?-Tubulin is assumed to participate in microtubule nucleation in acentrosomal plant cells, but the underlying molecular mechanisms are still unknown. Here, we show that ?-tubulin is present in protein complexes of various sizes and different subcellular locations in Arabidopsis and fava bean. Immunoprecipitation experiments revealed an association of ...
PubMed Central
Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first ...
Energy Citations Database
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein gamma -tubulin, which forms a complex with GCP2-GCP6 (GCP for gamma -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with gamma ...
PubMed
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein ? -tubulin, which forms a complex with GCP2-GCP6 (GCP for ? -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with ? -tubulin in ...
The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair ...
The bipolar spindle forms without centrosomes naturally in female meiosis and by experimental manipulation in mitosis. Augmin is a recently discovered protein complex required for centrosome-independent microtubule generation within the spindle in Drosophila melanogaster cultured cells. Five subunits of Augmin have been identified so far, but neither their organization within ...
Bipolar spindles assemble in the absence of centrosomes in the oocytes of many species. In Drosophila melanogaster oocytes, the chromosomes have been proposed to initiate spindle assembly by nucleating or capturing microtubules, although the mechanism is not understood. An important contributor to this process is Subito, which is a kinesin-6 protein that is required for ...
The formation of complex nervous systems requires processes that coordinate proliferation, migration and differentiation of neuronal cells. The remarkable morphological transformations of neurons as they migrate, extend axons and dendrites and establish synaptic connections, imply a strictly regulated process of structural organization and dynamic remodeling of the cytoskeleton. The centrosome ...
Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not ...
Although assembly of acentrosomal meiotic spindles has been extensively studied, little is known about the segregation of chromosomes on these spindles. Here, we show in Caenorhabditis elegans oocytes that the kinetochore protein, KNL-1, directs assembly of meiotic kinetochores that orient chromosomes. However, in contrast to mitosis, chromosome separation during meiotic ...
Plant cells create highly structured microtubule arrays at the cell cortex without a central organizing center to anchor the microtubule ends. In vivo imaging of individual microtubules in Arabidopsis plants revealed that new microtubules are initiated at the cell cortex and exhibit dynamics at ...
The self-organized assembly of acentrosomal meiotic spindles has been extensively studied1 but little is known about how chromosomes segregate on these spindles. Here, we investigate two chromosome-microtubule interaction mechanisms�kinetochores and chromokinesins�during meiosis in fertilized C. elegans oocytes. We show that the conserved kinetochore ...
The acentrosomal plant mitotic spindle is uniquely structured in that it lacks opposing centrosomes at its poles and is equipped with a connective preprophase band that regulates the spatial framework for spindle orientation and mobility. These features are supported by specialized microtubule-associated proteins and motors. Here, we show that Arabidopsis ...
The spindle occupies a central position in cell division as it builds up the chromosome-separating machine. Here we analysed the dynamics of spindle formation in acentrosomal plant cells by visualizing microtubules labelled with GFP-EB1, GFP-MAP4 and GFP-alpha-tubulin and chromosomes marked by the vital dye SYTO82. During prophase, few ...
... Abstract : A field emitter array comprises an array of aligned metallic, conductive microtubules extending from a conductive base. ...
DTIC Science & Technology
Here we investigated whether the sensitivity of microtubules to severing by katanin is regulated by acetylation of the microtubules. During interphase, fibroblasts display long microtubules with discrete regions rich in acetylated tubulin. Overexpression of katanin for short periods of time produced breaks preferentially in these ...
The microtubule cortical array is a structure consisting of highly aligned microtubules, observed in all growing plant cells, which plays a crucial role in the characteristic plant cell growth by uniaxial expansion along the axis perpendicular to the microtubules. To investigate the orientational ordering of ...
E-print Network
Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated ...
A cross-section of an axoneme with the positions of the microtubules is described. The microtubules are arranged in a double polygonal spiral with the array divided into 12 sectors by 12 clearly defined, approximately radial boundaries. The boundaries rad...
National Technical Information Service (NTIS)
The polarization of microtubules within neurons in vivo is crucial in their role of determining the directions and speeds of intracellular transport. More than a decade ago, electron microscopy studies of mature hippocampal cultures indicated that their axons contained microtubules of uniform polarity and that dendrites contained ...
Live-cell studies have brought fresh insight into the organizational activities of the plant cortical array. Plant interphase arrays organize in the absence of a discrete microtubule organizing center, having plus and minus ends distributed throughout the cell cortex. Microtubule nucleation occurs at the cell ...
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the ...
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1�h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the ...
Paclitaxel is a widely used microtubule drug and cancer medicine. Here we report that by short exposure to paclitaxel at a low dose, multipolar spindles were induced in mitotic cells without centrosome amplification. Both TPX2 depletion and Aurora-A overexpression antagonized the multipolarity. Live cell imaging showed that some paclitaxel-treated cells accomplished multipolar ...
CDK5RAP2 is a human microcephaly protein that contains a ?-tubulin complex (?-TuC)�binding domain conserved in Drosophila melanogaster centrosomin and Schizosaccharomyces pombe Mto1p and Pcp1p, which are ?-TuC�tethering proteins. In this study, we show that this domain within CDK5RAP2 associates with the ?-tubulin ring complex (?-TuRC) to stimulate its ...
Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase ...
-fluorescence microscopic setup (Zeiss axio- plan 2 with Olympus 100X oil-immersion objective). We detected the motorsDynamic concentration of motors in microtubule arrays Fran�cois N�ed�elec , Thomas Surrey motors in microtubule arrays and asters. By solving a convection-diffusion equation we find
The microtubules of root hairs of Raphanus sativus, Lepidium sativum, Equisetum hyemale, Limnobium stoloniferum, Ceratopteris thalictroides, Allium sativum and Urtica dioica were investigated using immunofluorescence and electron microscopy. Arrays of cortical microtubules were observed in all hairs. The ...
Motor proteins have been implicated in various aspects of mitosis, including spindle assembly and chromosome segregation. Here, we show that acentrosomal Arabidopsis cells that are mutant for the kinesin, ATK1, lack microtubule accumulation at the predicted spindle poles during prophase and have reduced spindle bipolarity during prometaphase. Nonetheless, ...
Plant microtubules are found to be strongly associated with the cell cortex and to experience polymerization/depolymerization processes that are responsible for the organization of microtubule cortical array. Here we propose a minimal model that incorporates the basic assembly dynamics and intermicrotubule interaction to understand the ...
Axons are occupied by dense arrays of cytoskeletal elements called microtubules, which are critical for generating and maintaining the architecture of the axon, and for acting as railways for the transport of organelles in both directions within the axon. Microtubules are organized and regulated by molecules that affect their assembly ...
The cortical array is a structure consisting of highly aligned microtubules which plays a crucial role in the characteristic uniaxial expansion of all growing plant cells. Recent experiments have shown polymerization-driven collisions between the membrane-bound cortical microtubules, suggesting a possible mechanism for their alignment. ...
NASA Astrophysics Data System (ADS)
Proper organization of microtubule arrays is essential for intracellular trafficking and cell motility. It is generally assumed that most if not all microtubules in vertebrate somatic cells are formed by the centrosome. Here we demonstrate that a large number of microtubules in untreated human cells originate from ...
It is well known that the parallel order of microtubules in the plant cell cortex defines the direction of cell expansion, yet it remains unclear how microtubule orientation is controlled, especially on a cell-wide basis. Here we show through 4D imaging and computational modelling that plant cell polyhedral geometry provides spatial input that determines ...
It is widely believed that signature patterns of microtubule polarity orientation within axons and dendrites underlie compositional and morphological differences that distinguish these neuronal processes from one another. Axons of vertebrate neurons display uniformly plus-end-distal microtubules, whereas their dendrites display non-uniformly oriented ...
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of ...
Plant morphogenesis depends on an array of microtubules in the cell cortex, the cortical array. Although the cortical array is known to be essential for morphogenesis, it is not known how the array becomes organized or how it functions mechanistically. Here, we report the development of an in ...
Overexpression of dynein fragments in Dictyostelium induces the movement of the entire interphase microtubule array. Centrosomes in these cells circulate through the cytoplasm at rates between 0.4 and 2.5 ?m/s and are trailed by a comet-tail like arrangement of the microtubule array. Previous work suggested that ...
Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a confining box-like geometry, in the absence ...
The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum ...
trifluralin, two microtubule destabilizers. 2.3.4. The cortical microtubule arrays are disorganized in mutant lateral root cap and epidermal ...
NASA Website
The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here we formulate a continuum ...
Myosin-Va was identified as a microtubule binding protein by cosedimentation analysis in the presence of microtubules. Native myosin-Va purified from chick brain, as well as the expressed globular tail domain of this myosin, but not head domain bound to microtubule-associated protein-free microtubules. Binding of ...
SummaryDuring apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule ...
Microtubule-associated proteins (MAPs) play important roles in the regulation of microtubule function in cells. We describe Arabidopsis thaliana MAP18, which binds to microtubules and inhibits tubulin polymerization in vitro and colocalizes along cortical microtubules as patches of dot-like structures. MAP18 is ...
Ordered cortical microtubule arrays are essential for normal plant morphogenesis, but how these arrays form is unclear. The dynamics of individual cortical microtubules are stochastic and cannot fully account for the observed order; however, using tobacco (Nicotiana tabacum) cells expressing either the MBD-DsRed ...
To get insight into the action of Rho GTPases on the microtubule system we investigated the effects of Cdc42, Rac1, and RhoA on the dynamics of microtubules in Swiss 3T3 fibroblasts. In control cells microtubule ends were dynamic: plus ends frequently switched between growth, shortening and pauses; the growth phase predominated over ...
Short regions of overlap between ends of antiparallel microtubules are central elements within bipolar microtubule arrays. Although their formation requires motors, recent in vitro studies demonstrated that stable overlaps cannot be generated by molecular motors alone. Motors either slide microtubules along each ...
Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis ...
In higher eukaryotic cells, microtubules within metaphase and anaphase spindles undergo poleward flux, the slow, poleward movement of tubulin subunits through the spindle microtubule lattice. Although a number of studies have documented this phenomenon across a wide range of model systems, the possibility of poleward flux before nuclear envelope breakdown ...
SummaryAn organized microtubule array is essential for polarized motility of fibroblastic cells. Dynamic microtubules closely interact with focal adhesion sites in migrating cells. Here, we examined the effect of focal adhesions on microtubule dynamics. We observed that the probability of ...
Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring ...
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered ...
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of ...
It has long been surmised that cellular microtubules are capped at the minus ends to prevent their depolymerization. A recent study provides the first definitive identification of a minus-end-specific capping protein, termed Patronin, which protects the microtubule arrays of both mitotic and interphase cells. PMID:21256440
30 May 2002 Abstract When cultured on polylysine, rat sympathetic neurons extend modest lamellae of a mixture of growth factors called matrigel results in a rapid expansion of the lamellae followed in the microtubule array. Microtubules become significantly longer, and extend to the periphery of the lamellae where
Successful mitosis requires coordinated activities of microtubules and numerous associated proteins. A recent study implicates the microtubule-associated protein MAST/Orbit in a surprisingly wide array of mitotic activities, ranging from maintaining mitotic spindle bipolarity to tethering chromosomes to the ends of ...
Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil�related ...
To identify factors that influence cytoskeletal organization we screened for Arabidopsis (Arabidopsis thaliana) mutants that show hypersensitivity to the microtubule destabilizing drug oryzalin. We cloned the genes corresponding to two of the 131 mutant lines obtained. The genes encoded mutant alleles of PROCUSTE1 and KORRIGAN, which both encode proteins that have previously ...
Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in nondifferentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome [microtubule organizing center (MTOC)] and then reorganized ...
Morlin (7-ethoxy-4-methyl chromen-2-one) was discovered in a screen of 20,000 compounds for small molecules that cause altered cell morphology resulting in swollen root phenotype in Arabidopsis. Live-cell imaging of fluorescently labeled cellulose synthase (CESA) and microtubules showed that morlin acts on the cortical microtubules and alters the movement ...
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before ...
Microtubules form a multifunctional filamentous structure essential for the cell. In interphase, microtubules form networks in the cytoplasm and play pivotal roles in cell polarity and intracellular transport of various biomolecules. In mitosis, microtubules dramatically change their morphology to assemble the mitotic spindle, thereby ...
The microtubule reorientation during the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes was investigated. Using indirect immunofluorescence methods, we examined changes in microtubule orientation in the cortex, endodermis and pith tissues of the shoot bending zone, in response to gravistimulation. Our results show that dense ...
When migrating mesenchymal cells collide, they exhibit a 'contact inhibition of locomotion' response that results in reversal of their front-rear polarity by extension of a new leading edge, which enables their migration away from the opposing contacted cell. The critical cytoskeletal rearrangements underpinning these mutual repulsion events are currently unknown. We found that during fibroblast ...
Class VI ?-tubulin (?6) is the most divergent tubulin produced in mammals and is found only in platelets and mature megakaryocytes. To determine how this unique tubulin isotype affects microtubule assembly and organization, we expressed the cDNA in tissue culture cells under the control of a tetracycline regulated promoter. The ?6 coassembled with other endogenous ?-tubulin ...
It is commonly stated that microtubules gradually disintegrate as tau becomes dissociated from them in tauopathies such as Alzheimer's disease. However, there has been no compelling evidence to date that such disintegration is due to depolymerization of microtubules from their ends. In recent studies, we have shown that neurons contain sufficient levels of ...
Accurate preservation of microtubule and actin microfilament arrays is crucial for investigating their roles in plant cell development. Aldehyde fixatives such as paraformaldehyde or glutaraldehyde preserve cortical microtubule arrays but, unless actin microfilaments are stabilized with drugs such as ...
Access to the article is free, however registration and sign-in are required. We are only just beginning to understand the elegant choreography of microtubules as they self-organize into arrays that drive key cellular events, such as motility and mitosis. In her Perspective, Wadsworth discusses a new imaging study (Shaw et al.) that reveals how ...
NSDL National Science Digital Library
The haploid microspore division during pollen development in flowering plants is an intrinsically asymmetric division which establishes the male germline for sexual reproduction. Arabidopsis gem1 mutants lack the male germline as a result of disturbed microspore polarity, division asymmetry, and cytokinesis and represent loss-of-function mutants in MOR1/GEM1, a plant orthologue of the conserved ...
Microtubule-reporter plants expressing green fluorescent protein-alpha-TUBULIN fusion protein (GFP-TUA6) in male gametophytic cells of tobacco and Arabidopsis provide new tools for studying the native organization of microtubule (MT) arrays during reproductive development. These plants reveal unique features of gametophytic MT ...
Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls. Here we discuss the role of cortical microtubules, which sustain the function of the cell wall, in gravity resistance. Hypocotyls of Arabidopsis tubulin mutants were ...
BackgroundThe plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid ?-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has ...
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis ...
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 ...
The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical ...
In the process of cell division, chromosomes are segregated by mitotic spindles�bipolar microtubule arrays that have a characteristic fusiform shape. Mitotic spindle function is based on motor-generated forces of hundreds of piconewtons. These forces have to deform the spindle, yet the role of microtubule elastic deformations in the ...
Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted ...
Agents that interfere with mitotic progression by perturbing microtubule dynamics are commonly used for cancer chemotherapy. Here, we identify nakiterpiosin as a novel antimitotic drug that targets microtubules. Nakiterpiosin induces mitotic arrest and triggers mitotic catastrophe in human cancer cells by impairing bipolar spindle assembly. At higher ...
Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find ...
The mechanism of chromosome movement is unknown. The structural environment for this movement is a birefringent, spindle-shaped array of microtubules. Microbeams of ultraviolet light were used to disrupt the mitotic spindles of newt lung epithelial cells to localize force production within spindles and to evaluate the role of ...
Microtubules assume a variety of structures throughout the different stages of the cell cycle. Ensuring the correct assembly of such structures is essential to guarantee cell division. During mitosis, it is well established that the spindle assembly checkpoint monitors the correct attachment of sister chromatids to the mitotic spindle. However, the role that ...
The response of cortical microtubules to low temperature and freezing was assessed for root tips of cold-acclimated and non-acclimated winter rye (Secale cereale L. cv Puma) seedlings using indirect immunofluorescence microscopy with antitubulin antibodies. Roots cooled to 0 or ?3�C were fixed for immunofluorescence microscopy at these temperatures or after an additional ...
Formins have long been known to regulate microfilaments but have also recently been shown to associate with microtubules. In this study, Arabidopsis thaliana FORMIN14 (AFH14), a type II formin, was found to regulate both microtubule and microfilament arrays. AFH14 expressed in BY-2 cells was shown to decorate preprophase bands, ...
Microtubules confined to the two-dimensional cortex of elongating plant cells must form a parallel yet dispersed array transverse to the elongation axis for proper cell wall expansion. Some of these microtubules exhibit free minus-ends, leading to migration at the cortex by hybrid treadmilling. Collisions between ...
Myo1 is a class XIV Tetrahymena myosin involved in amitotic elongation and constriction of the macronucleus into two subnuclei at cell division. Elongation of the macronucleus is accompanied by elongation of an intramacronuclear microtubule array, which is oriented parallel to the axis of nuclear elongation. Elongation of the macronucleus often fails to ...
The spindle in dividing cells of the diatom Stephanopyxis turris contains three distinct classes of microtubules: central spindle microtubules, which slide over each other and grow during anaphase spindle elongation; kinetochore-attached microtubules, which are located on the outer surface of the central spindle; and peripheral ...
Microtubules anchored to the two-dimensional cortex of plant cells collide through plus-end polymerization. Collisions can result in rapid depolymerization, directional plus-end entrainment, or crossover. These interactions are believed to give rise to cellwide self-organization of plant cortical microtubules arrays, which is required ...
Cell suspension cultures of Daucus carota were exposed to methyl mercury at concentrations between 0 and 6 micrograms/ml for 1, 3, or 24 hr. Microtubule arrays exhibited no detectable disruption (as compared with controls) when treated with 1, 2, and 3 micrograms/ml methyl mercury. Disorganization of microtubules did occur at higher ...
The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic ...
and meiotic spindles. Organized bipolar spindles contain microtubule arrays emanating from each of two focused about the function of Eg5 in spindle organization are emerging. Microtubule gliding-filament assays have of the more informative mechanochemical properties are to be measured (such as stall force, step size or motor
There are data on gravisensitivity of cells not specialized to perceive a gravity vector but the molecular processes by which gravity affects not graviperceptive cells are still unclear Spaceflight experiments show that the microtubule self-organization in vitro is gravity-dependent Confocal microscopic analysis of the microtubule spatial organization ...
NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional ...
Although the fission yeast Schizosaccharomyces pombe contains many of the ?-tubulin ring complex (?-TuRC)-specific proteins of the ?-tubulin complex (?-TuC), several questions about the organizational state and function of the fission yeast ?-TuC in vivo remain unresolved. Using 3�GFP-tagged ?-TuRC-specific proteins, we show here that ?-TuRC-specific proteins are present at all ...
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic ...
The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that ...
The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance ...
, centrosomes increase the fidelity of mitosis in animal cells. Spindle assembly without centrosomes A growing of centrosomes in mitosis? We propose that these organelles are needed to generate radial arrays of microtubules and orientate the spindle within malleable animal cells. From the earliest descriptions of the centrosome
... and stained en bloc with aqueous 0.5% uranyl acetate. Following dehydration in acetone the specimens were embedded in Epon/Araldite, sectioned, stained in uranyl acetate and lead citrate and observed in a ...
NBII National Biological Information Infrastructure
We investigated the roles of cortical microtubules in gravity-induced modifications to the development of stem organs by analyzing morphology and orientation of cortical microtubule arrays in hypocotyls of Arabidopsis (Arabidopsis thaliana) tubulin mutants, tua3(D205N), tua4(S178?), and tua6(A281T), cultivated under 1g and hypergravity ...
Sea urchin embryos in second division have been lysed into microtubule-stabilizing buffers to yield mitotic cytoskeletons (MCSs) that consist of two mitotic spindles surrounded by a cortical array of filaments. Microtubules have been completely extracted from MCSs by incubation at 0 degrees C with Ca2+-containing buffer. An antibody to ...
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and ...
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. ...
Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it ...
Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we ...
Pathogenic development of the corn smut fungus Ustilago maydis depends on the ability of the hypha to grow invasively. Extended hyphal growth and mitosis require microtubules, as revealed by recent studies on the microtubule cytoskeleton. Surprisingly, hyphal tip growth involves only two out of 10 kinesins. Kinesin-3 is responsible for tip-directed ...
The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment, but the molecular mechanism underlying its function remains unknown. Here we present a subnanometer resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component ...
Cytoplasmic dynein is a minus-end directed microtubule-based motor. Using a molecular genetic approach, we have begun to dissect structure-function relationships of dynein in the cellular slime mold Dictyostelium. Expression of a carboxy-terminal 380-kDa fragment of the heavy chain produces a protein that approximates the size and shape of the globular, mechanochemical head of ...
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a ...
T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell ...
When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP�?-tubulin were directly observed from prophase to just after nuclear envelope breakdown ...
Tubulin has been purified from carrot suspension cells by ionexchange chromatography and assembled into microtubules in the presence of 20 ?M taxol. One-dimensional SDS-PAGE suggested that the ? band migrated faster than the ? band (as has been established for some lower eukaryotic tubulins) and this heterology with brain tubulins was confirmed by peptide mapping. When ...
Microtubules are classically described as being transverse, which is perpendicular to the direction of cell elongation. However, fixation studies have indicated that microtubules can be variably aligned across the epidermis of elongating shoots. In addition, microtubules are reported to have different orientations on inner and outer ...
SummaryNew information has been obtained recently regarding microtubule organization in Xenopus extract spindles. These spindles assemble in vitro by chromatin-mediated microtubule nucleation [1] and consist of randomly interspersed long and short microtubules [2] with minus ends distributed throughout the spindle [3]. Fluorescence ...
Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread ...
We tested the general hypothesis that bundling stabilizes the dynamic properties of the constituent microtubules (MTs) in vivo. We quantified the assembly dynamics of bundled and unbundled MTs in the interphase cortical array of Arabidopsis hypocotyl cells using high dynamic range spinning disk confocal microscopy. We find no evidence that bundled MTs are ...
There are two quite different modes of polar cell expansion in plant cells, namely, diffuse growth and tip growth. The direction of diffuse growth is determined by the orientation of cellulose microfibrils in the cell wall, which in turn are aligned by microtubules in the cell cortex. The orientation of the cortical microtubule array ...
The distribution of microtubule organizing centres (MTOC) in the human oocyte was examined using the microtubule-active drug, taxol, to promote polymerization. Oocytes were obtained from gonadotrophin-stimulated in-vitro fertilization (IVF) patients and examined during various phases of meiotic maturation using confocal fluorescence microscopy. During the ...
Katanin is a heterodimeric microtubule-severing protein that is conserved among eukaryotes. Loss-of-function mutations in the Caenorhabditis elegans katanin catalytic subunit, MEI-1, cause specific defects in female meiotic spindles. To determine the relationship between katanin�s microtubule-severing activity and its role in meiotic spindle formation, ...
In diffusely growing plant cells, cortical microtubules play an important role in regulating the direction of cell expansion. Arabidopsis (Arabidopsis thaliana) spiral2 (spr2) mutant is defective in directional cell elongation and exhibits right-handed helical growth in longitudinally expanding organs such as root, hypocotyl, stem, petiole, and petal. The growth of spr2 roots ...
In order to perpetuate their genetic content, eukaryotic cells have developed a microtubule-based machine known as the mitotic spindle. Independently of the system studied, mitotic spindles share at least one common characteristic--the dynamic nature of microtubules. This property allows the constant plasticity needed to assemble a bipolar structure, make ...
Plant-cell expansion is controlled by cellulose microfibrils in the wall with microtubules providing tracks for cellulose synthesizing enzymes. Microtubules can be reoriented experimentally and are hypothesized to reorient cyclically in aerial organs, but the mechanism is unclear. Here, Arabidopsis hypocotyl microtubules were labelled ...
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, ...
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant's final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness ...
Background information. RanGTP, which is generated on chromosomes during mitosis, is required for microtubule spindle assembly. Due to its restricted spatial generation within the cell it has been suggested that RanGTP acts as a spatial cue to organize site-specific spindle assembly within the cell. However, the absence of a detectable sharp gradient of RanGTP in somatic cells ...
Plant microtubules are organized into specific cell cycle-dependent arrays that have been implicated in diverse cellular processes, including cell division and organized cell expansion. Mutations in four Arabidopsis genes collectively called the PILZ group result in lethal embryos that consist of one or a few grossly enlarged cells. The mutant embryos lack ...
Motility of the endoplasmic reticulum (ER) is predominantly microtubule- dependent in animal cells but thought to be entirely actomyosin-dependent in plant cells. Using live cell imaging and transmission electron microscopy to examine ER motility and structural organization in giant internodal cells of characean algae, we discovered that at the onset of cell elongation, the ...
Kinesin is a motor protein that uses the energy derived from ATP hydrolysis to transport organelles along microtubules. By analyzing the thermal fluctuation of microtubules tethered to glass surfaces by single molecules of kinesin, we have measured the torsional flexibility of the motor protein. The torsional stiffness of kinesin, (117 +/- 19) x 10(-24) ...
Plant cells have specific microtubule structures involved in cell division and elongation. The tonneau1 (ton1) mutant of Arabidopsis thaliana displays drastic defects in morphogenesis, positioning of division planes, and cellular organization. These are primarily caused by dysfunction of the cortical cytoskeleton and absence of the preprophase band of ...
We derive a model describing spatiotemporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of ...
Current MEMS and microfluidic designs require external power sources and actuators, which principally limit such technology. To overcome these limitations, we have developed a number of microfluidic systems into which we can seamlessly integrate a biomolecular motor, kinesin, that transports microtubules by extracting chemical energy from its aqueous working environment. Here ...
Accuracy in chromosome segregation depends on the assembly of a bipolar spindle. Unlike mitotic spindles, which have roughly equal amounts of kinetochore microtubules (kMTs) and nonkinetochore microtubules (non-kMTs), vertebrate meiotic spindles are predominantly comprised of non-kMTs, a large subset of which forms an antiparallel �barrel� ...
Analyses of correspondent meiotic abnormalities is a good tool for studying cytoskeletal rearrangements during plant cell division. The paper reports on the wheat x wheatgrass F1 hybrids, showing various abnormalities during organization of the prophase perinuclear band of microtubules (PNB) in male meiosis. Based on these data, it may be concluded that the perinuclear system ...
In Drosophila oocytes, gurken mRNA localization orientates the TGF-alpha signal to establish the anteroposterior and dorsoventral axes. We have elucidated the path and mechanism of gurken mRNA localization by time-lapse cinematography of injected fluorescent transcripts in living oocytes. gurken RNA assembles into particles that move in two distinct steps, both requiring ...
Centrioles are found in nearly all eukaryotic cells and are required for growth and maintenance of the radial array of microtubules, the mitotic spindle, and cilia and flagella. Different types of microtubule structures are often required at different places in a given cell; centrioles must move around to nucleate these varied ...
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular ...
Tau is a neuronal microtubule-associated protein that promotes microtubule assembly, stability, and bundling in axons. Two distinct regions of tau are important for the tau-microtubule interaction, a relatively well-characterized "repeat region" in the carboxyl terminus (containing either three or four imperfect 18-amino acid repeats ...
Spastin, the most common locus for mutations in hereditary spastic paraplegias1, and katanin are related microtubule-severing AAA ATPases2�6 involved in constructing neuronal7�10 and noncentrosomal7,11 microtubule arrays and in segregating chromosomes12,13. The mechanism by which spastin and katanin break and destabilize ...
SummaryBackgroundBipolar spindle assembly is critical for achieving accurate segregation of chromosomes. In the absence of centrosomes, meiotic spindles achieve bipolarity by a combination of chromosome initiated microtubule nucleation/stabilization and motor driven organization of microtubules. Once assembled, the spindle structure is maintained on a ...
A novel 49 kDa protein, which exhibits nucleotide-dependent cross-linking of microtubules in vitro and localizes to ordered microtubule arrays by immunofluorescent staining, has been purified to apparent homogeneity from the brine shrimp, Artemia. Electrophoretic analysis involving isoelectric focusing and two-dimensional gels, ...
The organization of microtubule arrays in the plant cell cortex involves interactions with the plasma membrane, presumably through protein bridges. We have used immunochemistry and monoclonal antibody 6G5 against a candidate bridge protein, a 90-kD tubulin binding protein (p90) from tobacco BY-2 membranes, to characterize the protein and isolate the ...
Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by ...
BackgroundOpitz G/BBB syndrome is a genetic disorder characterized by developmental midline abnormalities, such as hypertelorism, cleft palate, and hypospadias. The gene responsible for the X-linked form of this disease, MID1, encodes a TRIM/RBCC protein that is anchored to the microtubules. The association of Mid1 with the cytoskeleton is regulated by dynamic phosphorylation, ...
The XMAP215 (Xenopus microtubule-associated protein 215) and CLASP [CLIP-170 (cytoskeletal linker protein 170) associated protein] microtubule plus end tracking families play central roles in the regulation of interphase microtubule dynamics and the proper formation of mitotic spindle architecture and flux. XMAP215 members comprise ...
The emergence of processes from cells often involves interactions between microtubules and microfilaments. Interactions between these two cytoskeletal systems are particularly apparent in neuronal growth cones. The juvenile isoform of the neuronal microtubule-associated protein 2 (MAP2c) is present in growth cones, where we hypothesize it mediates ...
Human EML4 (EMAP-like protein 4) is a novel microtubule-associated WD-repeat protein of 120 kDa molecular weight, which is classified as belonging to the conserved family of EMAP-like proteins. Cosedimentation assays demonstrated that EML4 associates with in vitro polymerized microtubules. Correspondingly, immunofluorescence stainings and transient ...
BackgroundGrowth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to ...
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule ...
In embryonic development in vertebrates, β-catenin signaling promotes polarization of the embryo to establish the dorsoventral axis, and it is this process that is highlighted by the Xenopus Egg Wnt/β-Catenin Pathway. In the amphibian Xenopus, fertilization of the egg results in the establishment of a parallel array of microtubules with ...
The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around ...
Little is known about how the size of an adult animal is determined and regulated. To investigate this issue in hydra, we altered the body size by surgically removing a part of the body column and/or by axial grafting, and examined changes of column length with time. When the body column was shortened it elongated and resumed the original length within 24-48 h. This increase in the body column ...
Loss of full-length adenomatous polyposis coli (APC) protein correlates with the development of colon cancers in familial and sporadic cases. In addition to its role in regulating ?-catenin levels in the Wnt signaling pathway, the APC protein is implicated in regulating cytoskeletal organization. APC stabilizes microtubules in vivo and in vitro, and this may play a role in ...
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a ...
This book contains papers divided among the following six sections: Expression of Tubulin Genes; Microtubule-Associated Proteins; Properties of Tubulines and the Assembly and Disassembly of Microtubules; Drugs Affecting Microtubule Assembly; Interactions of Microtubules with Other Cytoplasmic Components; and ...
The cytoskeleton including its microtubule (Mt) component participates in processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of Mts into several cell cycle and developmentally specific arrays. The cortical array somehow directs the deposition ...
DOE Information Bridge
... Title : Template Synthesis of Organic Microtubules. ... Abstract : We describe in this report an elegant method for the synthesis of organic microtubules. ...
... Title : Template Synthesis of Metal Microtubules. ... Abstract : We have recently described a template method for the synthesis of organic microtubules. ...
The neuronal cytoskeleton consists of microtubules, actin filaments, neurofilaments, and an array of accessory proteins that regulate and modify these three main filament systems. This essay celebrates the career of Paul Letourneau, a pioneer of the neuronal cytoskeleton, to whom the community owes a debt of gratitude. � 2011 Wiley Periodicals, Inc. ...
In this article we describe the needed instrumentation and the methods to be followed for the observation and measurement of the birefringence of single and bundled microtubules and of their ordered arrays using a polarizing microscope. As instruments, the traditional polarizing microscope and the recently developed LC-PolScope are discussed. As methods we ...
The Heliozoa are a polyphyletic assemblage of predaceous freshwater and marine protozoa whose globose cell bodies (diameter" " 8-2600]lm) bear many (20-several hundred) radially disposed slender protrusions called axopodia (diameter" " 0.1-10]lm; length", 30-500]lm). Each axopodium is stiffened by an axoneme consisting of an array of microtubules ...