of a braided channel in a set of flume experiments that used alfalfa as vegetation. The experiments began with a braided morphology that spontaneoulsy formed at constant flow over a bed of bare uniform sand. The planform transitioned towards single-thread when this discharge was repeatedly

  8. Vegetative state is a pejorative term.

    PubMed

    Machado, Calixto; Estévez, Mario; Carrick, Frederick R; Rodríguez, Rafael; Pérez-Nellar, Jesús; Chinchilla, Mauricio; Machado, Yanín; Pérez-Hoz, Grisel; Carballo, Maylén; Fleitas, Marcia; Pando, Alejandro

    2012-01-01

    The term persistent vegetative state (PVS) refers to the only circumstance in which an apparent dissociation of both components of consciousness is found, characterized by preservation of wakefulness with an apparent loss of awareness. Several authors have recently demonstrated by functional neuroimaging studies that a small subset of unresponsive "vegetative" patients may show unambiguous signs of consciousness and command following that is inaccessible to clinical examination at the bedside. The term "estado vegetativo" used in Spanish to describe the PVS syndrome by physicians came from the English-Spanish translation. The Spanish term "vegetativo" is related to unconscious vital functions, and "vegetal" is relative to plants. According to our experience, when a physician informs to patients' relatives that his/her family member's diagnosis is a "estado vegetativo", they understand the he/she is no more a human being, that there is no hope of recovery. The European Task Force on Disorders of Consciousness has recently proposed a new term, unresponsive wakefulness syndrome (UWS), to assist society in avoiding the depreciatory term vegetative state. Our group has embraced the use of the new term UWS and might suggest that we change our concept and use of the term MCS to minimally responsive wakefulness state (MRWS), or minimally aware wakefulness state (MAWS). Medical terms must be current and avoid any pejorative description of patients, which will promote our abilities to serve humankind and challenge neuroscientists to offer society new and realistic hopes for neurorehabilitation.

  9. Experimental trampling of vegetation. II. Predictors of resistance and resilience

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times and vegetation response was assessed 2 weeks and 1 year after trampling. 2. The response of vegetation to trampling is expressed in terms of three indices: resistance, tolerance and resilience. Resistance...

  10. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  11. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with coal... CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported...

  12. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of cotton or vegetable fibers with coal... CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported...

  13. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of cotton or vegetable fibers with coal... CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported...

  14. Survival, growth, and body residues of Hyalella azteca (Saussure) exposed to fipronil contaminated sediments from non-vegetated and vegetated microcosms

    USDA-ARS?s Scientific Manuscript database

    We assessed chronic effects of fipronil and metabolite contaminated sediments from non-vegetated and Thallia dealbata vegetated wetland microcosms on Hyalella azteca during wet and dry exposures. Mean sediment concentrations (ng g-1) ranged from 0.72-1.26, 0.01-0.69, 0.07-0.23, and 0.49-7.87 for fip...

  15. Survey of nitrate and nitrite contents of vegetables grown in Korea.

    PubMed

    Chung, S Y; Kim, J S; Kim, M; Hong, M K; Lee, J O; Kim, C M; Song, I S

    2003-07-01

    A scientific basis for the evaluation of the risk to public health arising from excessive dietary intake of nitrate in Korea is provided. The nitrate () and nitrite () contents of various vegetables (Chinese cabbage, radish, lettuce, spinach, soybean sprouts, onion, pumpkin, green onion, cucumber, potato, carrot, garlic, green pepper, cabbage and Allium tuberosum Roth known as Crown daisy) are reported. Six hundred samples of 15 vegetables cultivated during different seasons were analysed for nitrate and nitrite by ion chromatography and ultraviolet spectrophotometry, respectively. No significant variance in nitrate levels was found for most vegetables cultivated during the summer and winter harvests. The mean nitrates level was higher in A. tuberosum Roth (5150 mg kg(-1)) and spinach (4259 mg kg(-1)), intermediate in radish (1878 mg kg(-1)) and Chinese cabbage (1740 mg kg(-1)), and lower in onion (23 mg kg(-1)), soybean sprouts (56 mg kg(-1)) and green pepper (76 mg kg(-1)) compared with those in other vegetables. The average nitrite contents in various vegetables were about 0.6 mg kg(-1), and the values were not significantly different among most vegetables. It was observed that nitrate contents in vegetables varied depending on the type of vegetables and were similar to those in vegetables grown in other countries. From the results of our studies and other information from foreign sources, it can be concluded that it is not necessary to establish limits of nitrates contents of vegetables cultivated in Korea due to the co-presence of beneficial elements such as ascorbic acid and alpha-tocopherol which are known to inhibit the formation of nitrosamine.

  16. Psychosocial correlates of fruit and vegetable consumption among African American men.

    PubMed

    Moser, Richard P; Green, Valerie; Weber, Deanne; Doyle, Colleen

    2005-01-01

    To determine the best predictors of fruit and vegetable consumption among African American men age 35 years and older. Data (n = 291) from a 2001 nationally representative mail survey commissioned by the American Cancer Society. 291 African American men age 35 years and older. (1) total fruits and vegetables without fried potatoes, (2) total fruit with juice, and (3) total vegetables without fried potatoes. Independent variables included 3 blocks of predictors: (1) demographics, (2) a set of psychosocial scales, and (3) intent to change variables based on a theoretical algorithm. Linear regression models; analysis of variance for the intent to change group. Alpha = .05. Regression model for total fruits and vegetables, significant psychosocial predictors: social norms, benefits, tangible rewards, and barriers-other. Total fruit with juice: social norms, benefits, tangible rewards. Total vegetables, no fried potatoes: tangible rewards, barriers-other interests. For African American men, fruit consumption appears to be motivated by perceived benefits and standards set by important people in their lives; vegetable consumption is a function of extrinsic rewards and preferences for high-calorie, fatty foods. The results suggest that communications to increase fruit and vegetable consumption should be crafted to reflect differences in sources of motivation for eating fruits versus eating vegetables.

  17. Are 'fruits and vegetables' intake really what they seem in India?

    PubMed

    Minocha, Sumedha; Thomas, Tinku; Kurpad, Anura V

    2018-04-01

    Fruits and vegetables are integral parts of a healthy diet. This study evaluated the quantity and diversity of the fruit and vegetable intake in India, with a focus on its distribution across sectors and wealth quintiles. A secondary data analysis on the nation-wide NSSO Household Consumer Expenditure Survey 2011-2012 was performed to estimate the amount (g/capita/day) and diversity of household intake of fruits and vegetables in the rural and the urban sectors of India. Using the expenditure data, households in both the sectors were further divided into wealth quintiles and differences in the diversity of intake was evaluated across these quintiles separately for each sector. The per capita household vegetable and fruit intake was found to be 145 and 15 g, respectively, for rural India, and 155 and 29 g for urban India. A significant portion of this intake came from energy-dense food items; potatoes and bananas for vegetable and fruit intake respectively. Further, while wealth marginally improved the diversity in vegetable intake, no such trend was observed in fruit intake. Given the high proportion of energy-dense fruits and vegetables in the Indian total intake, the focus should be on improving the diversity of vegetables, as well as on increasing the intake and diversity of fruits.

  18. Shortwave infrared detection of vegetation

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1985-01-01

    The potential of short wave infrared (SWIR) measurements in vegetation discrimination is further substantiated through a discussion of field studies and an examination of the physical bases which cause SWIR measurements to vary with the vegetation type observed. The research reported herein supported the AGRISTARS program objective to incorporate TM measurements in the analysis of agricultural activity. Field measurements on corn and soybeans in Iowa were conducted, and the mean and variance of canopy reflectance were computed for each observation date. The Suits canopy reflectance model was used to evaluate possible explanations of the observed corn/soybeans reflectance patterns /39/. The SWIR measurements were shown to effectively discriminate corn and soybeans on the basis of leaf absorption properties.

  19. Circumpolar Arctic vegetation mapping workshop

    USGS Publications Warehouse

    Walker, D. A.; Markon, C.J.

    1996-01-01

    The first Circumpolar Arctic Vegetation Mapping Workshop was held in the historic village of Lakta on the outskirts of St. Petersburg, Russia, March 21-25, 1994. The primary goals of the workshop were to: (1) review the status of arctic vegetation mapping in the circumpolar countries and (2) develop a strategy for synthesizing and updating the existing information into a new series of maps that portray the current state of knowledge. Such products are important for a number of purposes, such as the international effort to understand the consequences of global change in Arctic regions, to predict the direction of future changes, and for informed planning of resource development in the Arctic.

  20. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  1. Review on urban vegetation and particle air pollution - Deposition and dispersion

    NASA Astrophysics Data System (ADS)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  2. Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables.

    PubMed

    Li, Huidong; Zhu, Duanwei; Lu, Xiao; Du, Hongxia; Guan, Shuai; Chen, Zilei

    2018-01-28

    Polycyclic aromatic hydrocarbons (PAHs) are a group of organic environmental pollutants posing a potential risk to human health. This study was constructed to investigate the presence of 16 PAHs in six commonly consumed vegetables collected from the markets in Shandong, China by a quick, easy, cheap, effective, rugged, safe (QuEChERS)-based extraction method coupled with gas chromatography-mass spectrometry (GC-MS). Our results showed that the vegetables were polluted with PAHs at an alarming level, of which celery contained the highest total concentration of PAHs (Σ16 PAH), whereas cucumbers contained the lowest Σ16 PAH. Besides, the dietary exposure of PAHs was assessed in these vegetables based on the maximum Σ16 PAH. The results showed that the populations in Shandong were exposed to 23-213 ng/d of PAHs through these six vegetables, suggesting that vegetables are the major sources of PAHs in the diet. Hence, it is necessary to monitor the PAH levels in vegetables. Our study provides guidance for future legislative actions regarding PAH levels in vegetables in China.

  3. Soil-vegetation correlations in the Connecticut River floodplain of Western Massachusetts

    USGS Publications Warehouse

    Veneman, Peter L.M.; Tiner, Ralph W.

    1990-01-01

    As part of a national study analyzing the relation between hydric soils and wetland vegetation, the vegetation associated with a series of known soils was sampled along the Connecticut River floodplain in Massachusetts. Weighted average and index average (presence/absence) values were calculated for vegetation using wetland ecological index values from the National List of Plant Species that Occur in Wetlands developed by the U.S. Fish and Wildlife Service and procedures developed by T. R. Wentworth and G. P. Johnson at North Carolina State University. Good correspondence between soils and vegetation was recorded with two exceptions. Two typically nonhydric soils were determined to be hydric based on vegetation analyses. Examination of the groundwater hydrology of these two soils confirmed their hydric nature. The authors suggested that one of these soils may need to be redefined and they also suggested that the assigned index values for a few species of vegetation should be reexamined. However, in general the index average values of vegetation based on published wetland index values corresponded with the hydric and nonhydric nature of soils.

  4. 77 FR 10981 - Fresh Fruit and Vegetable Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... encourages the consumption of fresh fruits and vegetables by elementary school children, thus improving their... participation to elementary schools beginning in school year 2010-2011. Additionally, the number of schools that... authorities for the service of fresh fruit and vegetables in selected elementary schools. Section 19 of the...

  5. Family Members' Influence on Family Meal Vegetable Choices

    ERIC Educational Resources Information Center

    Wenrich, Tionni R.; Brown, J. Lynne; Miller-Day, Michelle; Kelley, Kevin J.; Lengerich, Eugene J.

    2010-01-01

    Objective: Characterize the process of family vegetable selection (especially cruciferous, deep orange, and dark green leafy vegetables); demonstrate the usefulness of Exchange Theory (how family norms and experiences interact with rewards and costs) for interpreting the data. Design: Eight focus groups, 2 with each segment (men/women vegetable…

  6. Associations between perceived parent behaviors and middle school student fruit and vegetable consumption.

    PubMed

    Young, Elizabeth M; Fors, Stuart W; Hayes, David M

    2004-01-01

    To examine whether (1) student perceptions of parent behaviors explain variations in fruit and vegetable consumption, (2) self-efficacy mediates this relationship, and (3) perceived home fruit and vegetable availability moderates this relationship. A cross-sectional survey. Classrooms in 3 middle schools in 2 northeast Georgia counties. 366 middle school students. The response and participation rates were 59% and 56%, respectively. Perceived authoritative parenting, perceived parent control, perceived parent modeling, perceived parent support, self-efficacy, perceived fruit and vegetable availability, and fruit and vegetable consumption. Hierarchical multiple regression; P <.05. Perceived parent modeling, perceived parent support, self-efficacy, and perceived fruit and vegetable availability were significant predictors of fruit and vegetable consumption. The relationship between perceived parent support and fruit and vegetable consumption was mediated by self-efficacy. The relationship between fruit and vegetable consumption and both perceived parent modeling and support was moderated by perceived fruit and vegetable availability. Parents appear to moderately influence middle school student fruit and vegetable consumption. Educators might focus on improving home fruit and vegetable availability and student self-efficacy, as well as parent support and modeling. The level of availability might indicate where efforts should focus for enhancing parent behaviors.

  7. Inventory of native vegetation and related resources from space photography

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.; Johnson, J. R.; Mouat, D. A.

    1970-01-01

    The application of space and high flight photography to vegetational resources in Arizona is discussed. Ecologically based vegetation-landform and land use maps are prepared. The use of material from the Apollo 9 flight and high flight aerial photography are discussed. Land uses that result in a conversion or strong modification of the natural vegetation are presented. The vegetation-landform units have an ecological basis and are meaningful from a land use point of view because they identify areas with unique potentials or limitations for use or development under various land uses. Examples of these relationships are given.

  8. Exploitation of vegetables and fruits through lactic acid fermentation.

    PubMed

    Di Cagno, Raffaella; Coda, Rossana; De Angelis, Maria; Gobbetti, Marco

    2013-02-01

    Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Designing a generalized soil-adjusted vegetation index (GESAVI)

    NASA Astrophysics Data System (ADS)

    Gilabert, M. A.; Gonzalez Piqueras, Jose; Garcia-Haro, Joan; Melia, J.

    1998-12-01

    Operational monitoring of vegetative cover by remote sensing currently involves the utilization of vegetation indices (VIs), most of them being functions of the reflectance in red (R) and near-infrared (NIR) spectral bands. A generalized soil-adjusted vegetation index (GESAVI), theoretically based on a simple vegetation canopy model, is introduced. It is defined in terms of the soil line parameters (A and B) as: GESAVI equals (NIR-BR-A)/(R + Z), where Z is related to the red reflectance at the cross point between the soil line and vegetation isolines. Z can be considered as a soil adjustment coefficient which let this new index be considered as belonging to the SAVI family. In order to analyze the GESAVI sensitivity to soil brightness and soil color, both high resolution reflectance data from two laboratory experiments and data obtained by applying a radiosity model to simulate heterogeneous vegetation canopy scenes were used. VIs (including GESAVI, NDVI, PVI and SAVI family VIs) were computed and their correlation with LAI for the different soil backgrounds was analyzed. Results confirmed the lower sensitivity of GESAVI to soil background in most of the cases, thus becoming the most efficient index. This good index performance results from the fact that the isolines in the NIR-R plane are neither parallel to the soil line (as required by the PVI) nor convergent at the origin (as required by the NDVI) but they converge somewhere between the origin and infinity in the region of negative values of both NIR and R. This convergence point is not necessarily situated on the bisectrix, as required by other SAVI family indices.

  10. Analyzing vegetation dynamics of land systems with satellite data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Haas, Robert H.

    1992-01-01

    Large area assessment of vegetation conditions is a major requirement for understanding the impact of weather on food, fiber, and forage production. The distribution of vegetation is largely associated with climate, terrain characteristics, and human activity. The interpretation of vegetation dynamics from satellite data can be improved by stratifying the land surface into ecoregions. The Soil Conservation Service, U.S. Department of Agriculture, has developed a system for mapping major land resource areas (MLRA) that groups land areas in the United States on the basis of climate, physiography, land use, and land cover characteristics.In 1989, the U.S. Geological Survey used National Oceanic and Atmospheric Administration weather satellite data to conduct a biweekly assessment of vegetation conditions in 17 western states. Advanced Very High Resolution Radiometer data were acquired daily, and were geographically registered, and the normalized difference vegetation index (NDVI) was computed for the Western United States during the 1989 growing season. Fifteen biweekly NDVI data sets were used to evaluate MLRA's as an appropriate stratification for monitoring and interpreting vegetation conditions in the study area.The results demonstrate the feasibility of using MLRA's to stratify areas for monitoring phenological development and vegetation condition assessment within the growing season. Assessments of the NDVI at biweekly intervals are adequate for monitoring seasonal growth patterns on MLRA's where rangelands, forests, or cultivated agriculture are the primary resource type. Descriptive statistics are indicators of the uniformity or diversity of land use and land cover within an MLRA. Growing season profiles of the NDVI are characterized by the seasonal effects of climate on various land use and land cover classes.

  11. Mothers prefer fresh fruits and vegetables over jarred baby fruits and vegetables in the new Special Supplemental Nutrition Program for Women, Infants, and Children food package.

    PubMed

    Kim, Loan P; Whaley, Shannon E; Gradziel, Pat H; Crocker, Nancy J; Ritchie, Lorrene D; Harrison, Gail G

    2013-01-01

    This study examined Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) participant use and satisfaction with jarred baby foods, assessed preference for cash value vouchers (CVVs) for fruits and vegetables vs jarred baby foods, and examined whether preferences varied among selected ethnic groups. A survey of California WIC participants and statewide redemption data were used. Participants reported high satisfaction with the CVV for fruits and vegetables and jarred baby foods, with statistically significant variation across ethnic groups. About two thirds of all participants reported a preference for CVVs for fruits and vegetables over jarred baby foods. Redemption data indicated declining redemption rates for jarred fruits and vegetables with increasing age of the infant across all ethnic groups. Although the addition of jarred fruits and vegetables to the food package for infants ages 6-11 months was well received, many caregivers want the option to choose between jarred foods and fresh fruits and vegetables. Copyright © 2013 Society for Nutrition Education and Behavior. All rights reserved.

  12. [Vegetation change in Shenzhen City based on NDVI change classification].

    PubMed

    Li, Yi-Jing; Zeng, Hui; Wel, Jian-Bing

    2008-05-01

    Based on the TM images of 1988 and 2003 as well as the land-use change survey data in 2004, the vegetation change in Shenzhen City was assessed by a NDVI (normalized difference vegetation index) change classification method, and the impacts from natural and social constraining factors were analyzed. The results showed that as a whole, the rapid urbanization in 1988-2003 had less impact on the vegetation cover in the City, but in its plain areas with low altitude, the vegetation cover degraded more obviously. The main causes of the localized ecological degradation were the invasion of built-ups to woods and orchards, land transformation from woods to orchards at the altitude of above 100 m, and low percentage of green land in some built-ups areas. In the future, the protection and construction of vegetation in Shenzhen should focus on strengthening the protection and restoration of remnant woods, trying to avoid the built-ups' expansion to woods and orchards where are better vegetation-covered, rectifying the unreasonable orchard constructions at the altitude of above 100 m, and consolidating the greenbelt construction inside the built-ups. It was considered that the NDVI change classification method could work well in efficiently uncovering the trend of macroscale vegetation change, and avoiding the effect of random noise in data.

  13. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model

    PubMed Central

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-01-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45oN and polewards) for the period 1900–2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of

  14. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model.

    PubMed

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-03-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of

  15. Relations between Vegetation and Geologic Framework in Barrier Island

    NASA Astrophysics Data System (ADS)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better

  16. Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden

    NASA Astrophysics Data System (ADS)

    Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.

    2012-12-01

    Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution

  17. Large scale pre-rain vegetation green up across Africa.

    PubMed

    Adole, Tracy; Dash, Jadunandan; Atkinson, Peter M

    2018-05-16

    Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall-driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of pre-rain flush effects in some parts of Africa. The spatial extent of this pre-rain green-up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to-date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa, and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of pre-rain green-up over Africa than previously reported, with pre-rain green-up being the norm rather than the exception. We also show the relative sparsity of post-rain green-up, confined largely to the Sudano-Sahel region. While the pre-rain green-up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling. This article is protected by copyright. All

  18. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The best wavelengths in the 0.4 to 2.5 micron interval were determined for detecting lead toxicity and ozone damage, distinguishing succulent from woody species, and detecting silverleaf sunflower. A perpendicular vegetation index, a measure of the distance from the soil background line, in MSS 5 and MSS 7 data space, of pixels containing vegetation was developed and tested as an indicator of vegetation development and crop vigor. A table lookup procedure was devised that permits rapid identification of soil background and green biomass or phenological development in LANDSAT scenes without the need for training data.

  19. [Vitamin C in fruits and vegetables].

    PubMed

    Kosheleva, O V; Kodentsova, V M

    2013-01-01

    Strong opinion about reducing vitamin C content in traditional cultivars of fruits and vegetables as a result of intensive farming practices, on the one hand, and depletion of soil, waste of fertilizers, on the other hand, takes place. The aim of the study was to assess changes in vitamin C content in fresh vegetables, fruits and berries from the 40s of last century to the present. Available national and foreign data from official tables of the chemical composition tables published in different years, including the most typical values, based on the results conducted in a number of research institutes, laboratories and university departments, as well as some original investigations and unpublished own results were used to analyze possible changes of vitamin C content in fruits and vegetables. For comparison we take into consideration only results from the most common and affordable since the last century method of visual titration, which has a relative error of 20%. Analysis of vitamin C content conducted according 5-58 studies from the 40s of the last century to the present, for 32 types of greens and vegetables (potatoes, various types of cabbage and onion, garlic, carrot, turnip, tomato, pepper, eggplant, cucumber, squash, peas, turnip, garden radish, parsnip, rhubarb, parsley, dill, lettuce, onion, spinach, sorrel), and according to 6-50 studies of 24 sorts of fruits (apple, pear, mandarin, orange, lemon, grapefruit, pineapple, banana, watermelon, cantaloupe, grapes, peach, apricot, plum, cherry, blackberry, blueberry, strawberry, raspberry, blackberry, gooseberry, black currant, red and white) has been done. It was found that the average content of vitamin varies slightly. Deviations from the average for all the years of research do not exceed the standard deviation. Analysis of longitudinal data did not confirm a vitamin C decrease. This means that vitamin value C of fruits and vegetables remains approximately constant, due to the successful selection of new

  20. Radar for Measuring Soil Moisture Under Vegetation

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  1. [Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field].

    PubMed

    Huang, Dong-feng; Wang, Guo; Li, Wei-hua; Qiu, Xiao-xuan

    2009-03-01

    A field experiment with Chinese cabbage, water spinach, and three-colored amaranth cropped three times in one year was conducted to study the effects of seven fertilization modes, i.e., none fertilization, basal application of chemical fertilizers, 1/2 basal application and 1/2 top-dressing of chemical fertilizers, basal application of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure, and basal application of organic manure, on the plant height, yield, nitrogen accumulation, and fertilizer nitrogen utilization of the vegetables, and the loss of NO3- -N and NH4+ -N from vegetable field under natural rainfall condition. The results showed that comparing with none fertilization, the fertilization modes '1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure' and 'basal application of chemical fertilizers and dicyandiamide' improved the agronomic properties of test vegetables, increased their yields by 103%-219% and 93%-226%, and nitrogen accumulation by 153% -216% and 231%-320%, respectively, and enhanced fertilizer nitrogen utilization rate. They also decreased the surface runoff loss of NO3- -N and NH4+ -N by 48.1% and 46.5%, respectively, compared with the mode 'basal application of chemical fertilizers', and hence, reduced the risk of agricultural non-point pollution. Therefore, these two fertilization modes could be popularized in vegetable production.

  2. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    NASA Technical Reports Server (NTRS)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  3. A vegetation classification system applied to southern California

    Treesearch

    Timothy E. Paysen; Jeanine A. Derby; Hugh Black; Vernon C. Bleich; John W. Mincks

    1980-01-01

    A classification system for use in describing vegetation has been developed and is being applied to southern California. It is based upon a hierarchical stratification of vegetation, using physiognomic and taxonomic criteria. The system categories are Formation, Subformation. Series, Association, and Phase. Formations, Subformations, and Series have been specified for...

  4. Forest vegetation of eastern Washington and northern Idaho

    Treesearch

    R. Daubenmire; Jean B. Daubenmire

    1968-01-01

    The forest vegetation of the northern Rocky Mountains is potentially a rather simple mosaic determined by macroclimate, microclimate, soil fertility and soil drainage. In actuality, however, the vegetation consists mainly of a wide variety of intergrading, disturbance-induced communities that are difficult to treat except as developmental series related to...

  5. Object-based vegetation classification with high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  6. Synthesis and study of the roadside vegetation establishment process.

    DOT National Transportation Integrated Search

    2011-05-01

    The Texas Pollutant Discharge Elimination System (TPDES), which is administered and enforced by the : Texas Commission on Environmental Quality (TCEQ), requires perennial vegetation to 70 percent of native : or adjacent background vegetation before a...

  7. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  8. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  9. East African weathering dynamics controlled by vegetation-climate feedbacks

    USGS Publications Warehouse

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.

    2017-01-01

    Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.

  10. Vegetation monitoring and classification using NOAA/AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Greegor, D. H., Jr.; Norwine, J. R.

    1983-01-01

    A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.

  11. Enhanced vegetation growth peak and its key mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  12. A Model of Goal Directed Vegetable Parenting Practices

    PubMed Central

    Hingle, Melanie; Beltran, Alicia; O’Connor, Teresia; Thompson, Deborah; Baranowski, Janice; Baranowski, Tom

    2011-01-01

    The aim of this study was to explore factors underlying parents’ motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. In-depth interviews with parents of 3–5-year-old children were conducted over the telephone by trained interviewers following a script. MGDVPP constructs provided the theoretical framework guiding script development. Audio-recordings were transcribed and analyzed, with themes coded independently by two interviewers. Fifteen participants completed the study. Interviews elicited information about possible predictors of motivations as they related to VPP, and themes emerged related to each of the MGDVPP constructs (attitudes, positive anticipated emotions, negative anticipated emotions, subjective norms, and perceived behavioral control). Parents believed child vegetable consumption was important and associated with child health and vitality. Parents described motivations to engage in specific VPP in terms of emotional responses, influential relationships, food preferences, resources, and food preparation skills. Parents discussed specific strategies to encourage child vegetable intake. Interview data suggested parents used diverse VPP to encourage child intake and that varied factors predicted their use. Understanding these factors could inform the design of interventions to increase parents’ use of parenting practices that promote long-term child consumption of vegetables. PMID:22210348

  13. A model of goal directed vegetable parenting practices.

    PubMed

    Hingle, Melanie; Beltran, Alicia; O'Connor, Teresia; Thompson, Deborah; Baranowski, Janice; Baranowski, Tom

    2012-04-01

    The aim of this study was to explore factors underlying parents' motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. In-depth interviews with parents of 3-5-year-old children were conducted over the telephone by trained interviewers following a script. MGDVPP constructs provided the theoretical framework guiding script development. Audio-recordings were transcribed and analyzed, with themes coded independently by two interviewers. Fifteen participants completed the study. Interviews elicited information about possible predictors of motivations as they related to VPP, and themes emerged related to each of the MGDVPP constructs (attitudes, positive anticipated emotions, negative anticipated emotions, subjective norms, and perceived behavioral control). Parents believed child vegetable consumption was important and associated with child health and vitality. Parents described motivations to engage in specific VPP in terms of emotional responses, influential relationships, food preferences, resources, and food preparation skills. Parents discussed specific strategies to encourage child vegetable intake. Interview data suggested parents used diverse VPP to encourage child intake and that varied factors predicted their use. Understanding these factors could inform the design of interventions to increase parents' use of parenting practices that promote long-term child consumption of vegetables. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Vegetation studies on Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hickson, Diana E.; Hinkle, C. Ross

    1988-01-01

    Vandenburg Air Force Base, located in coastal central California with an area of 98,400 ac, contains resources of considerable biological significance. Available information on the vegetation and flora of Vandenburg is summarized and new data collected in this project are presented. A bibliography of 621 references dealing with vegetation and related topics related to Vanderburg was compiled from computer and manual literature searches and a review of past studies of the base. A preliminary floristic list of 642 taxa representing 311 genera and 80 families was compiled from past studies and plants identified in the vegetation sampling conducted in this project. Fifty-two special interest plant species are known to occur or were suggested to occur. Vegetation was sampled using permanent plots and transects in all major plant communities including chaparral, Bishop pine forest, tanbark oak forest, annual grassland, oak woodland, coastal sage scrub, purple sage scrub, coastal dune scrub, coastal dunes, box elder riparian woodland, will riparian woodland, freshwater marsh, salt marsh, and seasonal wetlands. Comparison of the new vegetation data to the compostie San Diego State University data does not indicate major changes in most communities since the original study. Recommendations are made for additional studies needed to maintain and extend the environmental data base and for management actions to improve resource protection.

  16. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Zou, Bin; Luo, Juhua

    2017-07-01

    The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions

  17. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series

    NASA Astrophysics Data System (ADS)

    van Iersel, Wimala; Straatsma, Menno; Addink, Elisabeth; Middelkoop, Hans

    2018-07-01

    Vegetation in river floodplains has important functions for biodiversity, but can also have a negative influence on flood safety. Floodplain vegetation is becoming increasingly heterogeneous in space and time as a result of river restoration projects. To document the spatio-temporal patterns of the floodplain vegetation, the need arises for efficient monitoring techniques. Monitoring is commonly performed by mapping floodplains based on single-epoch remote sensing data, thereby not considering seasonal dynamics of vegetation. The rising availability of unmanned airborne vehicles (UAV) increases monitoring frequency potential. Therefore, we aimed to evaluate the performance of multi-temporal high-spatial-resolution imagery, collected with a UAV, to record the dynamics in floodplain vegetation height and greenness over a growing season. Since the classification accuracy of current airborne surveys remains insufficient for low vegetation types, we focussed on seasonal variation of herbaceous and grassy vegetation with a height up to 3 m. Field reference data on vegetation height were collected six times during one year in 28 field plots within a single floodplain along the Waal River, the main distributary of the Rhine River in the Netherlands. Simultaneously with each field survey, we recorded UAV true-colour and false-colour imagery from which normalized digital surface models (nDSMs) and a consumer-grade camera vegetation index (CGCVI) were calculated. We observed that: (1) the accuracy of a UAV-derived digital terrain model (DTM) varies over the growing season and is most accurate during winter when the vegetation is dormant, (2) vegetation height can be determined from the nDSMs in leaf-on conditions via linear regression (RSME = 0.17-0.33 m), (3) the multitemporal nDSMs yielded meaningful temporal profiles of greenness and vegetation height and (4) herbaceous vegetation shows hysteresis for greenness and vegetation height, but no clear hysteresis was observed

  18. Estimation of roughness coefficients for natural stream channels with vegetated banks

    USGS Publications Warehouse

    Coon, William F.

    1998-01-01

    Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.

  19. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Vegetable Pests.

    ERIC Educational Resources Information Center

    Cress, D.; And Others

    This manual is intended to assist pesticide applicators in vegetable crops prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on vegetable pest control. The three sections presented describe: (1) Insect pests of vegetable crops; (2) Weed pests of vegetable crops; and (3) Causes of…

  20. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation