Sample records for acellular dermal regeneration

  1. [Penile augmentation using acellular dermal matrix].

    PubMed

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  2. The cost effectiveness of acellular dermal matrix in expander-implant immediate breast reconstruction.

    PubMed

    Krishnan, Naveen M; Chatterjee, Abhishek; Rosenkranz, Kari M; Powell, Stephen G; Nigriny, John F; Vidal, Dale C

    2014-04-01

    Expander-implant breast reconstruction is often supplemented with acellular dermal matrix (ADM). The use of acellular dermal matrix has allowed for faster, less painful expansions and improved aesthetics, but with increased cost. Our goal was to provide the first cost utility analysis of using acellular dermal matrix in two-stage, expander-implant immediate breast reconstruction following mastectomy. A comprehensive literature review was conducted to identify complication rates for two-stage, expander-implant immediate breast reconstruction with and without acellular dermal matrix. The probabilities of the most common complications were combined with Medicare Current Procedural Terminology reimbursement codes and expert utility estimates to fit into a decision model. The decision model evaluated the cost effectiveness of acellular dermal matrix relative to reconstructions without it. Retail costs for ADM were derived from the LifeCell 2012 company catalogue for Alloderm. The overall complication rates were 30% and 34.5% with and without ADM. The decision model revealed a baseline cost increase of $361.96 when acellular dermal matrix is used. The increase in Quality-Adjusted Life Years (QALYs) is 1.37 in the population with acellular dermal matrix. This yields a cost effective incremental cost-utility ratio (ICUR) of $264.20/QALY. Univariate sensitivity analysis confirmed that using acellular dermal matrix is cost effective even when using retail costs for unilateral and bilateral reconstructions. Our study shows that, despite an increased cost, acellular dermal matrix is a cost effective technology for patients undergoing two-stage, expander-implant immediate breast reconstruction due to its increased utility in successful procedures. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Efficacy of micronized acellular dermal graft for use in interproximal papillae regeneration.

    PubMed

    Geurs, Nico C; Romanos, Alain H; Vassilopoulos, Philip J; Reddy, Michael S

    2012-02-01

    The aim of this study was to evaluate interdental papillary reconstruction based on a micronized acellular dermal matrix allograft technique. Thirty-eight papillae in 12 patients with esthetic complaints of insufficient papillae were evaluated. Decreased gingival recession values were found postoperatively (P < .001). Chi-square analysis showed significantly higher postoperative Papilla Index values (chi-square = 43, P < .001), further supported by positive symmetry statistical analysis values (positive kappa and weighted kappa values). This procedure shows promise as a method for papillary reconstruction.

  4. Complex torso reconstruction with human acellular dermal matrix: long-term clinical follow-up.

    PubMed

    Nemeth, Nicole L; Butler, Charles E

    2009-01-01

    Although reports have demonstrated good early outcomes with human acellular dermal matrix even when used for complex, contaminated defects, no long-term outcomes have been reported. The authors reviewed the long-term outcomes of 13 patients who had complex torso reconstructions that included human acellular dermal matrix. All patients were at increased risk for mesh-related complications. Eight patients died as a result of progression of their oncologic disease at a mean of 258 days postoperatively. The mean follow-up for the remaining five patients was 43.7 months. Six patients had early complications (none were human acellular dermal matrix-related) and were reported on previously. Two patients had developed complications since the initial report. One patient developed a flap donor-site seroma remote from the reconstruction site, and another developed a recurrent ventral hernia. No patients have required additional surgery for human acellular dermal matrix-related complications. This follow-up report indicates that human acellular dermal matrix repair of large, complex torso defects can result in good long-term outcomes even when patients are at high risk for mesh-related complications.

  5. Cleft Palate Fistula Closure Utilizing Acellular Dermal Matrix.

    PubMed

    Emodi, Omri; Ginini, Jiriys George; van Aalst, John A; Shilo, Dekel; Naddaf, Raja; Aizenbud, Dror; Rachmiel, Adi

    2018-03-01

    Fistulas represent failure of cleft palate repair. Secondary and tertiary fistula repair is challenging, with high recurrence rates. In the present retrospective study, we review the efficacy of using acellular dermal matrix as an interposition layer for cleft palate fistula closure in 20 consecutive patients between 2013 and 2016. Complete fistula closure was obtained in 16 patients; 1 patient had asymptomatic recurrent fistula; 2 patients had partial closure with reduction of fistula size and minimal nasal regurgitation; 1 patient developed a recurrent fistula without changes in symptoms (success rate of 85%). We conclude that utilizing acellular dermal matrix for cleft palate fistula repair is safe and simple with a high success rate.

  6. Cleft Palate Fistula Closure Utilizing Acellular Dermal Matrix

    PubMed Central

    Emodi, Omri; van Aalst, John A.; Shilo, Dekel; Naddaf, Raja; Aizenbud, Dror; Rachmiel, Adi

    2018-01-01

    Summary: Fistulas represent failure of cleft palate repair. Secondary and tertiary fistula repair is challenging, with high recurrence rates. In the present retrospective study, we review the efficacy of using acellular dermal matrix as an interposition layer for cleft palate fistula closure in 20 consecutive patients between 2013 and 2016. Complete fistula closure was obtained in 16 patients; 1 patient had asymptomatic recurrent fistula; 2 patients had partial closure with reduction of fistula size and minimal nasal regurgitation; 1 patient developed a recurrent fistula without changes in symptoms (success rate of 85%). We conclude that utilizing acellular dermal matrix for cleft palate fistula repair is safe and simple with a high success rate. PMID:29707449

  7. Management of gingival recession with acellular dermal matrix graft: A clinical study

    PubMed Central

    Balaji, V. R.; Ramakrishnan, T.; Manikandan, D.; Lambodharan, R.; Karthikeyan, B.; Niazi, Thanvir Mohammed; Ulaganathan, G.

    2016-01-01

    Aims and Objectives: Obtaining root coverage has become an important part of periodontal therapy. The aims of this studyare to evaluate the clinical efficacy of acellular dermal matrix graft in the coverage of denuded roots and also to examine the change in the width of keratinized gingiva. Materials and Methods: A total of 20 sites with more than or equal to 2 mm of recession depth were taken into the study, for treatment with acellular dermal matrix graft. The clinical parameters such as recession depth, recession width, width of keratinized gingiva, probing pocket depth (PD), and clinical attachment level (CAL) were measured at the baseline, 8th week, and at the end of the study (16th week). The defects were treated with a coronally positioned pedicle graft combined with acellular dermal matrix graft. Results: Out of 20 sites treated with acellular dermal matrix graft, seven sites showed complete root coverage (100%), and the mean root coverage obtained was 73.39%. There was a statistically significant reduction in recession depth, recession width, and probing PD. There was also a statistically significant increase in width of keratinized gingiva and also gain in CAL. The postoperative results were both clinically and statistically significant (P < 0.0001). Conclusion: The results of this study were esthetically acceptable to the patients and clinically acceptable in all cases. From this study, it may be concluded that acellular dermal matrix graft is an excellent substitute for autogenous graft in coverage of denuded roots. PMID:27829749

  8. Dermis, acellular dermal matrix, and fibroblasts from different layers of pig skin exhibit different profibrotic characteristics: evidence from in vivo study

    PubMed Central

    Zuo, Yanhai; Lu, Shuliang

    2017-01-01

    To explore the profibrotic characteristics of the autografted dermis, acellular dermal matrix, and dermal fibroblasts from superficial/deep layers of pig skin, 93 wounds were established on the dorsa of 7 pigs. 72 wounds autografted with the superficial/deep dermis and acellular dermal matrix served as the superficial/deep dermis and acellular dermal matrix group, respectively, and were sampled at 2, 4, and 8 weeks post-wounding. 21 wounds autografted with/without superficial/deep dermal fibroblasts served as the superficial/deep dermal fibroblast group and the control group, respectively, and were sampled at 2 weeks post-wounding. The hematoxylin and eosin staining showed that the wounded skin thicknesses in the deep dermis group (superficial acellular dermal matrix group) were significantly greater than those in the superficial dermis group (deep acellular dermal matrix group) at each time point, the thickness of the cutting plane in the deep dermal fibroblast group was significantly greater than that in the superficial dermal fibroblast group and the control group. The western blots showed that the α-smooth muscle actin expression in the deep dermis group (superficial acellular dermal matrix group) was significantly greater than that in the superficial dermis group (deep acellular dermal matrix group) at each time point. In summary, the deep dermis and dermal fibroblasts exhibited more profibrotic characteristics than the superficial ones, on the contrary, the deep acellular dermal matrix exhibited less profibrotic characteristics than the superficial one. PMID:28423561

  9. Creeping attachment after 10 years of treatment of a gingival recession with acellular dermal matrix: a case report.

    PubMed

    Santos, Antonio; Goumenos, George; Pascual, Andrés; Nart, Jose

    2011-02-01

    Acellular dermal matrix grafts have become a good alternative to autogenous soft tissue grafts in root coverage. Until now, the literature has reported short- or medium-term data regarding the stability of the gingival margin after the use of acellular dermal matrix on root coverage. The aim of this article is to describe a case report with 10 years of evolution with creeping attachment that developed bucally on a moderate recession of a maxillary canine with an old composite restoration subsequent to an acellular dermal matrix. Long-term creeping attachment and complete root coverage on a restored tooth treated with acellular dermal matrix has not been previously reported in the dental literature.

  10. A short-term and long-term comparison of root coverage with an acellular dermal matrix and a subepithelial graft.

    PubMed

    Harris, Randall J

    2004-05-01

    Obtaining predictable and esthetic root coverage has become important. Unfortunately, there is only a limited amount of information available on the long-term results of root coverage procedures. The goal of this study was to evaluate the short-term and long-term root coverage results obtained with an acellular dermal matrix and a subepithelial graft. An a priori power analysis was done to determine that 25 was an adequate sample size for each group in this study. Twenty-five patients treated with either an acellular dermal matrix or a subepithelial graft for root coverage were included in this study. The short-term (mean 12.3 to 13.2 weeks) and long-term (mean 48.1 to 49.2 months) results were compared. Additionally, various factors were evaluated to determine whether they could affect the results. This study was a retrospective study of patients in a fee-for-service private periodontal practice. The patients were not randomly assigned to treatment groups. The mean root coverages for the short-term acellular dermal matrix (93.4%), short-term subepithelial graft (96.6%), and long-term subepithelial graft (97.0%) were statistically similar. All three were statistically greater than the long-term acellular dermal matrix mean root coverage (65.8%). Similar results were noted in the change in recession. There were smaller probing reductions and less of an increase in keratinized tissue with the acellular dermal matrix than the subepithelial graft. None of the factors evaluated resulted in the acellular dermal graft having a statistically significant better result than the subepithelial graft. However, in long-term cases where multiple defects were treated with an acellular dermal matrix, the mean root coverage (70.8%) was greater than the mean root coverage in long-term cases where a single defect was treated with an acellular dermal matrix (50.0%). The mean results with the subepithelial graft held up with time better than the mean results with an acellular dermal

  11. Bovine versus porcine acellular dermal matrix for complex abdominal wall reconstruction.

    PubMed

    Clemens, Mark W; Selber, Jesse C; Liu, Jun; Adelman, David M; Baumann, Donald P; Garvey, Patrick B; Butler, Charles E

    2013-01-01

    Abdominal wall reconstruction with bioprosthetic mesh is associated with lower rates of mesh infection, fistula formation, and mesh explantation than reconstruction with synthetic mesh. The authors directly compared commonly used bioprosthetic meshes in terms of clinical outcomes and complications. A database of consecutive patients who underwent abdominal wall reconstruction with porcine or bovine acellular dermal matrix and midline musculofascial closure at their institution between January of 2008 and March of 2011 was reviewed. Surgical outcomes were compared. One hundred twenty patients were identified who underwent a nonbridged, inlay abdominal wall reconstruction with porcine [69 patients (57.5 percent)] or bovine acellular dermal matrix (51 patients (42.5 percent)]. The mean follow-up time was 21.0 ± 9.9 months. The overall complication rate was 36.6 percent; the porcine matrix group had a significantly higher complication rate (44.9 percent) than the bovine matrix group (25.5 percent; p = 0.04) and statistically equivalent surgical complications (29.2 percent versus 21.6 percent; p = 0.34). There were no significant differences in rates of recurrent hernia (2.9 percent versus 3.9 percent; p = 0.99) or bulge (7.2 percent versus 0 percent; p = 0.07). However, the rate of intraoperative adverse events in the porcine matrix group [seven events (10.1 percent)] was significantly higher than that in the bovine matrix group (0 percent; p = 0.02). In patients who undergo complex abdominal wall reconstruction, both bovine and porcine acellular dermal matrix are associated with similar rates of postoperative surgical complications and appear to result in similar outcomes. Porcine acellular dermal matrix may be prone to intraoperative device failure. Therapeutic, III.

  12. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction.

    PubMed

    Burns, Nadja K; Jaffari, Mona V; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E

    2010-01-01

    Non-cross-linked porcine acellular dermal matrices have been used clinically for abdominal wall repair; however, their biologic and mechanical properties and propensity to form visceral adhesions have not been studied. The authors hypothesized that their use would result in fewer, weaker visceral adhesions than polypropylene mesh when used to repair ventral hernias and form a strong interface with the surrounding musculofascia. Thirty-four guinea pigs underwent inlay repair of surgically created ventral hernias using polypropylene mesh, porcine acellular dermal matrix, or a composite of the two. The animals were killed at 4 weeks, and the adhesion tenacity grade and surface area of the repair site involved by adhesions were measured. Sections of the repair sites, including the implant-musculofascia interface, underwent histologic analysis and uniaxial mechanical testing. The incidence of bowel adhesions to the repair site was significantly lower with the dermal matrix (8 percent, p < 0.01) and the matrix/mesh combination (0 percent, p < 0.001) than with polypropylene mesh alone (70 percent). The repairs made with the matrix or the matrix/mesh combination, compared with the polypropylene mesh repairs, had significantly lower mean adhesion surface areas [12.8 percent (p < 0.001), 9.2 percent (p < 0.001), and 79.9 percent] and grades [0.6 (p < 0.001), 0.6 (p < 0.001), and 2.9]. The dermal matrix underwent robust cellular and vascular infiltration. The ultimate tensile strength at the implant-musculofascia interface was similar in all groups. Porcine acellular dermal matrix becomes incorporated into the host tissue and causes fewer adhesions to repair sites than does polypropylene mesh, with similar implant-musculofascia interface strength. It also inhibits adhesions to adjacent dermal matrix in the combination repairs. It has distinct advantages over polypropylene mesh for complex abdominal wall repairs, particularly when material placement directly over bowel is

  14. Metrics of cellular and vascular infiltration of human acellular dermal matrix in ventral hernia repairs.

    PubMed

    Campbell, Kristin Turza; Burns, Nadja K; Ensor, Joe; Butler, Charles E

    2012-04-01

    Human acellular dermal matrix is used for ventral hernia repair, as it resists infection and remodels by means of surrounding tissue. However, the tissue source and impact of basement membrane on cell and vessel infiltration have not been determined. The authors hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into human acellular dermal matrix and that the basement membrane would inhibit infiltration. Fifty-six guinea pigs underwent inlay human acellular dermal matrix ventral hernia repair with the basement membrane oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, basement membrane orientation, and time. Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p = 0.01 and p < 0.0001, respectively). Cell density was greater with the basement membrane oriented toward the peritoneum at week 4 (p = 0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p < 0.0001). Orienting the basement membrane toward the peritoneum increased vessel density at week 4 (p = 0.0004). Cellular and vascular infiltration into human acellular dermal matrix for ventral hernia repairs was greater from musculofascia than from subcutaneous fat, and the basement membrane inhibited cellular and vascular infiltration. Human acellular dermal matrix should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation.

  15. What happens to an acellular dermal matrix after implantation in the human body? A histological and electron microscopic study.

    PubMed

    Boháč, Martin; Danišovič, Ľuboš; Koller, Ján; Dragúňová, Jana; Varga, Ivan

    2018-01-22

    Acellular matrices are used for various purposes and they have been studied extensively for their potential roles in regenerating tissues or organs. The acellular matrix generates physiological cues that mimic the native tissue microenvironment. Acellular dermal matrix (ADM) is a soft connective tissue graft generated by a decellularization process that preserves the intact extracellular skin matrix. Upon implantation, this structure serves as a scaffold for donor-side cells to facilitate subsequent incorporation and revascularization. In breast reconstruction, ADM is used mainly for lower pole coverage and the shaping of a new breast. It helps control the positioning of the implant in the inframammary fold, and prevent the formation of contractile pseudocapsule around the breast implant. In this study, we provide a comprehensive histological description of ADM used for human breast reconstruction over the course of several months following implementation. Using immunohistochemical methods (a panel of 12 antibodies) coupled with optical and transmission electron microscopy, we confirmed that the original acellular dermal matrix became recolonized by fibroblasts and myofibroblasts, and also by various other free cells of the connective tissue (lymphocytes, macrophages and multinucleated giant cells, granulocytes, mast cells) after implantation into the patient's body. Within the implanted ADM, there was a relatively rapid ingrowth of blood vessels. Lymphatic vessels were only detected in one case 9 months after the implantation of the ADM. These results suggest that lymphangiogenesis is a longer process than angiogenesis.

  16. Interposition Ankle Arthroplasty Using Acellular Dermal Matrix: A Small Series.

    PubMed

    Carpenter, Brian; Duncan, Kyle; Ernst, Jordan; Ryba, Dalton; Suzuki, Sumihiro

    Although ankle arthrodesis is the reference standard for end-stage ankle arthritis, loss of mobility and adjacent joint arthritis are consequences that alternatives to arthrodesis attempt to avoid. The purpose of the present study was to report the clinical results of interpositional arthroplasty using acellular dermal matrix in 4 patients (age 32 to 42 years) for the treatment of advanced ankle osteoarthritis. The primary findings included relief of pain, with improvement in tibiotalar joint range of motion from a mean of 16.5° (range 0° to 24°) preoperatively to a mean of 31° (range 25° to 40°) postoperatively. All 4 patients underwent open arthrotomy of the anterior and posterior tibiotalar capsule with plafond exostectomy and debridement of all deleterious tissue within the ankle capsule. The articular surface of the talar dome was denuded down to smooth subchondral bone, and microfracture was performed. Autologous calcaneal bone marrow aspirate was applied, and talar resurfacing was achieved using an acellular dermal matrix. Knotless anchors placed medially and laterally within the anterior and posterior dome were used to affix the dermal matrix. The follow-up period ranged from 12 to 18 (mean 14) months. The mean pre- and 12-month postoperative Association of Orthopaedic Foot and Ankle Society hindfoot-ankle scale scores were 35 and 88.5, respectively. These outcomes suggest that interpositional tibiotalar arthroplasty using an acellular dermal matrix is successful in improving function and range of motion and decreasing pain. As an alternative to tibiotalar arthrodesis, interpositional tibiotalar arthroplasty might be the procedure of choice for young patients with end-stage ankle arthritis. Longer follow-up periods, histologic testing, and arthroscopic evaluations would be advantageous to further assess the durability of this procedure. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Acellular dermal matrix graft for gingival augmentation: a preliminary clinical, histologic, and ultrastructural evaluation.

    PubMed

    Scarano, Antonio; Barros, Raquel R M; Iezzi, Giovanna; Piattelli, Adriano; Novaes, Arthur B

    2009-02-01

    The aim of this study was to evaluate clinically, histologically, and ultrastructurally the integration process of the acellular dermal matrix used to increase the band of keratinized tissue while achieving gingival inflammation control. Ten patients exhibiting a mucogingival problem with bands of keratinized tissue acellular dermal matrix. Clinical measurements were assessed at baseline and after 3 months. A specimen of the allograft and surrounding tissues was obtained immediately before the surgery and 4 minutes and 1, 2, 3, 4, 6, and 10 weeks after grafting. Clinically, a gain of keratinized tissue of 2.92 +/- 0.65 mm was observed after 3 months. Histologically and ultrastructurally, many macrophages were observed phagocytosing preexisting collagen fibers in the first weeks. From week 2 on, fibroblasts synthesizing new collagen, epithelial cells colonizing the graft surface, and revascularization were noticed. After 6 weeks it was difficult to find the acellular dermal matrix preexisting collagen fibers. This process of substitution was completed after 10 weeks, when the reepithelialization of the entire graft throughout a well-structured basement membrane was achieved. The acellular dermal matrix graft seemed to be an easily handled material for use in keratinized tissue augmentation that, in humans, was substituted and completely reepithelialized in 10 weeks according to histologic and ultrastructural results.

  18. Bovine versus Porcine Acellular Dermal Matrix: A Comparison of Mechanical Properties.

    PubMed

    Adelman, David M; Selber, Jesse C; Butler, Charles E

    2014-05-01

    Porcine and bovine acellular dermal matrices (PADM and BADM, respectively) are the most commonly used biologic meshes for ventral hernia repair. A previous study suggests a higher rate of intraoperative device failures using PADM than BADM. We hypothesize that this difference is, in part, related to intrinsic mechanical properties of the matrix substrate and source material. The following study directly compares these 2 matrices to identify any potential differences in mechanical properties that may relate to clinical outcomes. Sections of PADM (Strattice; Lifecell, Branchburg, N.J.) and BADM (SurgiMend; TEI Biosciences, Boston, Mass.) were subjected to a series of biomechanical tests, including suture retention, tear strength, and uniaxial tensile strength. Results were collected and compared statistically. In all parameters, BADM exhibited a superior mechanical strength profile compared with PADM of similar thickness. Increased BADM thickness correlated with increased mechanical strength. In suture tear-through testing with steel wire, failure of the steel wire occurred in the 4-mm-thick BADM, whereas the matrix material failed in all other thicknesses of BADM and PADM. Before implantation, BADM is inherently stronger than PADM at equivalent thicknesses and considerably stronger at increased thicknesses. These results corroborate clinical data from a previous study in which PADM was associated with a higher intraoperative device failure rate. Although numerous properties of acellular dermal matrix contribute to clinical outcomes, surgeons should consider initial mechanical strength properties when choosing acellular dermal matrices for load-bearing applications such as hernia repair.

  19. The breast reconstruction evaluation of acellular dermal matrix as a sling trial (BREASTrial): design and methods of a prospective randomized trial.

    PubMed

    Agarwal, Jayant P; Mendenhall, Shaun D; Anderson, Layla A; Ying, Jian; Boucher, Kenneth M; Liu, Ting; Neumayer, Leigh A

    2015-01-01

    Recent literature has focused on the advantages and disadvantages of using acellular dermal matrix in breast reconstruction. Many of the reported data are from low level-of-evidence studies, leaving many questions incompletely answered. The present randomized trial provides high-level data on the incidence and severity of complications in acellular dermal matrix breast reconstruction between two commonly used types of acellular dermal matrix. A prospective randomized trial was conducted to compare outcomes of immediate staged tissue expander breast reconstruction using either AlloDerm or DermaMatrix. The impact of body mass index, smoking, diabetes, mastectomy type, radiation therapy, and chemotherapy on outcomes was analyzed. Acellular dermal matrix biointegration was analyzed clinically and histologically. Patient satisfaction was assessed by means of preoperative and postoperative surveys. Logistic regression models were used to identify predictors of complications. This article reports on the study design, surgical technique, patient characteristics, and preoperative survey results, with outcomes data in a separate report. After 2.5 years, we successfully enrolled and randomized 128 patients (199 breasts). The majority of patients were healthy nonsmokers, with 41 percent of patients receiving radiation therapy and 49 percent receiving chemotherapy. Half of the mastectomies were prophylactic, with nipple-sparing mastectomy common in both cancer and prophylactic cases. Preoperative survey results indicate that patients were satisfied with their premastectomy breast reconstruction education. Results from the Breast Reconstruction Evaluation Using Acellular Dermal Matrix as a Sling Trial will assist plastic surgeons in making evidence-based decisions regarding acellular dermal matrix-assisted tissue expander breast reconstruction. Therapeutic, II.

  20. Acellular dermal matrix as an adjunct in treatment of neuropathic pain at the wrist.

    PubMed

    Peterson, Steven L; Adham, Mehdi N

    2006-08-01

    Traumatic or surgical injury to superficial sensory nerves at the wrist can lead to significant morbidity. Multiple treatment modalities have been proposed, including the use of flap coverage to provide soft-tissue padding and decrease tactile irritation. In this report, acellular dermal matrix (AlloDerm) was used as an alternative to flap coverage, thereby avoiding the need for a donor site. Five patients with postsurgical and five patients with posttraumatic neuropathic pain at the wrist underwent neuroma excision and/or neurolysis followed by interposition of acellular dermal matrix allograft between skin and nerve. Patients were followed from 12 to 25 months and demonstrated substantial improvement in pain. Eight previously employed patients returned to their prior occupations. Dermal matrix allograft may provide cushioning and/or a gliding surface for the nerve and represents a simple alternative to flap coverage in the treatment of neuropathic pain at the wrist.

  1. Full-mouth esthetic rehabilitation with acellular dermal matrix.

    PubMed

    Clozza, Emanuele; Suzuki, Takanori; Engebretson, Steven P

    2014-01-01

    Treatment of multiple recession defects with the adjunct use of a connective tissue graft (CTG) represents a challenge when diagnosed in several teeth of the mouth. The amount of CTG harvested from the palate may not be adequate to address this condition. In such scenarios, alternative sources such as acellular dermal matrix (ADM) are preferred due to the unlimited availability. A case report is presented, dealing with the treatment of multiple gingival recessions affecting the majority of dentition using ADM, with a 6-month follow-up.

  2. Acellular dermal matrix allograft. The results of controlled randomized clinical studies.

    PubMed

    Novaes, Arthur Belém; de Barros, Raquel Rezende Martins

    2008-10-01

    The aim of this presentation was to discuss the effectiveness of the acellular dermal matrix in root coverage therapy and in alveolar ridge augmentation, based on three controlled randomized clinical trials conducted by our research team (Novaes Jr et al., 2001; Barros et al., 2005; Luczyszyn et al., 2005). The first and second studies highlight the allograft's performance in the treatment of gingival recession. In both studies, clinical parameters were assessed prior to surgery and 6 or 12 months post-surgery. The first one compared the use of the acellular dermal matrix with the subepithelial connective tissue graft and showed 1.83 and 2.10 mm of recession reduction, respectively. Because no statistically significant differences between the groups were observed, it was concluded that the allograft can be used as a substitute for the autograft. In the second study, a new surgical approach was compared to a conventional surgical procedure described by Langer and Langer in 1985. A statistically significant greater recession reduction favoring the test procedure was achieved. The percentage of root coverage was 82.5% and 62.3% for test and control groups. Thus the new technique was considered more suitable for the treatment of gingival recessions with the allograft. Finally, the third study evaluated the allograft as a membrane, associated or not with a resorbable hydroxyapatite in bone regeneration to prevent ridge deformities. In one group the extraction sockets were covered only by the allograft and in the other, the alveoli were also filled with the resorbable hydroxyapatite. After six months, both treatments were able to preserve ridge thickness, considering the pre-operative values. In conclusion, no adverse healing events were noted with the use of allograft in site preservation procedures, and sites treated with the combination of allograft plus resorbable hydroxyapatite showed significantly greater ridge thickness preservation at six months when compared to

  3. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  4. Reconstruction of the pelvic floor with human acellular dermal matrix and omental flap following anterior pelvic exenteration.

    PubMed

    Momoh, Adeyiza O; Kamat, Ashish M; Butler, Charles E

    2010-12-01

    Pelvic floor reconstruction after pelvic exenteration is challenging, particularly with bacterial contamination and/or pelvic irradiation. Traditional regional myocutaneous flap options are not always avaliable, especially in the multiply operated patient. Human acellular dermal matrix (HADM) confers several advantages and is associated with less morbidity when compared to synthetic mesh used in these compromised wound beds. We report a clinical case of an elderly patient with an anterior pelvic floor defect, who underwent successful reconstruction with a combination of human acellular dermal matrix and an omental flap. Copyright © 2010. Published by Elsevier Ltd.

  5. Management of gingival recession by the use of an acellular dermal graft material: a 12-case series.

    PubMed

    Santos, A; Goumenos, G; Pascual, A

    2005-11-01

    Different soft tissue defects can be treated by a variety of surgical procedures. Most of these techniques require the palatal area as a donor site. Recently, an acellular dermal graft has become available that can substitute for palatal donor tissue. This study describes the surgical technique for gingival augmentation and root coverage and the results of 12 clinical cases. A comparison between the three most popular mucogingival procedures for root coverage is also presented. The results of the 12 patients and the 26 denuded surfaces have shown that we can obtain a mean root coverage of 74% with the acellular dermal graft. Thirteen out of the 26 denuded surfaces had complete root coverage. The average increase in keratinized tissue was 1.19 mm. It seems that the long-term results of the cases are stable. The proposed technique of root coverage with an acellular dermal graft can be a good alternative to soft tissue grafts for root coverage, and it should be part of our periodontal plastic surgery armamentarium.

  6. Acellular dermal matrix allograft used to gain attached gingiva in a case of epidermolysis bullosa.

    PubMed

    Buduneli, Eralp; Ilgenli, Tunç; Buduneli, Nurcan; Ozdemir, Fezal

    2003-11-01

    Epidermolysis bullosa (EB) is an acquired disease or inherited as either autosomal dominant or recessive with an incidence of 1/50,000. The prominent clinical characteristic of the disease is the development of bullae or vesicles in mucosa or skin in response to minor trauma. A female patient with a dystrophic type of EB had been put in a maintenance regimen after completion of the initial phase of periodontal therapy and followed for 7 years. The purpose of this report is to document acellular dermal matrix allograft application to increase the width of the attached gingiva in this patient experiencing difficulty in chewing and performing plaque control due to the dramatic loss of attached gingiva after 7 years of supportive periodontal therapy. Under local anaesthesia and antibiotic coverage, the acellular dermal matrix allograft was applied in the anterior region of the upper jaw in order to increase the width of attached gingiva, thereby improving patient comfort. The healing was uneventful and a significant gain in attached gingiva dimensions was observed 9 months after the periodontal surgery. The procedure avoided a second surgical site, provided satisfactory results from an aesthetic point of view, and improved patient comfort. Acellular dermal matrix allograft may be regarded as an alternative in the treatment of EB cases to increase the width of attached gingiva and facilitate maintenance of the dentition.

  7. [Autogenous platelet-rich plasma gel with acellular xenogeneic dermal matrix for treatment of deep II degree burns].

    PubMed

    Hao, Tianzhi; Zhu, Jingmin; Hu, Wenbo; Zhang, Hua; Gao, Zhenhui; Wen, Xuehui; Zhou, Zhi; Lu, Gang; Liu, Jingjie; Li, Wen

    2010-06-01

    To investigate the effectiveness of autogenous platelet-rich plasma (PRP) gel with acellular xenogeneic dermal matrix in the treatment of deep II degree burns. From January 2007 to December 2009, 30 cases of deep II degree burns were treated. There were 19 males and 11 females with an average age of 42.5 years (range, 32-57 years). The burn area was 10% to 48% of total body surface area. The time from burn to hospitalization was 30 minutes to 8 hours. All patients were treated with tangential excision surgery, one side of the wounds were covered with autogenous PRP gel and acellular xenogeneic dermal matrix (PRP group), the other side of the wounds were covered with acellular xenogeneic dermal matrix only (control group). The healing rate, healing time, infection condition, and scar formation were observed. At 7 days after operation, the infection rate in PRP group (6.7%, 2/30) was significantly lower than that in control group (16.7%, 5/30, P < 0.05). The healing times were (18 +/- 4) days and (22 +/- 4) days respectively in PRP group and control group, showing significant difference (P < 0.05). The healing rates at 14 days and 21 days were 75% +/- 7% and 88% +/- 5% in PRP group, were 62% +/- 15% and 73% +/- 7% in control group, showing significant difference (P < 0.05). RPR group was superior to control group in elasticity, color, appearance, softness, scar formation, and healing quality. Autogenous PRP gel with acellular xenogeneic dermal matrix can accelerate the wound healing of deep II degree burns as well as alleviate the scar proliferation.

  8. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro.

    PubMed

    Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L

    2006-03-01

    Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human

  9. Aseptic Freeze-Dried versus Sterile Wet-Packaged Human Cadaveric Acellular Dermal Matrix in Immediate Tissue Expander Breast Reconstruction: A Propensity Score Analysis.

    PubMed

    Hanson, Summer E; Meaike, Jesse D; Selber, Jesse C; Liu, Jun; Li, Liang; Hassid, Victor J; Baumann, Donald P; Butler, Charles E; Garvey, Patrick B

    2018-05-01

    Although multiple acellular dermal matrix sources exist, it is unclear how its processing impacts complication rates. The authors compared complications between two preparations of human cadaveric acellular dermal matrix (freeze dried and ready-to-use) in immediate tissue expander breast reconstruction to analyze the effect of processing on complications. The authors retrospectively reviewed all alloplastic breast reconstructions with freeze-dried or ready-to-use human acellular dermal matrices between 2006 and 2016. The primary outcome measure was surgical-site occurrence defined as seroma, skin dehiscence, surgical-site infection, or reconstruction failure. The two groups were compared before and after propensity score matching. The authors included 988 reconstructions (freeze-dried, 53.8 percent; ready-to-use, 46.2 percent). Analysis of 384 propensity score-matched pairs demonstrated a slightly higher rate of surgical-site occurrence (21.4 percent versus 16.7 percent; p = 0.10) and surgical-site infection (9.6 percent versus 7.8 percent; p = 0.13) in the freeze-dried group than in the ready-to-use group, but the difference was not significant. However, failure was significantly higher for the freeze-dried versus ready-to-use group (7.8 percent versus 4.4 percent; p = 0.050). This is the largest study comparing the outcomes of alloplastic breast reconstruction using human acellular dermal matrix materials prepared by different methods. The authors demonstrated higher early complications with aseptic, freeze-dried matrix than with sterile ready-to-use matrix; reconstructive failure was the only outcome to achieve statistical significance. The authors conclude that acellular dermal matrix preparation has an independent impact on patient outcomes in their comparison of one company's product. Therapeutic, III.

  10. The use of acellular dermal matrix membrane for vertical soft tissue augmentation during submerged implant placement: a case series.

    PubMed

    Puisys, Algirdas; Vindasiute, Egle; Linkevciene, Laura; Linkevicius, Tomas

    2015-04-01

    To evaluate the efficiency of acellular dermal matrix membrane to augment vertical peri-implant soft tissue thickness during submerged implant placement. Forty acellular dermal matrix-derived allogenic membranes (AlloDerm, BioHorizons, Birmingham, AL, USA) and 42 laser-modified surface internal hex implants (BioHorizons Tapered Laser Lok, Birmingham, AL, USA) were placed in submerged approach in 40 patients (15 males and 25 females, mean age 42.5 ± 1.7) with a thin vertical soft tissue thickness of 2 mm or less. After 3 months, healing abutments were connected to implants, and the augmented soft tissue thickness was measured with periodontal probe. The gain in vertical soft tissue volume was calculated. Mann-Whitney U-test was applied and significance was set to 0.05. All 40 allografts healed successfully. Thin soft tissue before augmentation had an average thickness of 1.54 ± 0.51 mm SD (range, 0.5-2.0 mm, median 1.75 mm), and after soft tissue augmentation with acellular dermal matrix, thickness increased to 3.75 ± 0.54 mm SD (range, 3.0-5.0 mm, median 4.0 mm) at 3 months after placement. This difference between medians was found to be statistically significant (P < 0.001). Mean increase in soft tissue thickness was 2.21 ± 0.85 mm SD (range, 1.0-4.5 mm, median 2.0 mm). It can be concluded that acellular dermal matrix membrane can be successfully used for vertical soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    PubMed Central

    Rennert, Robert C.; Garg, Ravi K.; Gurtner, Geoffrey C.

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting. PMID:23970899

  12. Cellular response to a novel fetal acellular collagen matrix: implications for tissue regeneration.

    PubMed

    Rennert, Robert C; Sorkin, Michael; Garg, Ravi K; Januszyk, Michael; Gurtner, Geoffrey C

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting.

  13. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  14. Treatment of severe burn with DermACELL(®), an acellular dermal matrix.

    PubMed

    Chen, Shyi-Gen; Tzeng, Yuan-Sheng; Wang, Chih-Hsin

    2012-01-01

    For treatment of skin burn injuries, there exist several methods of treatment related to tissue regeneration, including the use of autograft skin and cryopreserved skin. However, each method has drawbacks. An alternative method for tissue regeneration is allograft acellular dermal matrix, with potential as a biocompatible scaffold for new tissue growth. One recently produced material of this type is DermACELL(®), which was used in this case presentation for treating a scar resulting from second- and third-degree burns in a 33-year-old female patient. The patient presented with significant hypertrophic scarring from the elbow to the hand and with limited wrist and elbow motion. The scarring was removed, and the patient was treated with a 1:3 mesh of DermACELL. The wound was resurfaced with a split thickness skin graft, and postoperative care included application of pressure garment and silicone sheet, as well as range of motion exercise and massage. At 30 days after DermACELL application, the wound appeared well-healed with little scar formation. At 180 days post-application, the wound continued to appear healed well without significant scar formation. Additionally, the wound was supple, and the patient experienced significant improvement in range of motion. In the case presented, DermACELL appears to have been a successful method of treatment for scarring due to severe burns by preventing further scar formation and improving range of motion.

  15. Critical Evaluation of Risk Factors and Early Complications in 564 Consecutive Two-Stage Implant-Based Breast Reconstructions Using Acellular Dermal Matrix at a Single Center.

    PubMed

    Selber, Jesse C; Wren, James H; Garvey, Patrick B; Zhang, Hong; Erickson, Cameron; Clemens, Mark W; Butler, Charles E

    2015-07-01

    Acellular dermal matrix for implant-based breast reconstruction appears to cause higher early complication rates, but long-term outcomes are perceived to be superior. This dichotomy is the subject of considerable debate. The authors hypothesized that patient characteristics and operative variables would have a greater impact on complications than the type of acellular dermal matrix used. A retrospective cohort study was performed of consecutive patients who underwent two-stage, implant-based breast reconstruction with human cadaveric or bovine acellular dermal matrix from 2006 to 2012 at a single institution. Patient characteristics and operative variables were analyzed using logistic regression analyses to identify risk factors for complications. The authors included 564 reconstructions in the study. Radiation therapy and obesity increased the odds of all complications. Every 100-ml increase in preoperative breast volume increased the odds of any complication by 1 percent, the odds of infection by 27 percent, and the risk of explantation by 16 percent. The odds of seroma increased linearly with increasing surface area of acellular dermal matrix. Odds of infection were higher with an intraoperative expander fill volume greater than 50 percent of the total volume. Risk of explantation was twice as high when intraoperative expander fill volume was greater than 300 ml. Radiation therapy, obesity, larger breasts, higher intraoperative fill volumes, and larger acellular dermal matrices are all independent risk factors for early complications. Maximizing the initial mastectomy skin envelope fill must be balanced with the understanding that higher complication rates may result from a larger intraoperative breast mound. Risk, III.

  16. A modified tensionless gingival grafting technique using acellular dermal matrix.

    PubMed

    Taylor, John B; Gerlach, Robert C; Herold, Robert W; Bisch, Frederick C; Dixon, Douglas R

    2010-10-01

    Conventional surgical procedures designed for autogenous tissue material may not be appropriate when using acellular dermal matrix (ADM) for the treatment of gingival recessions. This article describes a new surgical technique that addresses the unique and sensitive aspects of ADM specifically to improve esthetic outcomes and gain increased clinical predictability when treating Miller Class I and II gingival recession defects. In this paper, a root coverage case is described and the specific steps and rationale for this new technique are explained. This technique has been predictable clinically, with results comparable to those achieved using autogenous tissue.

  17. A novel surgical procedure for coronally repositioning of the buccal implant mucosa using acellular dermal matrix: a case report.

    PubMed

    Mareque-Bueno, Santiago

    2011-01-01

    This case report describes a surgical procedure for coronally advancing the peri-implant mucosa to treat a soft tissue dehiscence in a single-tooth implant-supported restoration in combination with an acellular dermal matrix graft. The patient was a 41-year-old systemically healthy, non-smoking female. Her chief complaint pertained to the unesthetic appearance of her right lateral upper incisor, caused by recession of the mucosal margin. On examination, a 3-mm recession could be observed. The periodontium was classified as thin. A 2-mm band of keratinized peri-implant mucosa was present. Keratinized gingiva was approximately 6 mm at adjacent areas. The surgical technique included a novel incision design to coronally position the flap over an acellular dermal matrix graft. Partial coverage of the recession was achieved. After a 6-month period, tissues appeared thicker than preoperatively, with no bleeding on probing and no probing depth >2 mm. The patient was satisfied with the overall treatment result. This case report shows the possibility of achieving partial soft tissue coverage over an implant-supported restoration with the combined use of an acellular dermal matrix and a coronally positioned flap. A novel technique is presented that allowed advancing the flap over the graft in a single-tooth restoration where enough keratinized tissue was present preoperatively.

  18. Usefulness of Cross-Linked Human Acellular Dermal Matrix as an Implant for Dorsal Augmentation in Rhinoplasty.

    PubMed

    Yang, Chae Eun; Kim, Soo Jung; Kim, Ji Hee; Lee, Ju Hee; Roh, Tai Suk; Lee, Won Jai

    2018-02-01

    Asian noses are relatively small and flat compared to Caucasians; therefore, rhinoplasty procedures often focus on dorsal augmentation and tip projection rather than reduction in the nasal framework. Various autologous and alloplastic implant materials have been used for dorsal augmentation. Recently, human acellular dermal matrices have been introduced as an implant material for dorsal augmentation, camouflaging autologous implants without an additional donor site. Here, we introduce a cross-linked human acellular dermal matrix as an implant material in augmentation rhinoplasty and share the clinical experiences. Eighteen patients who underwent augmentation rhinoplasty using acellular dermal matrix from April 2014 to November 2015 were reviewed retrospectively. Clinical outcomes and complications were assessed at the outpatient clinic during the follow-up period ranging from 8 to 38 months. Contour changes were assessed through comparison of preoperative and postoperative photographs by two independent plastic surgeons. Patient satisfaction was assessed at the outpatient clinic by six questions regarding aesthetic and functional aspects. Postoperative photographs demonstrated the height of the nasal dorsum did not decrease over time except two patients whose ADM was grafted into a subperiosteal pocket. Others who underwent supraperiosteal implantation showed acceptable maintenance of dorsal height. No major complication was reported. Overall, patient satisfaction scored 81.02 out of 100. Cross-linked human ADM has advantages of both autogenous and alloplastic materials. The surgical results remain stable without complications. Therefore, it is a suitable alternative implant material for dorsal augmentation in rhinoplasty. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  19. Comparative clinical study of a subepithelial connective tissue graft and acellular dermal matrix graft for the treatment of gingival recessions: six- to 12-month changes.

    PubMed

    de Souza, Sérgio Luís Scombatti; Novaes, Arthur Belém; Grisi, Daniela Corrêa; Taba, Mário; Grisi, Márcio Fernando de Moraes; de Andrade, Patrícia Freitas

    2008-07-01

    Different techniques have been proposed for the treatment of gingival recession. This study compared the clinical results of gingival recession treatment using a subepithelial connective tissue graft and an acellular dermal matrix allograft. Seven patients with bilateral Miller class I or II gingival recession were selected. Twenty-six recessions were treated and randomly assigned to the test group. In each case the contralateral recession was assigned to the control group. In the control group, a connective tissue graft in combination with a coronally positioned flap was used; in the test group, an acellular dermal matrix allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, gingival recession, and width of keratinized tissue were measured two weeks prior to surgery and at six and 12 months post-surgery. There were no statistically significant differences between the groups in terms of recession reduction, clinical attachment gain, probing pocket depth, and increase in the width of the keratinized tissue after six or 12 months. There was no statistically significant increase in the width of keratinized tissue between six and 12 months for either group. Within the limitations of this study, it can be suggested that the acellular dermal matrix allograft may be a substitute for palatal donor tissue in root coverage procedures and that the time required for additional gain in the amount of keratinized tissue may be greater for the acellular dermal matrix than for the connective tissue procedures.

  20. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  1. Use of the tunnel technique and an acellular dermal matrix in the treatment of multiple adjacent teeth with gingival recession in the esthetic zone.

    PubMed

    Mahn, Douglas H

    2010-12-01

    The proper management of gingival recession is critical to the establishment of a natural-appearing soft tissue architecture. Subepithelial connective tissue grafts have been considered the "gold standard" but are limited by the availability of palatal donor tissue. Tunnel techniques have improved the esthetic results of connective tissue grafting. Acellular dermal matrices have been successful in the treatment of gingival recession and are not limited by the palatal anatomy. The aim of this report is to describe the application of the tunnel technique, with use of an acellular dermal matrix, in the correction of gingival recession affecting multiple adjacent teeth in the esthetic zone.

  2. [Application of the xenogenic acellular dermal matrix membrane application used in the postoperative tissue shortage repair].

    PubMed

    Bai, Yanxia; Yan, Liying; Zhang, Shaoqiang; Shao, Yuan; Yao, Xiaobao; Li, Honghui; Zhao, Ruimin; Zhao, Qian; Zhang, Pengfei; Yang, Qi

    2014-09-01

    To observe the short-term and long-term curative effect of the xenogenic acellular dermal matrix membrane (or joint muscle flap transfer) application used in the 82 cases postoperative tissue shortage repair that after the head neck carcinoma resection. To held the 82 cases head neck carcinoma postoperative mucosa shortage repaired after resection by the xenogenic acellular dermal matrix membrane (or joint muscle flap transfer), 65 cases mucosa shortage wound be directly covered by the repair membrane and the other 17 cases mucosa shortage wound be repaired by the tranfered muscle tissue flap with the repair membrane covered; 53 cases underwent additional postoperative radiotherapy between 2-4 weeks and follow-up in 1, 3, 6, 12, 18, 24, 30, 36, 48, 60 months and observed the operation site repair process through the electronic laryngoscope, observed the patients respiration, swallow, phonation function. Seventy-seven cases patients operation incision reached I phase healing standard, another 5 cases patients operation incision reached II phase healing standard because of the wound infection and fully-recovered through the local wound drainage,dressing process. All the patients tracheal cannula,the stomach tube be extubated successfully and without the local cicatricial constriction occurred. Seventy-eight cases follow up period reached 1 year including 53 cases who underwent postoperative radiotherapy, 49 cases follow up period reached 3 years including 32 cases who underwent postoperative radiotherapy, 14 cases follow up period reached 5 years including 12 cases who underwent postoperative radiotherapy. The patients with static local lesions discovered no reaction such as exclusion, allergy. The application of xenogenic acellular dermal matrix membrane (or joint muscle flap transfer used in in the postoperative tissue shortage repair that after the head neck carcinoma resection have several advantage such as comparatively easily implementation, operation safety

  3. Histologic analysis of fetal bovine derived acellular dermal matrix in tissue expander breast reconstruction.

    PubMed

    Gaster, Richard S; Berger, Aaron J; Monica, Stefanie D; Sweeney, Robert T; Endress, Ryan; Lee, Gordon K

    2013-04-01

    This study seeks to determine human host response to fetal bovine acellular dermal matrix (ADM) in staged implant-based breast reconstruction. A prospective study was performed for patients undergoing immediate breast reconstruction with tissue expander placement and SurgiMend acellular fetal bovine dermis. At the time of exchange for permanent implant, we obtained tissue specimens of SurgiMend and native capsule. Histological and immunohistochemical assays were performed to characterize the extent of ADM incorporation/degradation, host cell infiltration, neovascularization, inflammation, and host replacement of acellular fetal bovine collagen. Seventeen capsules from 12 patients were included in our study. The average "implantation" time of SurgiMend was 7.8 months (range, 2-23 months). Histological analysis of the biopsy of tissue revealed rare infiltration of host inflammatory cells, even at 23 months. One patient had an infection requiring removal of the tissue expander at 2 months. Contracture, inflammatory changes, edema, and polymorphonuclear leukocyte infiltration were rare in the ADM. An acellular capsule was seen in many cases, at the interface of SurgiMend with the tissue expander. SurgiMend demonstrated a very infrequent inflammatory response. An antibody specific to bovine collagen allowed for direct identification of bovine collagen separate from human collagen. Cellular infiltration and neovascularization of SurgiMend correlated with the quality of the mastectomy skin flap rather than the duration of implantation. Future studies are needed to further characterize the molecular mechanisms underlying tissue incorporation of this product.

  4. Yeasts from skin colonization are able to cross the acellular dermal matrix.

    PubMed

    Jarros, Isabele Carrilho; Okuno, Érika; Costa, Maiara Ignacio; Veiga, Flávia Franco; de Souza Bonfim-Mendonça, Patricia; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet

    2018-04-01

    In recent decades, the prognosis for burn patients has improved considerably with the development of specialized care. The acellular dermal matrix (ADM) is a totally artificial acellular device that functions to control water loss, prevent penetration by bacteria and allow migration of endothelial cells and fibroblasts from patient tissues. However, little is known about its effectiveness against yeasts. The present study evaluated the capacity of colonization and migration of some human commensal yeasts. Three clinical isolates from skin scales, identified as Candida parapsilosis, Candida glabrata and Rhodotorula mucilaginosa, were used. Their ability to cross the ADM was evaluated. After three days, all isolates had crossed the ADM. C. parapsilosis showed the lowest growth, while R. mucilaginosa showed intermediate and C. glabrata the highest growth. In the plates incubated for seven days, the growth of C. parapsilosis and C. glabrata increased by 1 log over the third day. All isolates have the capacity to colonize and migrate through the matrix, increasing the potential risk to burn patients, who can develop severe and even fatal infections by invasive fungi. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Original technique for penile girth augmentation through porcine dermal acellular grafts: results in a 69-patient series.

    PubMed

    Alei, Giovanni; Letizia, Piero; Ricottilli, Francesco; Simone, Pierfranco; Alei, Lavinia; Massoni, Francesco; Ricci, Serafino

    2012-07-01

    Although different techniques for augmentation phalloplasty have been reported in the medical literature, this issue is still highly controversial, and none of the proposed procedures has been unanimously approved. The aim of this study is to describe an innovative surgical technique for penile girth augmentation with porcine dermal acellular grafts, through a small transverse incision at the penile base, along the penopubic junction. Between 2000 and 2009, 104 patients were referred to our institution for penile enhancement. After a preoperative psychosexual consultation and a general medical assessment, 69 patients were deemed suitable good candidates for surgery. The average penis circumference was measured at the mid-length of the penis and was 8.1 cm (5.4-10.7 cm) and 10.8 cm (6.5-15.8 cm) during flaccidity and erection, respectively. All patients received penile augmentation with porcine dermal acellular grafts. Results evaluation of an innovative technique for penile girth augmentation through exogenous porcine grafts and small penobubic incision. Postoperative measurements were performed at 6 and 12 months. At the 1-year follow-up, the average penis circumference was 11.3 cm (8.2-13.2 cm, 3.1 cm mean increase) during flaccidity and 13.2 cm (8.8-14.5 cm, 2.4 cm mean increase) during erection. No major complications occurred in the series. Minor complications were resolved with conservative treatment within 3 weeks. Sexual activity was resumed from 1 to 2 months after surgery. The psychosexual impact of the operation was beneficial in the majority of cases. Penile girth enlargement with acellular dermal matrix grafts has several advantages over augmentation with autogenous dermis-fat grafts: the elimination of donor site morbidity and a significantly shorter operation time. With this approach, through a short dorsal incision at the base of the penis, the scar is concealed in a crease covered by pubic hair and thus hardly visible. © 2012

  6. 440 Consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices.

    PubMed

    Butterfield, Jennifer L

    2013-05-01

    A 2010 nationwide survey of plastic and reconstructive surgeons indicated that approximately 83 percent performed predominantly implant-based breast reconstruction, with acellular dermal matrix used by approximately half of those practitioners. Although the medical literature documents well over 2000 cases of breast reconstruction with matrices, relatively few cases using other than human cadaveric acellular dermal matrices have been reported. The author compared complications and costs using SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices. A retrospective review of a single surgeon's 5-year experience was performed for consecutive, nonrandomized immediate breast reconstructions with acellular dermal matrix from 2005 to 2010. Two hundred eighty-one patients had 440 implant-based reconstructions using SurgiMend [222 patients (79.0 percent)] or AlloDerm [59 patients (21.0 percent)]. No significant differences in complication rates were observed between SurgiMend and AlloDerm for hematoma, infection, major skin necrosis, or breast implant removal. Seroma was the most prevalent complication; the seroma rate for AlloDerm (15.7 percent) was significantly greater than that for SurgiMend (8.3 percent). Using recent product costs for equivalently sized AlloDerm and SurgiMend units, the cost of SurgiMend was $1024 less per breast than AlloDerm. SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices demonstrate similar rates of major early complications in breast reconstruction in this study. This similarity in complication rates between SurgiMend and AlloDerm and the cost savings seen with the use of SurgiMend are factors for the surgeon to consider in choosing a matrix for breast reconstruction. : Therapeutic, III.

  7. Co-Graft of Acellular Dermal Matrix and Autogenous Microskin in a Child with Extensive Burns

    PubMed Central

    Chen, X.L.; Xia, Z.F.; Fang, L.S.; Wang, Y.J.; Wang, C.H.

    2008-01-01

    Summary A 6-yr-old boy was the victim of a burns accident in a public bathhouse. The burns involved the face, neck, upper and lower extremities, anterior and posterior trunk, and both buttocks, covering 72% of the total body surface area (TBSA). The lesions in the lower extremities and parts of the right upper extremity were deep partial-thickness, comprising 40% TBSA. On day 5 post-burn, the lesions in both lower extremities were excised to the extent of the fascia under general anaesthesia. Meshed J1 Jayya Acellular Dermis®, a kind of acellular allodermal (ADM) matrix, was then placed on the left knee joint. The right knee joint served as control. The wounds in both lower extremities were then overlaid with microskin autografting. At 19 days post-application, the lesions in both lower extremities had almost completely resurfaced. Follow-up at six months revealed well-healed and stable skin of acellular ADM and microskin autografts on the left knee. However, the skin of the right knee was unstable and there was a chronic residual ulcer. Both legs showed some significant hypertrophic scars. The left knee joint (acellular ADM grafted site) showed mild contractures, while the right knee joint developed a significant contracture. The "skin" of the co-graft covered site appeared thicker and more elastic. The movement range of the left knee joint was much larger than that of the right knee joint. These results suggest that co-graft of acellular dermal matrix and autogenous microskin may be an effective way to repair this functional site in children with extensive burns and to improve the functional and cosmetic results. PMID:21991120

  8. Bovine Acellular Dermal Matrix for Levator Lengthening in Thyroid-Related Upper-Eyelid Retraction.

    PubMed

    Sun, Jing; Liu, Xingtong; Zhang, Yidan; Huang, Yazhuo; Zhong, Sisi; Fang, Sijie; Zhuang, Ai; Li, Yinwei; Zhou, Huifang; Fan, Xianqun

    2018-05-02

    BACKGROUND Eyelid retraction is the most common and often the first sign of thyroid eye disease (TED). Upper-eyelid retraction causes both functional and cosmetic problems. In order to correct the position of the upper eyelid, surgery is required. Many procedures have demonstrated good outcomes in mild and moderate cases; however, unpredictable results have been obtained in severe cases. Dryden introduced an upper-eyelid-lengthening procedure, which used scleral grafts, but outcomes were unsatisfactory. A new technique is introduced in this study as a reasonable alternative for TED-related severe upper-eyelid retraction correction. MATERIAL AND METHODS An innovative technique for levator lengthening using bovine acellular dermal matrix as a spacer graft is introduced for severe upper-eyelid retraction secondary to TED. Additionally, 2 modifications were introduced: the fibrous cords scattered on the surface of the levator aponeurosis were excised and the orbital fat pad anterior to the aponeurosis was dissected and sutured into the skin closure in a "skin-tarsus-fat-skin" fashion. RESULTS The modified levator-lengthening surgery was performed on 32 eyelids in 26 patients consisting of 21 women and 5 men (mean age, 37.8 years; age range, 19-67 years). After corrective surgery, the average upper margin reflex distance was lowered from 7.7±0.85 mm to 3.3±0.43 mm. Eighteen cases (69%) had perfect results, while 6 cases (23%) had acceptable results. CONCLUSIONS A modified levator-lengthening procedure using bovine acellular dermal matrix as a spacer graft ameliorated both the symptoms and signs of severe upper-eyelid retraction secondary to TED. This procedure is a reasonable alternative for correction of TED-related severe upper-eyelid retraction.

  9. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical application to burn wounds.

    PubMed

    Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori

    2005-01-01

    Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.

  10. Bovine Acellular Dermal Matrix for Levator Lengthening in Thyroid-Related Upper-Eyelid Retraction

    PubMed Central

    Sun, Jing; Liu, Xingtong; Zhang, Yidan; Huang, Yazhuo; Zhong, Sisi; Fang, Sijie; Zhuang, Ai; Li, Yinwei; Zhou, Huifang

    2018-01-01

    Background Eyelid retraction is the most common and often the first sign of thyroid eye disease (TED). Upper-eyelid retraction causes both functional and cosmetic problems. In order to correct the position of the upper eyelid, surgery is required. Many procedures have demonstrated good outcomes in mild and moderate cases; however, unpredictable results have been obtained in severe cases. Dryden introduced an upper-eyelid-lengthening procedure, which used scleral grafts, but outcomes were unsatisfactory. A new technique is introduced in this study as a reasonable alternative for TED-related severe upper-eyelid retraction correction. Material/Methods An innovative technique for levator lengthening using bovine acellular dermal matrix as a spacer graft is introduced for severe upper-eyelid retraction secondary to TED. Additionally, 2 modifications were introduced: the fibrous cords scattered on the surface of the levator aponeurosis were excised and the orbital fat pad anterior to the aponeurosis was dissected and sutured into the skin closure in a “skin-tarsus-fat-skin” fashion. Results The modified levator-lengthening surgery was performed on 32 eyelids in 26 patients consisting of 21 women and 5 men (mean age, 37.8 years; age range, 19–67 years). After corrective surgery, the average upper margin reflex distance was lowered from 7.7±0.85 mm to 3.3±0.43 mm. Eighteen cases (69%) had perfect results, while 6 cases (23%) had acceptable results. Conclusions A modified levator-lengthening procedure using bovine acellular dermal matrix as a spacer graft ameliorated both the symptoms and signs of severe upper-eyelid retraction secondary to TED. This procedure is a reasonable alternative for correction of TED-related severe upper-eyelid retraction. PMID:29718902

  11. Acellular dermal matrices in breast implant surgery: defining the problem and proof of concept.

    PubMed

    Baxter, Richard A

    2012-04-01

    The use of acellular dermal matrices (ADMs) has become a useful adjunct to implant-based breast reconstruction and revision of the augmented breast. In both instances, the goal is replacement or reinforcement of thinned or missing tissues for implant support and control of the implant pocket. This article reviews the factors that contribute to periprosthetic tissue thinning, and the advantages and limitations of the use of ADMs for revision breast surgery and breast reconstruction. Proof of concept for the use of ADMs in the periprosthetic space is detailed from early clinical experience and histologic analysis documenting vascular ingrowth and cellular repopulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Cost minimisation analysis of using acellular dermal matrix (Strattice™) for breast reconstruction compared with standard techniques.

    PubMed

    Johnson, R K; Wright, C K; Gandhi, A; Charny, M C; Barr, L

    2013-03-01

    We performed a cost analysis (using UK 2011/12 NHS tariffs as a proxy for cost) comparing immediate breast reconstruction using the new one-stage technique of acellular dermal matrix (Strattice™) with implant versus the standard alternative techniques of tissue expander (TE)/implant as a two-stage procedure and latissimus dorsi (LD) flap reconstruction. Clinical report data were collected for operative time, length of stay, outpatient procedures, and number of elective and emergency admissions in our first consecutive 24 patients undergoing one-stage Strattice reconstruction. Total cost to the NHS based on tariff, assuming top-up payments to cover Strattice acquisition costs, was assessed and compared to the two historical control groups matched on key variables. Eleven patients having unilateral Strattice reconstruction were compared to 10 having TE/implant reconstruction and 10 having LD flap and implant reconstruction. Thirteen patients having bilateral Strattice reconstruction were compared to 12 having bilateral TE/implant reconstruction. Total costs were: unilateral Strattice, £3685; unilateral TE, £4985; unilateral LD and implant, £6321; bilateral TE, £5478; and bilateral Strattice, £6771. The cost analysis shows a financial advantage of using acellular dermal matrix (Strattice) in unilateral breast reconstruction versus alternative procedures. The reimbursement system in England (Payment by Results) is based on disease-related groups similar to that of many countries across Europe and tariffs are based on reported hospital costs, making this analysis of relevance in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  14. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    van Kuppevelt, Toin H.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna; de Vries, Rob B.M.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials. PMID:29093996

  15. Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair.

    PubMed

    Ngo, Manh-Dan; Aberman, Harold M; Hawes, Michael L; Choi, Bryan; Gertzman, Arthur A

    2011-05-01

    Incisional hernias commonly occur following abdominal wall surgery. Human acellular dermal matrices (HADM) are widely used in abdominal wall defect repair. Xenograft acellular dermal matrices, particularly those made from porcine tissues (PADM), have recently experienced increased usage. The purpose of this study was to compare the effectiveness of HADM and PADM in the repair of incisional abdominal wall hernias in a rabbit model. A review from earlier work of differences between human allograft acellular dermal matrices (HADM) and porcine xenograft acellular dermal matrices (PADM) demonstrated significant differences (P < 0.05) in mechanical properties: Tensile strength 15.7 MPa vs. 7.7 MPa for HADM and PADM, respectively. Cellular (fibroblast) infiltration was significantly greater for HADM vs. PADM (Armour). The HADM exhibited a more natural, less degraded collagen by electrophoresis as compared to PADM. The rabbit model surgically established an incisional hernia, which was repaired with one of the two acellular dermal matrices 3 weeks after the creation of the abdominal hernia. The animals were euthanized at 4 and 20 weeks and the wounds evaluated. Tissue ingrowth into the implant was significantly faster for the HADM as compared to PADM, 54 vs. 16% at 4 weeks, and 58 vs. 20% for HADM and PADM, respectively at 20 weeks. The original, induced hernia defect (6 cm(2)) was healed to a greater extent for HADM vs. PADM: 2.7 cm(2) unremodeled area for PADM vs. 1.0 cm² for HADM at 20 weeks. The inherent uniformity of tissue ingrowth and remodeling over time was very different for the HADM relative to the PADM. No differences were observed at the 4-week end point. However, the 20-week data exhibited a statistically different level of variability in the remodeling rate with the mean standard deviation of 0.96 for HADM as contrasted to a mean standard deviation of 2.69 for PADM. This was significant with P < 0.05 using a one tail F test for the inherent

  16. A comparative study of root coverage using two different acellular dermal matrix products.

    PubMed

    Barker, Thomas S; Cueva, Marco A; Rivera-Hidalgo, Francisco; Beach, M Miles; Rossmann, Jeffrey A; Kerns, David G; Crump, T Bradley; Shulman, Jay D

    2010-11-01

    Gingival recession remains an important problem in dental esthetics. A new dermal matrix material has been introduced, but its effectiveness has not been studied and compared to current dermal matrix material. The aim of this study is to compare the healing associated with a coronally advanced flap for root coverage in areas of localized tissue recession when using Alloderm (ADM) and Puros Dermis (PDM). A split-mouth design was used for this study, with 52 contralateral sites in 14 patients with Miller Class I or III facial tissue recession. Twenty-six sites were treated with coronally advanced flap using PDM, and 26 sites were treated with coronally advanced flap using ADM, all followed for 6 months. Clinical measurements of vertical recession, keratinized tissue, probing depths, and attachment levels were made initially, at 3 months, and at 6 months. Both groups had significant improvement in the amount of recession coverage with means of 2.83 mm for the PDM and 3.13 mm for the ADM. The percentage of root coverage was 81.4% for the PDM and 83.4% for the ADM; differences between the materials were not statistically significant. Based on the results of this study, there was no statistical or clinical difference in the amount of root coverage, probing depth, or keratinized tissue in coronally advanced flaps for root coverage with either of the two acellular dermal matrix materials. Both materials were successful in achieving root coverage.

  17. Repair of Primary Cleft Palate and Oronasal Fistula With Acellular Dermal Matrix: A Systematic Review and Surgeon Survey.

    PubMed

    Simpson, Andrew; Samargandi, Osama A; Wong, Alison; Graham, M Elise; Bezuhly, Michael

    2018-01-01

    The current review and survey aim to assess the effectiveness of acellular dermal matrix (ADM) in the repair of cleft palate and oronasal fistula and to evaluate the current trends of ADM use in palate surgery. A systematic review of English articles was conducted using MEDLINE (1960 to July 1, 2016), the Cochrane Controlled Trials Register (1960 to July 1, 2016), and EMBASE (1991 to July 1, 2016). Additional studies were identified through a review of references cited in initially identified articles. Search terms included "cleft palate," "palatal," "oronasal fistula," "acellular dermal matrix," and "Alloderm®." An online survey was disseminated to members of the American Cleft Palate-Craniofacial Association to assess current trends in ADM use in palate surgery. All studies evaluating the outcome of primary palate repair or repair of oronasal fistula with the use of aceullar dermal matrix products were included in the review. Twelve studies met inclusion criteria for review. Studies were generally of low quality, as indicated by methodological index for non-randomized studies (MINORS) scores ranging from 7 to 14. The pooled estimate for fistula formation after primary palatoplasty following ADM use was 7.1%. The pooled estimate for recurrence of fistula after attempted repair using ADM was 11%. Thirty-six cleft surgeons responded to the online survey study. Of these, 45% used ADM in primary cleft palate repair, while 67% used ADM for repair of oronasal fistulae. Use of ADM products is commonplace in palate surgery. Despite this, there is a paucity of high-quality data demonstrating benefit. Further randomized controlled trials examining ADM in palate surgery are required to help develop structured guidelines and improve care.

  18. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography.

    PubMed

    Boone, Marc A L M; Draye, Jean Pierre; Verween, Gunther; Aiti, Annalisa; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Veronique

    2015-05-01

    High-definition optical coherence tomography (HD-OCT) permits real-time 3D imaging of the impact of selected agents on human skin allografts. The real-time 3D HD-OCT assessment of (i) the impact on morphological and cellular characteristics of the processing of human acellular dermal matrices (HADMs) and (ii) repopulation of HADMs in vitro by human fibroblasts and remodelling of the extracellular matrix by these cells. Four different skin decellularization methods, Dispase II/Triton X-100, Dispase II/SDS (sodium dodecyl sulphate), NaCl/Triton X-100 and NaCl/SDS, were analysed by HD-OCT. HD-OCT features of epidermal removal, dermo-epidermal junction (DEJ) integrity, cellularity and dermal architecture were correlated with reflectance confocal microscopy (RCM), histopathology and immunohistochemistry. Human adult dermal fibroblasts were in vitro seeded on the NaCl/Triton X-100 processed HADMs, cultured up to 19 days and evaluated by HD-OCT in comparison with MTT proliferation test and histology. Epidermis was effectively removed by all treatments. DEJ was best preserved after NaCl/Triton X-100 treatment. Dispase II/SDS treatment seemed to remove all cellular debris in comparison with NaCl/Triton X-100 but disturbed the DEJ severely. The dermal micro-architectural structure and vascular spaces of (sub)papillary dermis were best preserved with the NaCl/Triton X-100. The impact on the 3D structure and vascular holes was detrimental with Dispase II/SDS. Elastic fibre fragmentation was only observed after Dispase II incubation. HD-OCT showed that NaCl/Triton X-100 processed matrices permitted in vitro repopulation by human dermal fibroblasts (confirmed by MTT test and histology) and underwent remodelling upon increasing incubation time. Care must be taken in choosing the appropriate processing steps to maintain selected properties of the extracellular matrix in HADMs. Processing HADMs with NaCl/Triton X-100 permits in vitro the proliferation and remodelling activity of

  19. Fetal Bovine Dermal Repair Scaffold Used for the Treatment of Difficult-to- Heal Complex Wounds.

    PubMed

    Strauss, Neil H; Brietstein, Richard J

    2012-11-01

     Introduction. Treating difficult-to-heal wounds with complexities, including those with exposed tendon/bone or infection, is a challenge that regularly confronts practitioners in a variety of clinical environments. The purpose of this study was to review the effectiveness of an acellular fetal bovine dermal repair scaffold (PriMatrix Dermal Repair Scaffold, TEI Biosciences, Inc, Boston, MA) used to treat complex difficult-to-heal wounds presenting in the authors' practice. A retrospective chart review was conducted of a single practice with multiple practicing physicians between 2008 and 2010. Over this time period, 70 patients with 83 wounds were treated with the acellular fetal bovine dermis following surgical debridement of the wound. Forty-nine patients (58 wounds) met established inclusion/exclusioncriteria and were critically evaluated. Wounds treated with the acellular fetal bovine dermis included chronic diabetic wounds, venous wounds, and pressure ulcers, as well as wounds caused by trauma and surgery. Additionally, the patients treated had comorbidities commonly associated with recalcitrant wounds. Of the wounds evaluated in this study, 75.9% successfully healed; 63.8% reepithelialized, and 12.1% were closed with a skin graft subsequent to treatment. Notably, the majority (58.6%) of the wounds reepithelialized by 12 weeks following a single application of the dermal repair scaffold. In the subset of challenging wounds with exposed tendon/bone, 80.8% of the wounds were treated successfully (61.5% reepithelialized, and 19.3% were skin grafted), indicating the successful regeneration and reepithelialization of new vascularized tissue by fetal dermal collagen in relatively avascular wound defects. The acellular fetal bovine dermal repair scaffold can be used as part of an effective treatment regimen to heal complex wounds with exposed tendon/bone caused by varying etiologies. The product actively participates in the generation of a new

  20. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  1. Nerve Wrapping of the Sciatic Nerve With Acellular Dermal Matrix in Chronic Complete Proximal Hamstring Ruptures and Ischial Apophyseal Avulsion Fractures

    PubMed Central

    Haus, Brian M.; Arora, Danny; Upton, Joseph; Micheli, Lyle J.

    2016-01-01

    Background: Patients with chronic injuries of the proximal hamstring can develop significant impairment because of weakness of the hamstring muscles, sciatic nerve compression from scar formation, or myositis ossificans. Purpose: To describe the surgical outcomes of patients with chronic injury of the proximal hamstrings who were treated with hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Study Design: Retrospective case series; Level of evidence, 4. Methods: Fifteen consecutive patients with a diagnosis of chronic complete proximal hamstring rupture or chronic ischial tuberosity apophyseal avulsion fracture (mean age, 39.67 years; range, 14-69 years) were treated with proximal hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Nine patients had preoperative sciatica, and 6 did not. Retrospective chart review recorded clinical outcomes measured by the degree of pain relief, the rate of return to activities, and associated postoperative complications. Results: All 15 patients were followed in the postoperative period for an average of 16.6 months. Postoperatively, there were 4 cases of transient sciatic nerve neurapraxia. Four patients (26%) required postoperative betamethasone sodium phosphate (Celestone Soluspan) injectable suspension USP 6 mg/mL. Among the 9 patients with preoperative sciatica, 6 (66%) had a good or excellent outcome and were able to return to their respective activities/sports; 3 (33%) had persistent chronic pain. One of these had persistent sciatic neuropathy that required 2 surgical reexplorations and scar excision after development of recurrent extraneural scar formation. Among the 6 without preoperative sciatica, 100% had a good or excellent outcomes and 83% returned to their respective activities/sports. Better outcomes were observed in younger patients, as the 3 cases of persistent chronic sciatic pain were in patients older than 45

  2. Use of porcine acellular dermal matrix following early dermabrasion reduces length of stay in extensive deep dermal burns.

    PubMed

    Guo, Zhi-Qian; Qiu, Le; Gao, You; Li, Jin-Hu; Zhang, Xin-He; Yang, Xin-Lei; Peszel, April; Chen, Xu-Lin

    2016-05-01

    Extensive deep partial-thickness burns still seriously challenge the surgeon's abilities. This study aimed to assess the impact of early dermabrasion combined with porcine acellular dermal matrix (ADM) in extensive deep dermal burns. From September 2009 to September 2013, a total of 60 adult patients sustained greater than 50% total body surface area (TBSA) burn by hot water or gas explosion were divided into three groups based on dermabrasion: group A (early dermabrasion and porcine ADM), group B (early dermabrasion and nano-silver dressings), and group C (conservative group). The wound healing time and length of hospital stay were analyzed. Scar assessment was performed at 3 and 12 months after the injury with a modified Vancouver Scar Scale linked with TBSA (mVSS-TBSA). No significant difference was found in mean burn size, burn depth, age, male-to-female ratio, or incidence of inhalation injury between the patients in the three groups (p>0.05). Compared with groups B and C, the patients that received early dermabrasion combined with porcine ADM had a shorter wound healing time (p<0.01). The burn patients treated with early dermabrasion and porcine ADM coverage had a mean length of hospital stay of 28.3 days (±7.2), which was significantly shorter than that of groups B and C (p<0.05-0.01). The mVSS-TBSA of patients in group A was significantly improved in comparison with groups B and C at 3 and 12 months after the injury. There was no significant difference in the mortality rate between the three groups (p>0.05). Early dermabrasion combined with porcine ADM coverage facilitates wound healing, reduces the length of hospital stay, and improves esthetic and functional results in extensive deep dermal burns with burn size over 50% TBSA. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball.

  4. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration.

    PubMed

    Pereira, D R; Silva-Correia, J; Oliveira, J M; Reis, R L

    2013-02-01

    Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Does the use of an acellular dermal graft in abdominal closure after rectus flap harvest impact the occurrence of post-operative hernia?

    PubMed

    Saman, Masoud; Kadakia, Sameep; Ducic, Yadranko

    2015-12-01

    Patients with rectus free flap harvest extending below the arcuate line are predisposed to postoperative hernia formation. As such, many authors have advocated the use of closure adjuncts to increase the integrity of the closure and prevent hernia or abdominal wall bulging. Busy level 1 public trauma center in metropolitan Fort Worth, Texas Following harvest of the rectus free flap, 48 patients underwent primary closure; 24 of these patients had defects extending below the arcuate line. Forty patients were closed with an acellular dermal graft; 22 of these patients had defects extending below the arcuate line. Postoperative hernia formation and local infection rate were examined in a minimum follow-up period of 1 year. Regardless of closure method, no hernias were observed in the postoperative period. Using an unpaired t test and an alpha value of 0.05, there was no statistically significant difference in the infection rate between the two groups. Following rectus abdominis myocutaneous free flap harvest, the use of an acellular dermal graft in abdominal wall closure may not be of any further advantage in the prevention of hernia. Retrospective (Level III).

  6. High Throughput Assay for Bacterial Adhesion on Acellular Dermal Matrices and Synthetic Surgical Materials

    PubMed Central

    Nyame, Theodore T.; Lemon, Katherine P.; Kolter, Roberto; Liao, Eric C.

    2013-01-01

    Background There has been increasing use of various synthetic and biologically derived materials in surgery. Biologic surgical materials are used in many plastic surgery procedures, ranging from breast reconstruction to hernia repairs. In particular, acellular dermal matrix (ADM) material has gained popularity in these applications. There is a paucity of data on how ADM compares to other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. We have designed a high throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. Methods Clinical isolates of Staphylococcus aureus (strains SC-1 and UAMS-1) were cultured with different materials and bacterial adherence was measured using a resazurin cell vitality reporter microtiter assay. Four materials that are commonly utilized in reconstructive procedures were evaluated: prolene mesh, vicryl mesh, and two different ADM preparations (AlloDerm®, FlexHD®). We were able to develop a high throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. Results The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material, as well as synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to ADM materials (AlloDerm® vs. FlexHD®) than to the synthetic material prolene. S. aureus also adhered better to vicryl than to prolene. Strain UAMS-1 adhered better to vicryl and ADM materials than did strain SC-1. Conclusion Our results suggest that S. aureus adheres more readily to ADM material than to synthetic material. We have developed an assay to rapidly test bacterial formation on surgical materials, using two S. aureus bacterial strains. This provides a standard method to evaluate existing and new materials with regard to bacterial adherence and potential

  7. Comparison of acellular dermal matrix and synthetic mesh for lateral chest wall reconstruction in a rabbit model.

    PubMed

    Holton, Luther H; Chung, Thomas; Silverman, Ronald P; Haerian, Hafez; Goldberg, Nelson H; Burrows, Whitney M; Gobin, Andrea; Butler, Charles E

    2007-04-01

    Synthetic mesh is used for chest wall reconstruction, but infection or exposure can occur and necessitate removal. Human acellular dermal matrix (AlloDerm) has been used to reconstruct musculofascial defects in the trunk with low infection and herniation rates. AlloDerm may have advantages over synthetic mesh for chest wall reconstruction. This study compared outcomes and repair strengths of AlloDerm to expanded polytetrafluoroethylene mesh used for repair of rib cage defects. A 3 x 3-cm, full-thickness, lateral rib cage defect was created in each rabbit and repaired with expanded polytetrafluoroethylene (n = 8) or acellular dermal matrix (n = 9). At 4 weeks, the animals were euthanized and evaluated for lung herniation/dehiscence, strength of adhesions between the implant and intrapleural structures, and breaking strength of the implant materials and the implant-fascia interface. Tissue sections were analyzed with histologic and immunohistochemical staining to evaluate cellular infiltration and vascularization. No herniation or dehiscence occurred with either material. The incidence and strength of adhesions was similar between materials. The mean breaking strength of the AlloDerm-fascia interface (14.5 +/- 8.9 N) was greater than the expanded polytetrafluoroethylene-fascia interface (8.7 +/- 4.4 N; p = 0.027) and similar to the rib-intercostal-rib interface of the contralateral native chest wall (14.0 +/- 5.6 N). The AlloDerm grafts became infiltrated with cells and vascularized after implantation. AlloDerm used for chest wall reconstruction results in greater implant-defect interface strength than expanded polytetrafluoroethylene. The ability of AlloDerm to become vascularized and remodeled by autologous cells and to resist infection may be advantageous for chest wall reconstruction.

  8. A comparative clinical study of the efficacy of subepithelial connective tissue graft and acellular dermal matrix graft in root coverage: 6-month follow-up observation

    PubMed Central

    Thomas, Libby John; Emmadi, Pamela; Thyagarajan, Ramakrishnan; Namasivayam, Ambalavanan

    2013-01-01

    Aims: The purpose of this study was to compare the clinical efficacy of subepithelial connective tissue graft and acellular dermal matrix graft associated with coronally repositioned flap in the treatment of Miller's class I and II gingival recession, 6 months postoperatively. Settings and Design: Ten patients with bilateral Miller's class I or class II gingival recession were randomly divided into two groups using a split-mouth study design. Materials and Methods: Group I (10 sites) was treated with subepithelial connective tissue graft along with coronally repositioned flap and Group II (10 sites) treated with acellular dermal matrix graft along with coronally repositioned flap. Clinical parameters like recession height and width, probing pocket depth, clinical attachment level, and width of keratinized gingiva were evaluated at baseline, 90th day, and 180th day for both groups. The percentage of root coverage was calculated based on the comparison of the recession height from 0 to 180th day in both Groups I and II. Statistical Analysis Used: Intragroup parameters at different time points were measured using the Wilcoxon signed rank test and Mann–Whitney U test was employed to analyze the differences between test and control groups. Results: There was no statistically significant difference in recession height and width, gain in CAL, and increase in the width of keratinized gingiva between the two groups on the 180th day. Both procedures showed clinically and statistically significant root coverage (Group I 96%, Group II 89.1%) on the 180th day. Conclusions: The results indicate that coverage of denuded root with both subepithelial connective tissue autograft and acellular dermal matrix allograft are very predictable procedures, which were stable for 6 months postoperatively. PMID:24174728

  9. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration. PMID:25383178

  10. Prospective randomized comparison of scar appearances between cograft of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects of the extremities.

    PubMed

    Yi, Ju Won; Kim, Jae Kwang

    2015-03-01

    The purpose of this study was to evaluate the clinical outcomes of cografting of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects on the extremities. In this prospective randomized study, 19 consecutive patients with full-thickness skin defects on the extremities following trauma underwent grafting using either cograft of acellular dermal matrix with autologous split-thickness skin graft (nine patients, group A) or autologous split-thickness skin graft alone (10 patients, group B) from June of 2011 to December of 2012. The postoperative evaluations included observation of complications (including graft necrosis, graft detachment, or seroma formation) and Vancouver Scar Scale score. No statistically significant difference was found regarding complications, including graft necrosis, graft detachment, or seroma formation. At week 8, significantly lower Vancouver Scar Scale scores for vascularity, pliability, height, and total score were found in group A compared with group B. At week 12, lower scores for pliability and height and total scores were identified in group A compared with group B. For cases with traumatic full-thickness skin defects on the extremities, a statistically significant better result was achieved with cograft of acellular dermal matrix with autologous split-thickness skin graft than with autologous split-thickness skin graft alone in terms of Vancouver Scar Scale score. Therapeutic, II.

  11. Combined use of fibrin tissue adhesive and acellular dermis in dural repair.

    PubMed

    Shah, Anil R; Pearlman, Aaron N; O'Grady, Kevin M; Bhattacharyya, Tappan K; Toriumi, Dean M

    2007-01-01

    The management of cerebrospinal fluid (CSF) leaks can be challenging. Acellular dermal grafts derived from human cadavers can be used as a replacement material when autogenous materials are unavailable. Fibrin tissue adhesive (FTA) is a wound support product that has been used for hemostatic and tissue fixation purposes. The combined use of acellular dermis in conjunction with FTA for dural repair remains a subject of study. The aim of this study was to evaluate wound healing and tissue compatibility characteristics of acellular dermal substitute material when used both with and without FTA, for repair of a dural tear in a chinchilla model. Forty-nine chinchillas were included in this randomized case-control study. The squamous portion of the temporal bone was removed to expose the tegmen. A 2 x 2 mm dural defect was removed to create an iatrogenic CSF leak. Then, animals were randomly assigned to one of three treatment groups: group 1, acellular dermis alone; group 2, acellular dermis with FTA; group 3, fibrinogen, acellular dermis, and FTA. Surgical sites were examined grossly at 1- and 2-week intervals. Temporal bones were examined histologically. Grossly, groups 2 and 3 had significantly less visible CSF leak and brain herniation noted at both 1- and 2-week intervals when compared with group 1. Histological results confirmed the gross results showing the best seal in group 2 and 3. Acellular dermis combined with FTA provided superior support compared with acellular dermis alone in repair of induced dural defects.

  12. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft

    PubMed Central

    Agrawal, Vivek

    2012-01-01

    Purpose: This study presents a retrospective case series of the clinical and structural outcomes (1.5 T MRI) of arthroscopic rotator cuff repair with acellular human dermal graft reinforcement performed by a single surgeon in patients with large, massive, and previously repaired rotator cuff tears. Materials and Methods: Fourteen patients with mean anterior to posterior tear size 3.87 ± 0.99 cm (median 4 cm, range 2.5–6 cm) were enrolled in the study and were evaluated for structural integrity using a high-field (1.5 T) MRI at an average of 16.8 months after surgery. The Constant-Murley scores, the Flexilevel Scale of Shoulder Function (Flex SF), scapular plane abduction, and strength were analyzed. Results: MRI results showed that the rotator cuff repair was intact in 85.7% (12/14) of the patients studied. Two patients had a Sugaya Type IV recurrent tear (2 of 14; 14.3%), which were both less than 1 cm. The Constant score increased from a preoperative mean of 49.72 (range 13–74) to a postoperative mean of 81.07 (range 45–92) (P value = 0.009). Flexilevel Scale of Shoulder Function (Flex SF) Score normalized to a 100-point scale improved from a preoperative mean of 53.69 to a postoperative mean of 79.71 (P value = 0.003). The Pain Score improved from a preoperative mean of 7.73 to a postoperative mean of 13.57 (P value = 0.008). Scapular plane abduction improved from a preoperative mean of 113.64° to a postoperative mean of 166.43° (P value = 0.010). The strength subset score improved from a preoperative mean of 1.73 kg to a postoperative mean of 7.52 kg (P value = 0.006). Conclusions: This study presents a safe and effective technique that may help improve the healing rates of large, massive, and revision rotator cuff tears with the use of an acellular human dermal allograft. This technique demonstrated favorable structural healing rates and statistically improved functional outcomes in the near term. Level of Evidence: 4. Retrospective case series. PMID

  13. Axonal regeneration through acellular muscle grafts

    PubMed Central

    HALL, SUSAN

    1997-01-01

    The management of peripheral nerve injury remains a major clinical problem. Progress in this field will almost certainly depend upon manipulating the pathophysiological processes which are triggered by traumatic injuries. One of the most important determinants of functional outcome after the reconstruction of a transected peripheral nerve is the length of the gap between proximal and distal nerve stumps. Long defects (> 2 cm) must be bridged by a suitable conduit in order to support axonal regrowth. This review examines the cellular and acellular elements which facilitate axonal regrowth and the use of acellular muscle grafts in the repair of injuries in the peripheral nervous system. PMID:9034882

  14. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  15. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts.

    PubMed

    Yan, Ying; Hunter, Daniel A; Schellhardt, Lauren; Ee, Xueping; Snyder-Warwick, Alison K; Moore, Amy M; Mackinnon, Susan E; Wood, Matthew D

    2018-02-01

    Acellular nerve allografts (ANAs) yield less consistent favorable outcomes compared with autografts for long gap reconstructions. We evaluated whether a hybrid ANA can improve 6-cm gap reconstruction. Rat sciatic nerve was transected and repaired with either 6-cm hybrid or control ANAs. Hybrid ANAs were generated using a 1-cm cellular isograft between 2.5-cm ANAs, whereas control ANAs had no isograft. Outcomes were assessed by graft gene and marker expression (n = 4; at 4 weeks) and motor recovery and nerve histology (n = 10; at 20 weeks). Hybrid ANAs modified graft gene and marker expression and promoted modest axon regeneration across the 6-cm defect compared with control ANA (P < 0.05), but yielded no muscle recovery. Control ANAs had no appreciable axon regeneration across the 6-cm defect. A hybrid ANA confers minimal motor recovery benefits for regeneration across long gaps. Clinically, the authors will continue to reconstruct long nerve gaps with autografts. Muscle Nerve 57: 260-267, 2018. © 2017 Wiley Periodicals, Inc.

  16. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences

  17. Tunneling procedure for root coverage using acellular dermal matrix: a case series.

    PubMed

    Modaressi, Marmar; Wang, Hom-Lay

    2009-08-01

    This study was designed to demonstrate the use of the relatively novel tunneling technique for root coverage with acellular dermal matrix (ADM) to treat Miller Class I and II gingival recession defects. Five subjects with two to five adjacent buccal gingival recession defects were treated with ADM using the tunneling technique for root coverage. A calibrated, blinded examiner measured clinical parameters, including probing depth, clinical attachment level, width of keratinized tissue, recession depth, recession width at 1 mm apical to the cementoenamel junction, gingival tissue thickness at 1 mm and 3 mm apical to the gingival margin, Plaque Index, Gingival Index, and Wound Healing Index, at different time intervals. Patient discomfort was recorded 14 days postoperatively, and an overall quality assessment was recorded 180 days postoperatively. Results showed an average of 61% defect coverage (equal to 93.5% root coverage), and a 0.15-mm gain in tissue thickness was achieved 1 year postoperatively. This suggested that root coverage with ADM using the tunneling technique can be a viable alternative to traditional techniques, especially for multiple recession defects in maxillary premolar and anterior teeth.

  18. Healing Rates in a Multicenter Assessment of a Sterile, Room Temperature, Acellular Dermal Matrix Versus Conventional Care Wound Management and an Active Comparator in the Treatment of Full-Thickness Diabetic Foot Ulcers.

    PubMed

    Walters, Jodi; Cazzell, Shawn; Pham, Hau; Vayser, Dean; Reyzelman, Alexander

    2016-01-01

    The purpose of this 16-week, multicenter, randomized, controlled trial was to assess the healed ulcer rate of a human acellular dermal matrix, DermACELL, compared with conventional care and a second acellular dermal matrix, Graftjacket, in the treatment of full-thickness diabetic foot ulcers. One hundred sixty-eight patients were randomized into DermACELL, conventional care, and Graftjacket treatment arms in a 2:2:1 ratio. Patients in the acellular dermal matrix groups received either 1 or 2 applications of the graft at the discretion of the investigator. Weekly follow-up visits were conducted until the ulcer healed or the endpoint was reached. At 16 weeks, the DermACELL arm had a significantly higher proportion of completely healed ulcers than the conventional care arm (67.9% vs 48.1%; P = .0385) and a nonsignificantly higher proportion than the Graftjacket arm (67.9% vs 47.8%; P = .1149). The DermACELL arm also exhibited a greater average percent reduction in wound area than the conventional care arm (91.4% vs 80.3%; P = .0791) and the Graftjacket arm (91.4% vs 73.5%; P = .0762). The proportion of severe adverse events and the proportion of overall early withdrawals were similar among the 3 groups based on relative population size (P ≥ .05). The results presented here indicate that DermACELL is an appropriate clinical option in the treatment of diabetic foot ulcers, with significant increases in healing rates and rate of percentage wound closure as compared with conventional care options.

  19. Histologic analysis of the acellular dermal matrix graft incorporation process: a pilot study in dogs.

    PubMed

    Luczyszyn, Sonia M; Grisi, Márcio F M; Novaes, Arthur B; Palioto, Daniela B; Souza, Sérgio L S; Taba, Mario

    2007-08-01

    Clinical results with acellular dermal matrix graft (ADMG) in periodontal surgeries suggest that the material is incorporated by the host tissues. However, histologic studies of the ADMG incorporation process are limited. The objective of this study was to evaluate the incorporation of ADMG into gingival tissues in a dog model. Gingival recession-type defects were created at the canines of six dogs. After 6 weeks, periodontal surgeries to repair the defects were performed using ADMG. Two animals each were sacrificed after 4, 8, and 12 weeks. At 4 weeks, thick collagen fibers from the ADMG were clearly seen in the connective tissue, and some blood vessels were penetrating into the ADMG. At 8 weeks, blood vessel penetration was enhanced, and collagen fiber bundles from the ADMG were seen sending branches into the connective tissue in all directions. After 12 weeks, the ADMG and the connective tissue seemed to be well integrated into a single highly vascularized structure, indicating almost complete incorporation of the ADMG.

  20. Dkk2/Frzb in the dermal papillae regulates feather regeneration

    PubMed Central

    Chu, Qiqi; Cai, Linyan; Fu, Yu; Chen, Xi; Yan, Zhipeng; Lin, Xiang; Zhou, Guixuan; Han, Hao; Widelitz, Randall B.; Chuong, Cheng-ming; Wu, Wei; Yue, Zhicao

    2015-01-01

    Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-β signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation. PMID:24463139

  1. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates.

    PubMed

    Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2013-07-01

    Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013

  2. Placement of a Non–Cross-Linked Porcine-Derived Acellular Dermal Matrix During Preperitoneal Laparoscopic Inguinal Hernia Repair

    PubMed Central

    Alshkaki, Giath

    2013-01-01

    This retrospective chart review evaluated outcomes following laparoscopic inguinal herniorrhaphies with non–cross-linked intact porcine-derived acellular dermal matrix (PADM) by one surgeon in a community teaching facility hospital. Mesh was sutured and/or tacked in the preperitoneal space. Postoperative visits were scheduled at 2 weeks, 3 months, and 6 months, and then at 6-month intervals up to 2 years. PADM was placed in 14 male patients (mean age, 41.1 years). Seven patients had bilateral hernias. One patient required intraoperative conversion to open herniorrhaphy based on diagnostic laparoscopy findings. PADM sizes were 6 × 10 to 12 × 16 cm; mean operative time was 102 minutes. All patients were discharged on the day of surgery and resumed full activity. This treatment approach was effective, with no recurrence or complications during a median follow-up period of 18 months (range, 13–25 months). PMID:23701148

  3. Placement of a non-cross-linked porcine-derived acellular dermal matrix during preperitoneal laparoscopic inguinal hernia repair.

    PubMed

    Alshkaki, Giath

    2013-01-01

    This retrospective chart review evaluated outcomes following laparoscopic inguinal herniorrhaphies with non-cross-linked intact porcine-derived acellular dermal matrix (PADM) by one surgeon in a community teaching facility hospital. Mesh was sutured and/or tacked in the preperitoneal space. Postoperative visits were scheduled at 2 weeks, 3 months, and 6 months, and then at 6-month intervals up to 2 years. PADM was placed in 14 male patients (mean age, 41.1 years). Seven patients had bilateral hernias. One patient required intraoperative conversion to open herniorrhaphy based on diagnostic laparoscopy findings. PADM sizes were 6 × 10 to 12 × 16 cm; mean operative time was 102 minutes. All patients were discharged on the day of surgery and resumed full activity. This treatment approach was effective, with no recurrence or complications during a median follow-up period of 18 months (range, 13-25 months).

  4. [Comparison of composite grafting of autoskin with acellular dermal matrix from different sources].

    PubMed

    Chen, Jin-Hui; Qi, Shun-Zhen; Sun, Hui-Chen; He, Zhan-Guo; Li, Hui; Zhu, Yu-Feng; Chen, Xing

    2003-10-01

    To compare the composite grafts of acellular dermal matrix (ADM) from different sources with autoskin. Six local white mini pigs were employed for the experiment. The pigs were randomly divided into four groups according to different skin grafts, i.e. A (human ADM with razor thin autoskin), B (porcine ADM with razor thin autoskin), C (razor thin autoskin only), and D (split thickness autoskin) as control. The survival rate, the contraction degree of the grafts, and the histological changes in grafting area were observed at 2, 4, 8, 12 and 24 hours after the operation. The grafted area in both A and B groups appeared smooth and elastic with satisfactory graft survival. The in growth of the host reparative cells such as fibroblast and vascular endothelium could be induced by composite grafts of different ADMs with skin grafting. The contraction areas in A and B groups seemed bigger than those in C and D groups. The tissue structure of grafting areas was similar to that of split thickness skin grafting area at 24 post-operation weeks. Combination of the homogenous and heterogeneous ADMs with autografts exhibited similar biological function during the observation period (24 weeks after operation). Xenogenous ADMs might have broader clinical applications.

  5. Comparison between two surgical techniques for root coverage with an acellular dermal matrix graft.

    PubMed

    Andrade, Patrícia F; Felipe, Maria Emília M C; Novaes, Arthur B; Souza, Sérgio L S; Taba, Mário; Palioto, Daniela B; Grisi, Márcio F M

    2008-03-01

    The aim of this randomized, controlled, clinical study was to compare two surgical techniques with the acellular dermal matrix graft (ADMG) to evaluate which technique could provide better root coverage. Fifteen patients with bilateral Miller Class I gingival recession areas were selected. In each patient, one recession area was randomly assigned to the control group, while the contra-lateral recession area was assigned to the test group. The ADMG was used in both groups. The control group was treated with a broader flap and vertical-releasing incisions, and the test group was treated with the proposed surgical technique, without releasing incisions. The clinical parameters evaluated before the surgeries and after 12 months were: gingival recession height, probing depth, relative clinical attachment level and the width and thickness of keratinized tissue. There were no statistically significant differences between the groups for all parameters at baseline. After 12 months, there was a statistically significant reduction in recession height in both groups, and there was no statistically significant difference between the techniques with regard to root coverage. Both surgical techniques provided significant reduction in gingival recession height after 12 months, and similar results in relation to root coverage.

  6. Reconstruction of Traumatic Defect of the Lower Third of the Leg Using a Combined Therapy: Negative Pressure Wound Therapy, Acellular Dermal Matrix, and Skin Graft

    PubMed Central

    Brongo, Sergio; Campitiello, Nicola; Rubino, Corrado

    2014-01-01

    The reconstruction of lower third of the leg is one of the most challenging problems for plastic and reconstructive surgeons and current approaches are still disappointing. We show an easy option to obtain a coverage of traumatic pretibial defects with good aesthetic and functional results: the association of negative pressure wound therapy, acellular dermal matrix, and skin graft. The choice of this combined therapy avoids other surgical procedures such as local perforator flaps and free flaps that require more operating time, special equipment, and adequate training. PMID:25177509

  7. Three types of dermal grafts in rats: the importance of mechanical property and structural design.

    PubMed

    You, Chuangang; Wang, Xingang; Zheng, Yurong; Han, Chunmao

    2013-12-04

    To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes-ADM, CS and PMCSs are different in the tensile properties and microstructure. Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague-Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). In vitro studies demonstrated ADM had a higher Young's modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for

  8. Use of latissimus dorsi muscle onlay patch alternative to acellular dermal matrix in implant-based breast reconstruction

    PubMed Central

    Lee, Jeeyeon

    2015-01-01

    Background An acellular dermal matrix (ADM) is applied to release the surrounding muscles and prevent dislocation or rippling of the implant. We compared implant-based breast reconstruction using the latissimus dorsi (LD) muscle, referred to as an “LD muscle onlay patch,” with using an ADM. Method A total of 56 patients (60 breasts) underwent nipple sparing mastectomy with implant-based breast reconstruction using an ADM or LD muscle onlay patch. Cosmetic outcomes were assessed 4 weeks after chemotherapy or radiotherapy, and statistical analyses were performed. Results Mean surgical time and hospital stay were significantly longer in the LD muscle onlay patch group than the ADM group. However, there were no statistically significant differences between groups in postoperative complications. Cosmetic outcomes for breast symmetry and shape were higher in the LD muscle onlay patch group. Conclusions Implant-based breast reconstruction with an LD muscle onlay patch would be a feasible alternative to using an ADM. PMID:26161312

  9. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  10. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  11. Design of an elastin-layered dermal regeneration template.

    PubMed

    Mithieux, Suzanne M; Weiss, Anthony S

    2017-04-01

    We demonstrate a novel approach for the production of tunable quantities of elastic fibers. We also show that exogenous tropoelastin is rate-limiting for elastin synthesis regardless of the age of the dermal fibroblast donor. Additionally, we provide a strategy to further enhance synthesis by older cells through the application of conditioned media. We show that this approach delivers an elastin layer on one side of the leading dermal repair template for contact with the deep dermis in order to deliver prefabricated elastic fibers to a physiologically appropriate site during subsequent surgery. This system is attractive because it provides for the first time a viable path for sufficient, histologically detectable levels of patient elastin into full-thickness wound sites that have until now lacked this elastic underlayer. The scars of full thickness wounds typically lack elasticity. Elastin is essential for skin elasticity and is enriched in the deep dermis. This paper is significant because it shows that: (1) we can generate elastic fibers in tunable quantities, (2) tropoelastin is the rate-limiting component in elastin synthesis in vitro, (3) we can generate elastin fibers regardless of donor age, (4) we describe a novel approach to further increase the numbers and thickness of elastic fibers for older donors, (5) we improve on Integra Dermal Regeneration Template and generate a new hybrid biomaterial intended to subsequently surgically deliver these elastic fibers, (6) the elastic fiber layer is presented on the side of Integra that is intended for delivery into its physiologically appropriate site i.e. the deep dermis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    PubMed

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    -deficient, complete distal biceps rupture model, acellular dermal allograft augmentation restored the native tendon's biomechanical properties at time zero. The grafted tissue-deficient model demonstrated no significant differences in the load to failure and gap formation compared with the native tendon. As expected, dermal augmentation of attritional tendon repair increased the load to failure and stiffness as well as decreased displacement compared with the ungrafted tissue-deficient model. Tendons with their native width showed no statistical difference or negative biomechanical consequences of dermal augmentation. Dermal augmentation of the distal biceps is a biomechanically feasible option for patients with an attritionally thinned-out tendon.

  13. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty.

    PubMed

    Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-11-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal

  14. Human versus non-cross-linked porcine acellular dermal matrix used for ventral hernia repair: comparison of in vivo fibrovascular remodeling and mechanical repair strength.

    PubMed

    Campbell, Kristin Turza; Burns, Nadja K; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E

    2011-06-01

    Human acellular dermal matrix (HADM) and non-cross-linked porcine acellular dermal matrix (ncl-PADM) are clinically useful for complex ventral hernia repair. Direct comparisons between the two in vivo are lacking, however. This study compared clinically relevant early outcomes with these bioprosthetic materials when used for ventral hernia repair. Seventy-two guinea pigs underwent inlay repair of surgically created hernias with HADM (n = 37) or ncl-PADM (n = 35). Repair sites were harvested at 1, 2, or 4 weeks postoperatively. Adhesions were graded and quantified. Mechanical testing and histologic and immunohistologic (factor VIII) analyses of cellular and vascular infiltration were performed. No infections or recurrent hernias occurred. No difference was observed in mean adhesion surface area or tenacity between groups. Mean cellular infiltration (p < 0.002, weeks 1 and 4; p < 0.006, week 2) and vascular infiltration (p < 0.0003, week 1; p < 0.0001, weeks 2 and 4) were greater in HADM. Ultimate tensile strength at the implant-musculofascia interface increased over time with both materials, but no difference was observed at 4 weeks. The mean ultimate tensile strength of explanted ncl-PADM itself was consistently greater than that of HADM. The elastic modulus (stiffness) did not differ between groups at the interface but was greater in explanted ncl-PADM (p < 0.0001, weeks 1 and 2; p < 0.02, week 4). Both HADM and ncl-PADM become infiltrated with host cells and blood vessels within 4 weeks and have similar musculofascia-bioprosthetic interface strength. However, HADM has greater cellular and vascular infiltration. Longer-term studies will help determine whether later differences in material strength, stiffness, and remodeling affect hernia and/or bulge incidence.

  15. Reconstruction of the pelvic floor and perineum with human acellular dermal matrix and thigh flaps following pelvic exenteration.

    PubMed

    Said, Hakim K; Bevers, Michael; Butler, Charles E

    2007-12-01

    Patients who undergo pelvic floor resection as treatment for recurrent cancer following radiation therapy have increased rates of complications, particularly if permanent prosthetic mesh is used for reconstruction. Human acellular dermal matrix (HADM), commonly used for reconstruction in other torso locations, is associated with lower rates of complications (including infection, adhesions and cutaneous exposure) than synthetic mesh. We describe an effective technique to reconstruct the pelvic floor and perineum with HADM and thigh-based flaps following pelvic exenteration and radical vulvectomy. A 75-year-old woman underwent radical resection of the pelvic floor and perineum to treat recurrent vulvar squamous cell carcinoma and osteoradionecrosis. The pelvic floor and perineal soft tissue defect were reconstructed with HADM (AlloDerm; LifeCell Corporation, Branchburg, NJ) and bilateral, thigh-based tissue flaps, respectively. Despite a large resection, previous irradiation therapy and bacterial contamination the wounds healed without complications. Reconstruction of pelvic floor defects using HADM is an option when wound conditions are unfavorable for the use of permanent prosthetic meshes.

  16. [Study on preparation of laser micropore porcine acellular dermal matrix combined with split-thickness autograft and its application in wound transplantation].

    PubMed

    Liang, Li-Ming; Chai, Ji-Ke; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sun, Qiang

    2007-04-01

    To prepare a porcine acellular dermal matrix (PADM), and to optimize the interpore distance between PADM and co-grafted split-thickness autologous skin. Porcine skin was treated with trypsin/Triton X-100 to prepare an acellular dermal matrix. Micropores were produced on the PADM with a laser punch. The distance between micropores varied as 0.8 mm, 1.0 mm, 1.2 mm and 1.5 mm. Full-thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into 6 groups as follows, with 24 rats in each group. Micropore groups I -IV: the wounds were grafted with PADM with micropores in four different intervals respectively, and covered with split-thickness autologous skin graft. Mesh group: the wounds were grafted with meshed PADM and split-thickness autograft. with simple split-thickness autografting. The gross observation of wound healing and histological observation were performed at 2, 4, 6 weeks after surgery. The wound healing rate and contraction rate were calculated. Two and four weeks after surgery, the wound healing rate in micropore groups I and II was lower than that in control group (P < 0.05), but no obvious difference was between micropore groups I , II and mesh group (P > 0.05) until 6 weeks after grafting( P <0.05). The wound contraction rate in micropore groups I and II ([(16.0 +/- 2.6)%, (15.1 +/- 2.4)%] was remarkably lower than that in control group 4 and 6 weeks after grafting (P < 0.05), and it was significantly lower than that in mesh group [(19.3 +/- 2.4)%] 6 weeks after surgery (P <0.05). Histological examination showed good epithelization, regularly arranged collagenous fibers, and integral structure of basement membrane. Laser micropore PADM (0.8 mm or 1.0 mm in distance) grafting in combination with split-thickness autografting can improve the quality of wound healing. PADM with laser micropores in 1.0 mm distance is the best choice among them.

  17. Histologic evaluation of autogenous connective tissue and acellular dermal matrix grafts in humans.

    PubMed

    Cummings, Lewis C; Kaldahl, Wayne B; Allen, Edward P

    2005-02-01

    The clinical success of root coverage with autogenous connective tissue (CT) or acellular dermal matrix (ADM) has been well documented. However, limited histological results of CT grafts have been reported, and a case report of a human block section has been published documenting an ADM graft. The purpose of this study is to document the histological results of CT grafts, ADM grafts, and coronally advanced flaps to cover denuded roots in humans. This study included four patients previously treatment planned for extractions of three or more anterior teeth. Three teeth in each patient were selected and randomly designated to receive either a CT or ADM graft beneath a coronally advanced flap (tests) or coronally advanced flap alone (control). Six months postoperatively block section extractions were performed and the teeth processed for histologic evaluation with hematoxylin-eosin and Verhoeff's stains. Histologically, both the CT and ADM were well incorporated within the recipient tissues. New fibroblasts, vascular elements, and collagen were present throughout the ADM, while retention of the transplanted elastic fibers was apparent. No effect on the keratinization or connective tissue organization of the overlying alveolar mucosa was evident with either graft. For both materials, areas of cemental deposition were present within the root notches, the alveolar bone was essentially unaffected, and the attachments to the root surfaces were similar. Although CT and ADM have a slightly different histological appearance, both can successfully be used to cover denuded roots with similar attachments and no adverse healing.

  18. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Three types of dermal grafts in rats: the importance of mechanical property and structural design

    PubMed Central

    2013-01-01

    Background To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes—ADM, CS and PMCSs are different in the tensile properties and microstructure. Methods Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague–Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). Results In vitro studies demonstrated ADM had a higher Young’s modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical

  20. Acellular dermal matrix and subepithelial connective tissue grafts for root coverage: A systematic review

    PubMed Central

    Gallagher, Sarah Ivy; Matthews, Debora Candace

    2017-01-01

    Background: The aim of this systematic review was to evaluate whether patients with gingival recession would benefit from an acellular dermal matrix graft (ADMG) in ways that are comparable to the gold standard of the subepithelial connective tissue graft (SCTG). Materials and Methods: A systematic review and meta-analysis comparing ADMG to SCTG for the treatment of Miller Class I and II recession defects was conducted according to PRISMA guidelines. PubMed, Excerpta Medica Database, and Cochrane Central Register of Controlled Trials databases were searched up to March 2016 for controlled trials with minimum 6 months duration. The primary outcome was root coverage; secondary outcomes included attachment level change, keratinized tissue (KT) change, and patient-based outcomes. Both authors independently assessed the quality of each included trial and extracted the relevant data. Results: From 158 potential titles, 17 controlled trials were included in the meta-analysis. There were no differences between ADMG and SCTG for mean root coverage, percent root coverage, and clinical attachment level gain. ADMG was statistically better than SCTG for gain in width of KT (−0.43 mm; 95% confidence interval: −0.72, −0.15). Only one study compared patient-based outcomes. Conclusion: This review found that an ADMG would be a suitable root coverage substitute for an SCTG when avoidance of the second surgical site is preferred. PMID:29551861

  1. A new system for cultivation of human keratinocytes on acellular dermal matrix substitute with the use of human fibroblast feeder layer.

    PubMed

    Xiao, S; Zhu, S; Ma, B; Xia, Z-F; Yang, J; Wang, G

    2008-01-01

    To improve the proliferative potential of human keratinocytes (HK) cultured on acellular dermal matrix (ADM), HK and mitomycin C-treated human fibroblasts (MMC-HF) were seeded onto ADM to form four types of composite skin: type I, HK were seeded onto the epidermal side of ADM; type II, both HK and MMC-HF were seeded onto the epidermal side; type III, MMC-HF were preseeded onto the dermal side of ADM, and then HK were seeded onto the epidermal side, and type IV, where MMC-HF were preseeded onto both sides, and then HK were seeded onto the epidermal side. Compared with type I and III, the proliferative potential of HK of type II and IV was significantly higher on day 3, 5, 7 and 9 in vitro. In type I and III, HK grew into one layer on day 7-9, while in type II and IV keratinocytes grew into a confluent monolayer by day 4-6. The adherence to ADM of HK in types II and IV was stronger than that in type I and III. The take rate of type II and IV composite skin was also significantly higher. In conclusion, when MMC-HF and HK were cocultured on the epidermal side of ADM, MMC-HF could serve as excellent feeder cells. Copyright 2007 S. Karger AG, Basel.

  2. Comparison of acellular dermal graft and palatal autograft in the reconstruction of keratinized gingiva around dental implants: a case report.

    PubMed

    Yan, Ji-Jong; Tsai, Alex Yi-Min; Wong, Man-Ying; Hou, Lein-Tuan

    2006-06-01

    The use of autogenous gingival grafts has proved to be an effective and predictable way to increase the amount of keratinized gingiva. However, discomfort and pain at the donor site are unavoidable. Acellular dermal matrix (ADM) allograft can be used as a donor tissue to eliminate the need for another surgical site and alleviate pain and trauma. The purpose of this study was to evaluate the effectiveness of ADM allograft in increasing the width of keratinized gingiva around dental implants. A patient with inadequate keratinized gingiva around dental implants in maxillary and mandibular anterior regions received either an ADM graft or palatal autograft by random allocation. The width of keratinized gingiva and other clinical periodontal parameters were recorded initially and at 3 and 6 months after surgery. Both grafts provided satisfactory results. The width of keratinized tissues was increased by using the ADM allograft, but by a lesser amount than seen with the autogenous gingival graft.

  3. Acellular dermal matrix in soft tissue reconstruction prior to bone grafting. A case report.

    PubMed

    Ruiz-Magaz, Vanessa; Hernández-Alfaro, Federico; Díaz-Carandell, Artur; Biosca-Gómez-de-Tejada, María-José

    2010-01-01

    When hard tissue augmentation is scheduled as a part of an oral rehabilitation, prior to the treatment, it is important to assess if the quality of the underlying gingiva at the recipient site can support the bone grafting procedure. The most frequent complication during autologous onlay grafts are wound dehiscences in the recipient site, so the integrity of soft tissues is a basic aspect of successful reconstructive and plastic surgical procedure. Connective tissue grafts can improve the quality and quantity of soft tissue in oral sites where a hard tissue reconstruction is going to take place. However, particularly when large grafts are harvested, the autogenous donor site can present significant postoperative morbidity, such as necrosis of the palate fibromucosa and bone exposition, pain and bleeding. Another important limitation with the use of autogenous grafts is the limited supply of donor connective tissue. If a large site needs to be grafted, more than one surgical procedure may be required. An Acellular Dermal Matrix (ADM) graft has become increasingly popular as a substitute for donor connective tissue, eliminating the disadvantages described for the autogenous donor graft. The amount of tissue harvested is unlimited, so it gives an option for treating patients that have inadequate harvestable tissue or that present a large defect to be treated. The outcome of using ADM as a matrix for soft tissue reconstruction 12 weeks before bone grafting can reduce the risk of exposure and failure of the bone graft.

  4. Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells.

    PubMed

    Frerichs, Onno; Fansa, Hisham; Schicht, Christoph; Wolf, Gerald; Schneider, Wolfgang; Keilhoff, Gerburg

    2002-01-01

    The bridging of nerve gaps is still one of the major problems in peripheral nerve surgery. The present experiment describes our attempt to engineer different biologic nerve grafts in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into 2-cm autologous acellular nerve grafts or autologous predegenerated nerve grafts. Autologous nerve grafts and predegenerated or acellular nerve grafts without implanted Schwann cells served as controls. The regenerated nerves were assessed histologically and morphometrically after 6 weeks. Predegenerated grafts showed results superior in regard to axon count and histologic appearance in comparison to standard grafts and acellular grafts. The acellular nerve grafts showed the worst histologic picture, but axon counts were in the range of standard grafts. The implantation of Schwann cells did not yield significant improvements in any group. In conclusion, the status of activation of Schwann cells and the stadium of Wallerian degeneration in a nerve graft might be key factors for regeneration, rather than total number of Schwann cells. Predegenerated nerve grafts are therefore superior to standard grafts in the rat model. Acellular grafts are able to bridge nerve gaps of up to 2 cm in the rat model, but even the addition of cultivated Schwann cells did not lead to results as good as in the group with autologous nerve grafts. Copyright 2002 Wiley-Liss, Inc. MICROSURGERY 22:311-315 2002

  5. Repair of Postoperative Abdominal Hernia in a Child with Congenital Omphalocele Using Porcine Dermal Matrix

    PubMed Central

    Mylona, E.; Tsakalidis, C.; Spyridakis, I.; Mitsiakos, G.; Karagianni, P.

    2016-01-01

    Introduction. Incisional hernias are a common complication appearing after abdominal wall defects reconstruction, with omphalocele and gastroschisis being the most common etiologies in children. Abdominal closure of these defects represents a real challenge for pediatric surgeons with many surgical techniques and various prosthetic materials being used for this purpose. Case Report. We present a case of repair of a postoperative ventral hernia occurring after congenital omphalocele reconstruction in a three-and-a-half-year-old child using an acellular, sterile, porcine dermal mesh. Conclusion. Non-cross-linked acellular porcine dermal matrix is an appropriate mesh used for the reconstruction of abdominal wall defects and their postoperative complications like large ventral hernias with success and preventing their recurrence. PMID:27110247

  6. Repair of Postoperative Abdominal Hernia in a Child with Congenital Omphalocele Using Porcine Dermal Matrix.

    PubMed

    Lambropoulos, V; Mylona, E; Mouravas, V; Tsakalidis, C; Spyridakis, I; Mitsiakos, G; Karagianni, P

    2016-01-01

    Introduction. Incisional hernias are a common complication appearing after abdominal wall defects reconstruction, with omphalocele and gastroschisis being the most common etiologies in children. Abdominal closure of these defects represents a real challenge for pediatric surgeons with many surgical techniques and various prosthetic materials being used for this purpose. Case Report. We present a case of repair of a postoperative ventral hernia occurring after congenital omphalocele reconstruction in a three-and-a-half-year-old child using an acellular, sterile, porcine dermal mesh. Conclusion. Non-cross-linked acellular porcine dermal matrix is an appropriate mesh used for the reconstruction of abdominal wall defects and their postoperative complications like large ventral hernias with success and preventing their recurrence.

  7. Human Keratinocyte Growth and Differentiation on Acellular Porcine Dermal Matrix in relation to Wound Healing Potential

    PubMed Central

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7–10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing. PMID:22629190

  8. A two-year prospective study of coronally positioned flap with or without acellular dermal matrix graft.

    PubMed

    de Queiroz Côrtes, Antonieta; Sallum, Antonio Wilson; Casati, Marcio Z; Nociti, Francisco H; Sallum, Enilson A

    2006-09-01

    Evaluation of the treatment of gingival recessions with coronally positioned flap with or without acellular dermal matrix allograft (ADM) after a period of 24 months. Thirteen patients with bilateral gingival recessions were included. The defects were randomly assigned to one of the treatments: coronally positioned flap plus ADM or coronally positioned flap alone. The clinical measurements were taken before the surgeries and after 6, 12 and 24 months. At baseline, the mean values for recession height were 3.46 and 3.58 mm for the defects treated with and without the graft, respectively (p>0.05). No significant differences between the groups were observed after 6 and 12 months in this parameter. However, after 24 months, the group treated with coronally positioned flap alone showed a greater recession height when compared with the group treated with ADM (1.62 and 1.15 mm, respectively--p<0.05). A significant increase in the thickness of keratinized tissue was observed in the group treated with ADM as compared with coronally positioned flap alone (p<0.05). ADM may reduce the residual gingival recession observed after 24 months in defects treated with coronally positioned flap. In addition, a greater gingival thickness may be achieved when the graft is used.

  9. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  10. Preparation of laser micropore porcine acellular dermal matrix for skin graft: an experimental study.

    PubMed

    Chai, Jia-Ke; Liang, Li-Ming; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sheng, Zhi-Yong

    2007-09-01

    In our previous study, we used composite grafts consisting of meshed porcine acellular dermal matrix (PADM) and thin split-thickness autologous epidermis to cover full thickness burn wounds in clinical practice. However, a certain degree of contraction might occur because the distribution of dermal matrix was not uniform in burn wound. In this study, we prepare a composite skin graft consisting of PADM with the aid of laser to improve the quality of healing of burn wound. PADM was prepared by the trypsin/Triton X-100 method. Micropores were produced on the PADM with a laser punch. The distance between micropores varied from 0.8, 1.0, 1.2 to 1.5mm. Full thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into six groups: micropore groups I-IV in which the wound were grafted with PADM with micropores, in four different distances, respectively and split-thickness autograft; mesh group rats received meshed PADM graft and split-thickness autograft; control group received simple split-thickness autografting. The status of wound healing was histologically observed at regular time points after surgery. The wound healing rate and contraction rate were calculated. The wound healing rate in micropore groups I and II was not statistically different from that in control group, but was significantly higher than that in mesh group 6 weeks after grafting. The wound healing rate in micropore groups III and IV was lower than that in mesh and control groups 4 and 6 weeks after grafting. The wound contraction rate in micropore groups I and II was remarkably lower than that in control group 4 and 6 weeks after surgery and it was significantly much lower than that in mesh group 6 weeks after surgery. Histological examination revealed good epithelization, regularly arranged collagenous fibers and integral structure of basement membrane. Laser micropore PADM (0.8 or 1.0mm in distance) grafting in combination with split-thickness autografting can

  11. Acellular dermal matrix for mucogingival surgery: a meta-analysis.

    PubMed

    Gapski, Ricardo; Parks, Christopher Allen; Wang, Hom-Lay

    2005-11-01

    Many clinical studies revealed the effectiveness of acellular dermal matrix (ADM) in the treatment of mucogingival defects. The purpose of this meta-analysis was to compare the efficacy of ADM-based root coverage (RC) and ADM-based increase in keratinized tissues to other commonly used mucogingival surgeries. Meta-analysis was limited to randomized clinical trials (RCT). Articles from January 1, 1990 to October 2004 related to ADM were searched utilizing the MEDLINE database from the National Library of Medicine, the Cochrane Oral Health Group Specialized Trials Registry, and through hand searches of reviews and recent journals. Relevant studies were identified, ranked independently, and mean data from each were weighted accordingly. Selected outcomes were analyzed using a meta-analysis software program. The significant estimates of the treatment effects from different trials were assessed by means of Cochrane's test of heterogeneity. 1) Few RCT studies were found to compile the data. In summary, selection identified eight RCT that met the inclusion criteria. There were four studies comparing ADM versus a connective tissue graft for root coverage procedures, two studies comparing ADM versus coronally advanced flap (CAF) for root coverage procedures, and two studies comparing ADM to free gingival graft in augmentation of keratinized tissue. 2) There were no statistically significant differences between groups for any of the outcomes measured (recession coverage, keratinized tissue formation, probing depths, and clinical attachment levels). 3) The majority of the analyses demonstrated moderate to high levels of heterogeneity. 4) Considering the heterogeneity values found among the studies, certain trends could be found: a) three out of four studies favored the ADM-RC group for recession coverage; b) a connective tissue graft tended to increase keratinized tissue compared to ADM (0.52-mm difference; P = 0.11); c) there were trends of increased clinical attachment

  12. Integra®-Dermal Regeneration Template and Split-Thickness Skin Grafting: A Therapy Approach to Correct Aplasia Cutis Congenita and Epidermolysis Bullosa in Carmi Syndrome.

    PubMed

    Trah, Julian; Has, Christina; Hausser, Ingrid; Kutzner, Heinz; Reinshagen, Konrad; Königs, Ingo

    2018-05-18

    The association of junctional epidermolysis bullosa with pyloric atresia (JEB-PA) and aplasia cutis congenita (ACC) was described by El Shafie et al. (J Pediatr Surg 14(4):446-449, 1979) and Carmi et al. (Am J Med Genet 11:319-328, 1982). Most patients die in the first weeks of life, and no curative treatment options are available so far. We describe a patient with JEB-PA and ACC (OMIM # 226730) who was treated for extensive areas of ACC by Integra ® -Dermal Regeneration Template and split-thickness skin grafting (STSG). Clinically, the dermal template changed into well-vascularized neodermis, and after STSG, full take of the transplants was detected. No infections of the huge ACC areas were seen. Further studies must validate this treatment option in severe and acute cases of JEB-PA with ACC. Based on clinical findings, we postulate that placement of Integra ® -Dermal Regeneration Template with STSG could be a new treatment option for patients having JEB-PA with ACC to prevent severe infection, compartment-syndrome-like conditions, and deformities. Based on literature findings, we assume that Integra ® -Dermal Regeneration Template with STSG could even be able to prevent new blistering and thereby be a treatment option in cases of ACC and JEB.

  13. [Management of recurrent urethrocutaneous fistula after hypospadias surgery in pediatric patients: initial experience with dermal regeneration sheet Integra].

    PubMed

    Casal-Beloy, I; Somoza Argibay, I; García-González, M; García-Novoa, A M; Míguez Fortes, L; Blanco, C; Dargallo Carbonell, T

    2017-10-25

    To present our initial experience using a dermal regeneration sheet as an urethral cover in the repair of recurrent urethrocutaneous fistulae in pediatric patients. Since May 2016 to March a total of 8 fistulaes were repaired using this new technique. We performed the ddissection of the fistulous tract and posterior closure of the urethral defect. A dermal regeneration sheet was used to cover the urethral suture. Finally a rotational flap was performed to avoid overlap sutures. During the follow-up (average 6 months), one patient presented in the immediate postoperative period infection of the surgical wound. This patient presented recurrence of the fistula. 88% of the patients included presented a good evolution with no other complications. In our initial experience the new technique seems easy, safe and effective in the management of the recurrent urethrocutaneous fistulae in pediatric patients. More studies are needed to prove these results.

  14. Combined periodontal and restorative approach to the treatment of gingival recessions with noncarious cervical lesions: a case treated with acellular dermal matrix allograft and compomer restorations.

    PubMed

    Efeoğlu, Ahmet; Hanzade, Mete; Sari, Esra; Alpay, Hande; Karakaş, Ozan; Koray, Fatma

    2012-08-01

    Treatment of gingival recessions has become one of the most challenging procedures in periodontal plastic surgery. Various surgical options with predictable outcomes are available, but in cases with cervical lesions or restorations, optimal functional and esthetic results may require the combination of periodontal and restorative procedures. In this case report, one patient treated with acellular dermal matrix allograft and a coronally positioned flap in combination with compomer cervical restorations is presented. Clinical parameters were recorded immediately prior to surgery and after 12 months. Postoperatively, significant root coverage, reductions in probing depths, and gains in clinical attachment were observed. The final clinical results, esthetics, color match, and tissue contours were acceptable to both the patient and clinicians.

  15. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix.

    PubMed

    Garvey, Patrick B; Giordano, Salvatore A; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2017-03-01

    Long-term outcomes data for hernia recurrence rates after abdominal wall reconstruction (AWR) with acellular dermal matrix (ADM) are lacking. The aim of this study was to assess the long-term durability of AWR using ADM. We studied patients who underwent AWR with ADM at a single center in 2005 to 2015 with a minimum follow-up of 36 months. Hernia recurrence was the primary end point and surgical site occurrence (SSO) was a secondary end point. The recurrence-free survival curves were estimated by Kaplan-Meier product limit method. Univariate and multivariable Cox proportional hazards regression models and logistic regression models were used to evaluate the associations of risk factors at surgery with subsequent risks for hernia recurrence and SSO, respectively. A total of 512 patients underwent AWR with ADM. After excluding those with follow-up less than 36 months, 191 patients were included, with a median follow-up of 52.9 months (range 36 to 104 months). Twenty-six of 191 patients had a hernia recurrence documented in the study. The cumulative recurrence rates were 11.5% at 3 years and 14.6% by 5 years. Factors significantly predictive of hernia recurrence developing included bridged repair, wound skin dehiscence, use of human cadaveric ADM, and coronary disease; component separation was protective. In a subset analysis excluding bridged repairs and human cadaveric ADM patients, cumulative hernia recurrence rates were 6.4% by 3 years and 8.3% by 5 years. The crude rate of SSO was 25.1% (48 of 191). Factors significantly predictive of the incidence of SSO included at least 1 comorbidity, BMI ≥30 kg/m 2 , and defect width >15 cm. Use of ADM for AWR was associated with 11.5% and 14.6% hernia recurrence rates at 3- and 5-years follow-up, respectively. Avoiding bridged repairs and human cadaveric ADM can improve long-term AWR outcomes using ADM. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. [EFFECTIVENESS OF VAGINOPLASTY WITH ACELLULAR DERMAL MATRIX AND MIXED PARTICLES GRAFT].

    PubMed

    Zhou, Yu; Li, Qiang; Ll, Senkai; Zhou, Chuande; Li, Fengyong; Cao, Yujiao; Zhang, Siya; Wei, Shuyi; Zhao, Yang

    2015-06-01

    To evaluate the effectiveness or acellular dermal matrix (ADM) with autologous buccal micro mucosa and micro skin graft in vaginoplasty. A retrospective analysis was made on the clinical data of 67 patients with vaginal agenesis treated between July 2006 and June 2013. ADM and mixed particles were used in 20 cases (ADM group) and mixed particles graft in 47 cases (control group) in vaginoplasty. There was no significant difference in age between 2 groups (t=0.233, P=0.816). The depth, diameter, and volume of neovagina, epithelization time, stent needing time, and female sexual function index (FSFI) score were compared between 2 groups. There was no significant difference in operation time and amount of bleeding between 2 groups (t = -1.922, P = 0.059; t = 0.398, P = 0.692). The patients were followed up 11-38 months (mean, 16.08 months). Fifteen cases in ADM group and 29 cases in control group had sexual life after operation. Bleeding after operation occurred in 6 cases (2 in ADM group and 4 in control group). No stenosis was observed. Difference in epithelization time was not statistically significant (t = -1.938, P = 0.057). However, the stent needing time of ADM group was significantly shorter than that of control group (t = 7.020, P = 0.000). The neovagina was ideal in wetness degree, smoothness, flexibility, and hairlessness during follow-up. The depth, diameter, and volume of vagina had no significant difference between 2 groups (P > 0.05) at last follow-up, which were close to normal vagina. The other patients had normal sexual function except 1 patient whose FSFI score was less than 23; no statistically significant difference was found in FSFI score between 2 groups (P > 0.05). On the basis of mixed particles grafting, the ADM could improve trestle structure for resisting contracture. The effectiveness is better than merely mixed particles graft. The procedure has satisfactory anatomical and functional results.

  17. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    PubMed

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  18. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study.

    PubMed

    Baldursson, Baldur Tumi; Kjartansson, Hilmar; Konrádsdóttir, Fífa; Gudnason, Palmar; Sigurjonsson, Gudmundur F; Lund, Sigrún Helga

    2015-03-01

    A novel product, the fish skin acellular dermal matrix (ADM) has recently been introduced into the family of biological materials for the treatment of wounds. Hitherto, these products have been produced from the organs of livestock. A noninferiority test was used to compare the effect of fish skin ADM against porcine small-intestine submucosa extracellular matrix in the healing of 162 full-thickness 4-mm wounds on the forearm of 81 volunteers. The fish skin product was noninferior at the primary end point, healing at 28 days. Furthermore, the wounds treated with fish skin acellular matrix healed significantly faster. These results might give the fish skin ADM an advantage because of its environmental neutrality when compared with livestock-derived products. The study results on these acute full-thickness wounds might apply for diabetic foot ulcers and other chronic full-thickness wounds, and the shorter healing time for the fish skin-treated group could influence treatment decisions. To test the autoimmune reactivity of the fish skin, the participants were tested with the following ELISA (enzyme-linked immunosorbent assay) tests: RF, ANA, ENA, anti ds-DNA, ANCA, anti-CCP, and anticollagen I and II. These showed no reactivity. The results demonstrate the claims of safety and efficacy of fish skin ADM for wound care. © The Author(s) 2015.

  19. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices.

    PubMed

    Qureshi, Ali A; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M; Myckatyn, Terence M

    2016-08-01

    Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. We performed a retrospective analysis (2003-2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the -ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the -ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than -ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the -ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction.

  20. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton.

    PubMed

    Keating, Joseph N; Marquart, Chloe L; Donoghue, Philip C J

    2015-06-01

    Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four-layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel-fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel-fibred bone, showing osteon-like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the

  1. Hospital readmission following open, single-stage, elective abdominal wall reconstructions using acellular dermal matrix affects long-term hernia recurrence rate.

    PubMed

    Giordano, Salvatore A; Garvey, Patrick B; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2018-02-05

    We evaluated the incidence of and the risk factors for readmission in patients who underwent abdominal wall reconstruction (AWR) using acellular dermal matrix (ADM) and assess whether readmission affects AWR long-term outcomes. A retrospective, single-center study of patients underwent AWR with ADM was conducted. The primary outcome was the incidence of unplanned readmission within 30 days after the initial discharge post-AWR. Secondary outcomes were surgical site occurrence (SSO) and hernia recurrence at follow-up. Of 452 patients (mean age, 59 years; mean follow-up, 35 months), 29 (6.4%) were readmitted within 30 days. Most readmissions were due to SSO (44.8%) or wound infections (12.8%). The hernia recurrence rate was significantly higher in readmitted patients (17.2% vs 9.9%; P = 0.044). Wider defects, prolonged operative time, and coronary artery disease were independent predictors of readmission. Readmission is associated with hernia recurrence on long-term follow-up. SSO is the most common cause for readmission. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Evaluation of Sidestream Darkfield Microscopy for Real-Time Imaging Acellular Dermal Matrix Revascularization.

    PubMed

    DeGeorge, Brent R; Olenczak, J Bryce; Cottler, Patrick S; Drake, David B; Lin, Kant Y; Morgan, Raymond F; Campbell, Christopher A

    2016-06-01

    Acellular dermal matrices (ADMs) serve as a regenerative framework for host cell integration and collagen deposition to augment the soft tissue envelope in ADM-assisted breast reconstruction-a process dependent on vascular ingrowth. To date noninvasive intra-operative imaging techniques have been inadequate to evaluate the revascularization of ADM. We investigated the safety, feasibility, and efficacy of sidestream darkfield (SDF) microscopy to assess the status of ADM microvascular architecture in 8 patients at the time of tissue expander to permanent implant exchange during 2-stage ADM-assisted breast reconstruction. The SDF microscopy is a handheld device, which can be used intraoperatively for the real-time assessment of ADM blood flow, vessel density, vessel size, and branching pattern. The SDF microscopy was used to assess the microvascular architecture in the center and border zone of the ADM and to compare the native, non-ADM-associated capsule in each patient as a within-subject control. No incidences of periprosthetic infection, explantation, or adverse events were reported after SDF image acquisition. Native capsules demonstrate a complex, layered architecture with an average vessel area density of 14.9 mm/mm and total vessel length density of 12.3 mm/mm. In contrast to native periprosthetic capsules, ADM-associated capsules are not uniformly vascularized structures and demonstrate 2 zones of microvascular architecture. The ADM and native capsule border zone demonstrates palisading peripheral vascular arcades with continuous antegrade flow. The central zone of the ADM demonstrates punctate perforating vascular plexi with intermittent, sluggish flow, and intervening 2- to 3-cm watershed zones. Sidestream darkfield microscopy allows for real-time intraoperative assessment of ADM revascularization and serves as a potential methodology to compare revascularization parameters among commercially available ADMs. Thr SDF microscopy demonstrates that the

  3. Root coverage of advanced gingival recession: a comparative study between acellular dermal matrix allograft and subepithelial connective tissue grafts.

    PubMed

    Tal, Haim; Moses, Ofer; Zohar, Ron; Meir, Haya; Nemcovsky, Carlos

    2002-12-01

    Acellular dermal matrix allograft (ADMA) has successfully been applied as a substitute for free connective tissue grafts (CTG) in various periodontal procedures, including root coverage. The purpose of this study was to clinically compare the efficiency of ADMA and CTG in the treatment of gingival recessions > or = 4 mm. Seven patients with bilateral recession lesions participated. Fourteen teeth presenting gingival recessions > or = 4 mm were randomly treated with ADMA or CTG covered by coronally advanced flaps. Recession, probing depth, and width of keratinized tissue were measured preoperatively and 12 months postoperatively. Changes in these clinical parameters were calculated within and compared between groups and analyzed statistically. Baseline recession, probing depth, and keratinized tissue width were similar for both groups. At 12 months, root coverage gain was 4.57 mm (89.1%) versus 4.29 mm (88.7%) (P = NS), and keratinized tissue gain was 0.86 mm (36%) versus 2.14 mm (107%) (P < 0.05) for ADMA and CTG, respectively. Probing depth remained unchanged (0.22 mm/0 mm), with no difference between the groups. Recession defects may be covered using ADMA or CTG, with no practical difference. However, CTG results in significantly greater gain of keratinized gingiva.

  4. Acellular dermal matrix graft with or without enamel matrix derivative for root coverage in smokers: a randomized clinical study.

    PubMed

    Alves, Luciana B; Costa, Priscila P; Scombatti de Souza, Sérgio Luís; de Moraes Grisi, Márcio F; Palioto, Daniela B; Taba, Mario; Novaes, Arthur B

    2012-04-01

    The aim of this randomized controlled clinical study was to compare the use of an acellular dermal matrix graft (ADMG) with or without the enamel matrix derivative (EMD) in smokers to evaluate which procedure would provide better root coverage. Nineteen smokers with bilateral Miller Class I or II gingival recessions ≥3 mm were selected. The test group was treated with an association of ADMG and EMD, and the control group with ADMG alone. Probing depth, relative clinical attachment level, gingival recession height, gingival recession width, keratinized tissue width and keratinized tissue thickness were evaluated before the surgeries and after 6 months. Wilcoxon test was used for the statistical analysis at significance level of 5%. No significant differences were found between groups in all parameters at baseline. The mean gain recession height between baseline and 6 months and the complete root coverage favored the test group (p = 0.042, p = 0.019 respectively). Smoking may negatively affect the results achieved through periodontal plastic procedures; however, the association of ADMG and EMD is beneficial in the root coverage of gingival recessions in smokers, 6 months after the surgery. © 2012 John Wiley & Sons A/S.

  5. Short-Term Complications Associated With Acellular Dermal Matrix-Assisted Direct-to-Implant Breast Reconstruction.

    PubMed

    Hunsicker, Lisa M; Ashikari, Andrew Y; Berry, Colleen; Koch, R Michael; Salzberg, C Andrew

    2017-01-01

    Although direct-to-implant breast reconstruction is a more concise procedure than 2-stage expander/implant reconstruction, it is less frequently performed. Skeptics of direct-to-implant reconstruction cite risk of postoperative complications as a reason for its rejection. To determine whether these perceptions are valid, we evaluated our 13-year experience of acellular dermal matrix (ADM)-assisted, direct-to-implant breast reconstruction. We report complication and reoperation rates associated with this technique as well as predictors for these outcomes. This retrospective study included all patients who underwent immediate, ADM-assisted, direct-to-implant, breast reconstruction from December 2001 to May 2014 at 2 practices. Postoperative complications, defined as those occurring within the first 12 months after reconstructive surgery, were evaluated. Univariate/multivariate analyses were performed to determine the influence of patient-, breast-, and surgery-related characteristics on the development of complications. A total of 1584 breast reconstructions (721 bilateral, 142 unilateral) in 863 patients were performed; 35% were oncologic, and 65% were prophylactic reconstructions. Complication rate was 8.6% and included skin necrosis (5.9%), infection (3.0%), implant loss (2.9%), seroma (1.1%), and hematoma (0.9%). Reoperative rate in breasts with complications was 3.2%. Age 50 years or older, smoking, nonnipple-sparing mastectomy, and implant size of 600 mL or greater strongly predicted the development of complications (P < 0.001). Our cumulative 13-year experience demonstrates that immediate, ADM-assisted, direct-to-implant breast reconstruction is safe, effective, and reliable. Complication and reoperation rates are less than 10% and are comparable to those reported for 2-stage procedures in the published literature.

  6. Metrics of Cellular and Vascular Infiltration of Human Acellular Dermal Matrix in Ventral Hernia Repairs

    PubMed Central

    Campbell, Kristin Turza; Burns, Nadja K.; Ensor, Joe; Butler, Charles E.

    2012-01-01

    Background Human acellular dermal matrix (HADM) is used for ventral hernia repair, as it resists infection and remodels via surrounding tissue. However, the tissue source and impact of basement membrane (BM) on cell and vessel infiltration have not been determined. We hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into HADM and the BM would inhibit infiltration. Methods Fifty-six guinea pigs underwent inlay HADM ventral hernia repair with the BM oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, BM orientation, and time. Results Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p=0.01, p<0.0001). Cell density was greater with the BM oriented toward the peritoneum at week 4 (p=0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p<0.0001). Orienting the BM toward the peritoneum increased vessel density at week 4 (p=0.0004). Conclusion Cellular and vascular infiltration into HADM for ventral hernia repairs was greater from musculofascia than subcutaneous and the BM inhibited cellular and vascular. HADM should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation. PMID:22456361

  7. The Effect of Sterile Acellular Dermal Matrix Use on Complication Rates in Implant-Based Immediate Breast Reconstructions

    PubMed Central

    Park, Youngsoo; Choi, Kyoung Wook; Chung, Kyu-Jin; Kim, Tae Gon; Kim, Yong-Ha

    2016-01-01

    Background The use of acellular dermal matrix (ADM) in implant-based immediate breast reconstruction has been increasing. The current ADMs available for breast reconstruction are offered as aseptic or sterile. No published studies have compared aseptic and sterile ADM in implant-based immediate breast reconstruction. The authors performed a retrospective study to evaluate the outcomes of aseptic versus sterile ADM in implant-based immediate breast reconstruction. Methods Implant-based immediate breast reconstructions with ADM conducted between April 2013 and January 2016 were included. The patients were divided into 2 groups: the aseptic ADM (AlloDerm) group and the sterile ADM (MegaDerm) group. Archived records were reviewed for demographic data and postoperative complication types and frequencies. The complications included were infection, flap necrosis, capsular contracture, seroma, hematoma, and explantation for any cause. Results Twenty patients were reconstructed with aseptic ADM, and 68 patients with sterile ADM. Rates of infection (15.0% vs. 10.3%), flap necrosis (5.0% vs. 7.4%), capsular contracture (20.0% vs. 14.7%), seroma (10.0% vs. 14.7%), hematoma (0% vs. 1.5%), and explantation (10.0% vs. 8.8%) were not significantly different in the 2 groups. Conclusions Sterile ADM did not provide better results regarding infectious complications than aseptic ADM in implant-based immediate breast reconstruction. PMID:27896182

  8. Outcomes of Acellular Dermal Matrix for Immediate Tissue Expander Reconstruction with Radiotherapy: A Retrospective Cohort Study.

    PubMed

    Craig, Elizabeth S; Clemens, Mark W; Koshy, John C; Wren, James; Hong, Zhang; Butler, Charles; Garvey, Patrick; Selber, Jesse; Kronowitz, Steven

    2018-05-24

    Despite increasing literature support for the use of acellular dermal matrix (ADM) in expander-based breast reconstruction, the effect of ADM on clinical outcomes in the presence of post-mastectomy radiation therapy (PMRT) has not been well described. To analyze the impact ADM plays on clinical outcomes on immediate tissue expander (ITE) reconstruction undergoing PMRT. We retrospectively reviewed patients who underwent ITE breast reconstruction from 2004 to 2014 at MD Anderson Cancer Center. Patients were categorized into four cohorts: ADM, ADM with PMRT, non-ADM, and non-ADM with PMRT. Outcomes and complications were compared between cohorts. Over ten years, 957 patients underwent ITE reconstruction (683 non-ADM, 113 non-ADM with PMRT, 486 ADM, and 88 ADM with PMRT) with 1,370 reconstructions. Overall complication rates for the ADM and non-ADM cohorts were 39.0 and 16.7%, respectively (p <0.001). Within both cohorts, mastectomy skin flap necrosis (MSFN) was the most common complication, followed by infection. ADM use was associated with a significantly higher rate of infections and seromas in both radiated and non-radiated groups; however, when comparing radiated cohorts, the incidence of explantation was significantly lower with the use of ADM. The decision to use ADM for expander-based breast reconstruction should be performed with caution, given higher overall rates of complications, including infections and seromas. There may, however, be a role for ADM in cases requiring PMRT, as the overall incidence of implant failure is lower than non-ADM cases.

  9. Pre-hydrated sterile acellular dermal matrix allograft in breast reconstruction: review of a single unit's experience.

    PubMed

    James, Justin; Corrigan, Brigid; Saunders, Christobel

    2018-04-01

    The acellular dermal matrix (Flex HD) (FHD) became available for use in Western Australia in 2014 to aid prosthetic breast reconstruction and this descriptive study aims to review and discuss a single institution's experience since its introduction. By retrospective case note, review data were collected for all patients who underwent prosthetic breast reconstruction with the aid of FHD between January 2014 and August 2015 in our institution. Data on basic demographic parameters, risk factors, surgery-related factors, post-operative factors and follow-up information were collected. All complications were recorded and described in detail. FHD was used in 42 breast reconstructions in 26 patients. Procedure-related complications were seen in 26% (n = 11) of cases. A major complication requiring return to theatre was seen in 11% (n = 5) of cases. Cellulitis of the reconstructed breast (red breast syndrome) was seen in 16.67% (n = 7) cases. Overall implant loss was 2.4% (n = 1). Of the six possible risk factors for any complication, only current smoking was found to increase the risk of complications (odds ratio = 9.667, 95% confidence interval = 1.429-65.377). FHD is associated with a relatively high overall complication rate. Use of this optional expensive material has to be carefully selected balancing its perceived advantages against this possible risk. The red breast syndrome merits further studies considering its frequent occurrence with FHD use. © 2017 Royal Australasian College of Surgeons.

  10. Reconstruction of attached soft tissue around dental implants by acelluar dermal matrix grafts and resin splint

    PubMed Central

    Liu, Changying; Su, Yucheng; Tan, Baosheng; Ma, Pan; Wu, Gaoyi; Li, Jun; Geng, Wei

    2014-01-01

    Objectives: The purpose of this study was to recommend a new method using acellular dermal matrix graft and resin splint to reconstruct the attached soft tissue around dental implants in patients with maxillofacial defects. Materials and methods: Total 8 patients (3 male and 5 female patients) diagnosed with maxillofacial defects and dentition defects caused by tumors, fractures or edentulous jaw, were selected for this study. Dental implants were routinely implanted at the edentulous area. Acellular dermal matrix heterografts and resin splint were used to increase the attached soft tissue. The width of attached gingiva in the labial or buccal surface at edentulous area was measured before surgical procedures and after the completion of superstructures. Paired t-test was applied to assess the change of quantitative variables. All tests were 2-tailed, and P < 0.05 was considered statistically significant. Results: The dense connective tissue around implants could be reconstructed one month after the completion of surgical procedures, and the epithelial cuff around the implant neck established very well. The width of attached gingival tissue in the patients increased significantly from a mean of 0.61 ± 0.75 mm to 6.25 ± 1.04 mm. The patients were fully satisfied with the esthetic and functional results achieved. Conclusions: The acellular dermal matrix graft could be used to increase the attached gingiva around dental implants in these patients with maxillofacial defects. The resin splint could facilitate the healing of graft. PMID:25663964

  11. Advanced age does not affect abdominal wall reconstruction outcomes using acellular dermal matrix: A comparative study using propensity score analysis.

    PubMed

    Giordano, Salvatore; Schaverien, Mark; Garvey, Patrick B; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2017-06-01

    We hypothesized that elderly patients (≥65 years) experience worse outcomes following abdominal wall reconstruction (AWR) for hernia or oncologic resection. We included all consecutive patients who underwent complex AWR using acellular dermal matrix (ADM) between 2005 and 2015. Propensity score analysis was performed for risk adjustment in multivariable analysis and for one-to-one matching. The primary outcome was hernia recurrence; the secondary outcomes included surgical site occurrence (SSO) and bulging. Mean follow-up for the 511 patients was 31.4 months; 184 (36%) patients were elderly. The elderly and non-elderly groups had similar rates of hernia recurrence (7.6% vs 10.1%, respectively; p = 0.43) and SSO (24.5% vs 23.5%, respectively; p = 0.82). Bulging occurred significantly more often in elderly patients (6.5% vs 2.8%, respectively; p = 0.04). After adjustment through the propensity score, which included 130 pairs, these results persisted. Contrary to our hypothesis, elderly patients did not have worse outcomes in AWR with ADM. Surgeons should not deny elderly patients AWR solely because of their age. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A novel dermal matrix generated from burned skin as a promising substitute for deep-degree burns therapy

    PubMed Central

    YU, GUANYING; YE, LAN; TAN, WEI; ZHU, XUGUO; LI, YAONAN; JIANG, DUYIN

    2016-01-01

    The extensive skin defects induced by severe burns are dangerous and can be fatal. Currently, the most common therapy is tangential excision to remove the necrotic or denatured areas of skin, followed by skin grafting. Xenogeneic dermal substitutes, such as porcine acellular dermal matrix (ADM), are typically used to cover the burn wounds, and may accelerate wound healing. It is assumed that burned skin that still maintains partial biological activity may be recycled to construct an autologous acellular dermal matrix, termed 'deep-degree burned dermal matrix (DDBDM)'. In theory, DDBDM may avoid the histoincompatibility issues associated with foreign or xenogeneic dermal matrices, and reduce therapy costs by making full use of discarded skin. In the present study, the collagens within prepared DDBDM were thickened, disorganized and partially fractured, however, they still maintained their reticular structure and tensile strength (P<0.01). Through microarray analysis of the cytokines present in ADM and DDBDM, it was determined that the DDBDM did not produce excessive levels of harmful burn toxins. Following 4 weeks of subcutaneous implantation, ADM and DDBDM were incompletely degraded and maintained good integrity. No significant inflammatory reaction or rejection were observed, which indicated that ADM and DDBDM have good histocompatibility. Therefore, DDBDM may be a useful material for the treatment of deep-degree burns. PMID:26846279

  13. Outcomes of arthroscopic revision rotator cuff repair with acellular human dermal matrix allograft augmentation.

    PubMed

    Hohn, Eric A; Gillette, Blake P; Burns, Joseph P

    2018-05-01

    The purpose was to assess the minimum 2-year patient-reported outcomes and failure rate of patients who underwent revision arthroscopic rotator cuff repair augmented with acellular human dermal matrix (AHDM) allograft for repairable retears. From 2008-2014, patients who underwent revision rotator cuff repair augmented with AHDM with greater than 2 years' follow-up by a single surgeon were retrospectively reviewed. Data regarding surgical history, demographic characteristics, and medical comorbidities were collected. Outcome data included American Shoulder and Elbow Surgeons (ASES) and Single Assessment Numeric Evaluation (SANE) scores, as well as rotator cuff healing on magnetic resonance imaging or ultrasound. Retears and subsequent surgical procedures were characterized. A total of 28 patients met our inclusion criteria, and 23 (82%) were available for follow-up at 2 years. The mean age was 60.1 ± 9.3 years (range, 43-79 years), with a mean follow-up period of 48 ± 23 months. All patients had at least 1 prior rotator cuff repair. Of the 23 patients, 13 (56%) underwent postoperative imaging, and 4 of these 13 (31%) had a retear. A reoperation was performed in 3 of 23 patients (13%). Among the 6 patients with both preoperative and postoperative outcome scores, we saw improvement in the ASES score from 56 to 85 (P = .03) and in the SANE score from 42 to 76 (P = .03). The full cohort's mean postoperative ASES and SANE scores were 77 and 69, respectively. AHDM allograft augmentation is a safe and effective treatment method for patients with full-thickness rotator cuff retears. Further research is needed with larger studies to confirm these findings from our small cohort of patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    PubMed

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study

  15. Acellular Bi-Layer Silk Fibroin Scaffolds Support Tissue Regeneration in a Rabbit Model of Onlay Urethroplasty

    PubMed Central

    Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M.; Kaplan, David L.; Estrada Jr., Carlos R.; Mauney, Joshua R.

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width×Length, 1×2 cm2) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this

  16. Dynamic multiphoton imaging of acellular dermal matrix scaffolds seeded with mesenchymal stem cells in diabetic wound healing.

    PubMed

    Chu, Jing; Shi, Panpan; Deng, Xiaoyuan; Jin, Ying; Liu, Hao; Chen, Maosheng; Han, Xue; Liu, Hanping

    2018-03-25

    Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full-thickness cutaneous wound site in streptozotocin-induced diabetic mice. Wounds treated with MSC-ADM demonstrated an increased percentage of wound closure. The treatment of MSC-ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col-I) fibers synthesis via second harmonic generation imaging. The synthesis of Col-I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP-labeled MSCs during wound healing was simultaneously traced via two-photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo-multiplier tube. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A patient-centered clinical evaluation of acellular dermal matrix graft in the treatment of gingival recession defects.

    PubMed

    Mahajan, Ajay; Dixit, Jaya; Verma, Umesh Pratap

    2007-12-01

    The present randomized controlled trial was conducted to evaluate acellular dermal matrix (ADM) graft in terms of patient satisfaction and its effectiveness and efficiency in the treatment of gingival recession. Fourteen patients (seven males and seven females) with Miller Class I and II recessions > or =3 mm participated in this 6-month clinical study. They were assigned randomly to the ADM group (ADM graft and coronally positioned flap [CPF]) or the CPF group (CPF alone). Results were evaluated based on parameters measuring patient satisfaction and clinical outcomes associated with the two treatment procedures. Significance was set at P <0.05. The mean recession was 4.0 +/- 1.0 mm and 3.7 +/- 0.7 mm for the ADM and CPF groups, respectively. For the ADM group, the defect coverage was 3.85 +/- 0.89 mm or 97.14% compared to the CPF group, in which the defect coverage was 2.85 +/- 0.89 mm or 77.42%. The difference between the two groups was statistically significant (P <0.05). There were no statistically significant differences between the two groups in the remaining clinical parameters and overall patient satisfaction except in criteria related to patient comfort and cost effectiveness, in which CPF alone produced significantly better results (P <0.03). ADM graft is significantly superior with regard to effectiveness and efficiency in the treatment of gingival recession than CPF alone. CPF emerges as a better option than ADM graft in terms of cost effectiveness and patient comfort.

  18. Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments.

    PubMed

    García-Medrano, B; Mesuro Domínguez, N; Simón Pérez, Cl; Garrosa García, M; Gayoso Del Villar, S; Mayo Íscar, A; Gayoso Rodríguez, M J; Martín Ferrero, M A

    When a nerve section with a significant gap occurs, it is necessary to use a prosthesis to suture it. To date an autologous nerve segment graft appears to be the best treatment; but it has several important disadvantages. Our goal is to study the effectiveness of an isogenic acellular nerve prosthesis comparing a simple suture with tubulisation. Four groups of Wistar rats were used. The animals in Group 0 served as donors of nerve segments to graft. Group 1 received the implant with an end-to-end suture. In group 2, the implant was sutured inside an ɛ-caprolactone tube. Group 3 received it in a polylactic-co-glycolic acid tube. We evaluated the motor function (sciatic index and step test in motion), and the regeneration length by histological study of regeneration, after a maximum of 3 weeks. Regeneration was uneven in the three groups. In all groups, there were implants with regenerated nerve fibres at the maximum studied length (15mm) and others where regeneration was scarce. The mean regeneration length was greater in the direct end-to-end suture group (G1), although the regeneration speed was similar in the three groups. Group 1 showed the highest percentage of regeneration, but the variability of results prevents this difference reaching statistical significance. We found no significant differences between the two groups with polymer tubes. For the implantation of isogenic acellular nerve prosthesis, under our experimental conditions, the direct end-to-end suture was more effective than when it isprotected with biopolymer tubes. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair

    PubMed Central

    Svystonyuk, Daniyil A.; Mewhort, Holly E. M.; Fedak, Paul W. M.

    2018-01-01

    An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy. PMID:29696148

  20. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration.

    PubMed

    Zhang, Huan; Zhu, Ning-Xia; Huang, Keng; Cai, Bo-Zhi; Zeng, Yang; Xu, Yan-Ming; Liu, Yang; Yuan, Yan-Ping; Lin, Chang-Min

    2016-01-01

    Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.

  1. Designing Acellular Injectable Biomaterial Therapeutics for Treating Myocardial Infarction and Peripheral Artery Disease

    PubMed Central

    Hernandez, Melissa J.; Christman, Karen L.

    2017-01-01

    Summary As the number of global deaths attributed to cardiovascular disease continues to rise, viable treatments for cardiovascular events such as myocardial infarction (MI) or conditions like peripheral artery disease (PAD) are critical. Recent studies investigating injectable biomaterials have shown promise in promoting tissue regeneration and functional improvement, and in some cases, incorporating other therapeutics further augments the beneficial effects of these biomaterials. In this review, we aim to emphasize the advantages of acellular injectable biomaterial-based therapies, specifically material-alone approaches or delivery of acellular biologics, in regards to manufacturability and the capacity of these biomaterials to regenerate or repair diseased tissue. We will focus on design parameters and mechanisms that maximize therapeutic efficacy, particularly, improved functional perfusion and neovascularization regarding PAD and improved cardiac function and reduced negative left ventricular (LV) remodeling post-MI. We will then discuss the rationale and challenges of designing new injectable biomaterial-based therapies for the clinic. PMID:29057375

  2. Outcomes of abdominal wall reconstruction with acellular dermal matrix are not affected by wound contamination.

    PubMed

    Garvey, Patrick B; Martinez, Roberto A; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2014-11-01

    The optimal type of mesh for complex abdominal wall reconstruction has not been elucidated. We hypothesized that AWRs using acellular dermal matrix (ADM) experience low rates of surgical site occurrence (SSO) and surgical site infection, despite increasing degrees of wound contamination. We retrospectively reviewed prospectively collected data from consecutive abdominal wall reconstructions with ADM over a 9-year period. Outcomes of abdominal wall reconstructions were compared between patients with different CDC wound classifications. Univariate and multivariate logistic regression and Cox proportional hazard regression analyses identified potential associations and predictive/protective factors. The 359 patients had a mean follow-up of 28.3 ± 19.0 months. Reconstruction of clean wounds (n = 171) required fewer reoperations than that of combined contaminated (n = 188) wounds (2.3% vs 11.2%; p = 0.001) and trended toward experiencing fewer SSOs (19.9% vs 28.7%, p = 0.052). There were no significant differences between clean and combined contaminated cases in 30-day SSI (8.8% vs 8.0%), hernia recurrence (9.9% vs 10.1%), and mesh removal (1.2% vs 1.1%) rates. Independent predictors of SSO included body mass index ≥30 kg/m(2) (odds ratio [OR] 3.6; p < 0.001), 1 or more comorbidities (OR 2.5; p = 0.008), and defect width ≥15 cm (OR 1.8; p = 0.02). Complex abdominal wall reconstructions using ADM demonstrated similar rates of complications between the different CDC wound classifications. This is in contradistinction to published outcomes for abdominal wall reconstruction using synthetic mesh that show progressively higher complication rates with increasing degrees of contamination. These data support the use of ADM rather than synthetic mesh for complex abdominal wall reconstruction in the setting of wound contamination. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Foreign body reaction to acellular dermal matrix allograft in biologic glenoid resurfacing.

    PubMed

    Namdari, Surena; Melnic, Christopher; Huffman, G Russell

    2013-08-01

    Biologic glenoid resurfacing is a treatment option for young patients with glenohumeral arthritis. An optimal synthetic graft for glenoid resurfacing should allow repopulation with host cells, be durable enough to tolerate suture fixation and forces across the joint, and present no host inflammatory response. We report two cases of giant cell reaction to GraftJacket(®) after biologic glenoid resurfacing. Two patients who underwent hemiarthroplasty and biologic glenoid resurfacing using GraftJacket(®) had a foreign body giant cell reaction that required revision surgery. Intraoperatively, both patients were observed to have a well-fixed humeral component and a dense, erythematous, synovitic membrane overlying the glenoid. Pathology specimens showed a benign reactive synovium, chronic inflammation, and foreign body giant cell reaction. After débridement and conversion to total shoulder arthroplasty, both patients continued to be pain-free at greater than 1-year followup. Multinucleated giant cell and mononuclear cell responses have been observed in an animal model after use of GraftJacket(®). Although the use of acellular matrix-based scaffold for biologic glenoid resurfacing is not new, the possibility of foreign body reaction as a source of persistent symptoms has not been described. Given the lack of data to indicate an advantage to biologic resurfacing of the glenoid over hemiarthroplasty alone, resurfacing should not introduce significant additional surgical complications. We suggest foreign body reaction be considered in the differential diagnosis for a persistently painful shoulder after biologic glenoid resurfacing using an acellular allograft patch.

  4. Effect of in vitro gingival fibroblast seeding on the in vivo incorporation of acellular dermal matrix allografts in dogs.

    PubMed

    Novaes, Arthur B; Marchesan, Julie Teresa; Macedo, Guilherme O; Palioto, Daniela B

    2007-02-01

    Acellular dermal matrix allograft (ADMA) has been used in various periodontal procedures with successful results. Because ADMA has no blood vessels or cells, slower healing and incorporation are observed compared to a subepithelial connective tissue graft. Fibroblasts accelerate the healing process by regulation of matrix deposition and synthesis of a variety of growth factors. Thus, the objective of this study was to evaluate histologically if gingival fibroblasts affect healing and incorporation of ADMA in dogs when used as a subepithelial allograft. Gingival fibroblasts were established from explant culture from the connective tissue of keratinized gingiva collected from the maxilla of seven mongrel dogs. ADMA was seeded with gingival fibroblasts and transferred to dogs. Surgery was performed bilaterally, and the regions were divided into two groups: ADMA+F (ADMA containing fibroblasts) and ADMA (ADMA only). Biopsies were performed after 2, 4, and 8 weeks of healing. The quantity of blood vessels was significantly higher in the ADMA+F group at 2 weeks of healing (Kruskal-Wallis; P <0.05). There was no statistical difference (P >0.05) in the number of cell layers, epithelial area, or inflammatory infiltrate between the two groups at any stage of healing. The enhanced vascularization in vivo in early stages supports the important role of fibroblasts in improving graft performance and wound healing of cultured graft substitutes.

  5. Cytoskeletal Regulation of Dermal Regeneration

    PubMed Central

    Strudwick, Xanthe L.; Cowin, Allison J.

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  6. Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model.

    PubMed

    Nagao, Ryan J; Lundy, Scott; Khaing, Zin Z; Schmidt, Christine E

    2011-07-01

    Acellular grafts are a viable option for use in nerve reconstruction surgeries. Recently, our lab created a novel optimized decellularization procedure that removes immunological material while leaving the majority of the extracellular matrix structure intact. The optimized acellular (OA) graft has been shown to elicit an immune response equal to or less than that elicited by the isograft, the analog of the autograft in the rat model. We investigated the performance of the OA graft to provide functional recovery in a long-term study. We performed a long-term functional regeneration evaluation study using the sciatic functional index to quantify recovery of Lewis rats at regular time intervals for up to 52 weeks after graft implantation following 1 cm sciatic nerve resection. OA grafts were compared against other decellularized methods (Sondell treatment and thermal decellularization), as well as the isograft and primary neurorrhaphy. The OA graft supported comparable functional recovery to the isograft and superior regeneration to thermal and Sondell decellularization methods. Furthermore, the OA graft promoted early recovery to a greater degree compared to acellular grafts obtained using either the thermal or the Sondell methods. Equivalent functional recovery to the isograft suggests that the OA nerve graft may be a future clinical alternative to the current autologous tissue graft.

  7. Traumatic laryngotracheal stenosis treated by hyoid–sternohyoid osseomuscular flap combined with xenogenic acellular dermal matrix: A case report and literature review

    PubMed Central

    Yang, Hang; Chen, Zhe; Wang, Qin-Yin; Weng, Li-Xia; Wang, Fang; Wu, Ting-Ting; Zhou, Min-Li; Bao, Yang-Yang

    2017-01-01

    Objective The treatment of laryngotracheal stenosis is a major therapeutic challenge. Various treatments include observation, medical management, and surgical management. The most effective surgical management is resection and reconstruction. To the authors’ knowledge, no reports have described the use of xenogenic acellular dermal matrix (ADM) for laryngotracheal stenosis. Methods A 27-year-old man presented with hemoptysis of the neck due to a traffic accident. Emergency orotracheal intubation was performed. Tracheostomy was then performed under local anesthesia. Computed tomography revealed fractures of the right thyroid cartilage and posterior arc of the cricoid cartilage and stenosis of the subglottis and first and second tracheal rings. We used a composite hyoid–sternohyoid osseomuscular flap with xenogenic ADM and a straight silicone tube as a lumen stent to reconstruct the laryngotracheal stenosis. Results Surgical recovery was uneventful. The tracheotomy opening was changed to a metal tube 5 days postoperatively. Four months postoperatively, the silicone tube was endoscopically removed under local anesthesia. The patient was decannulated 20 days later. The patient satisfied with his voice, respiration, and deglutition at the 16-month postoperative follow-up. Conclusion The use of ADM for laryngotracheal stenosis may reduce the growth of granulation tissues and promote the repair process. PMID:28480810

  8. Traumatic laryngotracheal stenosis treated by hyoid-sternohyoid osseomuscular flap combined with xenogenic acellular dermal matrix: A case report and literature review.

    PubMed

    Yang, Hang; Chen, Zhe; Zhou, Shui-Hong; Wang, Qin-Yin; Weng, Li-Xia; Wang, Fang; Wu, Ting-Ting; Zhou, Min-Li; Bao, Yang-Yang

    2017-10-01

    Objective The treatment of laryngotracheal stenosis is a major therapeutic challenge. Various treatments include observation, medical management, and surgical management. The most effective surgical management is resection and reconstruction. To the authors' knowledge, no reports have described the use of xenogenic acellular dermal matrix (ADM) for laryngotracheal stenosis. Methods A 27-year-old man presented with hemoptysis of the neck due to a traffic accident. Emergency orotracheal intubation was performed. Tracheostomy was then performed under local anesthesia. Computed tomography revealed fractures of the right thyroid cartilage and posterior arc of the cricoid cartilage and stenosis of the subglottis and first and second tracheal rings. We used a composite hyoid-sternohyoid osseomuscular flap with xenogenic ADM and a straight silicone tube as a lumen stent to reconstruct the laryngotracheal stenosis. Results Surgical recovery was uneventful. The tracheotomy opening was changed to a metal tube 5 days postoperatively. Four months postoperatively, the silicone tube was endoscopically removed under local anesthesia. The patient was decannulated 20 days later. The patient satisfied with his voice, respiration, and deglutition at the 16-month postoperative follow-up. Conclusion The use of ADM for laryngotracheal stenosis may reduce the growth of granulation tissues and promote the repair process.

  9. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  10. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    PubMed

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Acellular dermal matrix allografts to achieve increased attached gingiva. Part 2. A histological comparative study.

    PubMed

    Wei, Pein-Chi; Laurell, Lars; Lingen, Mark W; Geivelis, Milton

    2002-03-01

    In part 1 of this study, we compared the clinical efficacy of freeze-dried acellular dermal matrix (ADM) allograft in 6 patients with autogenous free gingival graft (FGG) in 6 patients for increasing the width of attached gingiva in the mandibular anterior area. The purpose of the present study was to histologically compare the microstructure of ADM and FGG treated sites from the same group. Biopsies were harvested from all 12 patients at 6 months postsurgery. The biopsies included the grafted sites with adjacent alveolar mucosa and gingiva propria and also donor palatal mucosa saved at the time of surgery. The 5 microm thick, neutral buffered formalin fixed, paraffin-embedded tissue sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and Verhoeff-van Gieson stains in order to investigate the density of collagen and elastic fibers. Additional sections were stained with periodic acid-Schiff (PAS) and Papanicolaou's stain to identify the presence of glycogen granules in the epithelial layer and to highlight the keratin layer respectively. The unique appearance of ADM-derived tissue did not parallel any known oral mucosa. The connective tissue portion contained dense to extremely dense collagen fibers along with scattered elastic fibers. The demarcations between the ADM graft and the coronal gingiva as well as the apical alveolar mucosa were usually not very defined. A moderate to thin epithelial layer, with heterogeneous expression of keratinization and flat epithelium-connective tissue interface, covered the lamina propria. Both the thickness of the epithelium and the degree of keratinization decreased in apical direction, being mostly para- or orthokeratinized in the area close to gingiva and non-keratinized adjacent to the alveolar mucosa. In the FGG-treated sites, the density of collagen fibers was less than in ADM-derived tissue, palatal mucosa, and gingiva. Elastic fibers were very sparse, comparable to gingiva, but much less than in ADM

  12. Acellular dermal matrix allograft versus free gingival graft: a histological evaluation and split-mouth randomized clinical trial.

    PubMed

    de Resende, Daniel Romeu Benchimol; Greghi, Sebastião Luiz Aguiar; Siqueira, Aline Franco; Benfatti, César Augusto Magalhães; Damante, Carla Andreotti; Ragghianti Zangrando, Mariana Schutzer

    2018-04-30

    This split-mouth controlled randomized clinical trial evaluated clinical and histological results of acellular dermal matrix allograft (ADM) compared to autogenous free gingival graft (FGG) for keratinized tissue augmentation. Twenty-five patients with the absence or deficiency of keratinized tissue (50 sites) were treated with FGG (control group) and ADM (test group). Clinical parameters included keratinized tissue width (KTW) (primary outcome), soft tissue thickness (TT), recession depth (RD), probing depth (PD), and clinical attachment level (CAL). Esthetic perception was evaluated by patients and by a calibrated periodontist using visual analog scale (VAS). Histological analysis included biopsies of five different patients from both test and control sites for each evaluation period (n = 25). The analysis included percentage of connective tissue components, epithelial luminal to basal surface ratio, tissue maturation, and presence of elastic fibers. Data were evaluated by ANOVA complemented by Tukey's tests (p < 0.05). After 6 months, PD and CAL demonstrated no differences between groups. ADM presented higher RD compared to FGG in all periods. Mean tissue shrinkage for control and test groups was 12.41 versus 55.7%. TT was inferior for ADM group compared to FGG. Esthetics perception by professional evaluation showed superior results for ADM. Histomorphometric analysis demonstrated higher percentage of cellularity, blood vessels, and epithelial luminal to basal surface ratio for FGG group. ADM group presented higher percentage of collagen fibers and inflammatory infiltrate. Both treatments resulted in improvement of clinical parameters, except for RD. ADM group presented more tissue shrinkage and delayed healing, confirmed histologically, but superior professional esthetic perception. This study added important clinical and histological data to contribute in the decision-making process between indication of FGG or ADM.

  13. Acellular fetal bovine dermal matrix for treatment of chronic ulcerations of the midfoot associated with Charcot neuroarthropathy.

    PubMed

    Kavros, Steven J

    2012-08-01

    Gross deformity of the foot in Charcot neuroarthropathy can lead to collapse and subsequent ulceration, infection, amputation, or premature death. This study evaluated healing of midfoot ulcerations of Charcot neuroarthropathy using PriMatrix, a novel acellular fetal bovine dermal matrix. In this retrospective analysis, 20 patients with ulcerations of the midfoot associated with Charcot neuroarthropathy were treated with either PriMatrix in addition to standard wound care (PriMatrix group,n = 12) or standard wound care alone (control group, n = 8). All patients had chronic, nonhealing foot ulcerations of at least 2250 mm(3) for a minimum of 30 days duration. All foot ulcerations were full thickness with subcutaneous involvement. Ankle brachial index ≥0.90 and/or transcutaneous oximetry (TcPo(2)) ≥40 mm Hg at the periulcer site was necessary for inclusion. Patients were excluded if they had acute or chronic osteomyelitis of the foot. Demography, risk factors, baseline severity of Charcot neuroarthropathy, and wound volume (control 4078 mm(3), PriMatrix 3737.5 mm(3), P = nonsignificant) were similar between treatment groups. Mean time to healing in the PriMatrix group (116 days, 95% CI = 109-123) was significantly shorter than in the control group (180 days, 95% confidence interval [CI] = 171-188); P < .0001. A significantly faster rate of healing was observed with PriMatrix (87.9 mm(3)/wk, 95% CI = 115.2% to 60.6%) compared with control (59.0 mm(3)/wk, 95% CI = 72.8% to 45.3%); P < .0001). The significantly faster rate of healing and steeper slope of volume reduction in the PriMatrix group warrants further investigation into its effects on healing of neuropathic ulcerations and potential limb salvage.

  14. A Meta-analysis of Studies Comparing Outcomes of Diverse Acellular Dermal Matrices for Implant-Based Breast Reconstruction.

    PubMed

    Lee, Kyeong-Tae; Mun, Goo-Hyun

    2017-07-01

    The current diversity of the available acellular dermal matrix (ADM) materials for implant-based breast reconstruction raises the issue of whether there are any differences in postoperative outcomes according to the kind of ADM used. The present meta-analysis aimed to investigate whether choice of ADM products can affect outcomes. Studies that used multiple kinds of ADM products for implant-based breast reconstruction and compared outcomes between them were searched. Outcomes of interest were rates of postoperative complications: infection, seroma, mastectomy flap necrosis, reconstruction failure, and overall complications. A total of 17 studies met the selection criteria. There was only 1 randomized controlled trial, and the other 16 studies had retrospective designs. Comparison of FlexHD, DermaMatrix, and ready-to-use AlloDerm with freeze-dried AlloDerm was conducted in multiple studies and could be meta-analyzed, in which 12 studies participated. In the meta-analysis comparing FlexHD and freeze-dried AlloDerm, using the results of 6 studies, both products showed similar pooled risks for all kinds of complications. When comparing DermaMatrix and freeze-dried AlloDerm with the results from 4 studies, there were also no differences between the pooled risks of complications of the two. Similarly, the meta-analysis of 4 studies comparing ready-to-use and freeze-dried AlloDerm demonstrated that the pooled risks for the complications did not differ. This meta-analysis demonstrates that the 3 recently invented, human cadaveric skin-based products of FlexHD, DermaMatrix, and ready-to-use AlloDerm have similar risks of complications compared with those of freeze-dried AlloDerm, which has been used for longer. However, as most studies had low levels of evidence, further investigations are needed.

  15. Bridging extra large defects of peripheral nerves: possibilities and limitations of alternative biological grafts from acellular muscle and Schwann cells.

    PubMed

    Keilhoff, Gerburg; Prätsch, Florian; Wolf, Gerald; Fansa, Hisham

    2005-01-01

    Defects of peripheral nerves are bridged with autologous nerve grafts. Tissue-engineered nerve grafts offer a laboratory-based alternative to overcome limited donor nerve availability. Our objective was to evaluate whether a graft made from acellular muscle enriched with cultivated Schwann cells can bridge extra large gaps where conventional conduits usually fail. Our well-established rat sciatic nerve model was used with an increased gap length of 50 mm. The conduits consisted of freeze-thawed or chemically extracted homologous acellular rat rectus muscles and implanted Schwann cells. Autologous nerve grafts were used for control purposes. Biocompatibility of the grafts was demonstrated by Schwann cell settlement, revascularization, and macrophage recruitment. After 12 weeks regeneration was assessed clinically, histologically, and morphometrically. The control group showed superior results regarding axon counts, histologic appearance, and functional recovery compared with the muscle grafts. The chemically extracted conduits completely failed to support nerve regeneration. They were not stable enough to bridge longer nerve gaps with an expanded regeneration time. On the basis of morphological parameters freeze-thawed muscle grafts were, however, able to support peripheral nerve regeneration even over the extralong distance of 50 mm, and therefore are of potential benefit for new therapeutic strategies.

  16. Acellular dermal matrix seeded with autologous gingival fibroblasts for the treatment of gingival recession: a proof-of-concept study.

    PubMed

    Jhaveri, Hiral M; Chavan, Mahesh S; Tomar, Geetanjali B; Deshmukh, Vijay L; Wani, Mohan R; Miller, Preston D

    2010-04-01

    One of the most common esthetic concerns associated with periodontal tissues is gingival recession. There are multiple periodontal plastic surgery approaches documented in the literature for the treatment of such defects. With the tremendous advances being made in periodontal science and technology, tissue engineering could be considered among the latest exciting techniques for recession management. In this split-mouth, controlled, double-masked clinical case series, 20 sites from 10 patients with Miller Class I or II recessions affecting canines or premolars in the maxillary arch were selected. One tooth in each patient was randomized to receive either a subepithelial connective tissue graft (SCTG) (control group) or an acellular dermal matrix allograft (ADMA) seeded with autologous gingival fibroblasts (test group) under a coronally positioned flap. Clinical parameters, including recession depth, probing depth, clinical attachment level, width of keratinized tissue, attached gingiva, and plaque scores, were recorded by a calibrated examiner at baseline and 3 and 6 months. The inflammation of grafted sites was scored, and the healing time was calculated. The final esthetic outcome of treated sites was assessed by the root coverage esthetic score at the end of 6 months. There were no significant differences between test and control sites for all measured clinical parameters. However, the test sites demonstrated less inflammation in the early postoperative period. Within the limits of this case series, the results indicate that an ADMA seeded with autologous gingival fibroblasts by tissue-engineering technology may be explored as a substitute to an SCTG for the treatment of Miller Class I and II recession defects.

  17. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  18. Acellular porcine intestinal submucosa as fascial graft in an animal model: applications for revision tympanoplasty.

    PubMed

    Ort, Stuart A; Ehrlich, H Paul; Isaacson, Jon E

    2010-09-01

    To demonstrate regeneration of muscle fascia appropriate for future harvest with the use of acellular porcine intestinal submucosa in a rat model. Animal cohort study. Tertiary care academic medical center. Sixteen male Sprague-Dawley rats underwent excision of rectus abdominis muscle fascia. A sheet of acellular porcine intestinal submucosa was placed in the fascia harvest defect. Graft and underlying muscle were harvested at three-, six-, and nine-week intervals. Histologic examination, including immunohistology for anti-von Willebrand factor, was performed at each timepoint. Additional selected specimens were subjected to latex vascular perfusion casts to examine vessel growth patterns within the graft. Gross examination revealed a new tissue plane, indistinguishable from surrounding native fascia. Histology revealed an initial inflammatory response within the graft. Progressive influx of native tissue was noted over successive timepoints. Via collagen-specific staining, we noted progressive reorganization and maturation of the graft collagen matrix. At the final nine-week time point, a new loose connective tissue plane was reestablished between the graft and underlying muscle. Immunohistochemistry and latex perfusion both demonstrate an initial development of small capillaries that progresses over time to greater organization and arteriole formation. Fascia regeneration may be possible with use of an acellular porcine intestinal submucosa graft in an animal model. Future studies may prove beneficial in restoring fascia in humans. Implications for potential advantages in tympanoplasty are discussed. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  19. Role of acellular collagen matrix surgisis in the endoscopic management of ureteropelvic junction obstruction.

    PubMed

    Yohannes, Paulos; Rotariu, Paul; Liatsikos, Evangelos; Malik, Aftab; Alexianu, Mihai; Pinkasov, David; Morgenstern, Nora; Lee, Benjamin R; Smith, Arthur D

    2002-10-01

    To investigate the role of acellular collagen matrix (Surgisis during endopyelotomy. Nine female pigs (25-35 kg) were enrolled in our protocol. The pigs were categorized as follows. Group I (N = 3) had endopyelotomy + insertion of SIS, Group II (N = 3) creation of UPJ stricture + endopyelotomy + insertion of SIS, and Group III (N = 3) Davis intubated ureterotomy using SIS. The contralateral side served as a control for each group (one pig in each group). In three pigs (two in Group III and one in Group II), Surgisis was treated with India ink prior to insertion at the endopyelotomy site. An endopyelotomy stent (14/8 F x 24 cm) was used to stent the ureteropelvic junction (UPJ) for 4 weeks. Four weeks after the stent was removed, laparoscopic nephroureterectomy was performed, and the animals were euthanized. Histopathologic analysis of the Surgisis-regenerated segment of the UPJ was performed using hematoxylin and eosin, reticular (collagen), smooth muscle actin, and S-100 (nerve) stains. All animals tolerated the procedure. The mean operative time was 162 minutes. One pig (Group II) developed pyonephrosis; one pig (Group III) developed significant ascites and was sacrificed 2 week before the end of the experiment. Histopathologic analysis showed complete epithelializaton at 8 weeks. Reticular stain demonstrated abundant collagen matrix in the submucosa. Smooth muscle staining revealed myofibroblastic proliferation within the SIS-regenerated tissue adjacent to disorganized smooth muscle cells. India ink-stained SIS-regenerated tissue did not show smooth muscle cells. The S-100 stain did not demonstrate neurons at 8 weeks; however, in three pigs, peristaltic activity was noted across the UPJ. The use of acellular collagen matrix in the endoscopic management of UPJ obstruction is a promising technique. The abundance of myofibroblasts and absence of abundant smooth muscle regeneration indicates a need to investigate the role of growth factors in SIS regeneration of

  20. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration.

    PubMed

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki; Yoshimura, Kotaro

    2012-08-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D(3) (VD(3)) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD(3) actions on DPCs. VD(3) suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD(3) in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD(3) was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD(3)) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD(3) upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD(3) significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD(3) may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies.

  1. 1α,25-Dihydroxyvitamin D3 Modulates the Hair-Inductive Capacity of Dermal Papilla Cells: Therapeutic Potential for Hair Regeneration

    PubMed Central

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki

    2012-01-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D3 (VD3) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD3 actions on DPCs. VD3 suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD3 in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD3 was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD3) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD3 upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD3 significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD3 may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies. PMID:23197867

  2. Impact of Acellular Dermal Matrix (ADM) Use Under Mastectomy Flap Necrosis on Perioperative Outcomes of Prosthetic Breast Reconstruction.

    PubMed

    Kim, So Young; Bang, Sa Ik

    2017-04-01

    There is conflicting data on the potential necrotic complications of acellular dermal matrix (ADM) use in breast reconstruction, and most studies focus on mastectomy flap necrosis as an outcome measure associated with ADM use. The aim of this study was to examine cases with necrotic complications with and without the use of ADM and to investigate whether ADM affected perioperative outcomes in cases with necrotic complications. Patients who experienced mastectomy flap necrosis following mastectomy with tissue expander placement between January 2009 and March 2015 were retrospectively reviewed. The primary outcome was explantation of the expander, and other associated outcomes such as seroma or infection were also recorded. A total of 57 breasts with mastectomy flap necrosis were identified: 32 of which were in the non-ADM group and 25 in the ADM group. The rate of explantation was 28% (7/25) in the ADM group versus 6.3% (2/32) in the non-ADM group, which was significantly different (P = 0.034). The ADM group had a significantly higher rate of "major" infection requiring surgical debridement than the non-ADM group (P = 0.016). Multivariate analysis showed that the use of ADM was trending toward an increasing expander rate with borderline significance (P = 0.05). This study demonstrated that ADM use under mastectomy flap necrosis was a potential risk for explantation of the expander and major infection. Surgeons should be cautious with the use of ADM with devascularized mastectomy skin flaps prone to necrosis. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  3. New surgical approach for root coverage of localized gingival recession with acellular dermal matrix: a 12-month comparative clinical study.

    PubMed

    Barros, Raquel R M; Novaes, Arthur B; Grisi, Márcio F M; Souza, Sérgio L S; Taba, Mário; Palioto, Daniela B

    2005-01-01

    Acellular dermal matrix graft (ADMG) has been used as an advantageous substitute for autogenous subepithelial connective tissue graft (SCTG). However, the surgical techniques used were primarily developed for the SCTG, and they may not be adequate for ADMG since it has a different healing process than SCTG owing to its different vascular and cellular structures. This study compared the 1-year clinical outcome of a new surgical approach with the outcome of a conventional procedure for the treatment of localized gingival recessions, both performed using the ADMG. The clinical parameters-probing depth, relative clinical attachment level, gingival recession (GR), and width of keratinized tissue-of 32 bilateral Miller Class I or II gingival recessions were assessed at baseline and 12 months postoperatively. Significant clinical changes for both surgical techniques were achieved after this period, including GR reduction from 3.4 mm presurgery to 1.2 mm at 1 year for the conventional technique and from 3.9 mm presurgery to 0.7 mm at 1 year for the new technique. The percentage of root coverage was 62.3% and 82.5% for the conventional and new techniques, respectively. Comparisons between the groups after this period by Mann-Whitney rank sum test revealed statistically significant greater reduction of GR favoring the new procedure (p = .000). Based on the results of this study, it can be concluded that a new surgical technique using an ADMG is more suitable for root coverage when compared with the conventional technique. The results revealed a statistically significant improvement in clinical performance with the ADMG approach.

  4. The clinical effect of acellular dermal matrix on gingival thickness and root coverage compared to coronally positioned flap alone.

    PubMed

    Woodyard, James G; Greenwell, Henry; Hill, Margaret; Drisko, Connie; Iasella, John M; Scheetz, James

    2004-01-01

    The primary aim of this randomized, controlled, blinded, clinical investigation was to compare the coronally positioned flap (CPF) plus an acellular dermal matrix (ADM) allograft to CPF alone to determine their effect on gingival thickness and percent root coverage. Twenty-four subjects with one Miller Class I or II buccal recession defect of > or = 3 mm were treated with a CPF plus ADM or a CPF alone. Multiple additional recession sites were treated with the same flap procedure, and all sites were studied for 6 months. Tissue thickness was measured at the sulcus base and at the mucogingival junction of all teeth, with an SDM ultrasonic gingival thickness meter. For the ADM sites, mean initial recession of 3.46 mm was reduced to 0.04 mm for defect coverage of 3.42 mm or 99% (P < 0.05). For the CPF group, mean initial recession of 3.27 mm was reduced to 1.08 mm for defect coverage of 2.19 mm or 67% (P < 0.05). The difference between ADM and CPF groups was statistically significant (P < 0.05). Marginal soft-tissue thickness was increased by 0.40 mm (P < 0.05) for the ADM group, whereas the CPF group remained essentially unchanged. Keratinized tissue was increased for the ADM group by 0.81 mm (P < 0.05), whereas the CPF group increased by 0.33 mm (P > 0.05). No additional root coverage was gained due to creeping attachment between 2 and 6 months for either group. Treatment with a CPF plus an ADM allograft significantly increased gingival thickness when compared with a CPF alone. Recession defect coverage was significantly improved with the use of ADM.

  5. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration?

    PubMed

    Dorin, Ryan P; Pohl, Hans G; De Filippo, Roger E; Yoo, James J; Atala, Anthony

    2008-08-01

    Complete urethral replacement using unseeded matrices has been proposed as a possible therapy in cases of congenital or acquired anomalies producing significant defects. Tissue regeneration involves fibrin deposition, re-epithelialization, and remodeling that are limited by the size of the defect. Scar formation occurs because of an inability of native cells to regenerate over the defect before fibrosis takes place. We investigated the maximum potential distance of normal native tissue regeneration over a range of distances using acellular matrices for tubular grafts as an experimental model. Tubularized urethroplasties were performed in 12 male rabbits using acellular matrices of bladder submucosa at varying lengths (0.5, 1, 2, and 3 cm). Serial urethrography was performed at 1, 3, and 4 weeks. Animals were sacrificed at 1, 3, and 4 weeks and the grafts harvested. Urothelial and smooth muscle cell regeneration was documented histologically with H&E and Masson's trichrome stains. Urethrograms demonstrated normal urethral calibers in the 0.5 cm group at all time points. The evolution of a stricture was demonstrated in the 1, 2, and 3 cm grafts by 4 weeks. Histologically all grafts demonstrated ingrowth of urothelial cells from the anastomotic sites at 1 week. By 4 weeks, the 0.5 cm grafts had a normal transitional layer of epithelium surrounded by a layer of muscle within the wall of the urethral lumen. The 1, 2, and 3 cm grafts showed ingrowth and normal cellular regeneration only at the anastomotic edges with increased collagen deposition and fibrosis toward the center by 2 weeks, and dense fibrin deposition throughout the grafts by 4 weeks. The maximum defect distance suitable for normal tissue formation using acellular grafts that rely on the native cells for tissue regeneration appears to be 0.5 cm. The indications for the use of acellular matrices in tubularized grafts may therefore be limited by the size of the defect to be repaired.

  6. Engineering functional and histological regeneration of vascularized skeletal muscle.

    PubMed

    Gilbert-Honick, Jordana; Iyer, Shama R; Somers, Sarah M; Lovering, Richard M; Wagner, Kathryn; Mao, Hai-Quan; Grayson, Warren L

    2018-05-01

    Tissue engineering strategies to treat patients with volumetric muscle loss (VML) aim to recover the structure and contractile function of lost muscle tissue. Here, we assessed the capacity of novel electrospun fibrin hydrogel scaffolds seeded with murine myoblasts to regenerate the structure and function of damaged muscle within VML defects to the mouse tibialis anterior muscle. The electrospun fibrin scaffolds provide pro-myogenic alignment and stiffness cues, myomimetic hierarchical structure, suturability, and scale-up capabilities. Myoblast-seeded scaffolds enabled remarkable muscle regeneration with high myofiber and vascular densities after 2 and 4 weeks, mimicking that of native skeletal muscle, while acellular scaffolds lacked muscle regeneration. Both myoblast-seeded and acellular scaffolds fully recovered muscle contractile function to uninjured values after 2 and 4 weeks. Electrospun scaffolds pre-vascularized with co-cultured human endothelial cells and human adipose-derived stem cells implanted into VML defects for 2 weeks anastomosed with host vasculature and were perfused with host red blood cells. These data demonstrate the significant potential of electrospun fibrin scaffolds seeded with myoblasts to fully regenerate the structure and function of volumetric muscle defects and these scaffolds offer a promising treatment option for patients with VML. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Preserving the posttrapeziectomy space with a human acellular dermal matrix spacer: a pilot case series of patients with thumb carpometacarpal joint arthritis.

    PubMed

    Yao, Caroline A; Ellis, Chandra V; Cohen, Myles J; Kulber, David A

    2013-10-01

    Advanced thumb carpometacarpal arthritis is widely treated with trapeziectomy and tendon interposition despite donor-site morbidities. Trapeziectomy alone leaves a postresection space, leading to proximal metacarpal migration and scaphoid/trapezoid impingement. Prosthetic implants have been unsuccessful due to particulate debris, silicone synovitis, osteolysis, and migration. Recent studies have shown successful use of allograft for interposition material in the posttrapeziectomy space both in animal and human models. To obviate the need for autologous tissue, maintain thumb length, and reduce the risk of scaphoid impingement, the senior author developed an interposition arthroplasty technique using a spacer constructed from human acellular dermal matrix (HADM). Sixteen patients with Eaton stage III-IV thumb carpometacarpal osteoarthritis received the above procedure from the 2 senior authors. HADM was imbricated to fill the posttrapeziectomy space and secured to the volar capsule and metacarpal base. Pre- and postoperative trapezial space on radiograph, pain scores, and grip strength were recorded. Six months postoperatively, radiographs showed an average joint space loss of 11%. Heights postoperatively were not significantly different from immediate postoperative heights (P ≥ 0.01). At 6 months, patients had improved pain and grip strength (P ≤ 0.01). No infections, foreign body reactions, or other complications occurred. HADM has been used extensively in other forms of reconstruction and has been shown to incorporate into surrounding tissues through neovascularization. Our early results illustrate that HADM can safely fill the dead space left by trapeziectomy.

  8. The use of PriMatrix, a fetal bovine acellular dermal matrix, in healing chronic diabetic foot ulcers: a prospective multicenter study.

    PubMed

    Kavros, Steven J; Dutra, Timothy; Gonzalez-Cruz, Renier; Liden, Brock; Marcus, Belinda; McGuire, James; Nazario-Guirau, Luis

    2014-08-01

    The objective of this multicenter study was to prospectively evaluate the healing outcomes of chronic diabetic foot ulcers (DFUs) treated with PriMatrix (TEI Biosciences, Boston, Massachusetts), a fetal bovine acellular dermal matrix. Inclusion criteria required the subjects to have a chronic DFU that ranged in area from 1 to 20 cm² and failed to heal more than 30% during a 2-week screening period when treated with moist wound therapy. For qualifying subjects, PriMatrix was secured into a clean, sharply debrided wound; dressings were applied to maintain a moist wound environment, and the DFU was pressure off-loaded. Wound area measurements were taken weekly for up to 12 weeks, and PriMatrix was reapplied at the discretion of the treating physician. A total of 55 subjects were enrolled at 9 US centers with 46 subjects progressing to study completion. Ulcers had been in existence for an average of 286 days, and initial mean ulcer area was 4.34 cm². Of the subjects completing the study, 76% healed by 12 weeks with a mean time to healing of 53.1 ± 21.9 days. The mean number of applications for these healed wounds was 2.0 ± 1.4, with 59.1% healing with a single application of PriMatrix and 22.9% healing with 2 applications. For subjects not healed by 12 weeks, the average wound area reduction was 71.4%. The results of this multicenter prospective study demonstrate that the use of PriMatrix integrated with standard-of-care therapy is a successful treatment regimen to heal DFUs.

  9. Acellular dermal matrix scaffolds coated with connective tissue growth factor accelerate diabetic wound healing by increasing fibronectin through PKC signalling pathway.

    PubMed

    Yan, Wenxia; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Wang, Ning; Chu, Jing

    2018-03-01

    The regional injection of connective tissue growth factor (CTGF) for diabetic wound healing requires multiple components and results in a substantial loss of its biological activity. Acellular dermal matrix (ADM) scaffolds are optimal candidates for delivering these factors to local ischaemic environments. In this study, we explored whether CTGF loaded on ADM scaffolds can enhance fibronectin (FN) expression to accelerate diabetic wound healing via the protein kinase C (PKC) signalling pathway. The performance of CTGF and CTGF + PKC inhibitor, which were loaded on ADM scaffolds to treat dorsal skin wounds in streptozotocin-induced diabetic mice, was evaluated with naked ADM as a control. Wound closure showed that ADM scaffolds loaded with CTGF induced greater diabetic wound healing in the early stage of the wound in diabetic mice. Moreover, ADM scaffolds loaded with CTGF obviously increased the expression of FN both at the mRNA and protein levels, whereas the expression of FN was significantly reduced in the inhibitor group. Furthermore, the ADM + CTGF group, which produce FN, obviously promoted alpha-smooth muscle actin and transforming growth factor-beta expression and enhanced neovasculature and collagen synthesis at the wound sites. ADM scaffolds loaded with CTGF + PKC inhibitor delayed diabetic wound healing, indicating that FN expression was mediated by the PKC signalling pathway. Our findings offer new perspectives for the treatment of diabetic wound healing and suggest a rationale for the clinical evaluation of CTGF use in diabetic wound healing. Copyright © 2017 John Wiley & Sons, Ltd.

  10. A 6-month comparative clinical study of a conventional and a new surgical approach for root coverage with acellular dermal matrix.

    PubMed

    Barros, Raquel R M; Novaes, Arthur B Júnior; Grisi, Márcio F M; Souza, Sérgio L S; Taba, Mário Júnior; Palioto, Daniela B

    2004-10-01

    The acellular dermal matrix graft (ADMG) has become widely used in periodontal surgeries as a substitute for the subepithelial connective tissue graft (SCTG). These grafts exhibit different healing processes due to their distinct cellular and vascular structures. Therefore the surgical technique primarily developed for the autograft may not be adequate for the allograft. This study compared the clinical results of two surgical techniques--the "conventional" and a modified procedure--for the treatment of localized gingival recessions with the ADMG. A total of 32 bilateral Miller Class I or II gingival recessions were selected and randomly assigned to test and control groups. The control group received the SCTG and the test group the modified surgical technique. Probing depth (PD), relative clinical attachment level (RCAL), gingival recession (GR), and width of keratinized tissue (KT) were measured 2 weeks prior to surgery and 6 months post-surgery. Both procedures improved all the evaluated parameters after 6 months. Comparisons between the groups by Mann-Whitney rank sum test revealed no statistically significant differences in terms of CAL gain, PD reduction, and increase in KT from baseline to 6-month evaluation. However, there was a statistically significant greater reduction of GR favoring the modified technique (P = 0.002). The percentage of root coverage was 79% for the test group and 63.9% for the control group. We conclude that the modified technique is more suitable for root coverage procedures with the ADMG since it had statistically significant better clinical results compared to the traditional technique.

  11. Rotator cuff bridging repair using acellular dermal matrix in large to massive rotator cuff tears: histologic and clinical analysis.

    PubMed

    Kim, Jong Ok; Lee, Jong-Ho; Kim, Kwang-Sup; Ji, Jong-Hun; Koh, Sung-Jun; Lee, Jae-Ho

    2017-11-01

    This study investigated the efficacy of the bridging repair using an acellular dermal matrix (ADM) and an ADM with stem cells in rabbits. Also investigated were clinical outcomes of ADM bridging repair for large to massive rotator cuff tears. ADM, with and without stem cells, was used to cover a 5- × 5-mm-sized cuff defect in 17 rabbits, and biomechanical, histologic, and immunohistochemical analyses were conducted. Also evaluated were 24 patients with large to massive rotator cuff tears after ADM bridging repair. In the biomechanical test, the normal rotator cuff, cuff with ADM plus stem cells, and cuff with ADM in the rabbit model showed a maximum load (N) of 287.3, 217.5, and 170.3 and ultimate tensile strength (N/mm 2 ) of 11.1, 8.0, and 5.2, respectively. Histologically, the cuff tendons with the ADM or ADM plus stem cells showed characteristically mature tendons as time passed. In the clinical study, the mean American Shoulder and Elbow Surgeons score improved from preoperative 50 to postoperative 83, the University of California Los Angeles Shoulder Rating Scale from 17 to 30, and the Simple Shoulder Test from 4 to 8, respectively. No further fatty deteriorations or muscle atrophy were observed on follow-up magnetic resonance imaging. A retear was found in 5 of 24 patients (21%). Bridging repair with ADM or stem cells in the rabbit model showed cellular infiltration into the graft and some evidence of neotendon formation. Clinically, ADM repair was a safe alternative that did not show any further fatty deterioration nor muscle atrophy in large to massive rotator cuff tears. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. [Experimental study on porcine acellular dermal matrix and split-thickness skin grafts to repair full-thickness skin defects].

    PubMed

    Ma, Shaoying; Li, Baoming; Wang, Xusheng; Li, Youchen; Kang, Yue; Dong, Li; Chen, Xueying; Zhao, Yaping; Li, Baoxing

    2010-02-01

    To compare the effect of the composite skin graft consisting of split-thickness skin grafts (STSGs) and porcine acellular dermal matrix (PADM) with STSGs only, and to histologically observe the turnover of the PADM in rats. Twenty female Sprague-Dawley rats, weighing 200-225 g, were included. The size of 4.0 cm x 2.5 cm PADM was implanted into hypoderm of the left side of Sprague-Dawley rats' back. After 10-14 days, the size of 4.0 cm x 2.5 cm full-thickness skin defects were made on the left to expose the PADM under the skin and the same size of full-thickness skin defects were made on the right of the rats' back. The excised full-thickness skin was made to STSGs about 0.2 mm by drum dermatome. The defects were grafted with composite skin (STSGs on the PADM, experimental group) and STSGs only (control group). The survival rate, the construction degree of grafts, and the histological change in grafts area were observed at 2, 4, 8, and 20 weeks after operation. At 2 weeks after STSGs (0.2 mm) placed on vascularized PADM, STSGs and PADM adhered together and the composite skin had a good survival. The control group also had a good survival. Histological observations showed that STSGs and PADM grew together, neutrophilic granulocytes and lymphocytes infiltrated in the PADM and some macrophages around the PADM. Fibrous connective tissues were filled under the STSGs in control group. At 4-8 weeks after transplantation, the composite skin had a good survival and the composite skin was thick, soft, and elastic. STSGs survived almost totally in control group, but the grafts were thin. Histological observations showed that inflammatory reactions of PADM faded gradually in experimental group; scar tissues formed under the STSGs in control group. At 20 weeks after transplantation, composite skin was flat, thick, and elastic in experimental group, but the STSGs were thinner and less elastic in control group. Histological observations showed that histological structures of the

  13. Comparison of two surgical procedures for use of the acellular dermal matrix graft in the treatment of gingival recessions: a randomized controlled clinical study.

    PubMed

    Felipe, Maria Emília M C; Andrade, Patrícia F; Grisi, Marcio F M; Souza, Sérgio L S; Taba, Mário; Palioto, Daniela B; Novaes, Arthur B

    2007-07-01

    The aim of this randomized, controlled, clinical investigation was to compare two surgical techniques for root coverage with the acellular dermal matrix graft to evaluate which technique provided better root coverage, a better esthetic result, and less postoperative discomfort. Fifteen patients with bilateral Miller Class I or II gingival recessions were selected. Fifteen pairs of recessions were treated and assigned randomly to the test group, and the contralateral recessions were assigned to the control group. The control group was treated with a broader flap and vertical releasing incisions; the test group was treated with the proposed surgical technique, without vertical releasing incisions. The clinical parameters evaluated were probing depth, relative clinical attachment level, gingival recession (GR), width of keratinized tissue, thickness of keratinized tissue, esthetic result, and pain evaluation. The measurements were taken before the surgeries and after 6 months. At baseline, all parameters were similar for both groups. At 6 months, a statistically significant greater reduction in GR favored the control group. The percentage of root coverage was 68.98% and 84.81% for the test and control groups, respectively. The esthetic result was equivalent between the groups, and all patients tolerated both procedures well. Both techniques provided significant root coverage, good esthetic results, and similar levels of postoperative discomfort. However, the control technique had statistically significantly better results for root coverage of localized gingival recessions.

  14. Dermal Filler Injection: A Novel Approach for Limiting Infarct Expansion

    PubMed Central

    Ryan, Liam P.; Matsuzaki, Kanji; Noma, Mio; Jackson, Benjamin M.; Eperjesi, Thomas J.; Plappert, Theodore J.; St. John-Sutton, Martin G.; Gorman, Joseph H.; Gorman, Robert C.

    2011-01-01

    Background Early infarct expansion after coronary occlusion compromises contractile function in perfused myocardial regions and promotes adverse long-term left ventricular (LV) remodeling. We hypothesized that injection of a tissue-expanding dermal filler material into a myocardial infarction (MI) would attenuate infarct expansion and limit LV remodeling. Methods Fifteen sheep were subjected to an anteroapical MI involving approximately 20% of the LV followed by the injection of 1.3 mL of a calcium hydroxyapatite–based dermal filler into the infarct. Real-time three-dimensional echocardiography was performed at baseline, 30 minutes after MI, and 15 minutes after injection to assess infarct expansion. Sixteen additional sheep were subjected to the same infarction and followed echocardiographically and hemodynamically for 4 weeks after MI to assess chronic remodeling. Eight animals had injection with dermal filler as described above immediately after MI, and 8 animals were injected with an equal amount of saline solution. Results All animals exhibited infarct expansion soon after coronary occlusion. The regional ejection fraction of the apex became negative after infarction, consistent with systolic dyskinesia. Injection of the dermal filler converted the apical wall motion from dyskinetic to akinetic and resulted immediately in significant decreases in global, regional, and segmental LV volumes. Chronically, relative to saline control, dermal filler injection significantly reduced LV end-systolic volume (62.2 ± 3.6 mL versus 44.5 ± 3.9 mL; p < 0.05) and improved global ejection fraction (0.295 ± 0.016 versus 0.373 ± 0.017; p < 0.05) at 4 weeks after infarction. Conclusions Injection of an acellular dermal filler into an MI immediately after coronary occlusion reduces early infarct expansion and limits chronic LV remodeling. PMID:19101288

  15. The Use of Meshed Dermal Autograft in Breast Reconstruction.

    PubMed

    Zingaretti, Nicola; Guarneri, Gianni Franco; De Biasio, Fabrizio; Shoeib, Mohamed A; Parodi, Pier Camillo

    2018-02-01

    The advantages and disadvantages of acellular dermal matrix (ADM) in breast reconstruction have been well documented. ADM is commonly used in breast reconstruction, but it adds cost to the procedure and has been associated with an increased risk of seroma, flap necrosis and infectious complications. A dermal autograft may be a useful alternative to matrices, and it has a lot of advantages: more biocompatible and more likely to be retained as a free graft, low cost, well tolerated, readily available and integrated. This report discusses a new surgical technique that uses an autologous dermis, which was harvested from the controlateral breast in patients having simultaneous breast reduction/mastopexy. Before the insertion, the autologous dermal matrix was meshed at a ratio of 3:1 to increase the graft surface area, to provide additional draining and to improve the engraftment of the autologous dermal matrix. Consequently, the resulting meshed graft allows for the cover of the inferior pole of a larger breast size implant and decreases the complication rate. In our clinic, this method was used on five women; there was one limited necrosis of the mastectomy flaps. The described technique is straightforward and reliable, it adds minimally to the operative time, and it eliminates costs and covers a bigger part of the prosthesis and promises good results. No Level Assigned This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options

    PubMed Central

    Hamdi, Moustapha; Abberton, Keren; Morrison, Wayne

    2015-01-01

    Background: Over recent decades, scientists and surgeons have collaborated to develop various bioengineered and synthetic products as an alternative to skin grafts. Despite the numerous articles and reviews written about dermal skin substitutes, there is no general consensus. Methods: This article reviews dermal skin scaffolds used in clinical applications and experimental settings. For scaffold evaluation, we focused on clinical and/or histological results, and conclusions are listed. Explanations for general trends were sought based on existing knowledge about tissue engineering principles and wound healing mechanisms. Results: Decellularized dermis seems to remain the best option with no other acellular scaffold being clinically proven to gain better results yet. In general, chemically cross-linked products were seen to be less effective in skin tissue engineering. Biocompatibility could be enhanced by preseeding substitutes with fibroblasts to allow some natural scaffold remodeling before product application. Conclusions: Skin substitutes are a useful tool in plastic and reconstructive surgery practices as an alternative to skin grafts. In the choice of substitute, the general plastic surgery principle of replacing like tissue with like tissue seems to be still standing, and products most resembling the natural dermal extracellular matrix should be preferred. PMID:25674365

  17. Cost analysis of postmastectomy reconstruction: A comparison of two staged implant reconstruction using tissue expander and acellular dermal matrix with abdominal-based perforator free flaps.

    PubMed

    Tran, Bao Ngoc N; Fadayomi, Ayotunde; Lin, Samuel J; Singhal, Dhruv; Lee, Bernard T

    2017-09-01

    Two staged tissue expander-implant with acellular dermal matrix (TE/I + ADM) and deep inferior epigastric perforator (DIEP) flap are the most common implant and autologous methods of reconstruction in the U.S. Implant-based techniques are disproportionally more popular, partially due to its presumed cost effectiveness. We performed a comprehensive cost analysis to compare TE/I + ADM and DIEP flap. A comparative cost analysis of TE/I + ADM and DIEP flap was performed. Medicare reimbursement costs for each procedure and their associated complications were calculated. Pooled probabilities of complications including cellulitis, seroma, skin necrosis, implant removal, flap loss, partial flap loss, and fat necrosis, were calculated using published studies from 2010 to 2016. Average actual cost for successful TE/I + ADM and DIEP flap were $13 304.55 and $10 237.13, respectively. Incorporating pooled complication data from published literature resulted in an increase in cost to $13 963.46 for TE/I + ADM and $12 624.29 for DIEP flap. The expected costs for successful TE/I + ADM and DIEP flap were $9700.35 and $8644.23, which are lower than the actual costs. DIEP flap breast reconstruction incurs lower costs compared to TE/I + ADM. These costs are lower at baseline and when additional costs from pooled complications are incorporated. © 2017 Wiley Periodicals, Inc.

  18. Root coverage using acellular dermal matrix and comparing a coronally positioned tunnel with and without platelet-rich plasma: a pilot study in humans.

    PubMed

    Shepherd, Neal; Greenwell, Henry; Hill, Margaret; Vidal, Ricardo; Scheetz, James P

    2009-03-01

    The primary aim of this randomized, controlled, blinded clinical pilot study was to compare the percentage of recession defect coverage obtained with a coronally positioned tunnel (CPT) plus an acellular dermal matrix allograft (ADM) to that of a CPT plus ADM and platelet-rich plasma (CPT/PRP) 4 months post-surgically. Eighteen patients with Miller Class I or II recession >or=3 mm at one site were treated and followed for 4 months. Nine patients received a CPT plus ADM and were considered the positive control group. The test group consisted of nine patients treated with a CPT plus ADM and PRP. Patients were randomly selected by a coin toss to receive the test or positive control treatment. The mean recession at the initial examination for the CPT group was 3.6 +/- 1.0 mm, which was reduced to 1.0 +/- 1.0 mm at the 4-month examination for a gain of 2.6 +/- 1.5 mm or 70% defect coverage (P <0.05). The mean recession at the initial examination for the CPT/PRP group was 3.3 +/- 0.7 mm, which was reduced to 0.4 +/- 0.7 mm at the 4-month examination for a gain of 2.9 +/- 0.5 mm or 90% defect coverage (P <0.05). There were no statistically significant differences between the groups (P >0.05). The CPT plus ADM and PRP produced defect coverage of 90%, whereas the CPT with ADM produced only 70% defect coverage. This difference was not statistically significant, but it may be clinically significant.

  19. Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias.

    PubMed

    Altman, Andrew M; Abdul Khalek, Feras J; Alt, Eckhard U; Butler, Charles E

    2010-09-01

    Bioprosthetic mesh used for ventral hernia repair becomes incorporated into the musculofascial edge by cellular infiltration and vascularization. Adipose tissue-derived stem cells promote tissue repair and vascularization and may increase the rate or degree of tissue incorporation. The authors hypothesized that introducing these cells into bioprosthetic mesh would result in adipose tissue-derived stem cell engraftment and proliferation and enhance incorporation of the bioprosthetic mesh. Adipose tissue-derived stem cells were isolated from the subcutaneous adipose tissue of syngeneic Brown Norway rats, expanded in vitro, and labeled with green fluorescent protein. Thirty-six additional rats underwent inlay ventral hernia repair with porcine acellular dermal matrix. Two 12-rat groups had the cells (1.0 x 10(6)) injected directly into the musculofascial/porcine acellular dermal matrix interface after repair or received porcine acellular dermal matrix on which the cells had been preseeded; the 12-rat control group received no stem cells. At 2 weeks, adipose tissue-derived stem cells in both stem cell groups engrafted, survived, migrated, and proliferated. Mean cellular infiltration into porcine acellular dermal matrix at the musculofascial/graft interface was significantly greater in the preseeded and injected stem cell groups than in the control group. Mean vascular infiltration of the porcine acellular dermal matrix was significantly greater in both stem cell groups than in the control group. Preseeded and injected adipose tissue-derived stem cells engraft, migrate, proliferate, and enhance the vascularity of porcine acellular dermal matrix grafts at the musculofascial/graft interface. These cells can thus enhance incorporation of porcine acellular dermal matrix into the abdominal wall after repair of ventral hernias.

  20. Coverage of Deep Cutaneous Wounds Using Dermal Template in Combination with Negative-pressure Therapy and Subsequent Skin Graft

    PubMed Central

    Chang, Alexandre A.; Lobato, Rodolfo C.; Nakamoto, Hugo A.; Tuma, Paulo; Ferreira, Marcus C.

    2014-01-01

    Background: We consider the use of dermal matrix associated with a skin graft to cover deep wounds in the extremities when tendon and bone are exposed. The objective of this article was to evaluate the efficacy of covering acute deep wounds through the use of a dermal regeneration template (Integra) associated with vacuum therapy and subsequent skin grafting. Methods: Twenty patients were evaluated prospectively. All of them had acute (up to 3 weeks) deep wounds in the limbs. We consider a deep wound to be that with exposure of bone, tendon, or joint. Results: The average area of integration of the dermal regeneration template was 86.5%. There was complete integration of the skin graft over the dermal matrix in 14 patients (70%), partial integration in 5 patients (25%), and total loss in 1 case (5%). The wound has completely closed in 95% of patients. Conclusions: The use of Integra dermal template associated with negative-pressure therapy and skin grafting showed an adequate rate of resolution of deep wounds with low morbidity. PMID:25289363

  1. Comparative clinical evaluation of acellular dermal matrix allograft and connective tissue graft for the treatment of gingival recession.

    PubMed

    Rahmani, M E; Lades, Mohammad A Rigi

    2006-05-01

    "Gingival recession is a condition reported to occur due to abnormal periodontal anatomy, poor hygiene, excessive occlusal forces, toothbrush abrasion, and even iatrogenic or factitious causes. Though various surgical techniques are available to treat this problem, the most common is the palatal soft tissue autograft. Recently, an acellular dermal matrix allograft (ADMA) has been available as a substitute for the palatal tissue harvest. The aim of this study is to compare the ADMA with the conventional subepithelial connective tissue graft (SCTG) in the treatment of gingival recession." Fourteen patients with 20 gingival recessions of Miller's grade I and II were selected and randomized in two groups of control (SCTG ) and test (ADMA). In each group ten recession defects were treated. The following parameters were measured at baseline and then at six months post surgery: recession height (RH), recession width (RW), probing depth (PD), attached gingiva (AG), keratinized gingiva (KG), and clinical attachment level (CAL). All parameters were analyzed using the two-sample t-test. Data analysis was performed using SPSS (version 11) software. The following mean changes (mm) occurred in SCTG and ADMA, respectively: 2.60+/-0.97 and 2.90+/-0.81 decrease in RH; 1.70+/-1.01 and 1.65+/-0.67 decrease in RW; 2.50+/-0.97 and 2.95+/-0.69 increase in KG; 2.25+/-0.92 and 2.65+/-0.85 increase in AG; 2.60+/-1.08 and 2.75+/-0.92 decrease in CAL; and finally 0.05+/-0.50 and 0.10+/-0.46 decrease in PD for the SCTG and ADMA groups, respectively. The percentage of root coverage for the two groups was 70.12%+/-22.81% and 72.08%+/-14.12%, respectively. The changes from baseline to the six-month visit were significant for both groups in terms of all parameters but PD. However, the differences in mean changes were not significant between the two groups in any of the parameters. These findings imply the ADMA and SCTG techniques could produce the same results when used for the successful

  2. Effe0cts of porcine acellular dermal matrix treatment on wound healing and scar formation: role of Jag1 expression in epidermal stem cells.

    PubMed

    Chen, Xiao-Dong; Ruan, Shu-Bin; Lin, Ze-Peng; Zhou, Ziheng; Zhang, Feng-Gang; Yang, Rong-Hua; Xie, Ju-Lin

    2018-02-08

    Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.

  3. Acellular dermal matrix allograft versus subepithelial connective tissue graft in treatment of gingival recessions: a 5-year randomized clinical study.

    PubMed

    Moslemi, Neda; Mousavi Jazi, Mahvash; Haghighati, Farideh; Morovati, Seyyedeh Pouya; Jamali, Raika

    2011-12-01

    The present randomized clinical trial compared the long-term results of subepithelial connective tissue graft (SCTG) versus acellular dermal matrix allograft (ADMA) in treatment of gingival recessions. In 16 patients with bilateral Miller Class I/II gingival recessions, one side was treated with SCTG and the other side with ADMA. Clinical parameters were measured at baseline, 6 months, and at 5 years post-surgery. Fifteen patients completed the study. At 6 months, all parameters showed significant improvement in ADMA and SCTG groups [complete root coverage (CRC): 73.3% versus 26.7%, p = 0.027; reduction of recession depth (RD): 2.6 ± 1.1 mm versus 2.2 ± 1.1 mm, p = 0.376; reduction of recession width (RW): 3.0 ± 1.4 mm versus 2.4 ± 1.4 mm, p = 0.207 respectively]. At 5 years, significant relapses were detected in CRC and reduction of RD and RW in both groups with no statistically significant difference (CRC: 20.0% versus 13.3%, p = 1.00; RD: 1.6 ± 1.2 mm versus 1.5 ± 1.4mm, p = 0.838; RW: 1.8 ± 1.4 mm versus 1.3 ± 1.5mm, p = 0.367). Patients practicing horizontal toothbrushing habit showed more relapse (OR = 11.2; p = 0.01). Compared with baseline, the gingival width (GW) did not increase in ADMA-treated sites (p = 0.903). Five-year results of SCTG and ADMA were similar in terms of CRC and reduction of RD and RW. Both techniques showed a significant relapse associated with returning to horizontal toothbrushing habit. Increase of GW was stable in SCTG-treated sites, but reached to pre-surgical values in ADMA-treated cases. © 2011 John Wiley & Sons A/S.

  4. Interposition Dermal Matrix Xenografts: A Successful Alternative to Traditional Treatment of Massive Rotator Cuff Tears.

    PubMed

    Neumann, Julie A; Zgonis, Miltiadis H; Rickert, Kathleen D; Bradley, Kendall E; Kremen, Thomas J; Boggess, Blake R; Toth, Alison P

    2017-05-01

    Management of massive rotator cuff tears in shoulders without glenohumeral arthritis remains problematic for surgeons. Repairs of massive rotator cuff tears have failure rates of 20% to 94% at 1 to 2 years postoperatively as demonstrated with arthrography, ultrasound, and magnetic resonance imaging. Additionally, inconsistent outcomes have been reported with debridement alone of massive rotator cuff tears, and limitations have been seen with other current methods of operative intervention, including arthroplasty and tendon transfers. The use of interposition porcine acellular dermal matrix xenograft in patients with massive rotator cuff tears will result in improved subjective outcomes, postoperative pain, function, range of motion, and strength. Case series; Level of evidence, 4. Sixty patients (61 shoulders) were prospectively observed for a mean of 50.3 months (range, 24-63 months) after repair of massive rotator cuff tears with porcine acellular dermal matrix xenograft as an interposition graft. Subjective outcome data were obtained with visual analog scale for pain score (0-10, 0 = no pain) and Modified American Shoulder and Elbow Surgeons (MASES) score. Active range of motion in flexion, external rotation, and internal rotation were recorded. Strength in the supraspinatus and infraspinatus muscles was assessed manually on a 10-point scale and by handheld dynamometer. Ultrasound was used to assess the integrity of the repair during latest follow-up. Mean visual analog scale pain score decreased from 4.0 preoperatively to 1.0 postoperatively ( P < .001). Mean active forward flexion improved from 140.7° to 160.4° ( P < .001), external rotation at 0° of abduction from 55.6° to 70.1° ( P = .001), and internal rotation at 90° of abduction from 52.0° to 76.2° ( P < .001). Supraspinatus manual strength increased from 7.7 to 8.8 ( P < .001) and infraspinatus manual strength from 7.7 to 9.3 ( P < .001). Mean dynamometric strength in forward flexion was 77.7 N

  5. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    PubMed Central

    Thangapazham, Rajesh L.; Darling, Thomas N.; Meyerle, Jon

    2014-01-01

    Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices. PMID:24828202

  6. Comparison of the clinical outcomes of connective tissue and acellular dermal matrix in combination with double papillary flap for root coverage: A 6-month trial

    PubMed Central

    Gholami, Gholam Ali; Saberi, Arezoo; Kadkhodazadeh, Mahdi; Amid, Reza; Karami, Daryoosh

    2013-01-01

    Background: Different techniques have been proposed for the treatment of gingival recession. The majority of current procedures use autogenous soft-tissue grafts, which are associated with morbidity at the donor sites. Acellular dermal matrix (ADM) Alloderm is an alternative donor material presented to reduce related morbidity and provide more volume of the donor tissue. This study aimed to evaluate the effectiveness of an ADM allograft for root coverage and to compare it with a connective tissue graft (CTG), when used with a double papillary flap. Materials and Methods: Sixteen patients with bilateral class I or II gingival recessions were selected. A total of 32 recessions were treated and randomly assigned into the test and contralateral recessions into the control group. In the control group, the exposed root surfaces were treated by the placement of a CTG in combination with a double papillary flap; and in the test group, an ADM allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, width of keratinized tissue (KT), recession height and width were measured before, and after 2 weeks and 6 months of surgery. Results: There were no statistically significant differences between the test and control groups in terms of recession reduction, clinical attachment gain, and reduction in probing depth. The control group had a statistically significant increased area of KT after 6 months compared to the test group. Conclusion: ADM allograft can be considered as a substitute for palatal donor tissue in root coverage procedure. PMID:24130587

  7. Dual Coverage of the Inferior Pole with Conjoined Fascial Flap and Acellular Dermal Matrix for Immediate One-Stage Breast Reconstruction with a Prosthetic Implant.

    PubMed

    Lee, Seo H; Chun, Yong S; Park, Heung K; Kim, Yang W; Cheon, Young W

    2018-04-17

    Elevation of a conjoined fascial flap composed of the pectoralis major, serratus anterior, and external oblique fascia is a type of surgical technique using autologous tissue to cover the lower pole after immediate one-stage direct-to-implant (DTI) breast reconstruction. However, volumetric breast implants hinder use of this technique alone. For better structural stability and more aesthetically favorable breast contour in large breasts, we have devised a technique involving dual coverage of the lower pole by a conjoined fascial flap and acellular dermal matrix (ADM). Twenty Asian patients underwent DTI breast reconstruction from March 2013 to May 2014. ADM was used to cover the inferomedial quadrant of the breast, and a conjoined fascial flap was elevated to cover the remaining inferolateral quadrant. Both patient- and plastic surgeon-reported outcome measures were assessed using questionnaires. For every domain of the patient- and plastic surgeon-reported questionnaires, the mean scores were between satisfied and very satisfied. Two patients developed a seroma and one patient developed partial skin flap necrosis. Both seromas resolved after a series of aspirations. The necrotic skin flap was revised under local anesthesia 3 weeks after the reconstructive surgery. The use of dual coverage of the inferior pole with a conjoined fascial flap and ADM for immediate DTI among patients with large breasts is supported by high scores in both patient- and plastic surgeon-reported outcome measures, as well as low complication rates. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. [NEW PROGRESS OF ACELLULAR FISH SKIN AS NOVEL TISSUE ENGINEERED SCAFFOLD].

    PubMed

    Wei, Xiaojuan; Wang, Nanping; He, Lan; Guo, Xiuyu; Gu, Qisheng

    2016-11-08

    To review the recent research progress of acellular fish skin as a tissue engineered scaffold, and to analyze the feasibility and risk management in clinical application. The research and development, application status of acellular fish skin as a tissue engineered scaffold were comprehensively analyzed, and then several key points were put forward. Acellular fish skin has a huge potential in clinical practice as novel acellular extracellular matrix, but there have been no related research reports up to now in China. As an emerging point of translational medicine, investigation of acellular fish skin is mainly focused on artificial skin, surgical patch, and wound dressings. Development of acellular fish skin-based new products is concerned to be clinical feasible and necessary, but a lot of applied basic researches should be carried out.

  9. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    PubMed

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Model of in vitro healing to test the influence of dedifferentiated Crithmum maritimum cells on dermal repair and epidermal regeneration.

    PubMed

    Lequeux, C; Lhoste, A; Rovere, M R; Montastier, C; Damour, O

    2011-01-01

    The aim was to test the influence of dedifferentiated Crithmum maritimum cells (dCMC), totipotent vegetal stem cells, on epidermal regeneration in perfect homeostasis using a skin equivalent (SE) model. SE are prepared by seeding fibroblasts on a collagen-glycosaminoglycan-chitosan dermal substrate (DS) epidermalized by keratinocytes 3 weeks later. The originality of this present study lies in the systemic administration of dCMC from the moment when fibroblasts are seeded in the DS right through to the reconstruction of the SE. The thickness of the epidermis as well as the number of proliferating cells expressing Ki-67 and layers expressing terminal differentiation marker (filaggrin) were compared in the dCMC-treated SE versus an untreated control group. dCMC accelerated the complete regeneration and differentiation of the epidermis compared to the negative control (35 days instead of 42 days). Histology showed a multilayered, thick and differentiated epithelium after 35 days of culture. The basal and suprabasal layers had increased 4.88 ± 0.41 times versus the negative control (Mann-Whitney U test: p < 0.001). This result was attributed to the greater proliferation of basal cells because the cell numbers expressing the Ki-67 proliferation marker had increased significantly compared to the negative control (Mann-Whitney U test: p < 0.001). Moreover, dCMC allowed the differentiated epithelium to recover because only treated SE expressed the terminal differentiation marker filaggrin. Our data show that dCMC enhance epidermal cell grafts by stimulating their regeneration and differentiation in perfect homeostasis. They allow the epidermis to recover its structure for protective functions faster than the negative control. Copyright © 2010 S. Karger AG, Basel.

  11. Reactogenicity of tetanus, diphtheria, 5-component acellular pertussis vaccine administered as a sixth consecutive acellular pertussis vaccine dose to adolescents.

    PubMed

    Liese, Johannes G; Rieber, Nikolaus; Malzer, Thomas; Ocak, Marion; Johnson, David R; Decker, Michael D

    2010-12-01

    Safety of a sixth consecutive dose of acellular pertussis vaccine in adolescents was assessed in a 2-armed, randomized study. Adolescents who had received 5 doses of acellular pertussis vaccine combined with diphtheria and tetanus toxoids (6-dose group) received 1 dose of reduced 5-component acellular pertussis vaccine combined with tetanus toxoid and reduced diphtheria toxoid (Tdap). Adolescents who had received a primary series of 3 doses of whole-cell pertussis and 1 acellular or whole-cell pertussis booster received 1 dose of Tdap vaccine (5-dose group). Of 214 participants, 176 (82%) reported an injection-site reaction with pain (80%), erythema (22%), and swelling (19%) most frequently reported. A systemic reaction was reported by 169 of 214 (79%) with myalgia (66%), headache (42%), malaise (39%), and fever (9%) most frequently reported. The overall rate of solicited reactions was lower in the 6-dose group than in the 5-dose group (for injection-site reactions: 76.1% vs. 89.7%; for systemic reactions 72.6% vs. 86.6%). Significant differences were observed for injection-site pain, erythema, and for grade 1 or grade 2 increases in arm circumference. Fever, myalgia, and headache were reported at a significantly lower rate in the 6-dose group. Swelling >10 cm was observed in 5 patients (2%), 4 in the 5-dose group. Tdap vaccine was safe when given to adolescents who had received 5 prior doses of acellular pertussis vaccine.

  12. Clinical and histological evaluation of an acellular dermal matrix allograft in combination with the coronally advanced flap in the treatment of Miller class I recession defects: an experimental study in the mini-pig.

    PubMed

    Núñez, Javier; Caffesse, Raul; Vignoletti, Fabio; Guerra, Fernando; San Roman, Fidel; Sanz, Mariano

    2009-06-01

    To study the wound healing of acellular dermal matrix (ADM) allografts when used together with coronally advanced flaps (CAF) in the treatment of localized gingival recessions in the mini-pig experimental model. Dehiscence defects 4 x 5 mm were surgically created in one buccal root surface in each quadrant of PI, II, or III in three mini-pigs. They were then treated with CAF and the interposition of either a connective tissue graft (CTG) or ADM. As the primary outcome, the histological interface between the ADM and the root surface was studied and was compared with CTG. As secondary outcomes, we assessed the amount and quality of the keratinized tissue and clinical outcomes in terms of root coverage and recession reduction. At 3 months, the CTG group attained a mean 76% root coverage, versus 62% in the ADM group. The histological interface with the root surface was similar in both groups. The apical migration of the epithelium was 1.79+/-0.46 mm for the CTG and 1.21+/-0.35 mm for ADM. Newly formed cementum was observed with both treatments. New bone and a newly formed periodontal ligament were shown in five specimens in the ADM group and in three in the CTG group. Both materials showed similar clinical and histological outcomes.

  13. Local application of periodontal ligament stromal cells promotes soft tissue regeneration.

    PubMed

    Baik, H S; Park, J; Lee, K J; Chung, C

    2014-09-01

    To test the potential stimulatory effect of local application of periodontal ligament (PDL) stromal cells on soft tissue regeneration. Fluorescently labeled PDL cells outgrown from extracted human premolars or phosphate-buffered saline were locally injected to the cutaneous wounds created on mice. Soft tissue regeneration was evaluated for 14 days using photographs and histomorphometry. PDL cell engraftment was tracked with confocal microscopy. To detect the paracrine effect of the PDL cells on soft tissue regeneration, PDL cell-conditioned medium (CM) was evaluated for the concentration of secretory factors, transforming growth factor-beta 1 (TGFβ1). The effect of PDL CM on the proliferation and migration of dermal fibroblast and keratinocyte was tested using MTT assay and migration assay. The application of PDL cells significantly promoted soft tissue regeneration compared with the application of PBS. Self-replicating PDL cells were engrafted into the hair follicles of the host tissue. Dermal fibroblast proliferation and keratinocyte migration were significantly enhanced by the treatment with PDL CM. Physiologically significant amount of TGFβ1 was secreted from PDL cells into the CM. Local injection of PDL cells promoted soft tissue regeneration in part by the enhancement of fibroblast proliferation and keratinocyte migration through a paracrine mechanism. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton

    PubMed Central

    Keating, Joseph N.; Donoghue, Philip C. J.

    2016-01-01

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140

  15. Acellular vaccines for preventing whooping cough in children.

    PubMed

    Zhang, Linjie; Prietsch, Sílvio Om; Axelsson, Inge; Halperin, Scott A

    2011-01-19

    Routine use of whole-cell pertussis vaccines was suspended in some countries in the 1970s/1980s because of concerns about adverse effects. There was a resurgence of whooping cough. Acellular pertussis vaccines (containing purified or recombinant Bordetella pertussis antigens) were developed in the hope that they would be as effective but less reactogenic than the whole-cell vaccines. To assess the efficacy and safety of acellular pertussis vaccines in children. We searched the Cochrane Register of Controlled Trials (CENTRAL) (The Cochrane Library 2009, issue 2) which contains the Acute Respiratory Infections Group's Specialised Register; MEDLINE (1950 to April week 2 2009) and EMBASE (1974 to April 2009). Double-blind randomised efficacy and safety trials of acellular pertussis vaccines in children up to six years old, with active follow-up of participants and laboratory verification of pertussis cases. Two review authors independently performed data extraction and study quality assessment. Differences in trial design precluded pooling of the efficacy data. The safety data from individual trials were pooled using the Cochrane statistical package Review Manager 5. Six efficacy trials and 52 safety trials were included. The efficacy of multi-component (≥ 3) vaccines varied from 84% to 85% in preventing typical whooping cough, and from 71% to 78% in preventing mild pertussis disease. In contrast, the efficacy of one- and two-component vaccines varied from 59% to 75% against typical whooping cough, and from 13% to 54% against mild pertussis disease. Multi-component acellular vaccines is more effective than low-efficacy whole-cell vaccines, but may be less effective than the highest-efficacy whole-cell vaccines. Most systemic and local adverse events were significantly less common with acellular than with whole-cell pertussis vaccines for the primary series as well as for the booster dose. Multi-component acellular pertussis vaccines are effective, and show less

  16. The true incidence of near-term postoperative complications in prosthetic breast reconstruction utilizing human acellular dermal matrices: a meta-analysis.

    PubMed

    Newman, Martin I; Swartz, Kimberly A; Samson, Michel C; Mahoney, Chris Brown; Diab, Khaled

    2011-02-01

    The use of human acellular dermal matrix (HADM) materials in prosthetic-based breast reconstruction has gained popularity in recent years. Questions remain, however, regarding the nature and incidence of postoperative complications associated with this technique. The results reported in the available literature vary widely. This meta-analysis examines this question further with a broad review of the available literature in an effort to better define the true nature and incidence of near-term complications associated with the use of HADM in prosthetic-based breast reconstruction. It does not aim to compare this method of reconstruction to others. A review of the available literature was performed in July 2009. The goal was to identify all previous works describing the placement of HADM at prosthetic-based breast reconstruction. Included were studies that documented the use of HADM for coverage of tissue expanders or permanent implants following therapeutic or prophylactic mastectomy. Excluded were studies that reported on the use of HADM in cosmetic breast surgery or studies that included the use of xenografts. Data collected included demographics as well as the nature and incidence of complications, with separate categories assigned for seroma, infection, flap necrosis, and "other." Data were analyzed using Comprehensive Meta-Analysis(®) software (Biostat, Englewood, NJ). Raw proportions, fixed-effect models, and random-effect models were used to assess the complication rates across studies. Eleven published articles and one abstract that was later published as an article were identified. Within these 12 studies, a total of 789 breasts were identified that had undergone reconstruction with HADM. The mean follow-up was 13.7 months. Under the random-effects model, the total complication rate was 12.0%. The most common complications were flap necrosis (3.3%), seroma (3.3%), and infection (5.6%). All complications not included in these categories were set apart in a

  17. Effectiveness of Acellular Dermal Matrix on Autologous Split-Thickness Skin Graft in Treatment of Deep Tissue Defect: Esthetic Subjective and Objective Evaluation.

    PubMed

    Lee, Yoo Jung; Park, Myong Chul; Park, Dong Ha; Hahn, Hyung Min; Kim, Sue Min; Lee, Il Jae

    2017-10-01

    A split-thickness skin graft (STSG) is performed to cover a large full-thickness skin defect. Esthetic and functional deficits can result, and many studies have sought to overcome them. This study compared the effectiveness of the acellular dermal matrix (ADM) graft and STSG concerning esthetic and functional effectiveness of ADM on scar quality. Of the patients who underwent anterolateral thigh free flap from 2011 to 2015, patients who received skin graft only (n = 10) or skin graft with ADM (n = 20) for coverage of the donor site were enrolled. In all cases, autologous STSG was performed with 1:1.5 meshed 0.008-0.010-inch-thick skin. In the skin graft with ADM group, 0.008-0.013-inch-thick meshed ADM (CGderm ® ; CGBio, Inc., Seungnam, Korea) was co-grafted. Negative-pressure wound therapy (CuraVAC ® ; CGBio, Inc., Seungnam, Korea) was applied to both groups in continuous mode at -120 mmHg. We investigate early outcomes (skin loss rate, duration of negative-pressure wound therapy, days to removal of stitches, days to achieve complete healing, and complications) and late outcomes in terms of scar quality (vascularity, pigmentation, pliability and height) and graft-related symptoms (itching sensation and pain). Assessments used the Vancouver Scar Scale and the Patient and Observer Scar Assessment Scale. Skin fold was measured to evaluate the elasticity of scar tissue. In the Vancouver Scar Scale, vascularity subscore (p = 0.003) and total score (p = 0.016) were significantly lower in the skin graft with ADM group. In Patient and Observer Scar Assessment Scale, the pain (p = 0.037) and stiffness subscores (p = 0.002), and total score (p = 0.017) were significantly lower in the skin graft with ADM group. Skin graft with ADM results in better scar quality in objective and subjective aspects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to

  18. RNAi functionalized scaffold for scarless skin regeneration

    PubMed Central

    Liu, Xing; Ma, Lie; Gao, Changyou

    2013-01-01

    Combination of a 3-D scaffold with the emerging RNA interference (RNAi) technique represents the latest paradigm of regenerative medicine. In our recent paper “RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring” in the journal Biomaterials, we not only demonstrated a 3-D system for siRNA sustained delivery, but also presented a comprehensive in vivo study by targeting a vital problem in skin regeneration: scarring. It is expected that further development of this kind of RNAi functionalized scaffold can provide a better platform for directing cell fates by integrating the “down-regulating” biomolecular cues into the cellular microenvironment, leading to the complete functional regeneration of skin. PMID:23811756

  19. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  20. Synthesis and Characterization of a Model Extracellular Matrix that Induces Partial Regeneration of Adult Mammalian Skin

    NASA Astrophysics Data System (ADS)

    Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F.

    1989-02-01

    Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen--glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 μ m, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was >5 × 104 cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physicochemical structure, functioning as a transient basal lamina during morphogenesis of skin.

  1. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    PubMed Central

    Hu, Lei; Gao, Zhenhua; Zhu, Zhao; Zhang, Chunmei; Wang, Jinsong

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases. PMID:29387727

  2. Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration.

    PubMed

    Zhou, Yalei; Yan, Zhiwei; Zhang, Hongmei; Lu, Wei; Liu, Shiyu; Huang, Xinhui; Luo, Hailang; Jin, Yan

    2011-12-01

    Cell/microcarrier combinations can be injected to repair tissue defects, but whether currently available microcarriers can be utilized to repair different tissue defects remains unknown. Here, we compared the suitability of fabricated micronized acellular dermal matrix (MADM), micronized small intestinal submucosa (MSIS), and gelatin microspheres as expansion and delivery scaffolds for adipose-derived mesenchymal stem cells (ADSCs). The results of MTS assay, scanning electron microscopy (SEM), and flow cytometry suggested that the three microcarriers all have good biocompatibility. Quantitative polymerase chain reaction revealed enhanced epidermal growth factor, vascular endothelial growth factor, basal fibroblast growth factor, and transforming growth factor-β expression levels after ADSCs had been cultured on MADM or MSIS for 5 days. After culturing ADSCs on microcarriers in osteogenic medium for 7 days, the expression levels of bone formation-related genes were enhanced. ADSC/microcarrier treatment accelerated wound closure. The ADSC/MADM and ADSC/MSIS combinations retained more of the original implant volume at 1 month postimplantation than ADSC/gelatin microspheres combination in soft-tissue augmentation studies. All implants displayed fibroblast and capillary vessel infiltrations; but ectopic bone formation did not occur, and the calvarial defect repair results were unfavorable. Our study demonstrates the potential utility of these microcarriers not only as a cell-culture substrate but also as a cell-transplantation vehicle for skin regeneration and soft-tissue reconstruction.

  3. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.

    PubMed

    Silva-Correia, Joana; Gloria, Antonio; Oliveira, Mariana B; Mano, João F; Oliveira, Joaquim M; Ambrosio, Luigi; Reis, Rui L

    2013-12-01

    Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the present study, we investigated the rheological/mechanical properties of both ionic- (iGG-MA) and photo-crosslinked methacrylated gellan gum (phGG-MA) hydrogels. Steady shear analysis, injectability and confined compression stress-relaxation tests were carried out. The injectability of the reactive solutions employed for the preparation of iGG-MA and phGG-MA hydrogels was first studied, then the zero-strain compressive modulus and permeability of the acellular hydrogels were evaluated. In addition, human intervertebral disc (hIVD) cells encapsulated in both iGG-MA and phGG-MA hydrogels were cultured in vitro, and its mechanical properties also investigated under dynamic mechanical analysis at 37°C and pH 7.4. After 21 days of culturing, hIVD cells were alive (Calcein AM) and the E' of ionic-crosslinked hydrogels and photo-crosslinked was higher than that observed for acellular hydrogels. Our study suggests that methacrylated gellan gum hydrogels present promising mechanical and biological performance as hIVD cells were producing extracellular matrix. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  5. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types.

    PubMed

    Villani, Rehan; Hodgson, Samantha; Legrand, Julien; Greaney, Jessica; Wong, Ho Yi; Pichol-Thievend, Cathy; Adolphe, Christelle; Wainwight, Brandon; Francois, Mathias; Khosrotehrani, Kiarash

    2017-05-15

    SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types. © 2017. Published by The Company of Biologists Ltd.

  6. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2017-09-01

    that the AFS seeded ANA used for nerve repair resulted in an improved functional outcome for the rats compared to ANA alone and were equivalent to...junction morphology were equivalent between the AFS seeded ANA. Additional studies investigated the use of post-partum acellular materials to...techniques for repairing large-gap (6 cm) nerve injuries in non -human primates. This pre-clinical model represents a more translational model of

  7. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2017-09-01

    AFS seeded ANA used for nerve repair resulted in an improved functional outcome for the rats compared to ANA alone and were equivalent to those...junction morphology were equivalent between the AFS seeded ANA. Additional studies investigated the use of post-partum acellular materials to promote...techniques for repairing large-gap (6 cm) nerve injuries in non -human primates. This pre-clinical model represents a more translational model of peripheral

  8. Regeneration of the oesophageal muscle layer from oesophagus acellular matrix scaffold using adipose-derived stem cells.

    PubMed

    Wang, Fang; Maeda, Yasuko; Zachar, Vladimir; Ansari, Tahera; Emmersen, Jeppe

    2018-06-14

    This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions. This indicates adipose-derived stem cells (ASCs) have the potential to substitute for smooth muscle cells (SMCs) in the construction of tissue engineered oesophageal muscle layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding

    PubMed Central

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2014-01-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  10. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth

    PubMed Central

    Higgins, Claire A.; Chen, James C.; Cerise, Jane E.; Jahoda, Colin A. B.; Christiano, Angela M.

    2013-01-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441

  11. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2014-09-01

    findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or...SUPPLEMENTARY NOTES 14. ABSTRACT Digital gait analysis was used in rats to successfully assess the impact of sciatic nerve injury and to evaluate the...timecourse of recovery of function. The first two groups of nerve repairs studied (nerve autograft and acellular nerve allografts) had similar outcomes in

  12. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  13. The Use of Fetal Bovine Dermal Scaffold (PriMatrix) in the Management of Full-Thickness Hand Burns.

    PubMed

    Parcells, Alexis Lanteri; Karcich, Jenika; Granick, Mark S; Marano, Michael A

    2014-01-01

    Management of full-thickness burn wounds represents a challenge when reconstructive options are not applicable. Fetal bovine dermal matrix is a bioactive collagen scaffold that assimilates into wounds and stimulates vascularization and dermal regeneration. We present the use of fetal bovine dermal scaffold PriMatrix in the treatment of a patient who sustained scald-immersion full-thickness burns of her bilateral hands that failed conventional wound therapy. A 71-year-old woman with advanced Parkinson's disease sustained self-induced 5% mixed second- and third-degree scald-immersion burns of her bilateral hands and fingers. The patient underwent extensive debridement that resulted in partially avascular wounds measuring 66 cm(2) and 72 cm(2) with exposed extensor tendons and no evidence of bleeding. Meshed homograft was applied, but her hands remained partly avascular. PriMatrix fetal bovine dermal scaffold was applied to provide tissue remodeling over the bones, which allowed successful skin grafting and complete wound healing. Our experience shows fetal bovine dermal scaffold to be an effective method in management of complicated burn wounds in selected cases. Further studies need to be implemented to confer this conclusion.

  14. The Use of Fetal Bovine Dermal Scaffold (PriMatrix) in the Management of Full-Thickness Hand Burns

    PubMed Central

    Karcich, Jenika; Granick, Mark S.; Marano, Michael A.

    2014-01-01

    Objective: Management of full-thickness burn wounds represents a challenge when reconstructive options are not applicable. Fetal bovine dermal matrix is a bioactive collagen scaffold that assimilates into wounds and stimulates vascularization and dermal regeneration. Methods: We present the use of fetal bovine dermal scaffold PriMatrix in the treatment of a patient who sustained scald-immersion full-thickness burns of her bilateral hands that failed conventional wound therapy. Results: A 71-year-old woman with advanced Parkinson's disease sustained self-induced 5% mixed second- and third-degree scald-immersion burns of her bilateral hands and fingers. The patient underwent extensive debridement that resulted in partially avascular wounds measuring 66 cm2 and 72 cm2 with exposed extensor tendons and no evidence of bleeding. Meshed homograft was applied, but her hands remained partly avascular. PriMatrix fetal bovine dermal scaffold was applied to provide tissue remodeling over the bones, which allowed successful skin grafting and complete wound healing. Conclusions: Our experience shows fetal bovine dermal scaffold to be an effective method in management of complicated burn wounds in selected cases. Further studies need to be implemented to confer this conclusion. PMID:25328569

  15. Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice

    PubMed Central

    2013-01-01

    Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542

  16. Wound Regeneration Deficit in Rats Correlates with Low Morphogenetic Potential and Distinct Transcriptome Profile of Epidermis.

    PubMed

    Guerrero-Juarez, Christian F; Astrowski, Aliaksandr A; Murad, Rabi; Dang, Christina T; Shatrova, Vera O; Astrowskaja, Aksana; Lim, Chae Ho; Ramos, Raul; Wang, Xiaojie; Liu, Yuchen; Lee, Hye-Lim; Pham, Kim T; Hsi, Tsai-Ching; Oh, Ji Won; Crocker, Daniel; Mortazavi, Ali; Ito, Mayumi; Plikus, Maksim V

    2018-06-01

    Large excisional wounds in mice prominently regenerate new hair follicles (HFs) and fat, yet humans are deficient for this regenerative behavior. Currently, wound-induced regeneration remains a clinically desirable, but only partially understood phenomenon. We show that large excisional wounds in rats across seven strains fail to regenerate new HFs. We compared wound transcriptomes between mice and rats at the time of scab detachment, which coincides with the onset of HF regeneration in mice. In both species, wound dermis and epidermis share core dermal and epidermal transcriptional programs, respectively, yet prominent interspecies differences exist. Compared with mice, rat epidermis expresses distinct transcriptional and epigenetic factors, markers of epidermal repair, hyperplasia, and inflammation, and lower levels of WNT signaling effectors and regulators. When recombined on the surface of excisional wounds with vibrissa dermal papillae, partial-thickness skin grafts containing distal pelage HF segments, but not interfollicular epidermis, readily regenerated new vibrissa-like HFs. Together, our findings establish rats as a nonregenerating rodent model for excisional wound healing and suggest that low epidermal competence and associated transcriptional profile may contribute to its regenerative deficiency. Future comparison between rat and mouse may lend further insight into the mechanism of wounding-induced regeneration and causes for its deficit. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  18. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    PubMed Central

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578

  19. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-Le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-07-01

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multistep method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements, and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis, and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1, and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1949-1959, 2017. © 2017 Wiley Periodicals, Inc.

  1. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm).

    PubMed

    Salzberg, C Andrew

    2006-07-01

    Immediate breast reconstruction has become a standard of care following mastectomy for cancer, largely due to improved esthetic and psychologic outcomes achieved with this technique. However, the current historical standards--transverse rectus abdominis myocutaneous flap reconstruction and expander--implant surgery-still have limitations as regards patient morbidity, short-term body-image improvements, and even cost. To address these shortcomings, we employ a novel concept of human tissue replacement to enhance breast shape and provide total coverage, enabling immediate mound reconstruction without the need for breast expansion prior to permanent implant placement. AlloDerm (human acellular tissue matrix) is a human-derived graft tissue with extensive experience in various settings of skin and soft tissue replacement surgery. This report describes the success using acellular tissue matrix to provide total coverage over the prosthesis in immediate reconstruction, with limited muscle dissection. In this population, 49 patients (76 breasts) successfully underwent the acellular tissue matrix-based immediate reconstruction, resulting in durable breast reconstruction with good symmetry. These findings may predict that acellular tissue matrix-supplemented immediate breast reconstruction will become a new technique for the immediate reconstruction of the postmastectomy breast.

  2. Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts.

    PubMed

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2015-02-11

    In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides, and its denaturation temperature was 44.99 °C. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rat. The contact angle, tensile strength, and weight loss temperature of collagen nanofibers were 21.2°, 6.72±0.44 MPa, and 300 °C, respectively. The nanofibers could promote the viabilities of human keratinocytes (HaCaTs) and human dermal fibroblasts (HDFs), inducing epidermal differentiation through the gene expression of involucrin, filaggrin, and type I transglutaminase of HaCaTs, and they could also accelerate migration of HaCaTs with the expression of matrix metalloproteinase-9 and transforming growth factor-β1 (TGF-β1). Besides, the nanofibers could upregulate the protien level of Col-I in HDFs both via a direct effect and TGF-β1 secreted from HaCaTs, thus facilitating the formation of collagen fibers. Furthermore, the collagen nanofibers stimulated the skin regeneration rapidly and effectively in vivo. These biological effects could be explained as the contributions from the biomimic extracellular cell matrix structure, hydrophilicity, and the multiple amino acids of the collagen nanofibers.

  3. Adipose-Derived Stem-Cell-Seeded Non-Cross-Linked Porcine Acellular Dermal Matrix Increases Cellular Infiltration, Vascular Infiltration, and Mechanical Strength of Ventral Hernia Repairs

    PubMed Central

    Iyyanki, Tejaswi S.; Dunne, Lina W.; Zhang, Qixu; Hubenak, Justin; Turza, Kristin C.

    2015-01-01

    Adipose-derived stem cells (ASCs) facilitate wound healing by improving cellular and vascular recruitment to the wound site. Therefore, we investigated whether ASCs would augment a clinically relevant bioprosthetic mesh—non-cross-linked porcine acellular dermal matrix (ncl-PADM)—used for ventral hernia repairs in a syngeneic animal model. ASCs were isolated from the subcutaneous adipose tissue of Brown Norway rats, expanded, and labeled with green fluorescent protein. ASCs were seeded (2.5×104 cells/cm2) onto ncl-PADM for 24 h before surgery. In vitro ASC adhesion to ncl-PADM was assessed at 0.5, 1, and 2 h after seeding, and cell morphology on ncl-PADM was visualized by scanning electron microscopy. Ventral hernia defects (2×4 cm) were created and repaired with ASC-seeded (n=31) and control (n=32) ncl-PADM. Explants were harvested at 1, 2, and 4 weeks after surgery. Explant remodeling outcomes were evaluated using gross evaluation (bowel adhesions, surface area, and grade), histological analysis (hematoxylin and eosin and Masson's trichrome staining), immunohistochemical analysis (von Willebrand factor VIII), fluorescent microscopy, and mechanical strength measurement at the tissue-bioprosthetic mesh interface. Stem cell markers CD29, CD90, CD44, and P4HB were highly expressed in cultured ASCs, whereas endothelial and hematopoietic cell markers, such as CD31, CD90, and CD45 had low expression. Approximately 85% of seeded ASCs adhered to ncl-PADM within 2 h after seeding, which was further confirmed by scanning electron microcopy examination. Gross evaluation of the hernia repairs revealed weak omental adhesion in all groups. Ultimate tensile strength was not significantly different in control and treatment groups. Conversely, elastic modulus was significantly greater at 4 weeks postsurgery in the ASC-seeded group (p<0.001). Cellular infiltration was significantly higher in the ASC-seeded group at all time points (p<0.05). Vascular infiltration was

  4. Adipose-derived stem-cell-seeded non-cross-linked porcine acellular dermal matrix increases cellular infiltration, vascular infiltration, and mechanical strength of ventral hernia repairs.

    PubMed

    Iyyanki, Tejaswi S; Dunne, Lina W; Zhang, Qixu; Hubenak, Justin; Turza, Kristin C; Butler, Charles E

    2015-02-01

    Adipose-derived stem cells (ASCs) facilitate wound healing by improving cellular and vascular recruitment to the wound site. Therefore, we investigated whether ASCs would augment a clinically relevant bioprosthetic mesh-non-cross-linked porcine acellular dermal matrix (ncl-PADM)-used for ventral hernia repairs in a syngeneic animal model. ASCs were isolated from the subcutaneous adipose tissue of Brown Norway rats, expanded, and labeled with green fluorescent protein. ASCs were seeded (2.5×10(4) cells/cm(2)) onto ncl-PADM for 24 h before surgery. In vitro ASC adhesion to ncl-PADM was assessed at 0.5, 1, and 2 h after seeding, and cell morphology on ncl-PADM was visualized by scanning electron microscopy. Ventral hernia defects (2×4 cm) were created and repaired with ASC-seeded (n=31) and control (n=32) ncl-PADM. Explants were harvested at 1, 2, and 4 weeks after surgery. Explant remodeling outcomes were evaluated using gross evaluation (bowel adhesions, surface area, and grade), histological analysis (hematoxylin and eosin and Masson's trichrome staining), immunohistochemical analysis (von Willebrand factor VIII), fluorescent microscopy, and mechanical strength measurement at the tissue-bioprosthetic mesh interface. Stem cell markers CD29, CD90, CD44, and P4HB were highly expressed in cultured ASCs, whereas endothelial and hematopoietic cell markers, such as CD31, CD90, and CD45 had low expression. Approximately 85% of seeded ASCs adhered to ncl-PADM within 2 h after seeding, which was further confirmed by scanning electron microcopy examination. Gross evaluation of the hernia repairs revealed weak omental adhesion in all groups. Ultimate tensile strength was not significantly different in control and treatment groups. Conversely, elastic modulus was significantly greater at 4 weeks postsurgery in the ASC-seeded group (p<0.001). Cellular infiltration was significantly higher in the ASC-seeded group at all time points (p<0.05). Vascular infiltration was

  5. Accelerated expansion of epidermal keratinocyte and improved dermal reconstruction achieved by engineered amniotic membrane.

    PubMed

    Huang, Guofeng; Ji, Shizhao; Luo, Pengfei; Liu, Houqi; Zhu, Shihui; Wang, Guangyi; Zhou, Panyu; Xiao, Shichu; Xia, Zhaofan

    2013-01-01

    In this study, we used human amniotic membrane (AM) to prepare a dermal scaffold with intact basement membrane (BM) and good biostability for quick expansion and transplantation of epidermal keratinocytes (EKs). Fresh AM was treated by repeated freeze-thaw cycles and DNase digestion. This new method was able to cleanse the cell components effectively and retain the BM structure with continuous distributions of laminin, collagen IV, VI, and VII. Subsequently, the acellular amniotic membrane (AAM) was cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for 5 min, 30 min, and 6 h. With the time of cross-linking prolonging, the mechanical strength and biostability of AAM increased gradually, while its cytotoxicity to EKs also increased. The 5-min cross-linked AAM (5min-AAM) had no significant cytotoxicity with good histocompatibility. The relative cell viability of EKs seeded on the 5min-AAM surface was 367 ± 33% and 631 ± 43% at 7 and 14 days of culture, respectively, both higher than 294 ± 30% and 503 ± 41% of the conventional cell culture dish (CCD) group, and the proportion of P63-positive cells was significantly higher than that of the CCD group on day 7 (54.32 ± 4.27% vs. 33.32 ± 3.18%, p < 0.05). When the 5min-AAM loaded with EKs (EK-AAM) was grafted onto full-thickness skin defects in nude mice, the cells survived well and formed an epidermis similar to normal skin. The new epidermis was thicker, and reconstruction of the dermal structure was good with an intact BM. Four weeks after transplantation, the wound contraction rate in the EK-AAM group was 43.09 ± 7.05%, significantly lower than that in the EK sheet group (57.49 ± 5.93%) and control group (69.94 ± 9.47%) (p < 0.05). In conclusion, repeated freeze-thaw treatment with appropriate EDC cross-linking offers AAM an intact BM structure with good operability and biostability. It may prove to be an ideal dermal scaffold to promote expansion of EKs in vitro and be transplanted for

  6. Outcomes with porcine acellular dermal matrix versus synthetic mesh and suture in complicated open ventral hernia repair.

    PubMed

    Liang, Mike K; Berger, Rachel L; Nguyen, Mylan Thi; Hicks, Stephanie C; Li, Linda T; Leong, Mimi

    2014-10-01

    Mesh reinforcement as part of open ventral hernia repair (OVHR) has become the standard of care. However, there is no consensus on the ideal type of mesh to use. In many clinical situations, surgeons are reluctant to use synthetic mesh. Options in these complicated OVHRs include suture repair or the use of biologic mesh such as porcine acellular dermal matrix (PADM). There has been a paucity of controlled studies reporting long-term outcomes with biologic meshes. We hypothesized that compared with synthetic mesh in OVHR, PADM is associated with fewer surgical site infections (SSI) but more seromas and recurrences. Additionally, compared with suture repair, we hypothesized that PADM is associated with fewer recurrences but more SSIs and seromas. A retrospective study was performed of all complicated OVHRs performed at a single institution from 2000-2011. All data were captured from the electronic medical records of the service network. Data were compared in two ways. First, patients who had OVHR with PADM were case-matched with patients having synthetic mesh repairs on the basis of incision class, Ventral Hernia Working Group (VHWG) grade, hernia size, American Society of Anesthesiologists (ASA) class, and emergency status. The PADM cases were also matched with suture repairs on the basis of incision class, hernia grade, duration of the operation, ASA class, and emergency status. Second, we developed a propensity score-adjusted multi-variable logistic regression model utilizing internal resampling to identify predictors of primary outcomes of the overall cohort. The U.S. Centers for Disease Control and Prevention (CDC) definition of SSI was utilized; seromas and recurrences were defined and tracked similarly for all patients. Data were analyzed using the McNemar, X(2), paired two-tailed Student t, or Mann-Whitney U test as appropriate. A total of 449 complicated OVHR cases were reviewed for a median follow up of 61 mos (range 1-143 mos): 94 patients had PADM

  7. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    PubMed

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-09

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  8. Canonical and non-canonical Wnt signaling control the regeneration of amputated rodent vibrissae follicles.

    PubMed

    Yuan, Yan-Ping; Huang, Keng; Xu, Yan-Min; Chen, Xian-Cai; Li, Hai-Hong; Cai, Bo-Zhi; Liu, Yang; Zhang, Huan; Li, Yu; Lin, Chang-Min

    2016-02-01

    Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, particular to mammals, is capable of regeneration following partial amputation. The detailed internal mechanism of this phenomenon is still unclear. Development and regrowth of the hair follicle depends on dermal-epidermal interaction within the hair follicle. Previous studies have shown that Wnt/β-catenin, Shh, Bmp, PDGF, TGF and Notch signals all take part in the development and growth of the hair follicle, and the Wnt/β-catenin signaling additionally plays an indispensable role in hair follicle morphogenesis and regrowth. In this study, we investigated the localization, as well as, protein levels of Wnt/β-catenin signaling molecules during amputated whisker follicle regeneration.

  9. Reducing postoperative infections and red breast syndrome in patients with acellular dermal matrix-based breast reconstruction: the relative roles of product sterility and lower body mass index.

    PubMed

    Lewis, Priya; Jewell, James; Mattison, Gennaya; Gupta, Subhas; Kim, Hahns

    2015-05-01

    The use of human acellular dermal matrices (ADM) has become routinely used in implant-based breast surgery. Notwithstanding the many benefits for tissue support, the morbidity associated with its use includes seroma and infection, among other potential complications. Some patients experience a specific complication called red breast syndrome (RBS), which has been linked to ADM use, but its exact etiology remains elusive. In our institution, AlloDerm aseptic regenerative tissue matrix was recently replaced with a ready-to-use sterile version that undergoes terminal sterilization, eliminating the need for rehydration. We want to determine if this change in processing affected complications, including RBS. We conducted a retrospective chart review analyzing patients from January 1, 2011, to June 1, 2013, who underwent breast surgery with human ADM. Patients with aseptic AlloDerm were compared to patients with sterile AlloDerm. Data were analyzed using the Fisher exact test. A total of 167 reconstructed breasts from 105 patients met inclusion criteria: 56% (n=93) with aseptic ADM, 44% (n=74) with sterile ADM. When comparing the two, patients had a decrease in overall necrosis, infection, seroma, and RBS with sterile ADM. However, the rates did not reach statistical significance. For example, the incidence of RBS decreased from 7.5% to 2.7% (P=0.301) and seroma decreased from 8.6% to 2.7% (P=0.188). The infection rate proved to be equivocal at 11.8% with aseptic ADM to 10.8% with sterile ADM (P=1.000). The only statistically significant change was a decrease in the total complication rate from 41.9% to 27.0% (P=0.046). The absolute risk reduction for total complications was 14.9% with a number-needed-to-treat of 7. According to our study, sterile AlloDerm has a clinically decreased incidence of complications compared to aseptic AlloDerm. Whereas RBS decreased, it was interesting to see that it was not eliminated altogether. This suggests that the etiology may be

  10. Experimental study on repairing of nude mice skin defects with composite skin consisting of xenogeneic dermis and epidermal stem cells and hair follicle dermal papilla cells.

    PubMed

    Qi, Shao-Hai; Liu, Po; Xie, Ju-Lin; Shu, Bin; Xu, Ying-Bin; Ke, Chang-Neng; Liu, Xu-Sheng; Li, Tian-Zeng

    2008-05-01

    To investigate the influence of hair follicle dermal papilla cells (DPCs) on biological features of composite skin. In the test group, xenogeneic acellular dermal matrix was employed as the frame, DPCs were seeded on the subcutaneous side, and epithelial stem cells onto the dermal papilla side of the dermal frame so as to construct a composite skin. In the control group, there was no DPC in the frame. The two kinds of composite skin were employed to cover skin defects on the back of the nude mice. Wound healing was observed 4 weeks after grafting and area was analyzed and contraction rate was calculated. The tissue samples in the grafted area were harvested for HE staining and the state of the composite skin was observed. The stress-strain curve of the sampled skin was measured, so as to calculate the maximal breaking power of the sample. The data were collected and statistically analyzed. HE staining indicated that the epithelial depth was increased (more than 10 layers of cells) in test group, with only 6-7 layers in control group. The skin contraction rate in test group on the 4th week after skin grafting (3.94+/-0.013)% was much lower than that in control group (29.07+/-0.018)% (P<0.05). It was indicated by biomechanical test that the stress-strain curve of the composite skin in the test group was closer to that of normal nude mice skin in comparison to that in control group. The maximal breaking force of the composite skin in test group was (1.835+/-0.035)N (Newton), while that in control group was (1.075+/-0.065)N (P<0.01). Reconstruction of epidermis in composite skin was promoted by dermal DPCs seeded in the dermal matrix frame. As a result, there was less skin contraction in the composite skin with DPCs, so that the biological characteristics of the skin were improved.

  11. Suppression of α Smooth Muscle Actin Accumulation by Bovine Fetal Dermal Collagen Matrix in Full Thickness Skin Wounds

    PubMed Central

    Lineaweaver, William; Bush, Katie; James, Kenneth

    2015-01-01

    Abstract The suppression of elements associated with wound contracture and unfavorable scarring is a potentially important strategy in clinical wound management. In this study, the presence of α smooth muscle actin (αSMA), a protein involved in wound contraction, was analyzed in a series of wounds in which bovine fetal collagen (BFC) acellular dermal matrix (PriMatrix) was used in staged split thickness skin graft procedures. The results obtained through histological and quantitative image analyses of incidental biopsies from these wounds demonstrated a suppression of αSMA in the wound regions occupied by assimilated BFC relative to increased levels of αSMA found in other areas of the wound. The αSMA levels found in assimilated BFC were similar to αSMA levels in uninjured human dermis. These findings suggest a mechanism by which application of BFC could decrease contraction of full thickness skin wounds. PMID:25695450

  12. Suppression of α Smooth Muscle Actin Accumulation by Bovine Fetal Dermal Collagen Matrix in Full Thickness Skin Wounds.

    PubMed

    Lineaweaver, William; Bush, Katie; James, Kenneth

    2015-06-01

    The suppression of elements associated with wound contracture and unfavorable scarring is a potentially important strategy in clinical wound management. In this study, the presence of α smooth muscle actin (αSMA), a protein involved in wound contraction, was analyzed in a series of wounds in which bovine fetal collagen (BFC) acellular dermal matrix (PriMatrix) was used in staged split thickness skin graft procedures. The results obtained through histological and quantitative image analyses of incidental biopsies from these wounds demonstrated a suppression of αSMA in the wound regions occupied by assimilated BFC relative to increased levels of αSMA found in other areas of the wound. The αSMA levels found in assimilated BFC were similar to αSMA levels in uninjured human dermis. These findings suggest a mechanism by which application of BFC could decrease contraction of full thickness skin wounds.

  13. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    PubMed Central

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  14. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle

    PubMed Central

    Muir, Lindsey A; Nguyen, Quynh G; Hauschka, Stephen D; Chamberlain, Jeffrey S

    2014-01-01

    Autologous dermal fibroblasts (dFbs) are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD) due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells) resulted in a peak of ~600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD. PMID:25558461

  15. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  16. Tetanus–diphtheria–acellular pertussis vaccination for adults: an update

    PubMed Central

    2017-01-01

    Although tetanus and diphtheria have become rare in developed countries, pertussis is still endemic in some developed countries. These are vaccine-preventable diseases and vaccination for adults is important to prevent the outbreak of disease. Strategies for tetanus, diphtheria, and pertussis vaccines vary from country to country. Each country needs to monitor consistently epidemiology of the diseases and changes vaccination policies accordingly. Recent studies showed that tetanus–diphtheria–acellular pertussis vaccine for adults is effective and safe to prevent pertussis disease in infants. However, vaccine coverage still remains low than expected and seroprevalence of protective antibodies levels for tetanus, diphtheria, and pertussis decline with aging. The importance of tetanus–diphtheria–acellular pertussis vaccine administration should be emphasized for the protection of young adult and elderly people also, not limited to children. PMID:28168170

  17. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    PubMed

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  18. [Influence of collagen/fibroin scaffolds containing silver nanoparticles on dermal regeneration of full-thickness skin defect wound in rat].

    PubMed

    You, Z G; Zhang, L P; Wang, X G; Zhou, H L; Guo, S X; Wu, P; Han, C M

    2017-02-20

    Objective: To explore the influence of collagen/fibroin scaffolds containing silver nanoparticles on dermal regeneration of full-thickness skin defect wound in rat. Methods: Eighty-one collagen/fibroin scaffolds containing silver nanoparticles (with the mass concentration of silver nanoparticles as 10 mg/L) and 81 collagen/fibroin scaffolds without silver nanoparticles were produced respectively with freeze-drying method and enrolled as silver nanoparticles scaffold group (SNS) and control scaffold group (CS). Nine scaffolds in each group were cultured with human fibroblasts. At post culture hour (PCH) 2, 12, and 24, the human fibroblasts adherent to the scaffolds ( n =3) in two groups were counted. Four full-thickness skin defect wounds were reproduced on the back of each one of the 36 SD rats. The rats were divided into groups SNS (wounds were transplanted with collagen/fibroin scaffolds containing silver nanoparticles) and CS (wounds were transplanted with collagen/fibroin scaffolds without silver nanoparticles) according to the random number table, with 18 rats in each group. In post surgery week (PSW) 1, 2, and 4, 6 rats in each group were sacrificed respectively for general observation, observation of histological structure, inflammatory cell infiltration, and collagen deposition with HE staining, count of CD68 positive cells with immunohistochemical staining, and mRNA expressions of interleukin-6 (IL-6) and IL-10 with real-time fluorescent quantitative reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PCH 2, 12, and 24, the numbers of human fibroblasts adherent to the scaffolds in the two groups were close (with t values from 1.77 to 2.60, P values above 0.05). (2) In PSW 1, no obvious symptom of infection was observed in wound or wound edge of rats in group SNS with obvious vascularization of scaffolds, while obvious symptoms of infection

  19. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration

    PubMed Central

    Zhen, Hanson H.; Oro, Anthony E.

    2013-01-01

    Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463

  1. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration.

    PubMed

    Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong

    2017-03-30

    The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.

  2. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  3. Acellular pertussis vaccines effectiveness over time: A systematic review, meta-analysis and modeling study

    PubMed Central

    Chit, Ayman; Zivaripiran, Hossein; Shin, Thomas; Lee, Jason K. H.; Tomovici, Antigona; Macina, Denis; Johnson, David R.; Decker, Michael D.; Wu, Jianhong

    2018-01-01

    Background Acellular pertussis vaccine studies postulate that waning protection, particularly after the adolescent booster, is a major contributor to the increasing US pertussis incidence. However, these studies reported relative (ie, vs a population given prior doses of pertussis vaccine), not absolute (ie, vs a pertussis vaccine naïve population) efficacy following the adolescent booster. We aim to estimate the absolute protection offered by acellular pertussis vaccines. Methods We conducted a systematic review of acellular pertussis vaccine effectiveness (VE) publications. Studies had to comply with the US schedule, evaluate clinical outcomes, and report VE over discrete time points. VE after the 5-dose childhood series and after the adolescent sixth-dose booster were extracted separately and pooled. All relative VE estimates were transformed to absolute estimates. VE waning was estimated using meta-regression modeling. Findings Three studies reported VE after the childhood series and four after the adolescent booster. All booster studies reported relative VE (vs acellular pertussis vaccine-primed population). We estimate initial childhood series absolute VE is 91% (95% CI: 87% to 95%) and declines at 9.6% annually. Initial relative VE after adolescent boosting is 70% (95% CI: 54% to 86%) and declines at 45.3% annually. Initial absolute VE after adolescent boosting is 85% (95% CI: 84% to 86%) and declines at 11.7% (95% CI: 11.1% to 12.3%) annually. Interpretation Acellular pertussis vaccine efficacy is initially high and wanes over time. Observational VE studies of boosting failed to recognize that they were measuring relative, not absolute, VE and the absolute VE in the boosted population is better than appreciated. PMID:29912887

  4. Effect of acellular human dermis buttress on laparoscopic hiatal hernia repair.

    PubMed

    Ward, Kyle C; Costello, Kevin P; Baalman, Sara; Pierce, Richard A; Deeken, Corey R; Frisella, Margaret M; Michael Brunt, L; Matthews, Brent D

    2015-08-01

    The objective of this study was to evaluate the performance of acellular human dermis reinforcement during laparoscopic hiatal hernia repair. A prospective non-randomized, single institution study enrolled patients undergoing laparoscopic hiatal hernia repair. Acellular human dermis, FlexHD (Musculoskeletal Transplant Foundation, Edison, NJ) or AlloDerm (LifeCell Inc., Branchburg, NJ) were used to buttress the repair after primary closure. A protocol barium swallow (BAS) was performed at 6 months and then as needed due to clinical indications. Primary outcome measure was recurrence. Patients completed preoperative and postoperative GERD symptom questionnaires and quality of life surveys (SF-36). Kruskal-Wallis ANOVA, Student's t test, Fisher's exact test, or Wilcoxon signed-rank test were utilized as appropriate (p < 0.05 considered statistically significant). Fifty-four patients (10 men and 44 women) with a mean age of 62 ± 10 years underwent laparoscopic hiatal hernia repair using Flex HD (n = 37) or AlloDerm (n = 17). Both groups were similar with respect to gender, age, hiatus size, hernia type [sliding/Type I (n = 14) or paraesophageal/Type III/IV (n = 40)], esophageal motor function (manometry), preoperative SF-36 quality of life surveys, and GERD symptom questionnaires. Forty-seven patients (87 %) completed the BAS at 6 months; each group had two recurrences (p = 0.597). At median follow-up of 33 months, there were 3 recurrences (18 %) in the AlloDerm group and 5 recurrences (14 %) in the Flex HD group (p = 0.365). Minimal differences in GERD symptoms or SF-36 scores were detected between groups. However, anti-reflux medication usage, GERD symptoms, and quality of life significantly improved for both groups after laparoscopic hiatal hernia repair. Laparoscopic hiatal hernia repair with acellular human dermis reinforcement results in improvement of GERD-related symptoms and quality of life without mesh-associated complications. The type of acellular human

  5. Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues

    PubMed Central

    Aust, Gabriela; Boldt, Andreas; Fritsch, Sebastian; Keil, Isabel; Koch, Holger; Möbius, Robert; Scheidt, Holger A.; Wagner, Martin F. X.; Hammer, Niels

    2016-01-01

    Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in

  6. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  7. Acellular dermal matrix allograft used alone and in combination with enamel matrix protein in gingival recession: histologic study in dogs.

    PubMed

    de Oliveira, Cristiane Aparecida; Spolidório, Luís Carlos; Cirelli, Joni Augusto; Marcantonio, Roseemary Adriana Chiérici

    2005-12-01

    Gingival recession was created in six mongrel dogs. The dogs were divided into two groups based on treatment: group 1--AlloDerm only, group 2--AlloDerm + Emdogain. The histologic results were compared. At the end of the study, the mean values were, for groups 1 and 2, respectively: 0.06 and 0.32 mm for cementum regeneration; -0.75 and -0.86 mm for bone regeneration; -2.15 and -3.11 mm for attachment level; and 4.90 and 5.51 mm for defect extent. The epithelial formation parameter was 2.88 mm in group 1 and 2.15 mm in group 2, which was a statistically significant difference. It could be concluded that Emdogain did not result in beneficial effects when associated with AlloDerm.

  8. Qualitative assessment of connective tissue graft with epithelial component. A microsurgical periodontal plastic surgical technique for soft tissue esthetics.

    PubMed

    Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos

    2009-01-01

    Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.

  9. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.

    PubMed

    Cohen, Liat; Dean, Mason; Shipov, Anna; Atkins, Ayelet; Monsonego-Ornan, Efrat; Shahar, Ron

    2012-06-01

    The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic - and therefore the nature of the evolution of this feature - remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish - the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young's moduli of cellular and acellular bones are in the same range, and lower than Young's moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest

  10. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

    PubMed Central

    Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui

    2018-01-01

    Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005

  11. Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Wang, Yun; Levitz, David; Choudhury, Niloy; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven L.

    2011-04-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of inflammation in psoriasis remain unclear. We undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to noninvasively document cutaneous alterations in mouse skin treated topically with Imiquimod (IMQ), an established model of a psoriasis-like disease. Quantitative appraisal of dermal architectural changes was achieved through a two parameter fit of OCT axial scans in the dermis of the form A(x, y, z) = ρ(x, y)exp [ - μ(x, y)z]. Ensemble averaging over 2000 axial scans per mouse in each treatment arm revealed no significant changes in the average dermal attenuation rate, <μ>, however the average local dermal reflectivity <ρ>, decreased significantly following 1, 3, and 6 days of IMQ treatment (p < 0.001) in comparison to vehicle-treated control mice. In contrast, epidermal and dermal thickness changes were only significant when comparing controls and 6-day IMQ treated mice. This suggests that dermal alterations, attributed to collagen fiber bundle enlargement, occur prior to epidermal thickness changes due to hyperplasia and dermal thickness changes due to edema. Dermal reflectivity positively correlated with epidermal hyperplasia (repi2 = 0.78) and dermal edema (rderm2 = 0.86). Our results suggest that dermal reflectivity as measured by OCT can be utilized to quantify a psoriasis-like disease in mice, and thus has the potential to aid in the quantitative assessment of psoriasis in humans.

  12. The effect of hyperbaric oxygen treatment on early regeneration of sensory axons after nerve crush in the rat.

    PubMed

    Bajrović, Fajko F; Sketelj, Janez; Jug, Marko; Gril, Iztok; Mekjavić, Igor B

    2002-09-01

    Abstract The effect of hyperbaric oxygen treatment (HBO) on sensory axon regeneration was examined in the rat. The sciatic nerve was crushed in both legs. In addition, the distal stump of the sural nerve on one side was made acellular and its blood perfusion was compromised by freezing and thawing. Two experimental groups received hyperbaric exposures (2.5 ATA) to either compressed air (pO2 = 0.5 ATA) or 100% oxygen (pO2 = 2.5 ATA) 90 minutes per day for 6 days. Sensory axon regeneration in the sural nerve was thereafter assessed by the nerve pinch test and immunohistochemical reaction to neurofilament. HBO treatment increased the distances reached by the fastest regenerating sensory axons by about 15% in the distal nerve segments with preserved and with compromised blood perfusion. There was no significant difference between the rats treated with different oxygen tensions. The total number of regenerated axons in the distal sural nerve segments after a simple crush injury was not affected, whereas in the nerve segments with compromised blood perfusion treated by the higher pO2, the axon number was about 30% lower than that in the control group. It is concluded that the beneficial effect of HBO on sensory axon regeneration is not dose-dependent between 0.5 and 2.5 ATA pO2. Although the exposure to 2.5 ATA of pO2 moderately enhanced early regeneration of the fastest sensory axons, it decreased the number of regenerating axons in the injured nerves with compromised blood perfusion of the distal nerve stump.

  13. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    PubMed

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  14. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    PubMed

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Feather regeneration as a model for organogenesis

    PubMed Central

    Lin, Sung-Jan; Wideliz, Randall B; Yue, Zhicao; Li, Ang; Wu, Xiaoshan; Jiang, Ting-Xin; Wu, Ping; Chuong, Cheng-Ming

    2013-01-01

    In the process of organogenesis, different cell types form organized tissues and tissues are integrated into an organ. Most organs form in the developmental stage, but new organs can also form in physiological states or following injuries during adulthood. Feathers are a good model to study post-natal organogenesis because they regenerate episodically under physiological conditions and in response to injuries such as plucking. Epidermal stem cells in the collar can respond to activation signals. Dermal papilla located at the follicle base controls the regenerative process. Adhesion molecules (e.g., NCAM, tenascin), morphogens (e.g., Wnt3a, sprouty, FGF10), and differentiation markers (e.g., keratins) are expressed dynamically in initiation, growth and resting phases of the feather cycle. Epidermal cells are shaped into different feather morphologies based on the molecular micro-environment at the moment of morphogenesis. Chicken feather variants provide a rich resource for us to identify genetic determinants involved in feather regeneration and morphogenesis. An example of using genome-wide SNP analysis to identify alpha keratin 75 as the mutation in frizzled chickens is demonstrated. Due to its accessibility to experimental manipulation and observation, results of regeneration can be analyzed in a comprehensive way. The layout of time dimension along the distal (formed earlier) - proximal (formed later) feather axis makes the morphological analyses easier. Therefore feather regeneration can be a unique model for understanding organogenesis: from activation of stems cell under various physiological conditions to serving as the Rosetta stone for deciphering the language of morphogenesis. PMID:23294361

  16. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    PubMed

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  17. Novel hyaluronic acid dermal filler: dermal gel extra physical properties and clinical outcomes.

    PubMed

    Monheit, Gary D; Baumann, Leslie S; Gold, Michael H; Goldberg, David J; Goldman, Mitchel P; Narins, Rhoda S; Bachtell, Nathan; Garcia, Emily; Kablik, Jeffrey; Gershkovich, Julia; Burkholder, David

    2010-11-01

    Dermal gel extra (DGE) is a new, tightly cross-linked hyaluronic acid (HA)-based dermal filler containing lidocaine engineered to resist gel deformation and degradation. To develop a firmer gel product (DGE) and compare the efficacy and safety of DGE with nonanimal stabilized HA (NASHA) for correction of nasolabial folds (NLFs). DGE physical properties were characterized, and 140 subjects with moderate to deep NLFs were treated with DGE and NASHA in a randomized, multicenter, split-face design study. Efficacy, pain, and satisfaction were measured using appropriate standard instruments. Adverse events were monitored throughout the study. DGE has a higher modulus and a higher gel:fluid ratio than other HA fillers. Similar optimal correction was observed with DGE and NASHA through 36 weeks (9 months). Study subjects required less volume (p<.001) and fewer touch-ups (p=.005) and reported less injection pain (p<.001) with DGE treatment. Most adverse events were mild to moderate skin reactions. DGE is a firm HA gel that required significantly less volume and fewer touch-ups to provide equivalent efficacy to NASHA for NLF correction; both dermal gels were well tolerated. DGE will provide a comfortable and cost-effective dermal filler option for clinicians and patients. © 2010 by the American Society for Dermatologic Surgery, Inc.

  18. Dermal toxicity, eye and dermal irritation and skin sensitization evaluation of a new formulation of Bacillus thuringiensis var israelensis SH-14.

    PubMed

    Arteaga, M E; Mancebo, A; Molier, T; Gómez, D; González, C; Bada, A M; González, B; Rojas, N M; Rodríguez, G

    2014-02-01

    Bacillus thuringiensis (Bt) is the best known and most widely used of all pesticidal microbes. The aim of this study was to assess the toxicity of a new formulation of Bacillus thuringiensis var israelensis SH-14 in rats through acute dermal toxicity, dermal and eye irritation experiments. The acute dermal toxicity and dermal and eye irritation studies were performed using rabbits according to the United States Environmental Protection Agency guidelines 885.3100, 870.2500 and 870.2500, respectively. The skin sensitization study was carried out in accordance to the EPA OPPTS 870.2600 using guinea pigs. There was no mortality and no evidence of treatment-related toxicity in acute dermal toxicity test. No dermal responses, including erythema/eschar or edema, were found in rabbits treated with the new formulation of Bti SH-14. Minimum response was observed after eye application of test substance. No skin sensitization reactions were observed after the challenge with the new formulation of Bti SH-14 in the Bti SH-14-treated guinea pigs. In summary, the present study demonstrated that the new formulation of Bti SH-14 is not acutely toxic via dermal route, has low eye irritation and would not cause dermal irritation or hypersensitivity to tested animals. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ureter Regeneration–The Proper Scaffold Has to Be Defined

    PubMed Central

    Kowalczyk, Tomasz; Nowacki, Maciej; Bodnar, Magdalena; Marszałek, Andrzej; Pokrywczyńska, Marta; Frontczak-Baniewicz, Małgorzata; Kowalewski, Tomasz A.; Chłosta, Piotr; Drewa, Tomasz

    2014-01-01

    The aim of this study was to compare two different acellular scaffolds: natural and synthetic, for urinary conduit construction and ureter segment reconstruction. Acellular aortic arch (AAM) and poly(L-lactide-co-caprolactone) (PLCL) were used in 24 rats for ureter reconstruction in both tested groups. Follow-up period was 4 weeks. Intravenous pyelography, histological and immunohistochemical analysis were performed. All animals survived surgical procedures. Patent uretero-conduit junction was observed only in one case using PLCL. In case of ureter segment reconstruction ureters were patent in one case using AAM and in four cases using PLCL scaffolds. Regeneration of urothelium layer and focal regeneration of smooth muscle layer was observed on both tested scaffolds. Obtained results indicates that synthetic acellular PLCL scaffolds showed better properties for ureter reconstruction than naturally derived acellular aortic arch. PMID:25162415

  20. Genetics Home Reference: focal dermal hypoplasia

    MedlinePlus

    ... in people with focal dermal hypoplasia is an omphalocele , which is an opening in the wall of ... Dermal Hypoplasia MedlinePlus Encyclopedia: Ectodermal dysplasia MedlinePlus Encyclopedia: Omphalocele General Information from MedlinePlus (5 links) Diagnostic Tests ...

  1. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Acellular vaccines for preventing whooping cough in children.

    PubMed

    Zhang, Linjie; Prietsch, Sílvio O M; Axelsson, Inge; Halperin, Scott A

    2014-09-17

    Routine use of whole-cell pertussis (wP) vaccines was suspended in some countries in the 1970s and 1980s because of concerns about adverse effects. Following this action, there was a resurgence of whooping cough. Acellular pertussis (aP) vaccines, containing purified or recombinant Bordetella pertussis (B. pertussis) antigens, were developed in the hope that they would be as effective, but less reactogenic than the whole-cell vaccines. This is an update of a Cochrane review first published in 1999, and previously updated in 2012. In this update, we included no new studies. To assess the efficacy and safety of acellular pertussis vaccines in children and to compare them with the whole-cell vaccines. We searched CENTRAL (2013, Issue 12), MEDLINE (1950 to January week 2, 2014), EMBASE (1974 to January 2014), Biosis Previews (2009 to January 2014) and CINAHL (2009 to January 2014). We selected double-blind randomised efficacy and safety trials of aP vaccines in children up to six years old, with active follow-up of participants and laboratory verification of pertussis cases. Two review authors independently extracted data and assessed the risk of bias in the studies. Differences in trial design precluded a meta-analysis of the efficacy data. We pooled the safety data from individual trials using a random-effects meta-analysis model. We included six efficacy trials with a total of 46,283 participants and 52 safety trials with a total of 136,541 participants. Most of the safety trials did not report the methods for random sequence generation, allocation concealment and blinding, which made it difficult to assess the risk of bias in the studies. The efficacy of multi-component (≥ three) vaccines varied from 84% to 85% in preventing typical whooping cough (characterised by 21 or more consecutive days of paroxysmal cough with confirmation of B. pertussis infection by culture, appropriate serology or contact with a household member who has culture-confirmed pertussis), and

  3. The dermal arteries of the human thumb pad

    PubMed Central

    Geyer, S H; Nöhammer, M M; Tinhofer, I E; Weninger, W J

    2013-01-01

    The arteries of the skin have been postulated to form a profound plexus at the dermal/hypodermal junction and a superficial plexus in the papillary dermis. Our article aims to rebut this concept and to provide an alternative description of the arrangement of the dermal arteries. Employing a novel technique, we produced digital volume data (volume size: 2739 × 2054 × 3000 μm3; voxel size: 1.07 × 1.07 × 2 μm3) from biopsies of the skin of the thumb pads of 15 body donors. Utilizing these data, we analysed the arrangement of the dermal arteries with the aid of virtual re-sectioning tools, and, in three specimens, with high-quality three-dimensional (3D) surface models. In all specimens we observed a tree-like ramification of discrete dermal arteries. The terminal branches of the arterial trees gave rise to the ascending segments of the capillary loops of the dermal papillae. None of the specimens showed a superficial arterial plexus. This suggests that the skin of the human thumb pad can be split in discrete ‘arterial units’. Each unit represents the zone of the papillary dermis and epidermal/dermal junction, to which blood is supplied exclusively by the branches of a single dermal artery. The concept of dermal arterial units is in contrast to all existing descriptions of the architecture of the dermal arteries. However, whether it can be transferred to the skin of other body parts, remains to be tested. Likewise, the consequences of arterial units for understanding the mechanisms of wound healing and the appearance and genesis of skin diseases remain to be examined. PMID:24205910

  4. ISSUES IN DERMAL EXPOSURE OF INFANTS

    EPA Science Inventory

    Infants' dermal exposures to environmental contaminants are expected to be different and, in many cases, much higher than adults. Because of the potential importance of the dermal exposure route, there is currently a significant amount of work being conducted to reduce the uncer...

  5. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, A; Graham, G M C; Bryant, S V; Gardiner, D M

    2008-07-15

    Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. In the present study, we have utilized the ALM to identity the buttonhead-like zinc-finger transcription factor, Sp9, as being involved in the formation of the regeneration epithelium. Sp9 expression is induced in basal keratinocytes of the apical blastema epithelium in a pattern that is comparable to its expression in developing limb buds, and it thus is an important marker for dedifferentiation of the epidermis. Induction of Sp9 expression is nerve-dependent, and we have identified KGF as an endogenous nerve factor that induces expression of Sp9 in the regeneration epithelium.

  6. Dermal uptake of petroleum substances.

    PubMed

    Jakasa, Ivone; Kezic, Sanja; Boogaard, Peter J

    2015-06-01

    Petroleum products are complex substances comprising varying amounts of linear and branched alkanes, alkenes, cycloalkanes, and aromatics which may penetrate the skin at different rates. For proper interpretation of toxic hazard data, understanding their percutaneous absorption is of paramount importance. The extent and significance of dermal absorption of eight petroleum substances, representing different classes of hydrocarbons, was evaluated. Literature data on the steady-state flux and permeability coefficient of these substances were evaluated and compared to those predicted by mathematical models. Reported results spanned over 5-6 orders of magnitude and were largely dependent on experimental conditions in particular on the type of the vehicle used. In general, aromatic hydrocarbons showed higher dermal absorption than more lipophilic aliphatics with similar molecular weight. The results showed high variation and were largely influenced by experimental conditions emphasizing the need of performing the experiments under "in use" scenario. The predictive models overestimated experimental absorption. The overall conclusion is that, based on the observed percutaneous penetration data, dermal exposure to petroleum hydrocarbons, even of aromatics with highest dermal absorption is limited and highly unlikely to be associated with health risks under real use scenarios. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The vascularization pattern of acellular nerve allografts after nerve repair in Sprague-Dawley rats.

    PubMed

    Zhu, Zhaowei; Huang, Yanyan; Zou, Xiaoyan; Zheng, Canbin; Liu, Jianghui; Qiu, Longhai; He, Bo; Zhu, Qingtang; Liu, Xiaolin

    2017-11-01

    We have demonstrated that angiogenesis in acellular nerve allografts (ANAs) can promote neuroregeneration. The present study aimed to investigate the microvascular regeneration pattern of ANAs in Sprague-Dawley (SD) rats. Sixty male SD rats were randomly divided into an autologous group and a rat acellular nerve allograft group (rANA), and 10-mm sciatic nerve defects were induced in these rats. On the 7th, 14th and 21st days after surgery, systemic perfusion with Evans Blue (EB) or lead oxide was performed on the rats through carotid intubation. Samples were then collected for gross observation, and the microvessels in the nerves were reconstructed through microscopic CT scans using MIMICS software. The vascular volume fraction (VF, %) and microvessel growth rate (V, mm/d) in both groups were then measured, and 1 month after surgery, NF-200 staining was performed to observe and compare the growth condition of the axons. Early post-operative perfusion with gelatin/EB showed EB permeation around the acellular nerve. Perfusion with gelatin/lead oxide showed that the blood vessels had grown into the allograft from both ends 7 days after the operation. Fourteen days after the operation, the microvessel growth rate of the autologous group was faster than that of the rANA group (0.39 ± 0.17 mm/d vs. 0.26 ± 0.14 mm/d, p < 0.05), and the vascular VF was also higher than that of the rANA group (8.92% ± 1.54% vs. 6.31% ± 1.21%, p < 0.05). Twenty-one days after the operation, the blood vessels at both ends of the allograft had connected to form a microvessel network. The growth rate was not significantly different between the two groups; however, the vascular VF of the autologous group was higher than that of the rANA group (12.18% ± 2.27% vs. 9.92% ± 0.84%, p < 0.05). One month after the operation, the NF-200 fluorescence (IOD) in the autologous group significantly increased compared with that of the rANA group (540,278 ± 17,424 vs. 473,310

  8. Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts.

    PubMed

    Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar

    2002-02-01

    Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.

  9. Dermal extracellular lipid in birds.

    PubMed

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  10. Tissue‐specific reactions to positional discontinuities in the regenerating axolotl limb

    PubMed Central

    Avila, Daima; Roy, Molly; Seifert, Ashley W.

    2015-01-01

    Abstract We investigated cellular contributions to intercalary regenerates and 180o supernumerary limbs during axolotl limb regeneration using the cell autonomous green fluorescent protein marker and exchanged blastemas between white and green fluorescent protein animals. After distal blastemas were grafted to proximal levels tissues of the intercalary regenerate behaved independently with regard to the law of distal transformation; graft epidermis was replaced by stump epidermis, muscle‐derived cells, blood vessels, and Schwann cells of the distal blastema moved proximally to the stylopodium and cartilage and dermal cells conformed to the law. After 180o rotation, blastemas showed contributions from stump tissues which failed to alter patterning of the blastema. Supernumerary limbs were composed of stump and graft tissues and extensive contributions of stump tissues generated inversions or duplications of polarity to produce limbs of mixed handedness. Tail skeletal muscle and cardiac muscle broke the law with cells derived from these tissues exhibiting an apparent anteroposterior polarity as they migrated to the anterior side of the blastema. We attribute this behavior to the possible presence of a chemotactic factor from the wound epidermis. PMID:26755943

  11. [Tissue engineering of urinary bladder using acellular matrix].

    PubMed

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-04-01

    Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

  12. Sprouty / FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae

    PubMed Central

    Yue, Zhicao; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2013-01-01

    In a feather, there are distinct morphologies along the proximal-distal axis. The proximal part is a cylindrical stalk (calamus), whereas the distal part has barb and barbule branches. Here we focus on what molecular signaling activity can modulate feather stem cells to generate these distinct morphologies. We demonstrate the drastic tissue remodeling during feather cycling which includes initiation, growth and resting phases. In the growth phase, epithelial components undergo progressive changes from the collar growth zone to the ramogenic zone, to maturing barb branches along the proximal- distal axis. Mesenchymal components also undergo progressive changes from the dermal papilla, to the collar mesenchyme, to the pulp along the proximal- distal axis. Over-expression of Spry4, a negative regulator of receptor tyrosine kinases, promotes barb branch formation at the expense of the epidermal collar. It even induces barb branches from the follicle sheath (equivalent to the outer root sheath in hair follicles). The results are feathers with expanded feather vane regions and small or missing proximal feather shafts (the calamus). Spry4 also expands the pulp region while reducing the size of dermal papillae, leading to a failure to regenerate. In contrast, over-expressing Fgf10 increases the size of the dermal papillae, expands collar epithelia and mesenchyme, but also prevents feather branch formation and feather keratin differentiation. These results suggest that coordinated Sprouty/FGF pathway activity at different stages is important to modulate feather epidermal stem cells to form distinct feather morphologies along the proximal-distal feather axis. PMID:23000358

  13. Mesenchymal stem cells induce dermal fibroblast responses to injury

    PubMed Central

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2009-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021

  14. Mesenchymal stem cells induce dermal fibroblast responses to injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less

  15. Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis.

    PubMed

    Oostendorp, Corien; Meyer, Sarah; Sobrio, Monia; van Arendonk, Joyce; Reichmann, Ernst; Daamen, Willeke F; van Kuppevelt, Toin H

    2017-05-01

    Treatment of full-thickness skin defects with split-thickness skin grafts is generally associated with contraction and scar formation and cellular skin substitutes have been developed to improve skin regeneration. The evaluation of cultured skin substitutes is generally based on qualitative parameters focusing on histology. In this study we focused on quantitative evaluation to provide a template for comparison of human bio-engineered skin substitutes between clinical and/or research centers, and to supplement histological data. We focused on extracellular matrix proteins since these components play an important role in skin regeneration. As a model we analyzed the human dermal substitute denovoDerm and the dermo-epidermal skin substitute denovoSkin. The quantification of the extracellular matrix proteins type III collagen and laminin 5 in tissue homogenates using western blotting analysis and ELISA was not successful. The same was true for assaying lysyl oxidase, an enzyme involved in crosslinking of matrix molecules. As an alternative, gene expression levels were measured using qPCR. Various RNA isolation procedures were probed. The gene expression profile for specific dermal and epidermal genes could be measured reliably and reproducibly. Differences caused by changes in the cell culture conditions could easily be detected. The number of cells in the skin substitutes was measured using the PicoGreen dsDNA assay, which was found highly quantitative and reproducible. The (dis) advantages of assays used for quantitative evaluation of skin substitutes are discussed. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  16. The scarless latissimus dorsi flap provides effective lower pole prosthetic coverage in breast reconstruction.

    PubMed

    Lee, Mark A; Miteff, Kirstin G

    2014-05-01

    The evolution of surgical breast cancer treatment has led to the oncologically safe preservation of greater amounts of native skin, yet we are still often using flaps with large skin paddles, thereby resulting in significant donor-site scars. This explains the increasing appeal of acellular dermal matrix reconstructions. Acellular dermal matrices can, however, have significant problems, particularly if there is any vascular compromise of the mastectomy skin flaps. We have developed a method of raising the latissimus dorsi flap through the anterior mastectomy incisions without requiring special instruments or repositioning. This can provide autologous vascularized cover of the prosthesis. A clear surgical description of the scarless latissimus dorsi flap harvest is provided, and our results of a retrospective cohort review of 20 consecutive patients with 27 traditional latissimus dorsi breast reconstructions were compared with those of 20 consecutive patients with 30 scarless latissimus dorsi breast reconstructions. Operative time, length of stay, and complication rates were reduced in the scarless group. Patients Breast-Q scores were equivalent in each group. The aesthetic assessment was good/excellent in 77% of both groups; however, subscale assessment was better in the scarless group. This was statistically significant (P = 0.0). Breast reconstruction using the scarless latissimus dorsi flap is time effective, requires no patient repositioning, and uses standard breast instrumentation. It is safe and versatile while reducing the risk of exposed prosthesis if native skin necrosis occurs. It is a vascularized alternative to acellular dermal matrices.

  17. Acellular pertussis vaccines--a question of efficacy.

    PubMed

    Olin, P

    1995-06-01

    Whole cell pertussis vaccine is considered to offer at least 80% protection against typical whooping cough. The quest for an equally effective but less reactogenic vaccine is now drawing to a close. During the forthcoming year a number of efficacy trials of acellular pertussis vaccines will be terminated. A variety of vaccines containing one, two, three or five purified pertussis antigens are being tested in Germany, Italy, Senegal and Sweden. About 30,000 infants have been enrolled in placebo-controlled studies and more than 100,000 in whole cell vaccine-controlled trials. The final plans for analysis of a Swedish placebo-controlled trial of whole cell and acellular vaccines is presented. Due to the unexpected high incidence of pertussis in Sweden during 1993-1994, relative risk comparisons between vaccines will be attempted in that trial, in addition to estimating absolute efficacy. A crucial issue is to what extent data may be compared between trials, given differences in design, vaccination schedules, and chosen endpoints. A primary case definition of laboratory-confirmed pertussis with at least 21 days of paroxysmal cough have been adopted in most trials. Pre-planned meta-analysis using this single endpoint will facilitate comparisons between vaccines. Serological correlates to protection in individuals will be sought in the ongoing placebo-controlled trials. The concept of a serological correlate valid for a vaccinated population but not necessarily for the vaccinated individual, as is the case with Hib vaccines, may turn out to be the only alternative to performing large efficacy trials in the future.

  18. Use of human and porcine dermal-derived bioprostheses in complex abdominal wall reconstructions: a literature review and case report.

    PubMed

    Baillie, Daniel R; Stawicki, S Peter; Eustance, Nicole; Warsaw, David; Desai, Darius

    2007-05-01

    The goal of abdominal wall reconstruction is to restore and maintain abdominal domain. A PubMed(R) review of the literature (including "old" MEDLINE through February 2007) suggests that bioprosthetic materials are increasingly used to facilitate complex abdominal wall reconstruction. Reported results (eight case reports/series involving 137 patients) are encouraging. The most commonly reported complications are wound seroma (18 patients, 13%), skin dehiscence with graft exposure without herniation (six, 4.4%), superficial and deep wound infections (five, 3.6%), hernia recurrence (four, 2.9%), graft failure with dehiscence (two), hematoma (two), enterocutaneous fistula (one), and flap necrosis (one). Two recent cases are reported herein. In one, a 46-year-old woman required open abdominal management after gastric remnant perforation following a Roux-en-Y gastric bypass procedure. Porcine dermal collagen combined with cutaneous flaps was used for definitive abdominal wall reconstruction. The patient's condition improved postoperatively and she was well 5 months after discharge from the hospital. In the second, a 54-year-old woman underwent repair of an abdominal wall defect following resection of a large leiomyosarcoma. Human acellular dermis combined with myocutaneous flaps was used to reconstruct the abdominal wall defect. The patient's recovery was uncomplicated and 20 weeks following surgery she was doing well with no evidence of recurrence or hernia. The results reported to date and the outcomes presented here suggest that bioprosthetic materials are safe and effective for repair of large abdominal wall defects. Prospective, randomized, controlled studies are needed to compare the safety and efficacy of other reconstructive techniques as well as human and porcine dermal-derived bioprostheses.

  19. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis.

    PubMed

    Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro

    2009-01-01

    Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.

  20. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon.

    PubMed

    Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James

    2011-03-01

    Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.

  1. A two-step mechanism for stem cell activation during hair regeneration.

    PubMed

    Greco, Valentina; Chen, Ting; Rendl, Michael; Schober, Markus; Pasolli, H Amalia; Stokes, Nicole; Dela Cruz-Racelis, June; Fuchs, Elaine

    2009-02-06

    Hair follicles (HFs) undergo cyclic bouts of degeneration, rest, and regeneration. During rest (telogen), the hair germ (HG) appears as a small cell cluster between the slow-cycling bulge and dermal papilla (DP). Here we show that HG cells are derived from bulge stem cells (SCs) but become responsive quicker to DP-promoting signals. In vitro, HG cells also proliferate sooner but display shorter-lived potential than bulge cells. Molecularly, they more closely resemble activated bulge rather than transit-amplifying (matrix) cells. Transcriptional profiling reveals precocious activity of both HG and DP in late telogen, accompanied by Wnt signaling in HG and elevated FGFs and BMP inhibitors in DP. FGFs and BMP inhibitors participate with Wnts in exerting selective and potent stimuli to the HG both in vivo and in vitro. Our findings suggest a model where HG cells fuel initial steps in hair regeneration, while the bulge is the engine maintaining the process.

  2. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration.

    PubMed

    Zhang, Kunyu; Lin, Sien; Feng, Qian; Dong, Chaoqun; Yang, Yanhua; Li, Gang; Bian, Liming

    2017-12-01

    Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg 2+ ), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective delivery and tailored release of Mg 2+ remains a challenge, with few reports on hydrogels being used for Mg 2+ delivery. Bisphosphonate exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as Mg 2+ . Herein, we describe a nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. These nanoparticles bearing acrylate groups on the surface not only function as effective multivalent crosslinkers to strengthen the hydrogel network structure, but also promote the mineralization of hydrogels and mediate sustained release of Mg 2+ . The released Mg 2+ ions facilitate stem cell adhesion and spreading on the hydrogel substrates in the absence of cell adhesion ligands, and promote osteogenesis of the seeded hMSCs in vitro. Furthermore, the acellular porous hydrogels alone can support in situ bone regeneration without using exogenous cells and inductive agents, thereby greatly simplifying the approaches of bone regeneration therapy. In this study, we developed a novel bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. Such hydrogels are stabilized by the multivalent crosslinking domains formed by the aggregation of Ac-BP-Mg NPs, and therefore show enhanced mechanical properties, improved capacity for mineralization, and controlled release kinetics of Mg 2+ . Moreover, the released Mg 2+ can enhance cell adhesion and spreading, and further promote the osteogenic differentiation of hMSCs. Owing to these unique properties, these acellular hydrogels alone can well facilitate the in vivo

  3. Antioxidant Nanoplatforms for Dermal Delivery: Melatonin.

    PubMed

    Milan, Aroha Sanchez; Campmany, Ana Cristina Calpena; Naveros, Beatriz Clares

    2017-01-01

    Melatonin is emerging as a promising therapeutic agent, mainly due to its role as antioxidant. Substantial evidences show that melatonin is potentially effective in a variety of diseases as cancer, inflammation and neurodegenerative diseases. The excellent antioxidant capacity with pharmacokinetics characteristics and the emerging search for new pharmaceutical nanotechnology based systems, make it particularly attractive to elaborate nanoplatforms based on melatonin for biomedical or cosmetic dermal applications. Different nanosystems for dermal delivery have been investigated. This review focuses on nanocarrier production strategies, dermal melatonin application and delivery advances in vivo and in vitro. Equally, future perspectives of this assisted melatonin delivery have also been discussed. In the current review, we have revised relevant articles of the available literature using the major scientific databases. One hundred and thirteen papers were included in the review, the majority of which represent latest researches in nanosized platforms for the dermal delivery of melatonin including liposomes, ethosomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles and cyclodextrins. Furthermore, relevant papers reporting in vitro and in vivo application studies of these nano-based melatonin platforms were also discussed. The use of nanoplatforms for the dermal melatonin delivery as antioxidant agent could improve the efficacy of conventional melatonin administration due to the preservation of the drug from premature oxidation and the enhancement of drug permeation through the skin providing greater exposure times. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    PubMed Central

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  5. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration.

    PubMed

    Satoh, Akira; makanae, Aki; Hirata, Ayako; Satou, Yutaka

    2011-07-15

    Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    PubMed

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  7. Repeated folding stress-induced morphological changes in the dermal equivalent.

    PubMed

    Arai, Koji Y; Sugimoto, Mami; Ito, Kanako; Ogura, Yuki; Akutsu, Nobuko; Amano, Satoshi; Adachi, Eijiro; Nishiyama, Toshio

    2014-11-01

    Repeated mechanical stresses applied to the same region of the skin are thought to induce morphological changes known as wrinkle. However, the underlying mechanisms are not fully understood. To study the mechanisms, we examined effects of repeated mechanical stress on the dermal equivalent. We developed a novel device to apply repeated folding stress to the dermal equivalent. After applying the mechanical stress, morphological changes of the dermal equivalent and expression of several genes related to extracellular matrix turn over and cell contraction were examined. The repeated folding stress induced a noticeable decrease in the width of the dermal equivalent. The mechanical stress altered orientations of collagen fibrils. Hydroxyproline contents, dry weights and cell viability of the dermal equivalents were not affected by the mechanical stress. On the other hand, Rho-associated coiled-coil-containing kinase (ROCK) specific inhibitor Y27632 completely suppressed the decrease in the width of the dermal equivalent. The present results revealed that either degradation of collagen or changes in the number of cells were not responsible for the decrease in the width of the dermal equivalent and indicate that the repeated mechanical stress induces unidirectional contraction in the dermal equivalent through the RhoA-ROCK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Transplantation of mature adipocyte-derived dedifferentiated fat cells into three-wall defects in the rat periodontium induces tissue regeneration.

    PubMed

    Suzuki, Daigo; Akita, Daisuke; Tsurumachi, Niina; Kano, Koichiro; Yamanaka, Katsuyuki; Kaneko, Tadashi; Kawano, Eisuke; Iguchi, Shinya; Toriumi, Taku; Arai, Yoshinori; Matsumoto, Taro; Sato, Shuichi; Honda, Masaki

    2017-01-01

    The transplantation of dedifferentiated fat (DFAT) cells in combination with poly(d,l-lactic-co-glycolic acid) (PLGA) scaffolds has previously been proven as an effective approach in promoting periodontal tissue regeneration in a rat fenestration defect model. The aim of this study was to assess the regenerative potential of DFAT cells in a rat model of three-wall periodontal bone defect. Three-wall bone defects were created bilaterally on the mesial side of rat maxillary first molars and were either left untreated or treated by implantation of PLGA scaffolds with DFAT cells or PLGA alone. Four weeks after surgery, the tissues were processed for micro-computed tomography (micro-CT) and histomorphometric examination. Micro-CT revealed that the PLGA/DFAT group had significantly higher rates of bone regeneration than the other groups, while histomorphometric analysis showed that the PLGA/DFAT group had significantly higher densities of collagen fiber bundles in acellular and cellular cementum than the PLGA group. Moreover, the results indicate that the placement of the PLGA scaffold prevented the downgrowth of the junctional epithelium. These findings suggest that DFAT cells contribute to tissue regeneration in three-wall periodontal defects, while PLGA provides space necessary for periodontal tissue restoration.

  9. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Kanae; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka; Shishido, Mayumi

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Westernmore » blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.« less

  10. Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.

    PubMed

    Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz

    2014-03-01

    Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.

  11. Methamphetamine residue dermal transfer efficiencies from household surfaces.

    PubMed

    Van Dyke, Mike; Martyny, John W; Serrano, Kate A

    2014-01-01

    Methamphetamine contamination from illegal production operations poses a potential health concern for emergency responders, child protective services, law enforcement, and children living in contaminated structures. The objective of this study was to evaluate dermal transfer efficiencies of methamphetamine from contaminated household surfaces. These transfer efficiencies are lacking for methamphetamine, and would be beneficial for use in exposure models. Surfaces were contaminated using a simulated smoking method in a stainless steel chamber. Household surfaces were carpet, painted drywall, and linoleum. Dermal transfer efficiencies were obtained using cotton gloves for two hand conditions, dry or saliva moistened (wet). In addition, three contact scenarios were evaluated for both hand conditions: one, two, or three contacts with contaminated surfaces. Dermal transfer efficiencies were calculated for both hand conditions and used as inputs in a Stochastic Human Exposure and Dose Simulation model (SHEDS-Multimedia, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, N.C.). Results of this study showed that average dermal transfer efficiencies of methamphetamine ranged from 11% for dry hands to 26% for wet hands. There was a significantly higher wet transfer as compared to dry transfer for all surfaces. For wet hands, dermal transfer depended on surface type with higher transfer from carpet and linoleum as compared to drywall. Based on our estimates of dermal transfer efficiency, a surface contamination clearance level of 1.5 μg/100 cm(2) may not ensure absorbed doses remain below the level associated with adverse health effects in all cases. Additional dermal transfer studies should be performed using skin surrogates that may better predict actual skin transfer.

  12. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles.

    PubMed

    Kim, Jin Sik; Song, Kyung Seuk; Sung, Jae Hyuck; Ryu, Hyun Ryol; Choi, Byung Gil; Cho, Hyun Sun; Lee, Jin Kyu; Yu, Il Je

    2013-08-01

    To clarify the health risks related to silver nanoparticles (Ag-NPs), we evaluated the genotoxicity, acute oral and dermal toxicity, eye irritation, dermal irritation and corrosion and skin sensitisation of commercially manufactured Ag-NPs according to the OECD test guidelines and GLP. The Ag-NPs were not found to induce genotoxicity in a bacterial reverse mutation test and chromosomal aberration test, although some cytotoxicity was observed. In acute oral and dermal toxicity tests using rats, none of the rats showed any abnormal signs or mortality at a dose level of ∼ 2000 mg/kg. Similarly, acute eye and dermal irritation and corrosion tests using rabbits revealed no significant clinical signs or mortality and no acute irritation or corrosion reaction for the eyes and skin. In a skin sensitisation test using guinea pigs, one animal (1/20) showed discrete or patchy erythema, thus Ag-NPs can be classified as a weak skin sensitiser.

  13. Dermal exposure assessment to benzene and toluene using charcoal cloth pads.

    PubMed

    van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the

  14. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.

    PubMed

    Li, Wen-Yuan; Zhang, Wei-Ting; Cheng, Yong-Xia; Liu, Yan-Cui; Zhai, Feng-Guo; Sun, Ping; Li, Hui-Ting; Deng, Ling-Xiao; Zhu, Xiao-Feng; Wang, Ying

    2018-06-01

    A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.

  15. The Scarless Latissimus Dorsi Flap Provides Effective Lower Pole Prosthetic Coverage in Breast Reconstruction

    PubMed Central

    Miteff, Kirstin G.

    2014-01-01

    Background: The evolution of surgical breast cancer treatment has led to the oncologically safe preservation of greater amounts of native skin, yet we are still often using flaps with large skin paddles, thereby resulting in significant donor-site scars. This explains the increasing appeal of acellular dermal matrix reconstructions. Acellular dermal matrices can, however, have significant problems, particularly if there is any vascular compromise of the mastectomy skin flaps. We have developed a method of raising the latissimus dorsi flap through the anterior mastectomy incisions without requiring special instruments or repositioning. This can provide autologous vascularized cover of the prosthesis. Methods: A clear surgical description of the scarless latissimus dorsi flap harvest is provided, and our results of a retrospective cohort review of 20 consecutive patients with 27 traditional latissimus dorsi breast reconstructions were compared with those of 20 consecutive patients with 30 scarless latissimus dorsi breast reconstructions. Results: Operative time, length of stay, and complication rates were reduced in the scarless group. Patients Breast-Q scores were equivalent in each group. The aesthetic assessment was good/excellent in 77% of both groups; however, subscale assessment was better in the scarless group. This was statistically significant (P = 0.0). Conclusions: Breast reconstruction using the scarless latissimus dorsi flap is time effective, requires no patient repositioning, and uses standard breast instrumentation. It is safe and versatile while reducing the risk of exposed prosthesis if native skin necrosis occurs. It is a vascularized alternative to acellular dermal matrices. PMID:25289340

  16. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.

    PubMed

    Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel

    2017-04-01

    Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol ® ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017. © 2015 Wiley Periodicals, Inc.

  17. Plasma skin regeneration technology.

    PubMed

    Bogle, M A

    2006-09-01

    Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.

  18. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed Central

    Moody, R P; Chu, I

    1995-01-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  19. Gene Expression Profiling of the Intact Dermal Sheath Cup of Human Hair Follicles.

    PubMed

    Niiyama, Shiro; Ishimatsu-Tsuji, Yumiko; Nakazawa, Yosuke; Yoshida, Yuzo; Soma, Tsutomu; Ideta, Ritsuro; Mukai, Hideki; Kishimoto, Jiro

    2018-04-24

    Cells that constitute the dermal papillae of hair follicles might be derived from the dermal sheath, the peribulbar component of which is the dermal sheath cup. The dermal sheath cup is thought to include the progenitor cells of the dermal papillae and possesses hair inductive potential; however, it has not yet been well characterized. This study investigated the gene expression profile of the intact dermal sheath cup, and identified dermal sheath cup signature genes, including extracellular matrix components and BMP-binding molecules, as well as TGF-b1 as an upstream regulator. Among these, GREM2, a member of the BMP antagonists, was found by in situ hybridization to be highly specific to the dermal sheath cup, implying that GREM2 is a key molecule contributing to maintenance of the properties of the dermal sheath cup.

  20. Acellular Flowable Matrix in the Treatment of Tunneled or Cavity Ulcers in Diabetic Feet: A Preliminary Report.

    PubMed

    Campitiello, Ferdinando; Mancone, Manfredi; Della Corte, Angela; Guerniero, Raffaella; Canonico, Silvestro

    2018-06-01

    The authors aimed to explore the feasibility and safety of an advanced, acellular, flowable wound matrix (FWM) in patients with diabetes-related cavity or tunnel lesions involving deep structures. Patients with diabetic foot ulcers were hospitalized at the General and Geriatric Surgery Unit of the University of Campania in Naples, Italy, between March 2015 and December 2015. Twenty-three patients with tunneled or cavity ulcers were treated. The lesions were filled with the FWM. Surgical wound edges were either approximated with stitches or left to heal by secondary intention. After 6 weeks, 78.26% of patients completely healed after a single application of the FWM. The healing time for all healed wounds was 30.85 ± 12.62 days, or 26.11 ± 5.43 days in patients for whom wound edges were approximated by stitches, and 57.66 ± 3.05 days in the patients who healed by secondary intention (P = .01). Permanent tissue regeneration was observed in a high percentage of patients, and shorter healing time was achieved. Study authors observed a low rate of complications such as major amputation and increased hospitalization. The FWM seems ideal for tunneled and cavity ulcers with irregular geometry. This new porous matrix allows closure of the lesion while reducing healing time and demolition surgery.

  1. Dermal Discolorations and Burns at Neuromonitoring Electrodes in Pediatric Spine Surgery.

    PubMed

    Sanders, Austin; Andras, Lindsay; Lehman, Alison; Bridges, Nancy; Skaggs, David L

    2017-01-01

    Prospective review of consecutive patients. To evaluate the incidence and raise awareness of electrode discoloration that can occur in the operating room when using neuromonitoring. To our knowledge there are no articles that discuss dermal discolorations following spine surgery. Following recognition of dermal discolorations in some patients, a prospective evaluation of all patients undergoing spine surgery with somatosensory-evoked potential and motor-evoked potential neuromonitoring using subdermal needle electrodes was carried out over a 16-month period for quality assurance and improvement. A total of 201 consecutive patients with mean age of 14 years (4-25) were prospectively evaluated. Sixteen percent (33/201) had dermal discolorations associated with neuromonitoring. There were no significant differences in mean age (P = 0.624), height (P = 0.308), weight (P = 0.899), or body mass index (P = 0.571) between the patients with and without dermal discolorations. There was also no difference in prevalence of dermal discoloration by diagnosis (P = 0.490) or location of grounding pad and occurrence of dermal discoloration between groups (P = 0.268). The only difference noted was that patients without dermal discoloration had an average monopolar cautery setting of 46.8 W compared to 40.5 W for patients with dermal discolorations (P = 0.042). Of the 33 patients with a dermal discoloration, 27% (9/33) of these were on both the upper and lower extremities, 21% (7/33) on only the upper extremities, and 52% (17/33) on only the lower extremities. None of the dermal discolorations were painful or tender, and all resolved by 6-month follow-up. One patient did not have any dermal discoloration but did experience two full-thickness burns around the electrodes in one leg. The incidence of burns in this series was 0.5% (1/201). Dermal discolorations occurred in 16% of patients undergoing neuromonitoring for spine surgery. These common

  2. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Clinical outcome and patient satisfaction with the use of bovine-derived acellular dermal matrix (SurgiMend™) in implant based immediate reconstruction following skin sparing mastectomy: A prospective observational study in a single centre.

    PubMed

    Headon, Hannah; Kasem, Abdul; Manson, Aisling; Choy, Christina; Carmichael, Amtul R; Mokbel, Kefah

    2016-06-01

    The advent of acellular dermal matrix devices (ADMs) has enhanced both the scope of implant-based immediate breast reconstruction (IBR) following skin sparing mastectomy (SSM) for the treatment or risk reduction of breast cancer. Currently, there are a wide range of options available for the use of ADMs. This is a prospective observational single institution study of 118 consecutive patients undergoing a total of 164 SSM and IBR procedures either for treatment for breast cancer or for risk reduction, between 2012 and 2014. IBR was performed using an implant and bovine-derived ADM (SurgiMend™). Nipple sparing mastectomy (NSM) accounted for 103 procedures. IBR was performed as a single stage procedure in 23% of patients. The primary endpoint of this prospective study was the explantation rate and secondary endpoints included quality of life, patient satisfaction, aesthetic outcome assessed objectively, surgical complications, overall and disease free survival. Forty-six patients (39%) had a bilateral and 72 underwent a unilateral SSM. Of those who underwent a unilateral SSM, 25 had a contralateral adjustment procedure. Out of 164 procedures, 117 (71%) were for the treatment of breast cancer. Sixty-one patients received chemotherapy (52%) and 32 (27%) had radiotherapy. In this study 27 patients underwent post-mastectomy radiotherapy. At a mean follow of 21 months, the explantation rate was 1.2%, 4% (6 patients) developed wound complications. The patient satisfaction with the procedure was found to be very high. The mean Breast Q Score was 85 and the mean overall patient satisfaction rating was 9 out of a possible 10. The mean objective assessment score was 8.9 out of a possible 10 and the mean subjective capsular contracture severity score was 2.9 out of 10. There were two cases of local recurrence (1.7%), one distant recurrence (0.8%) and one patient died of metastatic breast cancer (0.8%). Overall survival was 99.2% and locoregional disease free survival (LRFS

  4. Spectrum of PORCN mutations in Focal Dermal Hypoplasia

    USDA-ARS?s Scientific Manuscript database

    Focal Dermal Hypoplasia (FDH), also known as Goltz syndrome (OMIM 305600), is a genetic disorder that affects multiple organ systems early in development. Features of FDH include skin abnormalities, (hypoplasia, atrophy, linear pigmentation, and herniation of fat through dermal defects); papillomas...

  5. [The applications of periodontal gingival surgery. Ⅱ: alternative materials].

    PubMed

    Mao, Er-Jia

    2018-04-01

    The main purposes of periodontal graft surgery include achieving root coverage, improving the clinical attachment level and keratinized tissue, and advancing the procedure of periodontal plastic surgery. Autogenous graft, such as subepithelial connective tissue graft-based procedure, provide the best outcomes for mean and complete root coverage, as well as increase in keratinized tissue. However, a disadvantage of the procedure is in the location of the operation itself: the additional surgical site (palate). Therefore, clinicians are always looking for graft substitutes. This article will discuss the evidence supporting the use of 1) acellular dermal matrix (ADM); 2) xenogeneic collagen matrix (XCM); 3) recombinant human platelet-derived growth factor (rhPDGF); 4) enamel matrix derivative (EMD); 5) guided tissue regeneration (GTR); 6) living cellular construct (LCC), all of which are used in conjunction with coronally advanced flaps as alternatives to autogenous donor tissue. The decision tree for treatments of Miller recession-type defects are also discussed.

  6. Scar-free wound healing and regeneration following tail loss in the leopard gecko, Eublepharis macularius.

    PubMed

    Delorme, Stephanie Lynn; Lungu, Ilinca Mihaela; Vickaryous, Matthew Kenneth

    2012-10-01

    Many lizards are able to undergo scar-free wound healing and regeneration following loss of the tail. In most instances, lizard tail loss is facilitated by autotomy, an evolved mechanism that permits the tail to be self-detached at pre-existing fracture planes. However, it has also been reported that the tail can regenerate following surgical amputation outside the fracture plane. In this study, we used the leopard gecko, Eublepharis macularius, to investigate and compare wound healing and regeneration following autotomy at a fracture plane and amputation outside the fracture plane. Both forms of tail loss undergo a nearly identical sequence of events leading to scar-free wound healing and regeneration. Early wound healing is characterized by transient myofibroblasts and the formation of a highly proliferative wound epithelium immunoreactive for the wound keratin marker WE6. The new tail forms from what is commonly referred to as a blastema, a mass of proliferating mesenchymal-like cells. Blastema cells express the protease matrix metalloproteinase-9. Apoptosis (demonstrated by activated caspase 3 immunostaining) is largely restricted to isolated cells of the original and regenerating tail tissues, although cell death also occurs within dermal structures at the original-regenerated tissue interface and among clusters of newly formed myocytes. Furthermore, the autotomized tail is unique in demonstrating apoptosis among cells adjacent to the fracture planes. Unlike mammals, transforming growth factor-β3 is not involved in wound healing. We demonstrate that scar-free wound healing and regeneration are intrinsic properties of the tail, unrelated to the location or mode of tail detachment. Copyright © 2012 Wiley Periodicals, Inc.

  7. En bloc excision of a dermal sinus tract.

    PubMed

    Coumans, Jean-Valery; Walcott, Brian P; Redjal, Navid; Kahle, Kristopher T; Nahed, Brian V

    2011-04-01

    Dermal sinus tracts are a form of spinal dysraphism that arises from a failure of dysjunction early in embryogenesis. They are diagnosed in pediatric patients and who present with a dimple, infection, or neurologic deficit. The tract is surgically excised en bloc to avoid contamination from the tract, which harbors bacteria. However, dermal sinus tracts typically terminate intradurally, rendering their en bloc excision difficult. To avoid entering the tract, allowing for an en bloc excision, we modified the usual technique employed for accessing the spinal intradural space. An en bloc excision of the dermal sinus tract was successfully performed. The patient recovered from the procedure neurologically intact and her postoperative course was uncomplicated. We conclude that en bloc excision of a dermal sinus tract down to the intradural space is feasible with modifications to standard operative technique. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Regeneration of soft and hard tissue periodontal defects.

    PubMed

    Caffesse, Raúl G; de la Rosa, Manuel; Mota, Luis F

    2002-10-01

    Periodontitis is characterized by the formation of periodontal pockets and bone loss. Although the basic treatment emphasizes the control of bacterial plaque, the clinician is confronted with the need to correct soft and/or hard tissue defects that develop as a consequence of the disease. This article reviews the current status of regenerative approaches in treating soft and hard tissue defects (based mainly on findings from our own laboratory) and assessed the global applicability of these procedures. Many different techniques have been suggested to treat those defects with, in general, a high degree of success. From the present knowledge it can be concluded that periodontal soft and hard tissue regeneration is possible. Treatment of areas with localized gingival recession or insufficient keratinized gingiva can be achieved with soft tissue grafts or pedicle flaps, as well as with the use of dermal allografts. The treatment of hard tissue defects around teeth and implants can be approached using different types of bone grafts, guided tissue or bone regeneration, or a combination of these. The predictability of many of these therapies, however, still needs to be improved. Since most of these techniques are sensitive, specific, and expensive, their present universal application is limited.

  9. Melanogenesis in dermal melanocytes of Japanese Silky chicken embryos.

    PubMed

    Ortolani-Machado, C F; Freitas, P F; Faraco, C D

    2009-08-01

    The Japanese Silky chicken (SK) shows dermal and visceral hyperpigmentation. This study characterizes ultrastructurally the melanin granules developing in dermal melanocytes of the dorsal skin of SK, in an attempt to better understand the processes of melanogenesis in these permanently ectopic cells. The steps of melanogenesis are similar to those described for epidermal melanocytes, with melanosomes going from stage I to IV but, in SK, the maturation occurs in the cell body, as well as in the cytoplasmic processes. At stage III, the deposition of melanin is cumulative and can aggregate in rounded structures, which combine to turn into the mature granule. The final destiny of mature melanosomes is still unclear, although it was observed that dermal macrophages can accumulate melanin granules in their phagosomes. Even with the close proximity between melanocytes and other dermal cells, the transference of melanosomes was not observed. Our findings indicate that melanogenesis in dermal melanocytes in SK has the same morphological characteristics found in epidermal melanocytes, but the functional aspect still remains to be elucidated.

  10. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    PubMed

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. © 2016 by the Society for Experimental Biology and Medicine.

  11. IN VITRO DERMAL ABSORPTION OF FLAME RETARDANT CHEMICALS

    EPA Science Inventory

    ABSTRACT
    The use of flame retardant chemicals in furniture fabric could pose a potential health risk to consumers from dermal absorption of these compounds. The objective of this study was to examine the in vitro dermal absorption of two flame retardant chemicals, [14C]-d...

  12. Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides.

    PubMed

    Kasetty, Gopinath; Kalle, Martina; Mörgelin, Matthias; Brune, Jan C; Schmidtchen, Artur

    2015-01-01

    Biomaterials used during surgery and wound treatment are of increasing importance in modern medical care. In the present study we set out to evaluate the addition of thrombin-derived host defense peptides to human acellular dermis (hAD, i.e. epiflex(®)). Antimicrobial activity of the functionalized hAD was demonstrated using radial diffusion and viable count assays against Gram-negative Escherichia coli, Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Electron microscopy analyses showed that peptide-mediated bacterial killing led to reduced hAD degradation. Furthermore, peptide-functionalized hAD displayed endotoxin-binding activity in vitro, as evidenced by inhibition of NF-κB activation in human monocytic cells (THP-1 cells) and a reduction of pro-inflammatory cytokine production in whole blood in response to lipopolysaccharide stimulation. The dermal substitute retained its anti-endotoxic activity after washing, compatible with results showing that the hAD bound a significant amount of peptide. Furthermore, bacteria-induced contact activation was inhibited by peptide addition to the hAD. E. coli infected hAD, alone, or after treatment with the antiseptic substance polyhexamethylenebiguanide (PHMB), yielded NF-κB activation in THP-1 cells. The activation was abrogated by peptide addition. Thus, thrombin-derived HDPs should be of interest in the further development of new biomaterials with combined antimicrobial and anti-endotoxic functions for use in surgery and wound treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Lichen planus following tetanus-diphtheria-acellular pertussis vaccination: A case report and review of the literature.

    PubMed

    Rosengard, Heather C; Wheat, Chikoti M; Tilson, Matthew P; Cuda, Jonathan D

    2018-01-01

    Lichen planus is an inflammatory dermatosis with a prevalence of approximately 1%. Recent meta-analyses show that patients with hepatitis C virus have a 2.5- to 4.5-fold increased risk of developing lichen planus. Lichen planus has also followed vaccinations and has specifically been attributed to the hepatitis B vaccine, the influenza vaccine, and the tetanus-diphtheria-acellular pertussis vaccine. We describe a case of lichen planus in a hepatitis C virus-infected African American male occurring in temporal association with the administration of the tetanus-diphtheria-acellular pertussis vaccine. The patient's presentation was clinically consistent with lichen planus and confirmed by biopsy. It is likely that many cases of vaccine-induced lichen planus have gone unpublished or unrecognized. In areas with high prevalence of hepatitis C virus infection, we may expect to see more cases of vaccine-induced lichen planus especially in light of the updated Centers for Disease Control and Prevention tetanus-diphtheria-acellular pertussis vaccination recommendations. This case serves to educate healthcare providers about vaccine-induced lichen planus and, in particular, the need to counsel hepatitis C virus-infected patients about a potential risk of developing lichen planus following vaccination. We also reflect on current theories suggesting the T-cell-mediated pathogenesis of lichen planus and the role that hepatitis C virus and toxoid or protein vaccines may play in initiating the disease.

  14. Update on botulinum toxin and dermal fillers.

    PubMed

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  15. Cellular interactions and biomechanical properties of a unique vascular-derived scaffold for periodontal tissue regeneration.

    PubMed

    Goktas, Selda; Pierre, Nicolas; Abe, Koki; Dmytryk, John; McFetridge, Peter S

    2010-03-01

    These investigations describe the development of a novel ex vivo three-dimensional scaffold derived from the human umbilical vein (HUV), and its potential as a regenerative matrix for tissue regeneration. Unique properties associated with the vascular wall have shown potential to function as a surgical barrier for guided tissue regeneration, particularly with the regeneration of periodontal tissues. HUV was isolated from umbilical cords using a semiautomated machining technology, decellularized using 1% sodium dodecyl sulfate, and then opened longitudinally to form tissue sheets. Uniaxial tensile testing, stress relaxation, and suture retention tests were performed on the acellular matrix to evaluate the HUV's biomechanical properties, followed by an evaluation of cellular interactions by seeding human gingival fibroblasts to assess adhesion, metabolic function, and proliferation on the scaffold. The scaffold's biomechanical properties were shown to display anisotropic behavior, which is attributed to the ex vivo material's composite structure. Detailed results indicated that the ultimate tensile strength of the longitudinal strips was significantly higher than that of the circumferential strips (p < 0.001). The HUV also exhibited significantly higher stress relaxation response in the longitudinal direction than in the circumferential orientation (p < 0.05). The ablumenal and lumenal surfaces of the material were also shown to differentially influence cell proliferation and metabolic activity, with both cellular functions significantly increased on the ablumenal surface (p < 0.05). Human gingival fibroblast migration into the scaffold was also influenced by the organization of extracellular matrix components, where the lumenal surface inhibits cell migration, acting as a barrier, while the ablumenal surface, which is proposed to interface with the wound site, promotes cellular invasion. These results show the HUV bioscaffold to be a promising naturally derived

  16. Acellular vaccines for preventing whooping cough in children.

    PubMed

    Zhang, Linjie; Prietsch, Sílvio O M; Axelsson, Inge; Halperin, Scott A

    2012-03-14

    Routine use of whole-cell pertussis (wP) vaccines was suspended in some countries in the 1970s and 1980s because of concerns about adverse effects. Following such action, there was a resurgence of whooping cough. Acellular pertussis (aP) vaccines, containing purified or recombinant Bordetella pertussis (B. pertussis) antigens, were developed in the hope that they would be as effective, but less reactogenic than the whole-cell vaccines. To assess the efficacy and safety of acellular pertussis vaccines in children. We searched the Cochrane Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 4) which contains the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1950 to December week 4, 2011), EMBASE (1974 to January 2012), Biosis Previews (2009 to January 2012), and CINAHL (2009 to January 2012). We selected double-blind randomised efficacy and safety trials of aP vaccines in children up to six years old, with active follow-up of participants and laboratory verification of pertussis cases. Two review authors independently extracted data and assessed the risk of bias in the studies. Differences in trial design precluded a meta-analysis of the efficacy data. We pooled the safety data from individual trials using a random-effects meta-analysis model. We included six efficacy trials with a total of 46,283 participants and 52 safety trials with a total of 136,541 participants. Most of the safety trials did not report the methods for random sequence generation, allocation concealment and blinding, which made it difficult to assess the risk of bias in the studies. The efficacy of multi-component (≥ three) vaccines varied from 84% to 85% in preventing typical whooping cough (characterised by 21 or more consecutive days of paroxysmal cough with confirmation of B. pertussis infection by culture, appropriate serology or contact with a household member who has culture-confirmed pertussis), and from 71% to 78% in preventing mild

  17. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    PubMed

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  18. Biologic resurfacing arthroplasty with acellular human dermal allograft and platelet-rich plasma (PRP) in young patients with glenohumeral arthritis-average of 60 months of at mid-term follow-up.

    PubMed

    Lo, Eddie Y; Flanagin, Brody A; Burkhead, Wayne Z

    2016-07-01

    The treatment of young patients with glenohumeral arthritis has been challenging. Alternative treatment options include activity modification, arthroscopic débridement, and arthroplasty. Addressing the glenoid during arthroplasty in this population of patients continues to be a significant challenge. In this study, we evaluated the midterm outcomes of hemiarthroplasty with biologic resurfacing of the glenoid with human dermal matrix allograft. Between 2004 and 2011, 55 patients underwent hemiarthroplasty and biologic resurfacing of the glenoid with human dermal matrix allograft. The average age was 50 ± 9 years. Subjective evaluation was performed with the Western Ontario Osteoarthritis of the Shoulder Index, American Shoulder and Elbow Surgeons score, visual analog scale, and Single Assessment Numeric Evaluation. Patients returned to the clinic for clinical examination and radiographic evaluation. The average follow-up was 60 months. The average postoperative American Shoulder and Elbow Surgeons score was 76 ± 22, and the Western Ontario Osteoarthritis of the Shoulder Index score was 76% ± 22%. The visual analog scale score was 2.4 ± 2.6. The average preoperative Single Assessment Numeric Evaluation score was 33% ± 22%, which significantly improved to 72% ± 22% postoperatively. Eighty-one percent of the patients were satisfied (10/47) or highly satisfied (28/47) with their result. With radiographic evaluation, the average joint space was 1 ± 1 mm preoperatively and 2 ± 1 mm postoperatively. A total of 5 cases (9.1%) were revised to anatomic total shoulder arthroplasty with implantation of a glenoid component. Hemiarthroplasty with biologic resurfacing of the glenoid using human dermal matrix allograft can lead to successful midterm outcomes with satisfactory complication and revision rates. Both patient satisfaction and clinical outcome remain high regardless of radiographic outcome. Copyright © 2016 Journal of

  19. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®)

    PubMed Central

    Rastrelli, Marco; Tropea, Saveria; Spina, Romina; Costa, Alessandra; Stramare, Roberto; Mocellin, Simone; Bonavina, Maria Giuseppina; Rossi, Carlo Riccardo

    2016-01-01

    Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis®) placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction. PMID:27920698

  20. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urinemore » samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.« less

  1. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis

    NASA Astrophysics Data System (ADS)

    Hantash, Basil M.; Bedi, Vikramaditya P.; Sudireddy, Vasanthi; Struck, Steven K.; Herron, G. Scott; Chan, Kin Foong

    2006-07-01

    The wound healing process in skin is studied in human subjects treated with fractional photothermolysis. In-vivo histological evaluation of vacuoles formed over microthermal zones (MTZs) and their content is undertaken. A 30-W, 1550-nm single-mode fiber laser system delivers an array of 60 µm or 140 µm 1/e2 incidence microbeam spot size at variable pulse energy and density. Treatments span from 6 to 20 mJ with skin excisions performed 1-day post-treatment. Staining with hematoxylin and eosin demonstrates an intact stratum corneum with vacuolar formation within the epidermis. The re-epithelialization process with repopulation of melanocytes and keratinocytes at the basal layer is apparent by 1-day post-treatment. The dermal-epidermal (DE) junction is weakened and separated just above zones of dermal coagulation. Complete loss of dermal cell viability is noted within the confines of the MTZs 1-day post-treatment, as assessed by lactate dehydrogenase. All cells falling outside the irradiation field remain viable. Content within the epidermal vacuoles stain positively with Gomori trichrome, suggesting a dermal origin. However, the positive staining could be due to loss of specificity after thermal alteration. Nevertheless, this dermal extrusion hypothesis is supported by very specific positive staining with an antihuman elastin antibody. Fractional photothermolysis creates microthermal lesions that allow transport and extrusion of dermal content through a compromised DE junction. Some dermal material is incorporated into the microepidermal necrotic debris and shuttled up the epidermis to eventually be exfoliated through the stratum corneum. This is the first report of a nonablative laser-induced transport mechanism by which dermal content can be predictably extruded biologically through the epidermis. Thus, treatment with the 1550-nm fiber laser may provide the first therapeutic option for clinical indications, including pigmentary disorders such as medically

  2. Estimating terrestrial amphibian pesticide body burden through dermal exposure

    EPA Science Inventory

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active...

  3. Osteopontin in Systemic Sclerosis and its Role in Dermal Fibrosis

    PubMed Central

    Wu, Minghua; Schneider, Daniel J.; Mayes, Maureen D; Assassi, Shervin; Arnett, Frank C.; Tan, Filemon K.; Blackburn, Michael R.; Agarwal, Sandeep K.

    2012-01-01

    Osteopontin (OPN) is a matricellular protein with proinflammatory and profibrotic properties. Previous reports demonstrate a role for OPN in wound healing and pulmonary fibrosis. Herein, we determined if OPN levels are increased in a large cohort of systemic sclerosis (SSc) patients and if OPN contributes dermal fibrosis. Plasma OPN levels were increased in SSc patients, including patients with limited and diffuse disease, compared to healthy controls. Immunohistology demonstrated OPN on fibroblast-like and inflammatory cells in SSc skin and lesional skin from mice in the bleomycin-induced dermal fibrosis model. OPN deficient (OPN−/−) mice developed less dermal fibrosis compared to wild-type mice in the bleomycin-induced dermal fibrosis model. Additional in vivo studies demonstrated that lesional skin from OPN−/− mice had fewer Mac-3+ cells, fewer myofibroblasts, decreased TGF-beta (TGFβ) and genes in the TGFβ pathway and decreased numbers of cells expressing phosphorylated SMAD2 (pSMAD) and ERK. In vitro, OPN−/− dermal fibroblasts had decreased migratory capacity but similar phosphorylation of SMAD2 by TGFβ. Finally, TGFβ production by OPN deficient macrophages was reduced compared to wild type. These data demonstrate an important role for OPN in the development of dermal fibrosis and suggest that OPN may be a novel therapeutic target in SSc. PMID:22402440

  4. Reactogenicity of infant whole cell pertussis combination vaccine compared with acellular pertussis vaccines with or without simultaneous pneumococcal vaccine in the Netherlands.

    PubMed

    David, Silke; Vermeer-de Bondt, Patricia E; van der Maas, Nicoline A T

    2008-10-29

    In addition to the routine enhanced passive safety surveillance of the Dutch National Vaccination Programme, RIVM (National Institute for Public Health and the Environment) started a large questionnaire study enrolling approximately 53,000 children from December 2003 until September 2007. We intended to establish accurate frequency estimates for several more severe adverse events and to compare the incidence rates of three different infant vaccines that were used consecutively. Whole cell pertussis (wP) DTP-IPV-Hib vaccine (NVI) was replaced by acellulair pertussis (aP) in 2005, first Infanrix-IPV-Hib (GSK) followed by Pediacel (Sanofi) in 2006. Pneumococcal vaccine, Prevenar (Wyeth), was added for children born from April 2006. Parents returned 28,796 questionnaires (response 54%), 15,069 for whole cell pertussis and 13,727 for acellular pertussis vaccine, including 4485 with pneumococcal vaccine. The OR for reported events was 3-6 for whole cell pertussis vaccine compared with acellular vaccine. This was true for prolonged crying for 3h and more after the first dose (1.5% versus 0.4%; 95 CI 1.1-1.9 and 95% CI 0.2-0.7, respectively), and very high fever of 40.5 degrees C and over following the fourth dose (0.8% versus 0.2%; 95% CI 0.5-1.1 and 0.06-0.3, respectively), while possible febrile convulsions were diagnosed only twice after the fourth dose in the whole cell vaccine group and one after acellular pertussis vaccine. Pallor was significantly more frequent after the first dose of whole cell pertussis than after acellulair pertussis vaccination (18.3% versus 3.4%; 95% CI 17.2-19.5 and 95% CI 2.8-4.0 respectively) Collapse after the first dose was rare in both vaccine groups (5 after whole cell vaccine and 1 after acellular vaccine). The addition of conjugated pneumococcal vaccine did not result in statistically significant increased rates of adverse events in the acellular vaccine group. Whole cell pertussis vaccine showed a significantly higher reactogenicity

  5. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    PubMed

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Exploratory study on the micro-remodeling of dermal tissue].

    PubMed

    Jiang, Yu-zhi; Ding, Gui-fu; Lu, Shu-liang

    2009-10-01

    To explore the effect of three-dimensional structure of dermal matrix on biological behavior of fibroblasts (Fb) in the microcosmic perspective. The three-dimensional structure of dermal tissue was analyzed by plane geometric and trigonometric function. Microdots structure array with cell adhesion effect was designed by computer-assisted design software according to the adhesive and non-adhesive components of dermal tissue. Four sizes (8 microm x 3 microm, space 6 microm; 16 microm x 3 microm, space 6 microm; 16 microm x 5 microm, space 8 microm; 20 microm x 3 microm, space 2 microm) of micropier grid used for cell culture (MPGCC) with cell-adhesive microdots, built up with micro-pattern printing and molecule self-assembly method were used to culture dermal Fb. Fb cultured with cell culture matrix without micropier grid was set up as control. The expression of skeleton protein (alpha-SMA) of Fb, cell viability and cell secretion were detected with immunohistochemistry, fluorescent immunohistochemistry, MTT test and the hydroxyproline content assay. The three-dimensional structure of dermal tissue could be simulated by MPGCC as shown in arithmetic analysis. Compared with those of control group [(12 +/- 3)% and (0.53 +/- 0.03) microg/mg, (0.35 +/- 0.04)], the expression of alpha-SMA [(49 +/- 3)%, (61 +/- 3)%, (47 +/- 4)%, (51 +/- 3)%] and the content of hydroxyproline [(0.95 +/- 0.04), (0.87 +/- 0.03), (0.81 +/- 0.03), (0.77 +/- 0.03) microg/mg] were increased significantly (P < 0.05), the cell viability of Fb (0.12 +/- 0.03, 0.13 +/- 0.04, 0.14 +/- 0.03, 0.19 +/- 0.03) cultured in MPGCC was decreased significantly (P < 0.05). When the parameters of micropier grid were changed, the expression of alpha-SMA, the cell viability and the content of hydroxyproline of Fb cultured in four sizes of MPGCC were also significantly changed as compared with one another (P < 0.05). MPGCC may be the basic functional unit of dermal template, or unit of dermal template to call

  7. Regenerative and Antibacterial Properties of Acellular Fish Skin Grafts and Human Amnion/Chorion Membrane: Implications for Tissue Preservation in Combat Casualty Care.

    PubMed

    Magnusson, Skuli; Baldursson, Baldur Tumi; Kjartansson, Hilmar; Rolfsson, Ottar; Sigurjonsson, Gudmundur Fertram

    2017-03-01

    Improvised explosive devices and new directed energy weapons are changing warfare injuries from penetrating wounds to large surface area thermal and blast injuries. Acellular fish skin is used for tissue repair and during manufacturing subjected to gentle processing compared to biologic materials derived from mammals. This is due to the absence of viral and prion disease transmission risk, preserving natural structure and composition of the fish skin graft. The aim of this study was to assess properties of acellular fish skin relevant for severe battlefield injuries and to compare those properties with those of dehydrated human amnion/chorion membrane. We evaluated cell ingrowth capabilities of the biological materials with microscopy techniques. Bacterial barrier properties were tested with a 2-chamber model. The microstructure of the acellular fish skin is highly porous, whereas the microstructure of dehydrated human amnion/chorion membrane is mostly nonporous. The fish skin grafts show superior ability to support 3-dimensional ingrowth of cells compared to dehydrated human amnion/chorion membrane (p < 0.0001) and the fish skin is a bacterial barrier for 24 to 48 hours. The unique biomechanical properties of the acellular fish skin graft make it ideal to be used as a conformal cover for severe trauma and burn wounds in the battlefield. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  8. Comparison of dermal and inhalation routes of entry for organic chemicals

    NASA Technical Reports Server (NTRS)

    Jepson, Gary W.; Mcdougal, James N.; Clewell, Harvey J., III

    1992-01-01

    The quantitative comparison of the chemical concentration inside the body as the result of a dermal exposure versus an inhalation exposure is useful for assessing human health risks and deciding on an appropriate protective posture. In order to describe the relationship between dermal and inhalation routes of exposure, a variety of organic chemicals were evaluated. The types of chemicals chosen for the study were halogenated hydrocarbons, aromatic compounds, non-polar hydrocarbons and inhalation anesthetics. Both dermal and inhalation exposures were conducted in rats and the chemicals were in the form of vapors. Prior to the dermal exposure, rat fur was closely clipped and during the exposure rats were provided fresh breathing air through latex masks. Blood samples were taken during 4-hour exposures and analyzed for the chemical of interest. A physiologically based pharmacokinetic model was used to predict permeability constants (cm/hr) consistent with the observed blood concentrations of the chemical. The ratio of dermal exposure to inhalation exposure required to achieve the same internal dose of chemical was calculated for each test chemical. The calculated ratio in humans ranged from 18 for styrene to 1180 for isoflurane. This methodology can be used to estimate the dermal exposure required to reach the internal dose achieved by a specific inhalation exposure. Such extrapolation is important since allowable exposure standards are often set for inhalation exposures, but occupational exposures may be dermal.

  9. Vibration anesthesia for the reduction of pain with facial dermal filler injections.

    PubMed

    Mally, Pooja; Czyz, Craig N; Chan, Norman J; Wulc, Allan E

    2014-04-01

    Vibration anesthesia is an effective pain-reduction technique for facial cosmetic injections. The analgesic effect of this method was tested in this study during facial dermal filler injections. The study aimed to evaluate the safety and efficacy of vibration anesthesia for these facial injections. This prospective study analyzed 41 patients who received dermal filler injections to the nasolabial folds, tear troughs, cheeks, and other facial sites. The injections were administered in a randomly assigned split-face design. One side of the patient's face received vibration together with dermal filler injections, whereas the other side received dermal filler injections alone. The patients completed a posttreatment questionnaire pertaining to injection pain, adverse effects, and preference for vibration with future dermal filler injections. The patients experienced both clinically and statistically significant pain reduction when a vibration stimulus was co-administered with the dermal filler injections. No adverse events were reported. The majority of the patients (95 %) reported a preference for vibration anesthesia with subsequent dermal filler injections. Vibration is a safe and effective method of achieving anesthesia during facial dermal filler injections. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  10. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    PubMed

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  11. The relationship between dermal papillary structure and skin surface properties, color, and elasticity.

    PubMed

    Mizukoshi, K; Nakamura, T; Oba, A

    2016-08-01

    The skin contains an undulating structure called the dermal papillary structure between the border of the epidermis and dermis. The physiological importance of the dermal papillary structures has been discussed, however, the dermal papillary structures have never been evaluated for their contribution to skin appearance. In this study, we investigated the correlation between the dermal papillary structure and skin color and elasticity. In addition, the relationship was validated with skin model experiments. The dermal papillary structures in the skin of the female cheek were quantitatively measured by in vivo confocal laser scanning microscopy images. In addition, the skin color and elasticity were measured at the same site. A skin model with dermal papilla-like structures was created by referring to the optical and shape properties of the skin using agar gel and a scattering sheet. Correlations were found between the dermal papillary structures and skin color irregularity and skin elasticity. These relationships were verified by the experiments employing a skin model. The results of this study indicated that the dermal papillary structure is also an important factor for skin appearance such as color and elasticity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy.

    PubMed

    Guo, Haiying; Xing, Yizhan; Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen; Li, Yuhong

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  13. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    PubMed Central

    Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells. PMID:29383288

  14. Predictable root recession coverage.

    PubMed

    Hoexter, David L

    2006-01-01

    Gingival recession, exposure of the tooth's root, is undesirable and, in many situations, contrary to normal physiology. Today's root coverage is predictable. With the use of an acellular dermal matrix membrane (Fasciablast), we can achieve a new blood supply and predictable coverage, with no second surgical procedure. Youth, esthetics and physiology are restored.

  15. Analysis of human acellular nerve allograft reconstruction of 64 injured nerves in the hand and upper extremity: a 3 year follow-up study.

    PubMed

    Zhu, Shuang; Liu, Jianghui; Zheng, Canbin; Gu, Liqiang; Zhu, Qingtang; Xiang, Jianping; He, Bo; Zhou, Xiang; Liu, Xiaolin

    2017-08-01

    Human acellular nerve allografts have been increasingly applied in clinical practice. This study was undertaken to investigate the functional outcomes of nerve allograft reconstruction for nerve defects in the upper extremity. A total of 64 patients from 13 hospitals were available for this follow-up study after nerve repair using human acellular nerve allografts. Sensory and motor recovery was examined according to the international standards for motor and sensory nerve recovery. Subgroup analysis and logistic regression analysis were conducted to identify the relationship between the known factors and the outcomes of nerve repair. Mean follow-up time was 355 ± 158 (35-819) days; mean age was 35 ± 11 (14-68) years; average nerve gap length was 27 ± 13 (10-60) mm; no signs of infection, tissue rejection or extrusion were observed among the patients; 48/64 (75%) repaired nerves experienced meaningful recovery. Univariate analysis showed that site and gap length significantly influenced prognosis after nerve repair using nerve grafts. Delay had a marginally significant relationship with the outcome. A multivariate logistic regression model revealed that gap length was an independent predictor of nerve repair using human acellular nerve allografts. The results indicated that the human acellular nerve allograft facilitated safe and effective nerve reconstruction for nerve gaps 10-60 mm in length in the hand and upper extremity. Factors such as site and gap length had a statistically significant influence on the outcomes of nerve allograft reconstruction. Gap length was an independent predictor of nerve repair using human acellular nerve allografts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Validation of in vitro assays in three-dimensional human dermal constructs.

    PubMed

    Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen

    2018-05-01

    Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.

  17. Guiding tissue regeneration with ultrasound in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  18. The high failure rate of biologic resurfacing of the glenoid in young patients with glenohumeral arthritis.

    PubMed

    Strauss, Eric J; Verma, Nikhil N; Salata, Michael J; McGill, Kevin C; Klifto, Christopher; Nicholson, Gregory P; Cole, Brian J; Romeo, Anthony A

    2014-03-01

    The current study evaluated the outcomes of biologic resurfacing of the glenoid using a lateral meniscus allograft or human acellular dermal tissue matrix at intermediate-term follow-up. Forty-five patients (mean age, 42.2 years) underwent biologic resurfacing of the glenoid, and 41 were available for follow-up at a mean of 2.8 years. Lateral meniscal allograft resurfacing was used in 31 patients and human acellular dermal tissue matrix interposition in 10. Postoperative range of motion and clinical outcomes were assessed at the final follow-up. The overall clinical failure rate was 51.2%. The lateral meniscal allograft cohort had a failure rate of 45.2%, with a mean time to failure of 3.4 years. Human acellular dermal tissue matrix interposition had a failure rate of 70.0%, with a mean time to failure of 2.2 years. Overall, significant improvements were seen compared with baseline with respect to the visual analog pain score (3.0 vs. 6.3), American Shoulder and Elbow Surgeons score (62.0 vs. 36.8), and Simple Shoulder Test score (7.0 vs. 4.0). Significant improvements were seen for forward elevation (106° to 138°) and external rotation (31° to 51°). Despite significant improvements compared with baseline values, biologic resurfacing of the glenoid resulted in a high rate of clinical failure at intermediate follow-up. Our results suggest that biologic resurfacing of the glenoid may have a minimal and as yet undefined role in the management of glenohumeral arthritis in the young active patient over more traditional methods of hemiarthroplasty or total shoulder arthroplasty. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  19. Long-term Follow-up with AlloDerm in Breast Reconstruction.

    PubMed

    Baxter, Richard A

    2013-05-01

    Little is known about the long-term fate of acellular dermal matrices in breast implant surgery. A 12-year follow-up case with tissue analysis of AlloDerm in revision breast reconstruction reveals retention of graft volume and integration with an organized collagen structure, minimal capsule formation, and little or no indication of inflammation.

  20. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--PESTICIDES IN DERMAL ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Dermal Wipes data set contains analytical results for measurements of up to 8 pesticides in 86 dermal wipe samples over 86 households. Each sample was collected from the primary respondent within each household. The Dermal/Pesticide hand wipe was collected 7 d...

  1. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering

    PubMed Central

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim

    2015-01-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  2. Dermal uptake of phthalates from clothing: Comparison of model to human participant results.

    PubMed

    Morrison, G C; Weschler, C J; Bekö, G

    2017-05-01

    In this research, we extend a model of transdermal uptake of phthalates to include a layer of clothing. When compared with experimental results, this model better estimates dermal uptake of diethylphthalate and di-n-butylphthalate (DnBP) than a previous model. The model predictions are consistent with the observation that previously exposed clothing can increase dermal uptake over that observed in bare-skin participants for the same exposure air concentrations. The model predicts that dermal uptake from clothing of DnBP is a substantial fraction of total uptake from all sources of exposure. For compounds that have high dermal permeability coefficients, dermal uptake is increased for (i) thinner clothing, (ii) a narrower gap between clothing and skin, and (iii) longer time intervals between laundering and wearing. Enhanced dermal uptake is most pronounced for compounds with clothing-air partition coefficients between 10 4 and 10 7 . In the absence of direct measurements of cotton cloth-air partition coefficients, dermal exposure may be predicted using equilibrium data for compounds in equilibrium with cellulose and water, in combination with computational methods of predicting partition coefficients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells.

    PubMed

    Lee, E Y; Choi, E-J; Kim, J A; Hwang, Y L; Kim, C-D; Lee, M H; Roh, S S; Kim, Y H; Han, I; Kang, S

    2016-04-01

    Mesenchymal-epithelial interactions are important in controlling hair growth and the hair cycle. The β-catenin pathway of dermal papilla cells (DPCs) plays a pivotal role in morphogenesis and normal regeneration of hair follicles. Deletion of β-catenin in the dermal papilla reduces proliferation of the hair follicle progenitor cells that generate the hair shaft and induces an early onset of the catagen phase. In this study, a modulator of the Wnt/β-catenin activity was studied in oriental herb extracts on cultured human DPCs. The effect of Malva verticillata (M. verticillata) seeds on human DPCs was investigated by a Wnt/β-catenin reporter activity assay system (β-catenin-TCF/LEF reporter gene) and cell proliferation analysis. The synthesis of the factors related to hair growth and cycling was measured at both the mRNA and the protein level by semi-quantitative PCR and Western blot analysis, respectively. An extract from M. verticillata seeds increased Wnt reporter activity in a concentration-dependent manner and also led to increased β-catenin levels in cultured human DPCs. Myristoleic acid, identified as an effective compound of M. verticillata seeds, stimulated the proliferation of DPCs in a dose-dependent manner and increased transcription levels of the downstream targets: IGF-1, KGF, VEGF and HGF. Myristoleic acid also enhanced the phosphorylation of MAPKs (Akt and p38). Overall, the data suggest that this extract of M. verticillata seeds could be a good candidate for treating hair loss by modulating the Wnt/β-catenin pathway in DPCs. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  5. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker.

    PubMed

    Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua

    2018-05-01

    To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.

  6. Long-term Follow-up with AlloDerm in Breast Reconstruction

    PubMed Central

    2013-01-01

    Summary: Little is known about the long-term fate of acellular dermal matrices in breast implant surgery. A 12-year follow-up case with tissue analysis of AlloDerm in revision breast reconstruction reveals retention of graft volume and integration with an organized collagen structure, minimal capsule formation, and little or no indication of inflammation. PMID:25289211

  7. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials

    PubMed Central

    Lawson, Jeffrey H; Glickman, Marc H; Ilzecki, Marek; Jakimowicz, Tomasz; Jaroszynski, Andrzej; Peden, Eric K; Pilgrim, Alison J; Prichard, Heather L; Guziewicz, Malgorzata; Przywara, Stanisław; Szmidt, Jacek; Turek, Jakub; Witkiewicz, Wojciech; Zapotoczny, Norbert; Zubilewicz, Tomasz; Niklason, Laura E

    2016-01-01

    Summary Background For patients with end-stage renal disease who are not candidates for fistula, dialysis access grafts are the best option for chronic haemodialysis. However, polytetrafluoroethylene arteriovenous grafts are prone to thrombosis, infection, and intimal hyperplasia at the venous anastomosis. We developed and tested a bioengineered human acellular vessel as a potential solution to these limitations in dialysis access. Methods We did two single-arm phase 2 trials at six centres in the USA and Poland. We enrolled adults with end-stage renal disease. A novel bioengineered human acellular vessel was implanted into the arms of patients for haemodialysis access. Primary endpoints were safety (freedom from immune response or infection, aneurysm, or mechanical failure, and incidence of adverse events), and efficacy as assessed by primary, primary assisted, and secondary patencies at 6 months. All patients were followed up for at least 1 year, or had a censoring event. These trials are registered with ClinicalTrials.gov, NCT01744418 and NCT01840956. Findings Human acellular vessels were implanted into 60 patients. Mean follow-up was 16 months (SD 7·6). One vessel became infected during 82 patient-years of follow-up. The vessels had no dilatation and rarely had post-cannulation bleeding. At 6 months, 63% (95% CI 47–72) of patients had primary patency, 73% (57–81) had primary assisted patency, and 97% (85–98) had secondary patency, with most loss of primary patency because of thrombosis. At 12 months, 28% (17–40) had primary patency, 38% (26–51) had primary assisted patency, and 89% (74–93) had secondary patency. Interpretation Bioengineered human acellular vessels seem to provide safe and functional haemodialysis access, and warrant further study in randomised controlled trials. Funding Humacyte and US National Institutes of Health. PMID:27203778

  8. Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium

    PubMed Central

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface. PMID:25375996

  9. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    PubMed

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. LINKING DERMAL MODELING AND LOADING DATA TO PREDICT LONG-TERM DOSES FROM INTERMITTENT DERMAL CONTACT

    EPA Science Inventory

    In this paper we assess dermal exposure and dose resulting from intermittent contact with residue-contaminated surfaces. These estimates require an understanding of (1) the quantitative relationship between exposure and absorbed dose; (2) the impact of intermittent exposure on ...

  11. Dermal bioavailability of benzo[a]pyrene on lampblack: implications for risk assessment.

    PubMed

    Stroo, Hans F; Roy, Timothy A; Liban, Cris B; Kreitinger, Joseph P

    2005-06-01

    Lampblack is the principal source of contamination in soils at manufactured gas plant (MGP) sites where oil was used as the feedstock. Risks and cleanup criteria at these sites are determined primarily by the total carcinogenic polynuclear aromatic hydrocarbon (PAH) content, particularly the concentration of benzo[a]pyrene (BaP). Dermal contact with soils at oil-gas MGP sites is a significant component of the overall risks. Seven samples were collected from oil-gas MGP sites and the steady-state dermal fluxes were measured over 96 h in vitro. The standard dermal bioassay technique (in which 3H-BaP is added to the soil matrix) was modified to allow direct measurement of the dermal absorption of the native BaP in the samples. The experimentally derived dermal absorption factors for BaP were 14 to 107 times lower than the default assumption of 15% over 24 h (55-fold lower on average). The dermal fluxes were correlated positively to the total BaP and total carbon concentrations. The measured dermal absorption factors were compared to the default risk-assessment calculations for all seven samples. The calculated excess cancer risk was reduced as a result of using the measured absorption factors by 97% on average (with reductions ranging from 93 to 99%). This work indicates the risks at oil-gas MGP sites currently are overestimated by one to two orders of magnitude, and provides a protocol for the testing and data analysis needed to generate site-specific cleanup levels.

  12. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  13. Estimating dermal transfer from PCB-contaminated porous surfaces.

    PubMed

    Slayton, T M; Valberg, P A; Wait, A D

    1998-06-01

    Health risks posed by dermal contact with PCB-contaminated porous surfaces have not been directly demonstrated and are difficult to estimate indirectly. Surface contamination by organic compounds is commonly assessed by collecting wipe samples with hexane as the solvent. However, for porous surfaces, hexane wipe characterization is of limited direct use when estimating potential human exposure. Particularly for porous surfaces, the relationship between the amount of organic material collected by hexane and the amount actually picked up by, for example, a person's hand touch is unknown. To better mimic PCB pickup by casual hand contact with contaminated concrete surfaces, we used alternate solvents and wipe application methods that more closely mimic casual dermal contact. Our sampling results were compared to PCB pickup using hexane-wetted wipes and the standard rubbing protocol. Dry and oil-wetted samples, applied without rubbing, picked up less than 1% of the PCBs picked up by the standard hexane procedure; with rubbing, they picked up about 2%. Without rubbing, saline-wetted wipes picked up 2.5%; with rubbing, they picked up about 12%. While the nature of dermal contact with a contaminated surface cannot be perfectly reproduced with a wipe sample, our results with alternate wiping solvents and rubbing methods more closely mimic hand contact than the standard hexane wipe protocol. The relative pickup estimates presented in this paper can be used in conjunction with site-specific PCB hexane wipe results to estimate dermal pickup rates at sites with PCB-contaminated concrete.

  14. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. NHEXAS PHASE I ARIZONA STUDY--PESTICIDES IN DERMAL WIPES ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Dermal Wipes data set contains analytical results for measurements of up to 3 pesticides in 177 dermal wipe samples over 177 households. Each sample was collected from the primary respondent within each household during Stage III of the NHEXAS study. The Derma...

  16. NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN DERMAL WIPES ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Dermal Wipe Samples data set contains analytical results for measurements of up to 8 pesticides in 40 dermal wipe samples over 40 households. Each sample was collected from the primary respondent within each household. The sampling period occurred on the last ...

  17. Hydrocortisone effect on hyaluronate synthesis in a self-assembled human dermal equivalent.

    PubMed

    Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara

    2016-10-01

    Human dermal matrix is a 'self-assembled' dermal equivalent containing large amounts of the glycosaminoglycan hyaluronic acid (hyaluronate, hyaluronan, HA). We sought to investigate the actions of the hormone hydrocortisone on hyaluronate synthesis in the human dermal matrix. To this end, human dermal fibroblasts were cultured under serum-free conditions, and in the absence of a three-dimensional matrix, in the presence of varying amounts of hydrocortisone. The resultant human dermal matrices were characterized. We report that low concentrations of hydrocortisone enhance hyaluronate synthesis in the human dermal equivalent and higher concentrations cause inhibition of hyaluronate synthesis. Other glycosaminoglycan (chondroitin sulphate) synthesis is not affected by changing hydrocortisone concentrations up to 500× (200 µg/ml) of the base value. In order to gain preliminary insight into the molecular mechanism of hyaluronate inhibition, a differential gene array analysis was conducted of human dermal matrix grown in the presence of 200 µg/ml hydrocortisone and in a physiological concentration (0.4 µg/ml, normal conditions). The results of these experiments demonstrate the differential expression of 43 genes in the 500× (200 µg/ml) hydrocortisone construct as compared to the construct grown under normal conditions (0.4 µg/ml hydrocortisone). These preliminary experiments suggest that hydrocortisone at higher concentrations may exert its inhibitory effect on hyaluronate synthesis early in the glycolytic pathway, leading to HA biosynthesis by downregulation of phosphoglucomutase and glucose phosphate isomerase, possibly leading to depletion of the cellular pool of UDP-sugar precursors necessary for HA synthesis. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.

    PubMed

    Falcone, Samuel J; Berg, Richard A

    2008-10-01

    Temporary dermal fillers composed of crosslinked hyaluronic acid (XLHA) are space filling gels that are readily available in the United States and Europe. Several families of dermal fillers based on XLHA are now available and here we compare the physical and rheological properties of these fillers to the clinical effectiveness. The XLHA fillers are prepared with different crosslinkers, using HA isolated from different sources, have different particle sizes, and differ substantially in rheological properties. For these fillers, the magnitude of the complex viscosity, |eta*|, varies by a factor of 20, the magnitude of the complex rigidity modulus, |G*|, and the magnitude of the complex compliance, |J*| vary by a factor of 10, the percent elasticity varies from 58% to 89.9%, and the tan delta varies from 0.11 to 0.70. The available clinical data cannot be correlated with either the oscillatory dynamic or steady flow rotational rheological properties of the various fillers. However, the clinical data appear to correlate strongly with the total concentration of XLHA in the products and to a lesser extent with percent elasticity. Hence, our data suggest the following correlation: dermal filler persistence = [polymer] x [% elasticity] and the clinical persistence of a dermal filler composed of XLHA is dominated by the mass and elasticity of the material implanted. This work predicts that the development of future XLHA dermal filler formulations should focus on increasing the polymer concentration and elasticity to improve the clinical persistence.

  19. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  20. Safety Evaluation of Silk Protein Film (A Novel Wound Healing Agent) in Terms of Acute Dermal Toxicity, Acute Dermal Irritation and Skin Sensitization

    PubMed Central

    Padol, Amol R.; Jayakumar, K.; Shridhar, N. B.; Narayana Swamy, H. D.; Narayana Swamy, M.; Mohan, K.

    2011-01-01

    Acute dermal toxicity study was conducted in rats. The parameters studied were body weight, serum biochemistry and gross pathology. The animals were also observed for clinical signs and mortality after the application of test film. The dermal irritation potential of silk protein film was examined using Draize test. In the initial test, three test patches were applied sequentially for 3 min, 1 and 4 hours, respectively, and skin reaction was graded. The irritant or negative response was confirmed using two additional animals, each with one patch, for an exposure period of 4 hours. The responses were scored at 1, 24, 48 and 72 hours after the patch removal. Skin sensitization study was conducted according to Buehler test in guinea pigs, in which on day 0, 7 and 14, the animals were exposed to test material for 6 hours (Induction phase) and on day 28, the animals were exposed for a period of 24 hours (Challenge phase). The skin was observed and recorded at 24 and 48 hours after the patch removal. In acute dermal toxicity study, the rats dermally treated with silk film did not show any abnormal clinical signs and the body weight, biochemical parameters and gross pathological observations were not significantly different from the control group. In acute dermal irritation study, the treated rabbits showed no signs of erythema, edema and eschar, and the scoring was given as “0” for all time points of observations according to Draize scoring system. In skin sensitization study, there were no skin reactions 24 and 48 hours after the removal of challenge patch, which was scored “0” based on Magnusson/Kligman grading scale. PMID:21430915

  1. Treatment of Linear Scleroderma (en Coup de Sabre) With Dermal Fat Grafting.

    PubMed

    Barin, Ensar Zafer; Cinal, Hakan; Cakmak, Mehmet Akif; Tan, Onder

    2016-05-01

    Linear scleroderma, also known as "en coup de sabre," is a subtype of localized scleroderma that warrants aesthetic correction because it appears on the forehead region in children. To report dermal fat grafting as a novel and effective surgical treatment option in linear scleroderma. Under local anesthesia, a dermal fat graft was successfully placed into a subcutaneous pocket that was prepared underneath the depressed scar. The donor site was closed primarily. No early or late complications developed postoperatively. After 1-year follow-up, the dermal fat graft was viable, the depressed scar was adequately augmented, and a good aesthetic result and patient satisfaction were obtained. We believe that dermal fat grafting is a cost-effective option and provides a long-lasting aesthetic outcome in the management of linear scleroderma. © The Author(s) 2015.

  2. NHEXAS PHASE I ARIZONA STUDY--METALS IN DERMAL WIPES ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Dermal Wipes data set contains analytical results for measurements of up to 11 metals in 179 dermal wipe samples over 179 households. Each sample was collected from the primary respondent within each household during Stage III of the NHEXAS study. The sampling per...

  3. NHEXAS PHASE I MARYLAND STUDY--METALS IN DERMAL WIPES ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Dermal Wipe Samples data set contains analytical results for measurements of up to 4 metals in 343 dermal wipe samples over 80 households. Each sample was collected from the primary respondent within each household. The sampling period occurred on the first day of...

  4. Porcine dermal lesions produced by 1540-nm laser radiation pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Johnson, Thomas E.

    2001-07-01

    Completion of recent studies within our group indicates a breed-based difference in dermal response to 1540 nm 0.8 millisecond laser pulses. Laser exposure to Yucatan Mini- Pigs (highly pigmented skin) and Yorkshire pigs (lightly pigmented skin) demonstrate statistical differences between the ED50's of the two breeds. Laser delivery is accomplished using an Er:Glass system producing 1540 nm of light at millisecond exposure times and in the range of 5 to 95 J/cm2. Dermal lesion development was evaluated for acute, 1 hour, and 24-hour post exposure presentation. Our data contradicts the theory that water absorption is the sole mechanism of dermal tissue damage observed from 1540 nm laser exposures, as skin chromophores appear to play a role in lesion development.

  5. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study.

    PubMed

    Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S

    2009-01-01

    The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(epsilon-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. 2008 John Wiley & Sons, Ltd

  6. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study

    PubMed Central

    Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S.

    2013-01-01

    The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(ε-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. PMID:19004029

  7. Dermal insecticide residues from birds inhabiting an orchard

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Gentry, S.; Borges, S.L.

    2007-01-01

    The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.

  8. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells.

    PubMed

    Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi

    2015-12-15

    Although the growth of unwanted hair or hirsutism is a harmless condition, many people find it bothersome and embarrassing. Maintaining stem cell features of dermal papilla cells is a critical biological process that keeps the high rate of hair growth. Glycyrrhizic acid has been reported to impair hair growth in some studies; however, its underlying mechanism has not yet been investigated. This study aimed to explore the effect and underlying mechanism of glycyrrhizic acid on stemness of human dermal papilla cells. The stem cell molecular markers, epithelial to mesenchymal markers and Wnt/β-catenin-associated proteins of human dermal papilla cell line and primary human dermal papilla cells were analysed by western blot analysis and immunocytochemistry. The present study demonstrated that glycyrrhizic acid significantly depressed the stemness of dermal papilla cells in dose- and time-dependent manners. Clonogenicity and stem cell markers in the glycyrrhizic acid-treated cells were found to gradually decrease in the culture in a time-dependent manner. Our results demonstrated that glycyrrhizic acid exerted the stem cell suppressing effects through the interruption of ATP-dependent tyrosine kinase/glycogen synthase kinase3β-dependent mechanism which in turn down-regulated the β-catenin signalling pathway, coupled with decreased its down-stream epithelial-mesenchymal transition and self-renewal transcription factors, namely, Oct-4, Nanog, Sox2, ZEB1 and Snail. The effect of glycyrrhizic acid on the reduction of stem cell features was also observed in the primary dermal papilla cells directly obtained from human hair follicles. These results revealed a novel molecular mechanism of glycyrrhizic acid in regulation of dermal papilla cells and provided the evidence supporting the use of this compound in suppressing the growth of unwanted hair. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. A new fish scale-derived scaffold for corneal regeneration.

    PubMed

    Lin, Chien Chen; Ritch, Robert; Lin, Shang Ming; Ni, Mei-Hui; Chang, Yu-Chung; Lu, Yi Lung; Lai, Hong Ji; Lin, Feng-Huei

    2010-02-26

    The purpose of this study is to develop a novel scaffold, derived from fish scales, as an alternative functional material with sufficient mechanical strength for corneal regenerative applications. Fish scales, which are usually considered as marine wastes, were acellularized, decalcified and fabricated into collagen scaffolds. The microstructure of the acellularized scaffold was imaged by scanning electron microscopy (SEM). The acellularization and decalcification treatments did not affect the naturally 3-dimentional, highly centrally-oriented micropatterned structure of the material. To assess the cytocompatibility of the scaffold with corneal cells, rabbit corneal cells were cultured on the scaffold and examined under SEM and confocal microscopy at different time periods. Rapid cell proliferation and migration on the scaffold were observed under SEM and confocal microscopy. The highly centrally-oriented micropatterned structure of the scaffold was beneficial for efficient nutrient and oxygen supply to the cells cultured in the three-dimensional matrices, and therefore it is useful for high-density cell seeding and spreading. Collectively, we demonstrate the superior cellular conductivity of the newly developed material. We provide evidences for the feasibility of the scaffold as a template for corneal cells growth and migration, and thus the fish scale-derived scaffold can be developed as a promising material for tissue-engineering of cornea.

  10. Optical coherence tomography for image-guided dermal filler injection and biomechanical evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Dermal fillers are a very popular anti-ag ing treatment with estimated sales in the billions of dollars and millions of procedures performed. As the aging population continues to grow, these figures are only e xpected to increase. Dermal fillers have various compositions depending on their intended applicati on. Reactions to dermal fillers can be severe, such as ischemic events and filler migration to the eyes. Howe ver, these adverse reactions are rare. Nevertheless, the capability to perform imag e-guided filler injections would minimize th e risk of such reacti ons. In addition, the biomechanical properties of various fillers have been evalua ted, but there has been no investigation on the effects of filler on the biomechanical properties of skin. In this work, we utilize optical cohe rence tomography (OCT) for visualizing dermal filler injections with micrometer-scale sp atial resolution. In addition, we utilize noncontact optical coherence elastography (OCE) to quantify the changes in the biomechan ical properties of pig skin after the dermal filler injections. OCT was successfully able to visualize the dermal filler injecti on process, and OCE showed that the viscoelasticity of the pig skin was increased locally at the filler injection sites. OCT may be able to provide real-time image guidance in 3D, and when combined with functional OCT techniques such as optical microangiography, could be used to avoid blood vessels during the injection.

  11. [Penile augmentation and elongation using autologous dermal-fat strip grafting].

    PubMed

    Yang, Zhe; Li, Yang-qun; Tang, Yong; Chen, Wen; Li, Qiang; Zhou, Chuan-de; Zhao, Mu-xin; Hu, Chun-mei

    2012-05-01

    To investigate the effect of autologous dermal-fat strip grafting in penile augmentation and elongation. From May 2004 to December 2010, 24 patients underwent penile enhancement with free dermal-fat strip grafting. Through suprapubic incision, the superior suspensory ligament and part deep suspensory ligament are cutted off to lengthen the penis. The resulted dead space is filled with the autologous dermal-fat strip (6.0-9.5 cm in length, 1.2-1.5 cm in width and 0.6-0.8 cm in depth) to enhance the penis. Primary healing was achieved in 23 cases. Incisional fat liquefaction happened in one case which healed after dressing change. The penile appearance was satisfactory both at rest or erection. The penile length and circumference increased by 2.5-4.8 cm (average, 3.2 cm) and 1.8-3.0 cm (average, 2.4 cm), respectively. 18 patients were followed up for 3 months to 5 years. All the patients were satisfactory on the cosmetic and functional results. No complication happened. It is safe and effective for penile augmention and elongation with autologous dermal-fat strip grafting and disconnection of penile suspensory ligament.

  12. Platelet lysate embedded scaffolds for skin regeneration.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  13. Posterior repair with perforated porcine dermal graft.

    PubMed

    Taylor, G Bernard; Moore, Robert D; Miklos, John R; Mattox, T Fleming

    2008-01-01

    To compare postoperative vaginal incision separation and healing in patients undergoing posterior repair with perforated porcine dermal grafts with those that received grafts without perforations. Secondarily, the tensile properties of the perforated and non-perforated grafts were measured and compared. This was a non-randomized retrospective cohort analysis of women with stage II or greater rectoceles who underwent posterior repair with perforated and non-perforated porcine dermal grafts (Pelvicol(TM) CR Bard Covington, GA USA). The incidence of postoperative vaginal incision separation (dehiscence) was compared. A secondary analysis to assess graft tensile strength, suture pull out strength, and flexibility after perforation was performed using standard test method TM 0133 and ASTM bending and resistance protocols. Seventeen percent of patients (21/127) who received grafts without perforations developed vaginal incision dehiscence compared to 7% (5/71) of patients who received perforated grafts (p = 0.078). Four patients with vaginal incision dehiscence with non-perforated grafts required surgical revision to facilitate healing. Neither tensile strength or suture pull out strength were significantly different between perforated and non-perforated grafts (p = 0.81, p = 0.29, respectively). There was no difference in the flexibility of the two grafts (p = 0.20). Perforated porcine dermal grafts retain their tensile properties and are associated with fewer vaginal incision dehiscences.

  14. Hydroquinone PBPK model refinement and application to dermal exposure.

    PubMed

    Poet, Torka S; Carlton, Betsy D; Deyo, James A; Hinderliter, Paul M

    2010-11-01

    A physiologically based pharmacokinetic (PBPK) model for hydroquinone (HQ) was refined to include an expanded description of HQ-glucuronide metabolites and a description of dermal exposures to support route-to-route and cross-species extrapolation. Total urinary excretion of metabolites from in vivo rat dermal exposures was used to estimate a percutaneous permeability coefficient (K(p); 3.6×10(-5) cm/h). The human in vivo K(p) was estimated to be 1.62×10(-4) cm/h, based on in vitro skin permeability data in rats and humans and rat in vivo values. The projected total multi-substituted glutathione (which was used as an internal dose surrogate for the toxic glutathione metabolites) was modeled following an exposure scenario based on submersion of both hands in a 5% aqueous solution of HQ (similar to black and white photographic developing solution) for 2 h, a worst-case exposure scenario. Total multi-substituted glutathione following this human dermal exposure scenario was several orders of magnitude lower than the internal total glutathione conjugates in rats following an oral exposure to the rat NOEL of 20 mg/kg. Thus, under more realistic human dermal exposure conditions, it is unlikely that toxic glutathione conjugates (primarily the di- and, to a lesser degree, the tri-glutathione conjugate) will reach significant levels in target tissues. Copyright © 2010. Published by Elsevier Ltd.

  15. Dermal Sensitization Potential of Triethyleneglycol Dinitrate (TEGDN) in Guinea Pigs

    DTIC Science & Technology

    1989-01-01

    mutagenicity assay, acute oral toxicity tests in rats and mice, acute dermal toxicity in rabbits, dermal and ocular irritation studies in rabbits, and...conditions: 85E0102 had diffuse tracheitis, mild endocarditis , mild hepatitis, and diffuse pigment granules in the small intestine; 85E0103 had mild...severe ulceration progressing to necrosis. Sensitization is manifested as indirect inflammation mediated by components of the immune system in

  16. Acellular pertussis vaccines for adolescents.

    PubMed

    Pichichero, Michael E; Casey, Janet R

    2005-06-01

    The epidemiology of pertussis is changing, with a clear increase in the number of cases diagnosed in adolescents and adults. This development has spurred studies and anticipated licensure of safer diphtheria, tetanus, acellular pertussis combined (Tdap) vaccines for this older population. Literature review. Tdap vaccines are safe and immunogenic when administered to adolescents and adults. Correlates of immunity to pertussis after Tdap vaccination have not been established, but various combinations of antibody to pertussis antigens (pertussis toxin, filamentous hemagglutinin, pertactin, and fimbriae) provide protection. The importance of the number of antigens in Tdap vaccines for protection against mild pertussis disease is unclear. Pertussis vaccination establishes herd immunity after sufficient uptake within communities and countries. As experience with TdaP vaccines has accumulated, a 1-2% occurrence of large, local injection-site reactions with all TdaP vaccine products have been observed for booster doses in children 4-6 years of age. The frequency of large local reactions appears lower in adolescents and adults. The pathophysiologic mechanisms for the local reactions are not established, but a majority appears to be immunoglobulin E-mediated-reactive edema, and a minority appears to be immunoglobulin G-mediated Arthus-type reactions. Tdap vaccines appear safe and immunogenic. The economic impact of pertussis provides a cost-benefit justification for widespread use of Tdap vaccine boosting in adolescents.

  17. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou-Elwafa Abdallah, Mohamed, E-mail: mae_abdallah@yahoo.co.uk; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut; Pawar, Gopal

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm{sup 2}, finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPPmore » and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K{sub p}, cm/h) showed a significant negative correlation with log K{sub ow} for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K{sub ow} of PFRs. • Skin washing reduced the overall dermal

  18. Minipigs as an Animal Model for Dermal Vaccine Delivery

    PubMed Central

    Ploemen, Ivo HJ; Hirschberg, Hoang JHB; Kraan, Heleen; Zeltner, Adrian; van Kuijk, Sandra; Lankveld, Danielle PK; Royals, Michael; Kersten, Gideon FA; Amorij, Jean-Pierre

    2014-01-01

    Appropriate animal models for intradermal vaccine delivery are scarce. Given the high similarity of their skin anatomy to that of humans, minipigs may be a suitable model for dermal vaccine delivery. Here we describe the immunization of Göttingen minipigs by using intradermal and intramuscular delivery of hepatitis B surface antigen (HBsAg). Intradermal vaccine delivery by needle and syringe and by needle-free jet injection induced humoral antiHBsAg responses. Priming immunization by using the disposable syringe jet injector (DSJI) resulted in a higher antibody titer than did conventional intradermal immunization and a titer comparable to that after intramuscular vaccination with HBsAg and Al(OH)3 adjuvant. This study highlights the utility of the minipig model in vaccine studies assessing the efficacy of conventional and novel methods of dermal delivery. Moreover, we include suggestions regarding working with minipigs during dermal vaccine delivery studies, thereby fostering future work in this area of vaccinology. PMID:24512961

  19. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    PubMed

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    EPA Science Inventory

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flowthrough diffusi...

  1. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    PubMed Central

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  2. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    PubMed

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  3. Characterization and evolution of dermal filaments from patients with Morgellons disease

    PubMed Central

    Middelveen, Marianne J; Mayne, Peter J; Kahn, Douglas G; Stricker, Raphael B

    2013-01-01

    Morgellons disease is an emerging skin disease characterized by formation of dermal filaments associated with multisystemic symptoms and tick-borne illness. Some clinicians hypothesize that these often colorful dermal filaments are textile fibers, either self-implanted by patients or accidentally adhering to lesions, and conclude that patients with this disease have delusions of infestation. We present histological observations and electron microscopic imaging from representative Morgellons disease samples revealing that dermal filaments in these cases are keratin and collagen in composition and result from proliferation and activation of keratinocytes and fibroblasts in the epidermis. Spirochetes were detected in the dermatological specimens from our study patients, providing evidence that Morgellons disease is associated with an infectious process. PMID:23326202

  4. Characterization and evolution of dermal filaments from patients with Morgellons disease.

    PubMed

    Middelveen, Marianne J; Mayne, Peter J; Kahn, Douglas G; Stricker, Raphael B

    2013-01-01

    Morgellons disease is an emerging skin disease characterized by formation of dermal filaments associated with multisystemic symptoms and tick-borne illness. Some clinicians hypothesize that these often colorful dermal filaments are textile fibers, either self-implanted by patients or accidentally adhering to lesions, and conclude that patients with this disease have delusions of infestation. We present histological observations and electron microscopic imaging from representative Morgellons disease samples revealing that dermal filaments in these cases are keratin and collagen in composition and result from proliferation and activation of keratinocytes and fibroblasts in the epidermis. Spirochetes were detected in the dermatological specimens from our study patients, providing evidence that Morgellons disease is associated with an infectious process.

  5. In vivo study of dermal collagen of striae distensae by confocal Raman spectroscopy.

    PubMed

    Lung, Pam Wen; Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Téllez-Soto, Claudio A; Schuck, Desirée Cigaran; Brohem, Carla Abdo; Lorencini, Marcio; Martin, Airton Abrahão

    2018-04-01

    This research work mainly deals with studying qualitatively the changes in the dermal collagen of two forms of striae distensae (SD) namely striae rubrae (SR) and striae albae (SA) when compared to normal skin (NS) using confocal Raman spectroscopy. The methodology includes an in vivo human skin study for the comparison of confocal Raman spectra of dermis region of SR, SA, and NS by supervised multivariate analysis using partial least squares discriminant analysis (PLS-DA) to determine qualitatively the changes in dermal collagen. These groups are further analyzed for the extent of hydration of dermal collagen by studying the changes in the water content bound to it. PLS-DA score plot showed good separation of the confocal Raman spectra of dermis region into SR, SA, and NS data groups. Further analysis using loading plot and S-plot indicated the participation of various components of dermal collagen in the separation of these groups. Bound water content analysis showed that the extent of hydration of collagen is more in SD when compared to NS. Based on the results obtained, this study confirms the active involvement of dermal collagen in the formation of SD. It also emphasizes the need to study quantitatively the role of these various biochemical changes in the dermal collagen responsible for the variance between SR, SA, and NS.

  6. Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide

    DTIC Science & Technology

    2015-03-04

    production of acellular dermal matrices for clinical use . Wound Repair Regen 12, 276, 2004. 40. Movasaghi, Z., Rehman, S., and Rehman, I.U. Fourier...Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide Jennifer L. Wehmeyer, PhD, Shanmugasundaram Natesan, PhD...and Robert J. Christy, PhD Numerous techniques have been reported for preparing and sterilizing amniotic membrane (AM) for use in clinical

  7. Predictors of dermal exposures to polycyclic aromatic compounds among hot-mix asphalt paving workers.

    PubMed

    Cavallari, Jennifer M; Osborn, Linda V; Snawder, John E; Kriech, Anthony J; Olsen, Larry D; Herrick, Robert F; McClean, Michael D

    2012-03-01

    The primary objective of this study was to identify the source and work practices that affect dermal exposure to polycyclic aromatic compounds (PACs) among hot-mix asphalt (HMA) paving workers. Four workers were recruited from each of three asphalt paving crews (12 workers) and were monitored for three consecutive days over 4 weeks for a total of 12 sampling days per worker (144 worker days). Two sampling weeks were conducted under standard conditions for dermal exposures. The third week included the substitution of biodiesel for diesel oil used to clean tools and equipment and the fourth week included dermal protection through the use of gloves, hat and neck cloth, clean pants, and long-sleeved shirts. Dermal exposure to PACs was quantified using two methods: a passive organic dermal (POD) sampler specifically developed for this study and a sunflower oil hand wash technique. Linear mixed-effects models were used to evaluate predictors of PAC exposures. Dermal exposures measured under all conditions via POD and hand wash were low with most samples for each analyte being below the limit of the detection with the exception of phenanthrene and pyrene. The geometric mean (GM) concentrations of phenanthrene were 0.69 ng cm(-2) on the polypropylene layer of the POD sampler and 1.37 ng cm(-2) in the hand wash sample. The GM concentrations of pyrene were 0.30 ng cm(-2) on the polypropylene layer of the POD sampler and 0.29 ng cm(-2) in the hand wash sample. Both the biodiesel substitution and dermal protection scenarios were effective in reducing dermal exposures. Based on the results of multivariate linear mixed-effects models, increasing frequency of glove use was associated with significant (P < 0.0001) reductions for hand wash and POD phenanthrene and pyrene concentrations; percent reductions ranged from 40 to 90%. Similar reductions in hand wash concentrations of phenanthrene (P = 0.01) and pyrene (P = 0.003) were observed when biodiesel was substituted for diesel oil

  8. Effectiveness of acellular pertussis vaccination during childhood (<7 years of age) for preventing pertussis in household contacts 1-9 years old in Catalonia and Navarra (Spain).

    PubMed

    Plans, P; Toledo, D; Sala, M R; Camps, N; Villanova, M; Rodríguez, R; Alvarez, J; Solano, R; García-Cenoz, M; Barrabeig, I; Godoy, P; Minguell, S

    2016-12-01

    Pertussis vaccination with 4-5 doses of acellular vaccines is recommended in Spain to all children at 2 months to 6 years of age. The effectiveness of the acellular pertussis vaccination was assessed in this study by comparing the incidence of secondary pertussis in vaccinated (4-5 doses) and unvaccinated or partially vaccinated (0-3 doses) household contacts 1-9 years old of confirmed cases of pertussis in Spain in 2012-13. Eighty-five percent of contacts had been vaccinated with 4-5 doses of acellular pertussis vaccines. During the 2-year study period, 64 cases of secondary pertussis were detected among 405 household contacts 1-9 years old: 47 among vaccinated and 17 among unvaccinated or partially vaccinated contacts. The effectiveness for preventing secondary pertussis, calculated as 1 minus the relative risk (RR) of secondary pertussis in vaccinated vs. unvaccinated/partially vaccinated contacts, was 50 % [95 % confidence interval (CI): 19-69 %, p < 0.01] when household contacts were vaccinated using DTaP, Tdap, hexavalent or heptavalent vaccines, and it was 51.3 % (95 % CI: 21-70 %, p < 0.01) when they were vaccinated using DTaP or TdaP vaccines. The effectiveness adjusted for age, sex, pertussis chemotherapy and type of household contact was 58.6 % (95 % CI: 17-79 %, p < 0.05) when contacts were vaccinated using available acellular vaccines, and it was 59.6 % (95 % CI: 18-80 %, p < 0.01) when they were vaccinated using DTaP vaccines. Acellular pertussis vaccination during childhood was effective for preventing secondary pertussis in household contacts 1-9 years old of pertussis cases in Catalonia and Navarra, Spain.

  9. Primary fascial closure with biologic mesh reinforcement results in lesser complication and recurrence rates than bridged biologic mesh repair for abdominal wall reconstruction: A propensity score analysis.

    PubMed

    Giordano, Salvatore; Garvey, Patrick B; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2017-02-01

    Previous studies suggest that bridged mesh repair for abdominal wall reconstruction may result in worse outcomes than mesh-reinforced, primary fascial closure, particularly when acellular dermal matrix is used. We compared our outcomes of bridged versus reinforced repair using ADM in abdominal wall reconstruction procedures. This retrospective study included 535 consecutive patients at our cancer center who underwent abdominal wall reconstruction either for an incisional hernia or for abdominal wall defects left after excision of malignancies involving the abdominal wall with underlay mesh. A total of 484 (90%) patients underwent mesh-reinforced abdominal wall reconstruction and 51 (10%) underwent bridged repair abdominal wall reconstruction. Acellular dermal matrix was used, respectively, in 98% of bridged and 96% of reinforced repairs. We compared outcomes between these 2 groups using propensity score analysis for risk-adjustment in multivariate analysis and for 1-to-1 matching. Bridged repairs had a greater hernia recurrence rate (33.3% vs 6.2%, P < .001), a greater overall complication rate (59% vs 30%, P = .001), and worse freedom from hernia recurrence (log-rank P <.001) than reinforced repairs. Bridged repairs also had a greater rate of wound dehiscence (26% vs 14%, P = .034) and mesh exposure (10% vs 1%, P = .003) than mesh-reinforced abdominal wall reconstruction. When the treatment method was adjusted for propensity score in the propensity-score-matched pairs (n = 100), we found that the rates of hernia recurrence (32% vs 6%, P = .002), overall complications (32% vs 6%, P = .002), and freedom from hernia recurrence (68% vs 32%, P = .001) rates were worse after bridged repair. We did not observe differences in wound healing and mesh complications between the 2 groups. In our population of primarily cancer patients at MD Anderson Cancer Center bridged repair for abdominal wall reconstruction is associated with worse outcomes than mesh

  10. Penile Reconstruction with Skin Grafts and Dermal Matrices: Indications and Management

    PubMed Central

    Triana Junco, Paloma; Dore, Mariela; Nuñez Cerezo, Vanesa; Jimenez Gomez, Javier; Miguel Ferrero, Miriam; Díaz González, Mercedes; Lopez-Pereira, Pedro; Lopez-Gutierrez, Juan Carlos

    2017-01-01

    Introduction  The penis eventually needs specific cutaneous coverage in the context of reconstructive procedures following trauma or congenital anomalies. Local flaps are the first choice but are not always available after multiple previous procedures. In these cases, skin graft and dermal matrices should be considered. Materials and Methods  This study was a retrospective review of the past 4 years of four patients with severe loss of penile shaft skin who underwent skin reconstruction. Dermal matrices and skin grafts were utilized. Dermal matrices were placed for a median of 4.5 weeks (3.0–6.0 weeks). The skin graft was harvested from the inner thigh region for split-thickness skin graft (STSG) and the inguinal region for full-thickness skin graft (FTSG). Results  The four patients presented with complete loss of skin in the penile shaft. One patient had a vesical exstrophy, one had a buried penis with only one corpus cavernosum, one had a wide congenital lymphedema of the genitalia, and one had a lack of skin following circumcision at home. They underwent reconstruction with three patients undergoing split-thickness skin graft; two dermal matrices; and one full-thickness graft, respectively, thereby achieving a good cosmetic and functional result. There were no complications, and all the patients successfully accepted the graft. Conclusion  Dermal matrices and skin grafts may serve as effective tools in the management of severe penile skin defects unable to be covered with local flaps. PMID:28868232

  11. Dynamic interactions between dermal macrophages and Staphylococcus aureus.

    PubMed

    Feuerstein, Reinhild; Kolter, Julia; Henneke, Philipp

    2017-01-01

    The dermis, a major reservoir of immune cells in immediate vicinity to the colonizing skin microflora, serves as an important site of host-pathogen interactions. Macrophages (Mϕ) are the most frequent resident immune cell type in the dermis. They protect the host from invasive infections by highly adapted bacteria, such as staphylococci via pattern recognition of bacterial effectors, phagocytosis, and recruitment of other myeloid cells from the blood. Already under homeostatic conditions, the dermal Mϕ population receives a dynamic input of monocytes invading from the bloodstream. This quantitative renewal is promoted further at the beginning of life, when prenatally seeded cells are rapidly replaced and in healing phases after injuries or infections. Here, we discuss the potential implications of the dynamic dermal Mϕ biology on the establishment and maintenance of immunity against Staphylococcus aureus, which can either be a harmless colonizer or an invasive pathogen. The understanding of the heterogeneity of the "mature" dermal Mϕ compartment driven both by the influx of differentiating monocytes and by a bone marrow-independent Mϕ persistence and expansion may help to explain failing immunity and immunopathology originating from the skin, the important interface between host and environment. © Society for Leukocyte Biology.

  12. Inhalational and dermal exposures during spray application of biocides.

    PubMed

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  13. IN VITRO DERMAL ABSORPTION OF PYRETHROID PESTICIDES IN RAT AND HUMAN SKIN

    EPA Science Inventory

    Pyrethriods are a class of neurotoxic pesticides and their use may lead to dermal exposure. This study examined the in vitro dermal absorption of pyrethroids in rat and human skin. Dorsal skin removed from adult male LD rats (hair clipped 24 h previously) was dermatomed and mou...

  14. DERMAL DRUG LEVELS OF ANTIBIOTIC (CEPHALEXIN) DETERMINED BY ELECTROPORATION AND TRANSCUTANEOUS SAMPLING (ETS) TECHNIQUE

    PubMed Central

    Sammeta, SM; Vaka, SRK; Murthy, S. Narasimha

    2009-01-01

    The purpose of this project was to assess the validity of a novel “Electroporation and transcutaneous sampling (ETS)” technique for sampling cephalexin from the dermal extracellular fluid (ECF). This work also investigated the plausibility of using cephalexin levels in the dermal ECF as a surrogate for the drug level in the synovial fluid. In vitro and in vivo studies were carried out using hair less rats to assess the workability of ETS. Cephalexin (20mg/kg) was administered i.v. through tail vein and the time course of drug concentration in the plasma was determined. In the same rats, cephalexin concentration in the dermal ECF was determined by ETS and microdialysis techniques. In a separate set of rats, only intraarticular microdialysis was carried out determine the time course of cephalexin concentration in synovial fluid. The drug concentration in the dermal ECF determined by ETS and microdialysis did not differ significantly from each other and so as were the pharmacokinetic parameters. The results provide validity to the ETS technique. Further, there was a good correlation (~0.9) between synovial fluid and dermal ECF levels of cephalexin indicating that dermal ECF levels could be used as a potential surrogate for cephalexin concentration in the synovial fluid. PMID:19067398

  15. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    PubMed

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds. © 2015 by the Wound Healing Society.

  16. The morphological regeneration and functional restoration of bladder defects by a novel scaffold and adipose-derived stem cells in a rat augmentation model.

    PubMed

    Wang, Qiong; Xiao, Dong-Dong; Yan, Hao; Zhao, Yang; Fu, Shi; Zhou, Juan; Wang, Zhong; Zhou, Zhe; Zhang, Ming; Lu, Mu-Jun

    2017-06-24

    Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation. A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo. For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells. The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.

  17. Estimating terrestrial amphibian pesticide body burden through dermal exposure.

    PubMed

    Van Meter, Robin J; Glinski, Donna A; Hong, Tao; Cyterski, Mike; Henderson, W Matthew; Purucker, S Thomas

    2014-10-01

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active ingredients through contact with contaminated soil: imidacloprid (logKow = 0.57), atrazine (logKow = 2.5), triadimefon (logKow = 3.0), fipronil (logKow = 4.11) or pendimethalin (logKow = 5.18). All amphibians had measurable body burdens at the end of the exposure in concentrations ranging from 0.019 to 14.562 μg/g across the pesticides tested. Atrazine produced the greatest body burdens and bioconcentration factors, but fipronil was more permeable to amphibian skin when application rate was considered. Soil partition coefficient and water solubility were much better predictors of pesticide body burden, bioconcentration factor, and skin permeability than logKow. Dermal uptake data can be used to improve risk estimates of pesticide exposure among amphibians as non-target organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Differential Apoptosis in Mucosal and Dermal Wound Healing

    PubMed Central

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; p<0.05), Casp7 (at D5; p<0.05), Trp53 (at 24 h and D5; p<0.05), Tnfrsf1b (at 24 h; p<0.05), FasR (at 24 h, D5, and D7; p<0.05), and Casp8 (at 24 h; p<0.05) and significantly lower gene expression of Tradd (at 24 h; p<0.05). Innovation: Our observations indicate differential execution of apoptosis in oral wound healing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  19. Polypoid dermal hemangiopericytoma: a case report.

    PubMed

    Pollock, A M; Sweeney, E C

    1998-10-01

    A polypoid dermal lesion with histologic, immunohistochemical, and ultrastructural features of hemangiopericytoma is described. Such tumors, arising in the dermis, are exceptionally rare, and whereas the tumor bears some resemblance to meningioma-like tumors of the skin and the well-recognized animal counterpart, canine hemangiopericytoma, it is histologically distinct.

  20. 40 CFR 798.4100 - Dermal sensitization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system selected is recommended; (ii) Animals may act as their own controls or groups of induced animals... CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue Toxicity § 798.4100 Dermal... hypersensitive state is developed. (3) Induction exposure is an experimental exposure of a subject to a test...

  1. 40 CFR 798.4100 - Dermal sensitization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system selected is recommended; (ii) Animals may act as their own controls or groups of induced animals... CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue Toxicity § 798.4100 Dermal... hypersensitive state is developed. (3) Induction exposure is an experimental exposure of a subject to a test...

  2. 40 CFR 798.4100 - Dermal sensitization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system selected is recommended; (ii) Animals may act as their own controls or groups of induced animals... CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue Toxicity § 798.4100 Dermal... hypersensitive state is developed. (3) Induction exposure is an experimental exposure of a subject to a test...

  3. 40 CFR 798.4100 - Dermal sensitization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system selected is recommended; (ii) Animals may act as their own controls or groups of induced animals... CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue Toxicity § 798.4100 Dermal... hypersensitive state is developed. (3) Induction exposure is an experimental exposure of a subject to a test...

  4. The effects of carbon nanotubes on lung and dermal cellular behaviors

    PubMed Central

    Luanpitpong, Sudjit; Wang, Liying; Rojanasakul, Yon

    2016-01-01

    Carbon nanotubes (CNTs) hold great promise to create new and better products, but their adverse health effect is a major concern. Human exposure to CNTs is primarily through inhalation and dermal contact, especially during the manufacturing and handling processes. Numerous animal studies have demonstrated the potential pulmonary and dermal hazards associated with CNT exposure, while in vitro studies have assessed the effects of CNT exposure on various cellular behaviors and have been used to perform mechanistic studies. In this review, we provide an overview of the pathological effects of CNTs and examine the acute and chronic effects of CNT exposure on lung and dermal cellular behaviors, beyond the generally discussed cytotoxicity. We then examine the linkage of cellular behaviors and disease pathogenesis, and discuss the pertinent mechanisms. PMID:24981653

  5. Cadherin 11 Involved in Basement Membrane Damage and Dermal Changes in Melasma.

    PubMed

    Kim, Nan-Hyung; Choi, Soo-Hyun; Lee, Tae Ryong; Lee, Chang-Hoon; Lee, Ai-Young

    2016-06-15

    Basement membrane (BM) disruption and dermal changes (elastosis, collagenolysis, vascular ectasia) have been reported in melasma. Although ultraviolet (UV) irradiation can induce these changes, UV is not always necessary for melasma development. Cadherin 11 (CDH11), which is upregulated in some melasma patients, has previously been shown to stimulate melanogenesis. Because CDH11 action requires cell-cell adhesion between fibroblasts and melanocytes, BM disruption in vivo should facilitate this. The aim of this study was to examine whether CDH11 overexpression leads to BM disruption and dermal changes, independent of UV irradiation. Immunohistochemistry/immunofluorescence, real-time PCR, Western blotting, and zymography suggested that BM disruption/dermal changes and related factors were present in the hyperpigmented skin of CDH11-upregulated melasma patients and in CDH11-overexpressing fibroblasts/keratinocytes. The opposite was seen in CDH11-knockdown cells. UV irradiation of the cultured cells did not increase CDH11 expression. Collectively, these data demonstrate that CDH11 overexpression could induce BM disruption and dermal changes in melasma, regardless of UV exposure.

  6. Debrided Skin as a Source of Autologous Stem Cells for Wound Repair

    DTIC Science & Technology

    2011-08-01

    dermal tissue shows the presence of hyalinized collagen (bold arrows) with loss of individual collagen bundles and cellular necrosis . The hypodermal...region consisted of intact adipo- cytes separated by intact interlobular septae and thermally collapsed areas with complete necrosis of both fat cells...and no dsASCs showed predom- inantly acellular multifocal amorphous matrix (Supporting In- formation Fig. S3A, S3B) and was avascular (Supporting Infor

  7. Extended Eden model reproduces growth of an acellular slime mold.

    PubMed

    Wagner, G; Halvorsrud, R; Meakin, P

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  8. Extended Eden model reproduces growth of an acellular slime mold

    NASA Astrophysics Data System (ADS)

    Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  9. Establishment and characterization of five immortalized human scalp dermal papilla cell lines.

    PubMed

    Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2018-02-05

    Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

    PubMed Central

    Dennis, S. Connor; Berkland, Cory J.; Bonewald, Lynda F.

    2015-01-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's “ideal” osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the “hard” or “bony” callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., “pro-” or “soft” callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native “raw” materials

  11. The effect of porcine ADM to improve the burn wound healing

    PubMed Central

    Chen, Xiaodong; Shi, Yan; Shu, Bin; Xie, Xiaoxia; Yang, Ronghua; Zhang, Lijun; Ruan, Shubin; Lin, Yan; Lin, Zepeng; Shen, Rui; Zhang, Fenggang; Feng, Xiangsheng; Xie, Julin

    2013-01-01

    To study the effect of porcine acellular dermal matrix (ADM) on the burn wound healing. Seventy healthy Wistar rats were inflicted with 2 cm second degree burn and divided into 2 groups; one group was treated with porcine ADM and the other with Povidone Iodine Cream. Biopsies were taken on day 1, 3, 5, 7, 10, 14, 21 for histopathological and biochemical analysis to test PCNA, K19, Integrin-β1, PDGF, EGF and FGF. The results revealed relatively better and faster regeneration after treatment of porcine ADM, along with greatly increased synthesis in collagen in the experimental group. PCNA, K19, Integrin-β1 had an increase and then tapered down, and were stronger in the experimental group than in the contrast group during 21 days after burns. PDGF, EGF and FGF levels increased on day 3, peaked on day 5 and then started to decrease, while significantly enhanced expression of relevant growth factors were observed in the experimental group. Porcine ADM stimulate collagen synthesis, stem cells proliferation and differentiation, and the expression of relevant growth factors and ultimately improve the burn wound healing. PMID:24228089

  12. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation.

  13. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN DERMAL ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Dermal Wipes data set contains analytical results for measurements of up to 11 metals in 86 dermal wipe samples over 86 households. Each sample was collected from the primary respondent within each household. The sampling period occurred on the first day of the fi...

  14. In vitro Dermal Absorption of Hydroquinone: Protocol Validation and Applicability on Illegal Skin-Whitening Cosmetics.

    PubMed

    Desmedt, Bart; Ates, Gamze; Courselle, Patricia; De Beer, Jacques O; Rogiers, Vera; Hendrickx, Benoit; Deconinck, Eric; De Paepe, Kristien

    2016-01-01

    In Europe, hydroquinone is a forbidden cosmetic ingredient. It is, however, still abundantly used because of its effective skin-whitening properties. The question arises as to whether the quantities of hydroquinone used become systemically available and may cause damage to human health. Dermal absorption studies can provide this information. In the EU, dermal absorption has to be assessed in vitro since the Cosmetic Regulation 1223/2009/EC forbids the use of animals. To obtain human-relevant data, a Franz diffusion cell protocol was validated using human skin. The results obtained were comparable to those from a multicentre validation study. The protocol was applied to hydroquinone and the dermal absorption ranged between 31 and 44%, which is within the range of published in vivo human values. This shows that a well-validated in vitro dermal absorption study using human skin provides relevant human data. The validated protocol was used to determine the dermal absorption of illegal skin-whitening cosmetics containing hydroquinone. All samples gave high dermal absorption values, rendering them all unsafe for human health. These results add to our knowledge of illegal cosmetics on the EU market, namely that they exhibit a negative toxicological profile and are likely to induce health problems. © 2017 S. Karger AG, Basel.

  15. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  16. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair.

    PubMed

    Greco, K V; Jones, L G; Obiri-Yeboa, I; Ansari, T

    2018-05-21

    our aim was to use porcine vagina to create a vaginal matrix and test its cellular biocompatibility. vagina was harvested from pigs and de-cellularised (DC) using a combination of detergents (Triton x-100 and sodium deoxycholate) and enzymes (DNAse/RNAse). the presence of cellular material, collagen structural integrity and basement membrane proteins were assessed histologically. To address cytocompatibility, porcine adipose derived-mesenchymal stem cells (AD-MSC) were harvested from abdominal fat together with vaginal epithelial cells (VEC) and seeded onto the mucosal aspect of the vaginal scaffold. Both cells populations were seeded individually and assessed histologically at days 3 and 10. MAIN OUTCOMES/RESULTS: the combination of enzymes and detergents resulted in a totally acellular matrix with very low DNA amount (control= 97.5ng/μl ± 10.8 vs DC= 40.1 ng/μl ±0.33 p=0.02). The extra cellular matrix (ECM) showed retention of collagen fibres and elastin and a 50% retention in glycosaminoglycan content; (control= 1.18μg/mg ± 0.28 DC = 1.35μg/mg ± 0.1 p=0.03) and an intact basement membrane (positive for both laminin and collagen IV). Seeded scaffolds showed cell attachment with both AD-MSC and VEC at days 3 and 10. it is possible to generate an acellular porcine vaginal matrix capable of supporting cells to reconstruct the vagina for future pre-clinical testing, and holds promise for creating clinically relevant sized tissue for human application. Copyright © 2018. Published by Elsevier Inc.

  17. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.

    PubMed

    Lee, Jung-Seok; Wikesjö, Ulf M E; Jung, Ui-Won; Choi, Seong-Ho; Pippig, Susanne; Siedler, Michael; Kim, Chong-Kwan

    2010-04-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) is being evaluated as a candidate therapy in support of periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following the application of rhGDF-5 on a particulate beta-tricalcium phosphate (beta-TCP) carrier using an established defect model. Bilateral 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in 15 Beagle dogs. Unilateral defects in five animals received rhGDF-5/beta-TCP (Scil Technology GmbH); five animals received beta-TCP solo; and five animals served as sham-surgery controls. Contralateral sites received treatments reported elsewhere. The animals were sacrificed following an 8-week healing interval for histological examination. Clinical healing was generally uneventful. Sites implanted with rhGDF-5/beta-TCP exhibited greater enhanced cementum and bone formation compared with beta-TCP and sham-surgery controls; cementum regeneration averaged (+/- SD) 3.83 +/- 0.73 versus 1.65 +/- 0.82 and 2.48 +/- 1.28 mm for the controls (p<0.05). Corresponding values for bone regeneration height averaged 3.26 +/- 0.30 versus 1.70 +/- 0.66 and 1.68 +/- 0.49 mm (p<0.05), and bone area 10.45 +/- 2.26 versus 6.31 +/- 2.41 and 3.00 +/- 1.97 mm(2) (p<0.05). Cementum regeneration included cellular/acellular cementum with or without a functionally oriented periodontal ligament. A non-specific connective tissue attachment was evident in the sham-surgery control. Controls exhibited mostly woven bone with primary osteons, whereas rhGDF-5/beta-TCP sites showed a noticeable extent of lamellar bone. Sites receiving rhGDF-5/beta-TCP or beta-TCP showed some residual beta-TCP granules apparently undergoing biodegradation without obvious differences between the sites. Sites receiving beta-TCP alone commonly showed residual beta-TCP granules sequestered in the

  18. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.

    PubMed

    Nagiah, Naveen; Madhavi, Lakshmi; Anitha, R; Anandan, C; Srinivasan, Natarajan Tirupattur; Sivagnanam, Uma Tirichurapalli

    2013-10-01

    The morphology of fibers synthesized through electrospinning has been found to mimic extracellular matrix. Coaxially electrospun fibers of gelatin (sheath) coated poly (3-hydroxybutyric acid) (PHB) (core) was developed using 2,2,2 trifluoroethanol(TFE) and 1,1,1,3,3,3 hexafluoro-2-propanol(HFIP) as solvents respectively. The coaxial structure and coating of gelatin with PHB fibers was confirmed through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thermal stability of the coaxially electrospun fibers was analyzed using thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and differential thermogravimetric analysis(DTA). Complete evaporation of solvent and gelatin grafting over PHB fibers was confirmed through attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). The coaxially electrospun fibers exhibited competent tensile properties for skin regeneration with high surface area and porosity. In vitro degradation studies proved the stability of fibers and its potential applications in tissue engineering. The fibers supported the growth of human dermal fibroblasts and keratinocytes with normal morphology indicating its potential as a scaffold for skin regeneration. © 2013.

  19. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  20. Successful treatment of complex traumatic and surgical wounds with a foetal bovine dermal matrix.

    PubMed

    Hayn, Ernesto

    2014-12-01

    A foetal bovine dermal repair scaffold (PriMatrix, TEI Biosciences) was used to treat complex surgical or traumatic wounds where the clinical need was to avoid skin flaps and to build new tissue in the wound that could be reepithelialised from the wound margins or closed with a subsequent application of a split-thickness skin graft (STSG). Forty-three consecutive cases were reviewed having an average size of 79·3 cm(2) , 50% of which had exposed tendon and/or bone. In a subset of wounds (44·7%), the implantation of the foetal dermal collagen scaffold was also augmented with negative pressure wound therapy (NPWT). Complete wound healing was documented in over 80% of the wounds treated, whether the wound was treated with the foetal bovine dermal scaffold alone (95·2%) or when supplemented with NPWT (82·4%). The scaffold successfully incorporated into wounds with exposed tendon and/or bone to build vascularised, dermal-like tissue. The new tissue in the wound supported STSGs however, in the majority of the cases (88·3%); wound closure was achieved through reepithelialisation of the incorporated dermal scaffold by endogenous wound keratinocytes. The foetal bovine dermal repair scaffold was found to offer an effective alternative treatment strategy for definitive closure of challenging traumatic or surgical wounds on patients who were not suitable candidates for tissue flaps. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model.

    PubMed

    Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S

    1996-03-01

    The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.

  2. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  3. Respiratory and dermal symptoms in Thai nurses using latex products.

    PubMed

    Supapvanich, C; Povey, A C; de Vocht, F

    2013-09-01

    Despite known health risks related to the use of powdered latex gloves (PLGs), they are still widely used in hospitals in developing countries due to the high cost of alternatives. To determine the prevalence of dermal and respiratory symptoms associated with latex glove use in nurses in Thailand and evaluate the influence of previously reported occupational risk factors in this population. A cross-sectional study in female nurses working in three Thai hospitals. Participants completed a questionnaire on demographics, occupational and personal history, use of latex products at work and dermal and respiratory symptoms attributed to occupational use of latex gloves. Of 899 nurses, 18% reported health effects attributed to the use of latex products. After adjustment for confounding, occupational risk factors associated with increased reporting of dermal symptoms included wearing more than 15 pairs of PLG per day (odds ratio (OR): 2.10, 95% confidence interval (CI): [1.32-3.34]), using chlorhexidine (OR: 2.07, 95% CI: [1.22-3.52]) and being an operating theatre nurse (OR: 2.46, 95% CI: [1.47-4.12]). Being a labour ward nurse (OR: 3.52, 95% CI: [1.26-9.85]) was the only factor associated with increased reporting of respiratory symptoms. Continuing use of PLGs in Thai nurses is associated with increased prevalence of dermal symptoms compared with data from developed countries. Measures to reduce such health effects are well established and should be considered. Additionally, replacement of chlorhexidine with an alternative detergent seems advisable.

  4. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines.

    PubMed

    Zomer, Aldert; Otsuka, Nao; Hiramatsu, Yukihiro; Kamachi, Kazunari; Nishimura, Naoko; Ozaki, Takao; Poolman, Jan; Geurtsen, Jeroen

    2018-05-17

    Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982-2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008-2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.

  5. Additional recommendations for use of tetanus toxoid, reduced-content diphtheria toxoid, and acellular pertussis vaccine (Tdap).

    PubMed

    2011-10-01

    The American Academy of Pediatrics and the Centers for Disease Control and Prevention are amending previous recommendations and making additional recommendations for the use of tetanus toxoid, reduced-content diphtheria toxoid, and acellular pertussis vaccine (Tdap). Review of the results from clinical trials and other studies has revealed no excess reactogenicity when Tdap is given within a short interval after other tetanus- or diphtheria-containing toxoid products, and accrual of postmarketing adverse-events reports reveals an excellent safety record for Tdap. Thus, the recommendation for caution regarding Tdap use within any interval after a tetanus- or diphtheria-containing toxoid product is removed. Tdap should be given when it is indicated and when no contraindication exists. In further efforts to protect people who are susceptible to pertussis, the American Academy of Pediatrics and Centers for Disease Control and Prevention recommend a single dose of Tdap for children 7 through 10 years of age who were underimmunized with diphtheria-tetanus-acellular pertussis (DTaP). Also, the age for recommendation for Tdap is extended to those aged 65 years and older who have or are likely to have contact with an infant younger than 12 months (eg, health care personnel, grandparents, and other caregivers).

  6. Assessing regeneration potential

    Treesearch

    Ivan L. Sander

    1989-01-01

    When a regeneration harvest cut is planned for even-aged stands or it is time to make another cut in uneven-aged stands, the first thing to do is assess the regeneration potential. Regeneration potential is the likelihood of being successful in reproducing desired species. You need an assessment to be reasonably sure that regeneration and management objectives can be...

  7. Rheological properties of cross-linked hyaluronic acid dermal fillers.

    PubMed

    Santoro, Stefano; Russo, Luisa; Argenzio, Vincenzo; Borzacchiello, Assunta

    2011-01-01

    Ha based dermal fillers in recent years aroused big interest in the area of cosmetic surgery for the rejuvenation of the dermis. There is not a ideal dermal filler (DF) for all applications and in commerce there are many types of DF that differ for their chemical-physical properties. So the aim of this paper is to correlate the rheological and physical properties of different DF to their clinical effectiveness. In this frame the samples have been subjected to oscillation dynamic rheological and steady shear measurements. Our results demonstrate that the viscoelastic properties of different DF varie strongly also considering fillers of the same family. Furthermore it was found that the materials physical properties influence significantly the performance of dermal filler. In particular the clinical data appear to correlate with the concentration of the polymer and with the product between the concentration and the percent elasticity, so these should be crucial parameters for the clinical performance of DF. So rheological data can be a tool to have an indication on the efficacy and longevity of DF but it has to be considered that production technology, in-vivo-conditions, injector skills and experience influence them also significantly.

  8. Dermal Stem Cells Can Differentiate Down an Endothelial Lineage

    PubMed Central

    Bell, Emma; Richardson, Gavin D.; Jahoda, Colin A.; Gledhill, Karl; Phillips, Helen M.; Henderson, Deborah; Owens, W. Andrew

    2012-01-01

    In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation. We confirmed that these observations were not due to contaminating endothelial cells, by using DP clones. We have also used the WNT1cre/ROSA26R and WNT1cre/YFP lineage-tracing mouse models to identify a population of neural crest-derived cells in DP cultures that express the endothelial marker PECAM (CD31); these cells also form capillary-like structures on Matrigel. Importantly, cells of neural crest origin that express markers of endothelial and mesenchymal lineages exist within the dermal sheath of the vibrissae follicle. PMID:22571645

  9. Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates

    PubMed Central

    Seifert, Ashley W.; Monaghan, James R.; Voss, S. Randal; Maden, Malcolm

    2012-01-01

    While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair. PMID:22485136

  10. Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle.

    PubMed

    Anastasia, Luigi; Sampaolesi, Maurilio; Papini, Nadia; Oleari, Diego; Lamorte, Giuseppe; Tringali, Cristina; Monti, Eugenio; Galli, Daniela; Tettamanti, Guido; Cossu, Giulio; Venerando, Bruno

    2006-12-01

    Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.

  11. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    PubMed

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  12. DERMAL, ORAL, AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory

    Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...

  13. The Dermal Apron Technique for Immediate Implant Socket Management: A Novel Technique.

    PubMed

    Levin, Barry P

    2016-01-01

    With immediate implant placement and provisionalization (IIP) in the esthetic zone, measures to counter hard and soft tissue loss are frequently necessary. To reduce the morbidity associated with bone and connective tissue procurement, various exogenous materials are utilized. The "Dermal Apron Technique" presented in this article demonstrates the use of a composite bone particulate (allograft/xenograft) plus a dermal allograft, adapted around screw-retained temporary crowns and secured within a subperiosteal pouch. The purpose is to augment the thickness of peri-implant mucosa for the purpose of preserving ridge dimensions and preventing mucosal recession. Controlled studies are required to further support its use. Clinical significance: Soft tissue health and harmony are critical for successful implant therapy in the esthetic regions of the dentition. Often, autogenous soft tissue grafts are used to augment peri-implant soft tissues. The Dermal Apron Technique is a method, that in specific situations, obviates the need for autogenous grafting. This reduces treatment time and morbidity associated with procurement of these grafts. The Dermal Apron Technique is used simultaneous with immediate placement and provisionalization and can improve long-term esthetic outcomes for patients. © 2016 Wiley Periodicals, Inc.

  14. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators

    PubMed Central

    Sirimahachaiyakul, Pornthep; Sood, Ravi F.; Muffley, Lara A.; Seaton, Max; Lin, Cheng-Ta; Qiao, Liang; Armaly, Jeffrey S.; Hocking, Anne M.; Gibran, Nicole S.

    2015-01-01

    Introduction Abnormal pigmentation following cutaneous injury causes significant patient distress and represents a barrier to recovery. Wound depth and patient characteristics influence scar pigmentation. However, we know little about the pathophysiology leading to hyperpigmentation in healed shallow wounds and hypopigmentation in deep dermal wound scars. We sought to determine whether dermal fibroblast signaling influences melanocyte responses. Methods and Materials Epidermal melanocytes from three Caucasians and three African-Americans were genotyped for single nucleotide polymorphisms (SNPs) across the entire genome. Melanocyte genetic profiles were determined using principal component analysis. We assessed melanocyte phenotype and gene expression in response to dermal fibroblast-conditioned medium and determined potential mesenchymal mediators by proteome profiling the fibroblast-conditioned medium. Results Six melanocyte samples demonstrated significant variability in phenotype and gene expression at baseline and in response to fibroblast-conditioned medium. Genetic profiling for SNPs in receptors for 13 identified soluble fibroblast-secreted mediators demonstrated considerable heterogeneity, potentially explaining the variable melanocyte responses to fibroblast-conditioned medium. Discussion Our data suggest that melanocytes respond to dermal fibroblast-derived mediators independent of keratinocytes and raise the possibility that mesenchymal-epidermal interactions influence skin pigmentation during cutaneous scarring. PMID:26418010

  15. Dermal exposure to monoterpenes during wood work.

    PubMed

    Eriksson, Kare; Wiklund, Leif

    2004-06-01

    The dermal exposure to the suspected allergenic monoterpenes [small alpha]-pinene, [small beta]-pinene and [capital Delta](3)-carene was assessed with a patch sampling technique. The patch used was made of activated charcoal sandwiched between two layers of cotton cloth. Patches were fastened at 12 different spots on a sampling overall and at the front of a cap to estimate the potential exposure of the body. Fastening two patches on a cotton glove, one patch representing the dorsal side and one patch representing the palm of the hand respectively, assessed the exposure on the hands. Sampling was carried out during collecting of pine and spruce boards in sawmills and during sawing of pine wood pieces in joinery shops respectively. The potential dermal exposure of the total body was 29.0-1 890 mg h(-1) with a geometric mean (GM) of 238 mg h(-1) during sawing. During collecting the GM was estimated to 100 mg h(-1) with a range of 12.2-959 mg h(-1). The hands had a mean exposure of 9.24 mg h(-1) during sawing and 3.25 mg h(-1) during collecting respectively. The good correlation between the mass of contamination on the individual body parts and the potential body exposure indicates that sampling can be performed on one body part to give a good estimation of the potential body exposure. Monoterpenes were detected at patches fastened underneath the protective clothing indicating a contamination of the skin of the worker. The patch used may overestimate the dermal exposure.

  16. Acellular Pertussis Vaccines and Pertussis Resurgence: Revise or Replace?

    PubMed Central

    Ausiello, Clara Maria

    2014-01-01

    ABSTRACT The resurgence of pertussis (whooping cough) in countries with high vaccination coverage is alarming and invites reconsideration of the use of current acellular pertussis (aP) vaccines, which have largely replaced the old, reactogenic, whole-cell pertussis (wP) vaccine. Some drawbacks of these vaccines in terms of limited antigenic composition and early waning of antibody levels could be anticipated by the results of in-trial or postlicensure human investigations of B- and T-cell responses in aP versus wP vaccine recipients or unvaccinated, infected children. Recent data in experimental models, including primates, suggest that generation of vaccines capable of a potent, though regulated, stimulation of innate immunity driving effective, persistent adaptive immune responses against Bordetella pertussis infection should be privileged. Adjuvants that skew Th1/Th17 responses or new wP (detoxified or attenuated) vaccines should be explored. Nonetheless, the high merits of the current aP vaccines in persuading people to resume vaccination against pertussis should not be forgotten. PMID:24917600

  17. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides.

    PubMed

    Weir, Scott M; Talent, Larry G; Anderson, Todd A; Salice, Christopher J

    2016-07-01

    There is growing interest in improving ecological risk assessment exposure estimation, specifically by incorporating dermal exposure. At the same time, there is a growing interest in amphibians and reptiles as receptors in ecological risk assessment, despite generally receiving less research than more traditional receptors. Previous research has suggested that dermal exposure may be more important than previously considered for reptiles. We measured reptile skin permeability to four pesticides (thiamethoxam, malathion, tebuthiuron, trifluralin) using ventral skin samples. All four pesticides penetrated the skin but generally had low permeability. There was no apparent relationship between physicochemical properties and permeability coefficients. Malathion had a significantly greater permeability rate at all time points compared to the other pesticides. Tebuthiuron had a greater permeability than thiamethoxam. Reptiles and mammals appear to have similar skin permeability suggesting that dermal exposure estimates for mammals may be representative of reptiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A systematic review of dermal fillers for age-related lines and wrinkles.

    PubMed

    Sturm, Lana P; Cooter, Rodney D; Mutimer, Keith L; Graham, John C; Maddern, Guy J

    2011-01-01

    Dermal fillers are gaining popularity for rapid aesthetic improvement. Long-term efficacy and safety have not been well documented. The aim of this systematic review was to assess the safety and efficacy of injectable dermal fillers compared with other facial augmentation techniques for the management of age-related lines and wrinkles. Studies including patients receiving injectable semi-permanent or permanent dermal fillers for age-related lines and wrinkles were included in this review. Efficacy outcomes (including changes in skin thickness and patient satisfaction) and safety outcomes (including mortality, lumps and infections) were examined. Three randomized control trials and six case series were included. Permanent and semi-permanent dermal fillers improved subjective ratings of appearance and resulted in higher patient satisfaction than temporary fillers. Long-term efficacy appeared good in the few studies that reported it. Short-term safety appeared favourable. Lumps were reported in all but one study but received little follow-up. Long-term safety data were limited. The treatment of age-related lines and wrinkles with permanent and semi-permanent dermal fillers is more efficacious compared with temporary fillers in those studies that compared them. Case series evidence suggests that these fillers achieve their objective, which is to decrease the visible effects of age-related changes. These fillers appear at least as safe as temporary fillers in the short term in those studies that compared them. Long-term safety could not be determined. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  19. Absorption, distribution, metabolism and excretion of loxoprofen after dermal application of loxoprofen gel to rats.

    PubMed

    Sawamura, Ryoko; Kazui, Miho; Kurihara, Atsushi; Izumi, Takashi

    2014-11-01

    1. Loxoprofen (LX), is a prodrug of the pharmacologically active form, trans-alcohol metabolite (trans-OH form), which shows very potent analgesic effect. In this study, the pharmacokinetics and metabolism of [(14)C]LX-derived radioactivity after dermal application of [(14)C]LX gel (LX-G) to rats were evaluated. 2. The area under concentration-time curve (AUC0-∞) of radioactivity in the plasma after the dermal application was 13.6% of that of the oral administration (p < 0.05). 3. After the dermal application, the radioactivity remained in the skin and skeletal muscle at the treated site for 168 h, whereas the AUC0-168 h of the radioactivity concentration in every tissue examined except the treated site was statistically lower than that after the oral administration (p < 0.05). 4. The trans-OH form was observed at high levels in the treated skin site at 0.5 h. Metabolite profiles in plasma, non-treated skin site and urine after the dermal application were comparable with those after the oral administration. 5. Renal excretion was the main route of elimination after the dermal application. 6. In conclusion, compared to the oral administration, the dermal application of [(14)C]LX-G showed lower systemic and tissue exposure with higher exposure in the therapeutic target site. The radioactivity revealed similar metabolite profiles in both administration routes.

  20. DERMAL, ORAL AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY-BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory


    Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...

  1. Transdermal Delivery of Iron Using Soluble Microneedles: Dermal Kinetics and Safety.

    PubMed

    Modepalli, Naresh; Shivakumar, H Nanjappa; McCrudden, Maeliosa T C; Donnelly, Ryan F; Banga, Ajay; Murthy, S Narasimha

    2016-03-01

    Currently, the iron compounds are administered via oral and parenteral routes in patients of all ages, to treat iron deficiency. Despite continued efforts to supplement iron via these conventional routes, iron deficiency still remains the most prevalent nutritional disorder all over the world. Transdermal replenishment of iron is a novel, potential approach of iron replenishment. Ferric pyrophosphate (FPP) was found to be a suitable source of iron for transdermal replenishment. The safety of FPP was assessed in this project by challenging the dermal fibroblast cells with high concentration of FPP. The cell viability assay and reactive oxygen species assay were performed. The soluble microneedle array was developed, incorporated with FPP and the kinetics of free iron in the skin; extracellular fluid following dermal administration of microneedle array was investigated in hairless rats. From the cell based assays, FPP was selected as one of the potential iron sources for transdermal delivery. The microneedles were found to dissolve in the skin fluid within 3 hours of administration. The FPP concentration in the dermal extracellular fluid declined after complete dissolution of the microneedle array. Overall, the studies demonstrated the safety of FPP for dermal delivery and the feasibility of soluble microneedle approach for transdermal iron replenishment therapy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Identification of Cadherin 11 as a Mediator of Dermal Fibrosis and Possible Role in Systemic Sclerosis

    PubMed Central

    Wu, Minghua; Pedroza, Mesias; Lafyatis, Robert; George, Anuh-Teresa; Mayes, Maureen D.; Assassi, Shervin; Tan, Filemon K.; Brenner, Michael B.; Agarwal, Sandeep K.

    2014-01-01

    Objective Systemic sclerosis (SSc) is a chronic autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Recent microarray studies demonstrated that cadherin 11 (Cad-11) expression is increased in the affected skin of patients with SSc. The purpose of this study was to examine our hypothesis that Cad-11 is a mediator of dermal fibrosis. Methods Biopsy samples of skin from SSc patients and healthy control subjects were used for real-time quantitative polymerase chain reaction analysis to assess Cad-11 expression and for immunohistochemistry to determine the expression pattern of Cad-11. To determine whether Cad-11 is a mediator of dermal fibrosis, Cad-11–deficient mice and anti–Cad-11 monoclonal antibodies (mAb) were used in the bleomycin-induced dermal fibrosis model. In vitro studies with dermal fibroblasts and bone marrow–derived macrophages were used to determine the mechanisms by which Cad-11 contributes to the development of tissue fibrosis. Results Levels of messenger RNA for Cad-11 were increased in skin biopsy samples from patients with SSc and correlated with the modified Rodnan skin thickness scores. Cad-11 expression was localized to dermal fibroblasts and macrophages in SSc skin. Cad-11–knockout mice injected with bleomycin had markedly attenuated dermal fibrosis, as quantified by measurements of skin thickness, collagen levels, myofibroblast accumulation, and profibrotic gene expression, in lesional skin as compared to the skin of wild-type mice. In addition, anti–Cad-11 mAb decreased fibrosis at various time points in the bleomycin-induced dermal fibrosis model. In vitro studies demonstrated that Cad-11 regulated the production of transforming growth factor β (TGFβ) by macrophages and the migration of fibroblasts. Conclusion These data demonstrate that Cad-11 is a mediator of dermal fibrosis and TGFβ production and suggest that Cad-11 may be a therapeutic target in SSc. PMID:24757152

  3. A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue

    PubMed Central

    Xu, Qilin; Shanti, Rabie M.; Zhang, Qunzhou; Cannady, Steven B.

    2017-01-01

    In the oral cavity, the tongue is the anatomic subsite most commonly involved by invasive squamous cell carcinoma. Current treatment protocols often require significant tissue resection to achieve adequate negative margins and optimal local tumor control. Reconstruction of the tongue while preserving and/or restoring its critical vocal, chewing, and swallowing functions remains one of the major challenges in head and neck oncologic surgery. We investigated the in vitro feasibility of fabricating a novel combinatorial construct using porcine small intestinal submucosa extracellular matrix (SIS-ECM) and human gingiva-derived mesenchymal stem cells (GMSCs) as a GMSC/SIS-ECM tissue graft for the tongue reconstruction. We developed a rat model of critical-sized myomucosal defect of the tongue that allowed the testing of therapeutic effects of an acellular SIS-ECM construct versus a GMSC/SIS-ECM construct on repair and regeneration of the tongue defect. We showed that the GMSC/SIS-ECM construct engrafted at the host recipient site, promoted soft tissue healing, and regenerated the muscular layer, compared to the SIS-ECM alone or nontreated defect controls. Furthermore, our results revealed that transplantation of the GMSC/SIS-ECM construct significantly increased the expression of several myogenic transcriptional factors and simultaneously suppressed the expression of type I collagen at the wounded area of the tongue. These compelling findings suggest that, unlike the tongue contracture and fibrosis of the nontreated defect group, transplantation of the combinatorial GMSC/SIS-ECM constructs accelerates wound healing and muscle regeneration and maintains the overall tongue shape, possibly by both enhancing the function of endogenous skeletal progenitor cells and suppressing fibrosis. Together, our findings indicate that GMSC/SIS-ECM potentially served as a myomucosal graft for tongue reconstruction postsurgery of head and neck cancer. PMID:27923325

  4. Regeneration

    Treesearch

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  5. Safety and immunogenicity of two inactivated poliovirus vaccines in combination with an acellular pertussis vaccine and diphtheria and tetanus toxoids in seventeen- to nineteen-month-old infants.

    PubMed

    Halperin, S A; Davies, H D; Barreto, L; Guasparini, R; Meekison, W; Humphreys, G; Eastwood, B J

    1997-04-01

    To compare the safety and immunity of an acellular pertussis vaccine containing pertussis toxoid, filamentous hemagglutinin, 69 kd protein, fimbriae 2 and 3 combined with diphtheria and tetanus toxoids given as single or separate injection with inactivated poliovirus vaccine (MRC-5-or Vero cell-derived) or live attenuated polio vaccine. A total of 425 healthy children between 17 and 19 months of age who were receiving the fourth dose of their routine immunization series were randomly allocated to receive either the acellular pertussis vaccine and oral poliovirus vaccine or one of two inactivated poliovirus vaccines as a combined injection or separate injections. Although minor adverse events were commonly reported, differences between the groups were few. Fever and decreased feeding were less common in recipients of live attenuated poliovirus vaccine than the combination vaccine containing MRC-5 cell-derived inactivated poliovirus vaccine. A significant antibody response was demonstrated in all groups against all the antigens contained in the vaccines. Antibodies against poliovirus were higher in the groups immunized with the inactivated poliovirus vaccine than the live attenuated vaccine. Anti-69 kd protein antibodies were higher in the group given the MRC-5 cell-derived inactivated poliovirus vaccine as a combined injection than in the group given the separate injection or the group immunized with the live attenuated poliovirus vaccine. The five-component acellular pertussis vaccine combined with diphtherid and tetanus toxoids is safe and immunogenic when combined with either MRC-5- or Vero cell-derived inactivated poliovirus vaccine. This will facilitate the implementation of acellular pertussis vaccine and the movement to inactivated poliovirus vaccine programs.

  6. Electrospun photosensitive nanofibers: potential for photocurrent therapy in skin regeneration.

    PubMed

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Kotaki, Masaya; Ramakrishna, Seeram

    2013-01-01

    Poly(3-hexylthiophene) (P3HT) is one of the most promising photovoltaic (PV) polymers in photocurrent therapy. A novel photosensitive scaffold for skin tissue engineering was fabricated by blending P3HT with polycaprolactone (PCL) and electrospun to obtain composite PCL/P3HT nanofibers with three different weight ratios of PCL : P3HT (w/w) of 150 : 2 [PCL/P3HT(2)], 150 : 10 [PCL/P3HT(10)] and 150 : 20 [PCL/P3HT(20)]. The photosensitive properties of the blend solutions and the composite nanofibers of PCL/P3HT were investigated. The incident photon-to-electron conversion efficiencies of the PCL/P3HT(2), PCL/P3HT(10), PCL/P3HT(20) were identified as 2.0 × 10(-6), 1.6 × 10(-5) and 2.9 × 10(-5), respectively, which confirm the photosensitive ability of the P3HT-containing scaffolds. The biocompatibility of the scaffold was evaluated by culturing human dermal fibroblasts and the results showed that the proliferation of HDFs under light stimulation on PCL/P3HT(10) was 12.8%, 11.9%, and 11.6% (p ≤ 0.05) higher than the cell growth on PCL, PCL/P3HT(2) and PCL/P3HT(20), respectively. Human dermal fibroblasts cultured under light stimulation on PCL/P3HT(10) not only showed better cell proliferation but also retained cell morphology similar to the phenotype observed on tissue culture plates (control). Our experimental results suggest novel and potential application of an optimized amount of P3HT-containing scaffold, especially PCL/P3HT(10) nanofibrous scaffold in photocurrent therapy for skin regeneration.

  7. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts.

    PubMed

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2018-03-04

    Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.

  8. Evaluation of in vitro vs. in vivo methods for assessment of dermal absorption of organic flame retardants: a review.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-01-01

    There is a growing interest to study human dermal exposure to a large number of chemicals, whether in the indoor or outdoor environment. Such studies are essential to predict the systemic exposure to xenobiotic chemicals for risk assessment purposes and to comply with various regulatory guidelines. However, very little is currently known about human dermal exposure to persistent organic pollutants. While recent pharmacokinetic studies have highlighted the importance of dermal contact as a pathway of human exposure to brominated flame retardants, risk assessment studies had to apply assumed values for percutaneous penetration of various flame retardants (FRs) due to complete absence of specific experimental data on their human dermal bioavailability. Therefore, this article discusses the current state-of-knowledge on the significance of dermal contact as a pathway of human exposure to FRs. The available literature on in vivo and in vitro methods for assessment of dermal absorption of FRs in human and laboratory animals is critically reviewed. Finally, a novel approach for studying human dermal absorption of FRs using in vitro three-dimensional (3D) human skin equivalent models is presented and the challenges facing future dermal absorption studies on FRs are highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Rhelogical, dermal wound healing and in vitro antioxidant properties of exopolysaccharide hydrogel from Pseudomonas stutzeri AS22.

    PubMed

    Maalej, Hana; Moalla, Dorsaf; Boisset, Claire; Bardaa, Sana; Ben Ayed, Hanen; Sahnoun, Zouheir; Rebai, Tarek; Nasri, Moncef; Hmidet, Noomen

    2014-11-01

    The in vitro antioxidant activity and the in vivo wound healing performance of the exopolysaccharide EPS22, produced by Pseudomonas stutzeri AS22, were investigated. Antioxidant activity was evaluated by three different tests. The scavenging effect on DPPH radicals at a concentration of 1mg/ml was 80±1.41%. The reducing power reached a maximum of 1.26±0.02 at 2 mg/ml. Moreover, EPS22 showed good chelating ability and chelated almost 88.5±0.7% of ferrous ions at 0.75 mg/ml. The rheological characterization of EPS22 gel (0.5%) showed a pseudoplastic behavior, high elasticity, good mechanical strength and stability with high water-absorption ability. The application of the EPS22 gel on dermal full-thickness excision wounds in a rat model every two days, enhanced significantly wound healing activity and a total closure was achieved after 12 days of wound induction. Further, histological examination of biopsies showed advanced tissue regeneration, characterized by the presence of well-organized stratum of both derma and epidermis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    PubMed

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  11. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors

    PubMed Central

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun

    2016-01-01

    Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264

  12. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs.

    PubMed

    Morrison, Glenn C; Weschler, Charles J; Bekö, Gabriel; Koch, Holger M; Salthammer, Tunga; Schripp, Tobias; Toftum, Jørn; Clausen, Geo

    2016-01-01

    To assess the influence of clothing on dermal uptake of semi-volatile organic compounds (SVOCs), we measured uptake of selected airborne phthalates for an individual wearing clean clothes or air-exposed clothes and compared these results with dermal uptake for bare-skinned individuals under otherwise identical experimental conditions. Using a breathing hood to isolate dermal from inhalation uptake, we measured urinary metabolites of diethylphthalate (DEP) and di-n-butylphthalate (DnBP) from an individual exposed to known concentrations of these compounds for 6 h in an experimental chamber. The individual wore either clean (fresh) cotton clothes or cotton clothes that had been exposed to the same chamber air concentrations for 9 days. For a 6-h exposure, the net amounts of DEP and DnBP absorbed when wearing fresh clothes were, respectively, 0.017 and 0.007 μg/kg/(μg/m(3)); for exposed clothes the results were 0.178 and 0.261 μg/kg/(μg/m(3)), respectively (values normalized by air concentration and body mass). When compared against the average results for bare-skinned participants, clean clothes were protective, whereas exposed clothes increased dermal uptake for DEP and DnBP by factors of 3.3 and 6.5, respectively. Even for non-occupational environments, wearing clothing that has adsorbed/absorbed indoor air pollutants can increase dermal uptake of SVOCs by substantial amounts relative to bare skin.

  13. Thick Acellular Heart Extracellular Matrix with Inherent Vasculature: A Potential Platform for Myocardial Tissue Regeneration

    PubMed Central

    Sarig, Udi; Au-Yeung, Gigi C.T.; Wang, Yao; Bronshtein, Tomer; Dahan, Nitsan; Boey, Freddy Y.C.; Venkatraman, Subbu S.

    2012-01-01

    The decellularization of porcine heart tissue offers many opportunities for the production of physiologically relevant myocardial mimetic scaffolds. Earlier, we reported the successful isolation of a thin porcine cardiac extracellular matrix (pcECM) exhibiting relevant bio-mechanical properties for myocardial tissue engineering. Nevertheless, since native cardiac tissue is much thicker, such thin scaffolds may offer limited regeneration capacity. However, generation of thicker myocardial mimetic tissue constructs is hindered by diffusion limitations (∼100 μm), and the lack of a proper vascular-like network within these constructs. In our present work, we focused on optimizing the decellularization procedure for thicker tissue slabs (10–15 mm), while retaining their inherent vasculature, and on characterizing the resulting pcECM. The trypsin/Triton-based perfusion procedure that resulted in a nonimmunogenic and cell-supportive pcECM was found to be more effective in cell removal and in the preservation of fiber morphology and structural characteristics than stirring, sonication, or sodium dodecyl sulfate/Triton-based procedures. Mass spectroscopy revealed that the pcECM is mainly composed of ECM proteins with no apparent cellular protein remains. Mechanical testing indicated that the obtained pcECM is viscoelastic in nature and possesses the typical stress-strain profile of biological materials. It is stiffer than native tissue yet exhibits matched mechanical properties in terms of energy dissipation, toughness, and ultimate stress behavior. Vascular network functionality was maintained to the first three–four branches from the main coronary vessels. Taken together, these results reaffirm the efficiency of the decellularization procedure reported herein for yielding thick nonimmunogenic cell-supportive pcECM scaffolds, preserving both native tissue ultra-structural properties and an inherent vascular network. When reseeded with the appropriate progenitor

  14. Pharmacokinetics of loxoprofen and its active metabolite after dermal application of loxoprofen gel to rats.

    PubMed

    Sawamura, R; Kazui, M; Kurihara, A; Izumi, T

    2015-02-01

    This study was conducted to evaluate the pharmacokinetics of loxoprofen (LX) and its active metabolite (trans-OH form) after a single dermal application of LX gel (LX-G) to rats. In the skin at the treated site, generation of the trans-OH form was detected and both LX and the trans-OH form remained at high concentrations for 24 h after dermal application. Furthermore, both LX and the trans-OH form also remained in the skeletal muscle over 24 h after the single dermal application, while they eliminated rapidly after the single oral administration. The area under the curve up to the last measurable point (AUC(0-t)) for plasma concentrations of LX or the trans-OH form after dermal application of LX-G was less than 11% of that after oral administration of LX. In addition, C(max) and AUC(0-t) increased in a saturable manner while increasing the dose. Overall, these results demonstrated that the trans-OH form was generated at the treated site with the process of dermal absorption of LX and it remained at the target site for a long period with low systemic exposure compared to oral administration.

  15. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  16. [Preclinical studies of an adsorbed diphtheria-tetanus-pertussis vaccine (ADTP-vaccine) with acellular pertussis component].

    PubMed

    Zaĭtsev, E M; Britsina, M V; Bazhanova, I G; Mertsalova, N U; Ozeretskovskaia, M N; Ermolova, E V; Plekhanova, N G; Mikhaĭlova, N A; Kolyshkin, V A; Zverev, V V

    2013-01-01

    Evaluate standardness of antigenic composition of pertussis component, completeness of sorption of pertussis, diphtheria and tetanus components, specific activity and safety of experimental series ofADTP-vaccine with acellular pertussis component (ADTaP-vaccine). The content of separate antigens (pertussis toxin, filamentous hemagglutinin and agglutinogens 1, 2, 3) in samples of acellular pertussis component of ADTaP-vaccine and completeness of sorption of pertussis component of ADTaP-vaccine were evaluated by using enzyme immunoassay. Completeness of sorption of diphtheria and tetanus components were determined in flocculation reaction and antitoxin-binding reactions, respectively. Protective activity ofADTaP-vaccine was studied in model ofmeningoencephalitis development in mice infected with Bordetella pertussis (strain 18323) neurotropic virulent culture, protective activity oftetanus component - by survival of mice after administration of tetanus toxin, protective activity of diphtheria component - by survival of guinea pigs after administration of diphtheria toxin. Safety of preparations was evaluated in tests of acute and chronic toxicity with carrying out pathomorphologic studies including immature animals. All the studied experimental series ofADTaP-vaccine were standard by content of separate antigens of pertussis microbe. All the ADTaP-vaccine components were completely sorbed on aluminium hydroxide gel. By protective activity ADTaP preparations satisfied the WHO requirements. The preparations were non-toxic in acute and chronic toxicity and did not induce pathomorphologic changes including immature animals. Experimental samples of ADTaP-vaccine by specific activity and safety satisfied WHO requirements.

  17. The relationship between inadvertent ingestion and dermal exposure pathways: a new integrated conceptual model and a database of dermal and oral transfer efficiencies.

    PubMed

    Gorman Ng, Melanie; Semple, Sean; Cherrie, John W; Christopher, Yvette; Northage, Christine; Tielemans, Erik; Veroughstraete, Violaine; Van Tongeren, Martie

    2012-11-01

    Occupational inadvertent ingestion exposure is ingestion exposure due to contact between the mouth and contaminated hands or objects. Although individuals are typically oblivious to their exposure by this route, it is a potentially significant source of occupational exposure for some substances. Due to the continual flux of saliva through the oral cavity and the non-specificity of biological monitoring to routes of exposure, direct measurement of exposure by the inadvertent ingestion route is challenging; predictive models may be required to assess exposure. The work described in this manuscript has been carried out as part of a project to develop a predictive model for estimating inadvertent ingestion exposure in the workplace. As inadvertent ingestion exposure mainly arises from hand-to-mouth contact, it is closely linked to dermal exposure. We present a new integrated conceptual model for dermal and inadvertent ingestion exposure that should help to increase our understanding of ingestion exposure and our ability to simultaneously estimate exposure by the dermal and ingestion routes. The conceptual model consists of eight compartments (source, air, surface contaminant layer, outer clothing contaminant layer, inner clothing contaminant layer, hands and arms layer, perioral layer, and oral cavity) and nine mass transport processes (emission, deposition, resuspension or evaporation, transfer, removal, redistribution, decontamination, penetration and/or permeation, and swallowing) that describe event-based movement of substances between compartments (e.g. emission, deposition, etc.). This conceptual model is intended to guide the development of predictive exposure models that estimate exposure from both the dermal and the inadvertent ingestion pathways. For exposure by these pathways the efficiency of transfer of materials between compartments (for example from surfaces to hands, or from hands to the mouth) are important determinants of exposure. A database of

  18. Perspectives on human regeneration.

    PubMed

    Stark, James F

    2018-06-12

    Regeneration is a concept that has fascinated humans for centuries. Whether we have been trying to bring things back to life, extract additional resources from the world, or remodel our living spaces-domestic and urban-it is often presented as an unproblematic force for good. But what exactly does it mean to regenerate a body, mind or space? This paper, which introduces a collection of contributions on the theme of human regeneration, explores the limits and possibilities of regeneration as a conceptual tool for understanding the biological realm. What does it mean to be regenerated? How can a scholarly focus on this concept enrich our histories of bodies, ageing, disability and science, technology and medicine? As a secondary goal, I identify two distinct aspects of regeneration-'hard' and 'soft' regeneration-which concern the medical and social elements of regeneration respectively. By recognising that everything from cosmetics and fictions to prosthetics and organs grown in vitro display a combination of 'hard' and 'soft' elements, we are better placed to understand that the biological and social must be considered in consort for us to fully appreciate the meanings and practices that underpin multiple forms of human regeneration.

  19. A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats

    PubMed Central

    Yin, Hong; Jiang, Tao; Deng, Xi; Yu, Miao; Xing, Hui; Ren, Xianjun

    2018-01-01

    Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI. PMID:29257299

  20. Dermal changes in superficial basal cell carcinoma, melanoma in situ and actinic keratosis and their implications

    PubMed Central

    Kazlouskaya, Viktoryia; Malhotra, Saurabh; Navarro, Raquel; Wu, Karen Nguyen; Shvartsbeyn, Marianna; Shengli, Chen; Gui, Jiang; Elston, Dirk M.

    2018-01-01

    Background Basal cell carcinoma (BCC) has a characteristic stroma, but less is known about the dermal characteristics associated with melanoma in situ (MIS) and actinic keratosis (AK). Materials and methods Dermal changes were studied in 301 specimens of AK, BCC and MIS. Subsequently, blinded images of dermal changes from 90 randomly selected cases of those entities were used to assess the predictive value of the dermal changes. Agreement with the final diagnosis was calculated using kappa coefficient (κ). Results Fibromyxoid stroma was present in 82% of BCC cases; fibrous stroma was seen in 25% of BCC, 58% of MIS and 35.6% of AK specimens (p <0.05). A lichenoid inflammatory infiltrate was frequently associated with AK and a perifollicular infiltrate with periadnexal fibrosis with MIS. Blinded evaluation of images of the dermal changes associated with the tumors yielded the correct diagnosis in (54.4, 41.1 and 27.8%; average 41.2%) by the three appraisers. Coefficient of agreement in blinded imaged evaluation with the actual diagnosis was higher in the BCC and MIS compared with AK (κ = 0.37, p = 0.0001; κ = 0.2, p = 0.0005 and κ = −0.06, p = 0.84, respectively). Conclusion Dermal features may be helpful in predicting the correct diagnosis when tumor is not visible. PMID:24117926

  1. PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATES

    EPA Science Inventory

    PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATES

    M.J.K. Selgrade, E.H. Boykin, N.H. Coates, D.L. Doerfler, S.H. Gavett
    Experimental Toxicology Div., National Health and Environmental Research Laboratory, Office of Research and Developmen...

  2. Tricho-odonto-onycho-dermal dysplasia and WNT10A mutations.

    PubMed

    Kantaputra, P; Kaewgahya, M; Jotikasthira, D; Kantaputra, W

    2014-04-01

    We report on three novel (IVS2+1G>A splice site, c.1066G>T, and c.1039G>T, and one previously reported (c.637G>A) WNT10A mutations in three patients affected with odonto-onycho-dermal dysplasia (OODD; OMIM 275980). OODD is a rare form of autosomal recessive ectodermal dysplasia involving hair, teeth, nails, and skin, characterized by hypodontia (tooth agenesis), smooth tongue with marked reduction of filiform and fungiform papillae, nail dysplasia, dry skin, palmoplantar keratoderma, and hyperhidrosis of palms and soles. The novel IVS+1G>A splice site mutation is predicted to cause significant protein alteration. The other novel mutations we found including c.1066G>T and c.1039G>T are predicted to cause p.Gly356Cys and p.Glu347X, respectively. Barrel-shaped mandibular incisors and severe hypodontia appear to be associated with homozygous or compound heterozygous mutations of WNT10A. The name "tricho-odonto-onycho-dermal dysplasia" is suggested to replace "odonto-onycho-dermal dysplasia" because hair anomalies including hypotrichosis and slow-growing hair have been reported in numerous reported patients with this syndrome. © 2014 Wiley Periodicals, Inc.

  3. Dermal absorption and urinary elimination of N-methyl-2-pyrrolidone.

    PubMed

    Bader, Michael; Keener, Stephen A; Wrbitzky, Renate

    2005-09-01

    The dermal absorption of the solvent N-methyl-2-pyrrolidone (NMP) and its elimination in urine was investigated in an experimental study. Seven volunteers were exposed to 1045 mg of liquid NMP under occlusive conditions for 2 h. Urine was collected before, during and up to 72 h after the exposure and analysed for NMP by GC/MS after liquid-liquid extraction. Additionally, the remaining NMP in the pads was determined to estimate the total dermal uptake. The concentration of NMP in urine increased rapidly after beginning of the exposure up to 1 h after the exposure was completed. A peak concentration of 1,836+/-863 microg/l was observed, the half-life in urine was 3.2 h. About 0.5% of the absorbed dose was excreted metabolically unchanged. An average dermal absorption of 5.5 mg cm(-2) h(-1) was calculated. The results of this study show that the percutaneous absorption of NMP may contribute significantly to the overall uptake of the solvent, e.g. in the workplace. Therefore, a biological monitoring of NMP exposed workers is essential for occupational-medical surveillance.

  4. Hydrocortisone and triiodothyronine regulate hyaluronate synthesis in a tissue-engineered human dermal equivalent through independent pathways.

    PubMed

    Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara

    2015-02-01

    Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in the tissue engineered human dermal matrix. To this end, neonatal human dermal fibroblasts were cultured in defined serum-free medium for 21 days in the presence of each hormone alone, or in combination, in varying concentrations. Through a process of self-assembly, a substantial dermal extracellular matrix formed that was characterized. The results of these studies demonstrate that combinations of the hormones T3 and hydrocortisone showed significantly higher levels of hyaluronate inhibition as compared to each hormone alone in the human dermal matrix. In order to gain preliminary insight into the genes regulating HA synthesis in this system, a differential gene array analysis was conducted in which the construct prepared in the presence of 200 μg/mL HC and 0.2 nM T3 was compared to the normal construct (0.4 μg/mL HC and 20 pM T3). Using a GLYCOv4 gene chip containing approximately 1260 human genes, we observed differential expression of 131 genes. These data suggest that when these two hormones are used in concert a different mechanism of inhibition prevails and a combination of degradation and inhibition of HA synthesis may be responsible for HA regulation in the human dermal matrix. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards.

    PubMed

    Broeckhoven, Chris; du Plessis, Anton; Hui, Cang

    2017-10-01

    The presence of dermal armor is often unambiguously considered the result of an evolutionary predator-prey arms-race. Recent studies focusing predominantly on osteoderms - mineralized elements embedded in the dermis layer of various extant and extinct vertebrates - have instead proposed that dermal armor might exhibit additional functionalities besides protection. Multiple divergent functionalities could impose conflicting demands on a phenotype, yet, functional trade-offs in dermal armor have rarely been investigated. Here, we use high-resolution micro-computed tomography and voxel-based simulations to test for a trade-off between the strength and thermal capacity of osteoderms using two armored cordylid lizards as model organisms. We demonstrate that high vascularization, associated with improved thermal capacity might limit the strength of osteoderms. These results call for a holistic, cautionary future approach to studies investigating dermal armor, especially those aiming to inspire artificial protective materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact.

    PubMed

    Lu, Shaoyou; Yu, Yuling; Ren, Lu; Zhang, Xiaolan; Liu, Guihua; Yu, Yingxin

    2018-04-15

    Increasing concern has been raised in respect of exposure to bisphenols and triclosan (TCS) due to their widespread use. However, little is known about their occurrence in personal care products (PCPs) or, particularly, their dermal uptake following daily application. It is therefore necessary to evaluate the human health risk of bisphenols and TCS via dermal absorption. In this study, 150 PCPs, covering 11 different categories, were collected in China. The concentrations of seven bisphenol analogues and TCS were measured, and the associated human health risks by dermal contact were estimated. High detection frequencies of TCS (46.7%) and bisphenol AF (38.7%) were found in the PCPs. The highest mean concentration of Σ 7 BPs (sum concentration of all seven bisphenols) was 77.8ngg -1 found in masks, and the highest mean concentration of TCS was 86.7ngg -1 in hand sanitizers. The bisphenol composition profiles varied among different categories. Bisphenol A and bisphenol F generally showed higher concentrations. Combining the concentrations of the target substances with the daily usage quantities of PCPs and other parameters, the total estimated dermal intakes and uptakes of Σ 7 BPs and TCS were calculated. The results showed that the former (12.1 and 1.06ng·kg -1 bw day -1 ) were markedly higher than the latter (1.21 and 9.58×10 -2 ng·kg -1 bw day -1 ), which included dermal absorption rates of the chemicals in the estimation. Although diet is the main source, and oral ingestion is the main route, for human BPA exposure, the results of the estimated dermal uptakes of BPA in the present study combined with those from a European study show that dermal contact is the main route with thermal paper being the main contributor when both unconjugated and conjugated BPA in the human body are considered. The present study also showed that exposure to BPA in PCPs following dermal contact should not be ignored. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  8. Applications of biomaterials in plastic surgery.

    PubMed

    Kim, Jeff J; Evans, Gregory R D

    2012-10-01

    The expansion of the application of biomaterials in plastic surgery has led to the increased availability of commercial products in recent years. This overview discusses soft tissue fillers, bioengineered skins, acellular dermal matrices, biomaterials for craniofacial surgery, and peripheral nerve repair. We summarize indications, properties, uses, types, advantages and disadvantages of some of the currently available products from each category. Finally, the current state of development in drug delivery system is also briefly summarized. Published by Elsevier Inc.

  9. Quantitative dermal measurements following treatment with AirGent.

    PubMed

    Kobus, Kazimierz F; Dydymski, Tomasz

    2010-09-01

    As an alternative to other minimally-invasive approaches to facial rejuvenation, enhancement and treatment of the dermis with a compressed air molecule of hyaluronic acid (HA) is a promising method in that it lacks some of the drawbacks of other procedures. The novelty of these systems, one of which is tested in this study, is based on the supposition that jet lateral dispersion of HA produces both instant dermal augmentation and specific wound-healing processes, leading to its long-term dermal thickening. The authors report on the efficacy and safety of the AirGent system (PerfAction, Rehovot, Israel), which is a renewal system designed to initiate a wound-healing process in the dermal layer. It is a computer-guided system that delivers treatment through compressed air molecules of HA to the dermal layer of the skin. The authors treated 20 patients (a total of 105 treatment sessions) with the AirGent system between May 2008 and November 2008. Each patient received three treatments at three- to four-week intervals. Each patient's skin thickness was measured with ultrasonography pretreatment, immediately after each session, and at six months posttreatment. Seven days after the last procedure, an increase in skin thickness was observed in all patients. The most significant differences were noted in the upper lip area, where the thickness had increased by an average of 1.3 mm. Six months after the last session, an increase in skin thickness was still noted in most patients, at which time the biggest difference was noted around the eyes, where the skin remained thicker by an average of 0.77 mm over baseline. According to the results of the Global Improvement Assessment questionnaire, at the six-month follow-up to evaluate their satisfaction with the long-term results, at least 59.9% of patients still noted at least a slight improvement in their appearance. Although a small group of patients and a relatively short period of observation limit the scope of our conclusions

  10. Nitrotyrosine localization to dermal nerves in borderline leprosy.

    PubMed

    Schön, T; Hernández-Pando, R; Baquera-Heredia, J; Negesse, Y; Becerril-Villanueva, L E; Eon-Contreras, J C L; Sundqvist, T; Britton, S

    2004-03-01

    Nerve damage is a common and disabling feature of leprosy, with unclear aetiology. It has been reported that the peroxidizing agents of myelin lipids-nitric oxide (NO) and peroxynitrite-are produced in leprosy skin lesions. To investigate the localization of nitrotyrosine (NT)-a local end-product of peroxynitrite-in leprosy lesions where dermal nerves are affected by a granulomatous reaction. We investigated by immunohistochemistry and immunoelectron microscopy the localization of the inducible NO synthase (iNOS) and NT in biopsies exhibiting dermal nerves from patients with untreated leprosy. There were abundant NT-positive and iNOS-positive macrophages in the borderline leprosy granulomas infiltrating peripheral nerves identified by light microscopy, S-100 and neurofilament immunostaining. Immunoelectron microscopy showed NT reactivity in neurofilament aggregates and in the cell wall of Mycobacterium leprae. Our results suggest that NO and peroxynitrite could be involved in the nerve damage following borderline leprosy.

  11. Dermal in vitro penetration of methiocarb, paclobutrazol, and pirimicarb: effect of nonylphenolethoxylate and protective gloves.

    PubMed Central

    Nielsen, J B; Andersen, H R

    2001-01-01

    Dermal exposure has become the major route of human occupational exposure to pesticides. Detergents are used as part of formulated pesticide products and are known to change the barrier properties of human skin in vitro. However, studies on the influence of detergents as well as protective glove materials on dermal penetration of pesticides are scarce. In an experiment using in vitro static diffusion cells mounted with human skin, we evaluated the effect of nonylphenol-ethoxylate on dermal penetration of three extensively used pesticides--methiocarb, paclobutrazol, and pirimicarb--and the protection against dermal penetration offered by protective gloves made of latex or nitrile. There was a general tendency, though not statistically significant for all pesticides, for nonylphenolethoxylate to decrease the percutaneous penetration of the three pesticides. The nitrile generally offered better protection against percutaneous penetration of pesticides than did latex, but the degree of protection decreased over time and depended on the pesticides used. PMID:11266321

  12. Editorial Commentary: The Acellular Osteochondral Allograft, the Emperor Has New Clothes.

    PubMed

    Mandelbaum, Bert R; Chahla, Jorge

    2017-12-01

    For larger lesions (>2.5-cm 2 ), clinical evidence and practice have shown that fresh osteochondral allograft have good durability, with 88% return to sport and greater than 75% 10-year survival rates for treatment of large femoral condyle lesions. That said, the use of fresh osteochondral allografts in clinical practice is limited by the availability of acceptable donor tissues for eligible patients in a timely fashion. Significant diminution of chondrocyte viability and density occurs during the preservation and storage period. All osteochondral allografts are not equal in performance and outcome. Chondrocyte density and viability are critical for successful transplantation and outcome in the short and long term. This commentary highlights the high failure rates of tissue when it is acellular. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Immunogenicity of a low-dose diphtheria, tetanus and acellular pertussis combination vaccine with either inactivated or oral polio vaccine compared to standard-dose diphtheria, tetanus, acellular pertussis when used as a pre-school booster in UK children: A 5-year follow-up of a randomised controlled study.

    PubMed

    John, T; Voysey, M; Yu, L M; McCarthy, N; Baudin, M; Richard, P; Fiquet, A; Kitchin, N; Pollard, A J

    2015-08-26

    This serological follow up study assessed the kinetics of antibody response in children who previously participated in a single centre, open-label, randomised controlled trial of low-dose compared to standard-dose diphtheria booster preschool vaccinations in the United Kingdom (UK). Children had previously been randomised to receive one of three combination vaccines: either a combined adsorbed tetanus, low-dose diphtheria, 5-component acellular pertussis and inactivated polio vaccine (IPV) (Tdap-IPV, Repevax(®); Sanofi Pasteur MSD); a combined adsorbed tetanus, low-dose diphtheria and 5-component acellular pertussis vaccine (Tdap, Covaxis(®); Sanofi Pasteur MSD) given concomitantly with oral polio vaccine (OPV); or a combined adsorbed standard-dose diphtheria, tetanus, 2-component acellular pertussis and IPV (DTap-IPV, Tetravac(®); Sanofi Pasteur MSD). Blood samples for the follow-up study were taken at 1, 3 and 5 years after participation in the original trial (median, 5.07 years of age at year 1), and antibody persistence to each vaccine antigen measured against defined serological thresholds of protection. All participants had evidence of immunity to diphtheria with antitoxin concentrations greater than 0.01IU/mL five years after booster vaccination and 75%, 67% and 79% of children who received Tdap-IPV, Tdap+OPV and DTap-IPV, respectively, had protective antitoxin levels greater than 0.1IU/mL. Long lasting protective immune responses to tetanus and polio antigens were also observed in all groups, though polio responses were lower in the sera of those who received OPV. Low-dose diphtheria vaccines provided comparable protection to the standard-dose vaccine and are suitable for use for pre-school booster vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  15. Dermal exposure of applicators to chlorpyrifos on rice farms in Ghana.

    PubMed

    Atabila, Albert; Phung, Dung Tri; Hogarh, Jonathan N; Osei-Fosu, Paul; Sadler, Ross; Connell, Des; Chu, Cordia

    2017-07-01

    Studies evaluating dermal exposure to pesticides among applicators in tropical countries have largely been conducted using the patch dosimetry and hand wiping/washing techniques. This study used the more accurate whole-body dosimetry technique to evaluate dermal exposure to chlorpyrifos among applicators on rice farms in Ghana. The exposure levels were plotted as Cumulative Probability Distribution (CPD). Total Dermal Exposure (TDE) of chlorpyrifos among the median exposed and the 5% highly exposed groups during a spray event were 24 mg and 48 mg, respectively. When these were converted as a percentage of the quantity of active ingredient applied (Unit Exposure, UE), UE values of 0.03% and 0.06% were found among the median exposed and the 5% highly exposed groups, respectively. Overall, the hands were the most contaminated anatomical regions of the applicators, both in terms of proportion of TDE (39%) and skin loading (13 μg/cm 2 ). Also, the lower anatomical region was more contaminated (82% of TDE) compared to the upper anatomical region (18% of TDE). The levels of chlorpyrifos TDE among the applicators were found to be influenced by the quantity of insecticide applied and the height of the crops sprayed (p < 0.05). The pesticide UE data of the present study can be used to estimate the levels of dermal exposure under similar pesticide use scenarios among applicators. The findings of the present study suggest that protecting the hands and the lower anatomical regions with appropriate PPE may significantly reduce exposure among applicators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DERMAL EXPOSURE ASSESSMENT: A SUMMARY OF EPA APPROACHES

    EPA Science Inventory

    This final report presents a concise description and evaluation of the approaches used in the Agency for dermal exposure assessment including a discussion about harmonization and research needs in this area. The report is intended to be used by EPA program offices in their effort...

  17. Bio-artificial pleura using an autologous dermal fibroblast sheet

    NASA Astrophysics Data System (ADS)

    Kanzaki, Masato; Takagi, Ryo; Washio, Kaoru; Kokubo, Mami; Yamato, Masayuki

    2017-10-01

    Air leaks (ALs) are observed after pulmonary resections, and without proper treatment, can produce severe complications. AL prevention is a critical objective for managing patients after pulmonary resection. This study applied autologous dermal fibroblast sheets (DFS) to close ALs. For sealing ALs in a 44-year-old male human patient with multiple bullae, a 5 × 15-mm section of skin was surgically excised. From this skin specimen, primary dermal fibroblasts were isolated and cultured for 4 weeks to produce DFSs that were harvested after a 10-day culture. ALs were completely sealed using surgical placement of these autologous DFSs. DFS were found to be a durable long-term AL sealant, exhibiting requisite flexibility, elasticity, durability, biocompatibility, and usability, resulting reliable AL closure. DFS should prove to be an extremely useful tissue-engineered pleura substitute.

  18. Injection Laryngoplasty Using Micronized Acellular Dermis for Vocal Fold Paralysis: Long-term Voice Outcomes.

    PubMed

    Hernandez, Stephen C; Sibley, Haley; Fink, Daniel S; Kunduk, Melda; Schexnaildre, Mell; Kakade, Anagha; McWhorter, Andrew J

    2016-05-01

    Micronized acellular dermis has been used for nearly 15 years to correct glottic insufficiency. With previous demonstration of safety and efficacy, this study aims to evaluate intermediate and long-term voice outcomes in those who underwent injection laryngoplasty for unilateral vocal fold paralysis. Technique and timing of injection were also reviewed to assess their impact on outcomes. Case series with chart review. Tertiary care center. Patients undergoing injection laryngoplasty from May 2007 to September 2012 were reviewed for possible inclusion. Pre- and postoperative Voice Handicap Index (VHI) scores, as well as senior speech-language pathologists' blinded assessment of voice, were collected for analysis. The final sample included patients who underwent injection laryngoplasty for unilateral vocal fold paralysis, 33 of whom had VHI results and 37 of whom had voice recordings. Additional data were obtained, including technique and timing of injection. Analysis was performed on those patients above with VHI and perceptual voice grades before and at least 6 months following injection. Mean VHI improved by 28.7 points at 6 to 12 months and 22.8 points at >12 months (P = .001). Mean perceptual voice grades improved by 17.6 points at 6 to 12 months and 16.3 points at >12 months (P < .001). No statistically significant difference was found with technique or time to injection. Micronized acellular dermis is a safe injectable that improved both patient-completed voice ratings and blinded reviewer voice gradings at intermediate and long-term follow-up. Further investigation may be warranted regarding technique and timing of injection. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  19. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    NASA Astrophysics Data System (ADS)

    Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang

    2011-12-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

  20. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  1. [Differences between plaque-like variants of dermatofibrosarcoma protuberans and plaque-like dermal fibromatosis (dermatomyofibroma)].

    PubMed

    Hügel, H; Kutzner, H; Rütten, A; Biess, B

    1994-05-01

    On the basis of two cases the differences between the plaque-like variant of dermatofibrosarcoma protuberans (PDFSP) and the plaque-like dermal fibromatosis (synonym: dermatomyofibroma; PDF) are presented. PDFSP and PDF are two clinically very similar dermal fibrous proliferations, but differentiation is important because of their different therapy and prognosis. Histologically and immunohistochemically PDFSP and PDF can be recognized as separate entities.

  2. Red light accelerates the formation of a human dermal equivalent.

    PubMed

    Oliveira, Anna Cb; Morais, Thayz Fl; Bernal, Claudia; Martins, Virginia Ca; Plepis, Ana Mg; Menezes, Priscila Fc; Perussi, Janice R

    2018-04-01

    Development of biomaterials' substitutes and/or equivalents to mimic normal tissue is a current challenge in tissue engineering. Thus, three-dimensional cell culture using type I collagen as a polymeric matrix cell support designed to promote cell proliferation and differentiation was employed to create a dermal equivalent in vitro, as well to evaluate the photobiomodulation using red light. Polymeric matrix cell support was prepared from porcine serous collagen (1.1%) hydrolyzed for 96 h. The biomaterial exhibited porosity of 95%, a median pore of 44 µm and channels with an average distance between the walls of 78 ± 14 µm. The absorption of culture medium was 95%, and the sponge showed no cytotoxicity to Vero cells, a non-tumor cell line. Additionally, it was observed that irradiation with light at 630 nm (fluency 30 J cm -2 ) leads to the cellular photobiomodulation in both monolayer and human dermal equivalent (three-dimensional cell culture system). It was also verified that the cells cultured in the presence of the polymeric matrix cell support, allows differentiation and extracellular matrix secretion. Therefore, the results showed that the collagen sponge used as polymeric matrix cell support and the photobiomodulation at 630 nm are efficient for the production of a reconstructed human dermal equivalent in vitro.

  3. Distinct requirements for cranial ectoderm and mesenchyme-derived wnts in specification and differentiation of osteoblast and dermal progenitors.

    PubMed

    Goodnough, L Henry; Dinuoscio, Gregg J; Ferguson, James W; Williams, Trevor; Lang, Richard A; Atit, Radhika P

    2014-02-01

    The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.

  4. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  5. Regeneration methods

    Treesearch

    James P. Barnett; James B. Baker

    1991-01-01

    Southern pines can be regenerated naturally, by clearcutting, seedtree, shelterwood, or selection reproduction culling methods, or artificially, by direct seeding or by planting either container or bareroot seedlings. All regeneration methods have inherent advantages: and disadvantages; thus, land managers must consider many factors before deciding on a specific method...

  6. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    NASA Astrophysics Data System (ADS)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  7. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.

    PubMed

    Heatfield, B M; Travis, D F

    1975-01-01

    The fine structure of regenerating tips of spines of the sea urchin Strongylocentrotus purpuratus was investigated. Each conical tip consisted of an inner dermis, which deposits and contains the calcite skeleton, and an external layer of epidermis. Although cell types termed spherulecytes containing large, intracellular membrane bound spherules were also present in spine tissues, only epidermal and dermal cell types lacking such spherules are described in this paper. The epidermis was composed largely of free cells representing several functional types. Over the apical portion of the tip these cells occurred in groups, while proximally they were distributed within longitudinal grooves present along the periphery of the spine from the base to the tip. The terminal portions of apical processes extending from some of the epidermal cells formed a thin, contiguous outer layer consisting of small individual islands of cytoplasm bearing microvilli. Adjacent islands were connected around the periphery by a junctional complex extending roughly 200 A in depth in which the opposing plasma membranes were separated by a narrow gap about 145 A in width bridged by amorphous material. Other epidermal cells were closely associated with the basal lamina, which was 900 A in thickness and delineated the dermoepidermal junction; some of these cells appeared to synthesize the lamina, while others may be sensory nerve cells. The dermis at the spine tip also consisted of several functional types of free cells; the most interesting of these was the calcoblast, which deposits the skeleton. Calcoblasts extended a thin, cytoplasmic skeletal sheath which surrounded the tips and adjacent proximal portions of each of the longitudinally oriented microspines comprising the regenerating skeleton, and distally, formed a conical extracellular channel ahead of the mineralizing tip. The intimate relationship between calcoblasts and the growing mineral surface strongly suggests that these cells directly

  8. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.

    PubMed

    Petry, T; Bury, D; Fautz, R; Hauser, M; Huber, B; Markowetz, A; Mishra, S; Rettinger, K; Schuh, W; Teichert, T

    2017-10-05

    Mineral oils and waxes used in cosmetic products, also referred to as "personal care products" outside the European Union, are mixtures of predominantly saturated hydrocarbons consisting of straight-chain, branched and ring structures with carbon chain lengths greater than C16. They are used in skin and lip care cosmetic products due to their excellent skin tolerance as well as their high protecting and cleansing performance and broad viscosity options. Recently, concerns have been raised regarding potential adverse health effects of mineral oils and waxes from dermal application of cosmetics. In order to be able to assess the risk for the consumer the dermal penetration potential of these ingredients has to be evaluated. The scope and objective of this review are to identify and summarize publicly available literature on the dermal penetration of mineral oils and waxes as used in cosmetic products. For this purpose, a comprehensive literature search was conducted. A total of 13 in vivo (human, animal) and in vitro studies investigating the dermal penetration of mineral oils and waxes has been identified and analysed. The majority of the substances were dermally adsorbed to the stratum corneum and only a minor fraction reached deeper skin layers. Overall, there is no evidence from the various studies that mineral oils and waxes are percutaneously absorbed and become systemically available. Thus, given the absence of dermal uptake, mineral oils and waxes as used in cosmetic products do not present a risk to the health of the consumer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Mental Regeneration.

    ERIC Educational Resources Information Center

    Langer, Jonas

    Techniques for developing the potential of culturally deprived people cannot be developed without more knowledge of the basic mechanisms of mental change. Psysiological generation and regeneration are both apparently governed by the same set of mechanisms. Regeneration is possible only when a part of the damaged structure is left, and these…

  10. Dermal morphological changes following salicylic acid peeling and microdermabrasion.

    PubMed

    Abdel-Motaleb, Amira A; Abu-Dief, Eman E; Hussein, Mahmoud Ra

    2017-12-01

    Microdermabrasion and chemical peeling are popular, inexpensive, and safe methods for treatment of some skin disorders and to rejuvenate skin. To study the alterations of the dermal connective tissue following salicylic acid peeling and microdermabrasion. Twenty patients were participated in our study. All participants underwent facial salicylic acid 30% peel or microdermabrasion (10 cases in each group) weekly for 6 weeks. Punch biopsies were obtained from the clinically normal skin of the right postauricular region 1 week before treatment (control group). Other punch skin biopsies were obtained 1 week after the end of the treatments from the left postauricular area. This region was treated in a similar way to the adjacent lesional skin (treated group). We used routine histological techniques (H&E stain), special stains (Masson trichrome and orcein stains), and image analyzer to study the alterations of the dermal connective tissues. Our study demonstrates variations in the morphological changes between the control and the treated groups, and between chemical peels and microdermabrasion. Both salicylic acid 30% and microdermabrasion were associated with thickened epidermal layer, shallow dermal papillae, dense collagen, and elastic fibers. There was a significant increase among those treated sites vs control regarding epidermal thickness and collagen thickness. Also, there was a highly statistically significant increase among those treated with salicylic acid vs microdermabrasion regarding the epidermal, collagen, and elastin thickness. Both methods stimulate the repair process. The mechanisms underlying these variations are open for further investigations. © 2017 Wiley Periodicals, Inc.

  11. Calcifying tissue regeneration via biomimetic materials chemistry

    PubMed Central

    Green, David W.; Goto, Tazuko K.; Kim, Kye-Seong; Jung, Han-Sung

    2014-01-01

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction–diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in ‘morphosynthesis’ of complex inorganic constructs. In the future, cellular construction is

  12. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  13. Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits

    NASA Astrophysics Data System (ADS)

    kazem Koohi, Mohammad; Hejazy, Marzie; Asadi, Farzad; Asadian, Peyman

    2011-07-01

    The purpose of this study is to evaluate the dermal toxicity (Irritation/Corrosion) of three sizes of nanosilver particles (10, 20 and 30 nm) during 3 min, 1 and 4 hours according to the OECD/OCDE guideline Histopathological effects in secondary organs from liver, kidney, heart, spleen and brain 14 day post dermal administration are also reported. 10 and 20 nm Ag nanoparticles treated group showed well defined dermal erythema and oedema. Histopathological findings of 10 and 20 nm (4 hours exposure) on 14-day post dermal administration showed hyperkeratosis, acanthosis, hair-filled follicles and papillomatosis in an irregular epidermis, fibrosis, hyperemia, erythema, intracellular oedema and hyalinisation of collagen in dermis of skin. Liver revealed midzonal and periacinar necrosis, portal mononuclear infiltration, liver fatty change, liver congestion and hyperemic central vein. Splenic red pulp congestion and white pulp hyperreactivity, splenic trabeculae and sinusoidal congestion and hyaline change were found in spleen. Fatty degeneration in some cardiovascular cells and subendocardial hemorrhage without inflammation was perceived. Picnotic appearance of pyramidal neurons in the brain cortex, gliosis and mild perineuronal oedema ischemic cell change and hyperemic meninges was observed in brain. Our research concluded that dermal exposure to lesser sizes of silver nanoparticles is more disastrous than greater ones.

  14. PAF involvement in dermal extravasation in the reverse passive Arthus reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deacon, R.W.; Melden, M.K.; Saunders, R.N.

    The reverse passive erthus reaction (RPAR) is characterized by PMN infiltration, increased vascular permeability leading to plasma extravasation and vessel damage. In the skin RPAR is an inflammatory response initiated by deposition of immune complexes and attributed to complement activation. As PAF can elicit similar dermal reactions, they examined the PAF antagonist SRI 63-072 in the RPAR. Guinea pigs were given an i.v. injection of /sup 125/I-BSA (Ag-20 mg/kg with 20 mg/kg Evan's blue as a permeability tracer), followed by intradermal (i.d.) injections (0.1 ml/site) of anti-BSA antibodies (Ab). After 30 min, dermal sites (2 cm diam.) were removed, countedmore » and the ..mu..l plasma/site (over background counts) calculated from plasma radioactivity measurements. The plasma leakage (..mu..l plasma/site) was dose-dependent upon Ab dose (6-200 ..mu..g/site). At the ultrastructural level, the presence of neutrophils and eosinophils were observed in the extravascular spaces. The luminal endothelium exhibited cytotoxic characteristics and loss of junctional integrity. SRI 63-072 exhibited 50% maximal inhibition when given i.d. with the Ab (0.1 ..mu..g/site) but only 5-10% when given at 3.0 mg/kg i.v. with Ag. No further inhibition of dermal extravasation was observed using SRI 63-441, a competitive receptor antagonist with 3-30 fold the in vivo potency of SRI 63-072. As dermal extravasation in RPAR is only partially inhibited by a PAF antagonist, it appears that other vasoactive mediators, possibly histamine, may be influencing vessel permeability as well.« less

  15. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging.

    PubMed

    Deng, Mingwu; Li, Dong; Zhang, Yichen; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wenjie

    2018-06-11

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS), resulting in the aging of dermal fibroblasts. Crocin, a bioactive constituent of Crocus sativus, possesses anti‑oxidation effects. The purpose of the present study was to evaluate the protective effect of crocin on UVB‑induced dermal fibroblast photoaging. Human dermal fibroblasts were isolated and cultured with different concentrations of crocin prior to and following exposure to UVB irradiation. The senescent phenotypes of cells were evaluated, including cell proliferation, cell cycle, senescence‑associated β‑galactosidase (SA‑β‑gal) expression, intracellular ROS, expression of antioxidant protein glutathione peroxidase 1 (GPX‑1) and extracellular matrix protein collagen type 1 (Col‑1). Crocin rescued the cell proliferation inhibited by UVB irradiation, prevented cell cycle arrest and markedly decreased the number of SA‑β‑gal‑positive cells. In addition, crocin reduced UVB‑induced ROS by increasing GPX‑1 expression and other direct neutralization effects. Furthermore, crocin promoted the expression of the extracellular matrix protein Col‑1. Crocin could effectively prevent UVB‑induced cell damage via the reduction of intracellular ROS; thus, it could potentially be used in the prevention of skin photoaging.

  16. Perspectives on human regeneration

    PubMed Central

    Stark, James F.

    2018-01-01

    Regeneration is a concept that has fascinated humans for centuries. Whether we have been trying to bring things back to life, extract additional resources from the world, or remodel our living spaces—domestic and urban—it is often presented as an unproblematic force for good. But what exactly does it mean to regenerate a body, mind or space? This paper, which introduces a collection of contributions on the theme of human regeneration, explores the limits and possibilities of regeneration as a conceptual tool for understanding the biological realm. What does it mean to be regenerated? How can a scholarly focus on this concept enrich our histories of bodies, ageing, disability and science, technology and medicine? As a secondary goal, I identify two distinct aspects of regeneration—'hard' and 'soft' regeneration—which concern the medical and social elements of regeneration respectively. By recognising that everything from cosmetics and fictions to prosthetics and organs grown in vitro display a combination of 'hard' and 'soft' elements, we are better placed to understand that the biological and social must be considered in consort for us to fully appreciate the meanings and practices that underpin multiple forms of human regeneration. PMID:29910957

  17. DNA Polymorphism Assay Distinguishes Isolates of Leishmania donovani That Cause Kala-Azar from Those That Cause Post-Kala-Azar Dermal Leishmaniasis in Humans

    PubMed Central

    Sreenivas, Gannavaram; Subba Raju, B. V.; Singh, Ruchi; Selvapandiyan, Angamuthu; Duncan, Robert; Sarkar, Dwijen; Nakhasi, Hira L.; Salotra, Poonam

    2004-01-01

    Leishmania donovani in India causes visceral infection (kala-azar) and dermal infection (post-kala-azar dermal leishmaniasis). We report here the identification of polymorphism in a well-defined genetic locus among the Leishmania parasites causing the visceral and dermal manifestations, in a comparison of 15 post-kala-azar dermal leishmaniasis and 12 kala-azar patient isolates. PMID:15071036

  18. Alternative cells for regeneration.

    PubMed

    Slack, Jonathan M W

    2012-04-17

    Normally, in fish fin regeneration, bone regenerates from bone. But what happens when there is no bone? Singh et al. (2012) show in this issue of Developmental Cell that the bony rays still regenerate from an alternative cell source. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Augmentation Phalloplasty With Autologous Dermal Fat Graft in the Treatment of "Small Penis".

    PubMed

    Xu, Lisi; Zhao, Muxin; Chen, Wen; Li, Yangqun; Yang, Zhe; Ma, Ning; Wang, Weixin; Feng, Jun; Liu, Qiyu; Ma, Tong

    2016-02-01

    Our objective is to report on the efficacy and safety of dermal fat graft in augmentation phalloplasty performed on patients who presented complaining of "small penis," and evaluate the cosmetic and psychological outcomes of it. From April 2010 and January 2015, 23 Chinese adult patients aged 18 to 33 years (average, 23 years) with subjective perception of small penis were included; all who requested an increase in the penile dimension underwent penile elongation (suprapubic skin advancement-ligamentolysis) and girth enhancement by dermal fat graft. Besides objective measurement, Male Genital Image Scale was used to facilitate selection of patients and evaluate the outcome, respectively. The change and shrinkage of the dermal fat strips was evaluated by ultrasound examination and computed tomography. No major complications or erection deficiencies occurred during the postoperative follow-up period. After 6 months, the mean flaccid length was increased by 2.27 ± 0.54 cm, whereas the mean flaccid circumference gain was 1.67 ± 0.46 cm. Significant improvement of genital satisfaction was reported during the follow-up. The shrinkage of dermal fat strips was inconspicuous, and no curvature was observed due to fibrosis. With strict patient selection, this procedure is proved to be a plausible and reasonable option for patients with penile dysmorphophobia. Also, it provides a potential alternative procedure to current dominant methods and promotes the aesthetic results with penile lengthening.