Sample records for acephate cacodylic acid

  1. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. CACODYLIC ACID (DMAV): METABOLISM AND ...

    EPA Pesticide Factsheets

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.

  3. Laboratory assay of cacodylic acid and ®Meta-Systox-R on Scolytus multistriatus and Pseudopityophthorus sp.

    Treesearch

    Charles O. Rexrode; James W. Lockyer

    1974-01-01

    Cacodylic acid and Meta-Systox-R were applied to oak and elm bark beetle diets. Diets containing 900 to 1,000 ppm of cacodylic acid and diets containing 100 to 200 ppm of Meta-Systox-R killed both oak and elm bark beetles.

  4. Cacodylic acid for precommercial thinning in mixed-conifer stands shows erratic results.

    Treesearch

    William W. Oliver

    1970-01-01

    In a small-scale test, a silvicide consisting of cacodylic acid was injected during the growing season at dosages recommended by the manufacturer. The treatment did not thin adequately two of three mixed-conifer stands. Ponderosa pine and lower crown classes seemed more susceptible to the silvicide than Douglas-fir and upper crown classes. No flashback was recognized....

  5. Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid.

    PubMed

    Singh, Simranjeet; Kumar, Vijay; Upadhyay, Niraj; Singh, Joginder; Singla, Sourav; Datta, Shivika

    2017-08-01

    The present study was intended to investigate the biodegradation of acephate in aqueous media in the presence and in the absence of metal ions [Fe(III) and Cu(II)], and humic acid (HA). Biodegradations were performed using Pseudomonas pseudoalcaligenes PS-5 (PS-5) isolated from the heavy metal polluted site. Biodegradations were monitored by UV-Visible, FTIR, and electron spray ionization-mass spectrometry (ESI-MS) analyses. ESI-MS analysis revealed that PS-5 degraded acephate to two metabolites showing intense ions at mass-to-charge ratios ( m / z ) 62 and 97. The observed kinetic was the pseudo-first order, and half-life periods ( t 1/2 ) were 2.79 d -1 (of PS-5 + acephate), 3.45 d -1 [of PS-5 + acephate + Fe(III)], 3.16 d -1 [of PS-5 + acephate + Cu(II)], and 5.54 d -1 (of PS-5 + acephate + HA). A significant decrease in degradation rate of acephate was noticed in the presence of HA, and the same was confirmed by UV-Visible and TGA analyses. Strong aggregation behavior of acephate with humic acid in aqueous media was the major cause behind the slow degradation rate of acephate . New results on acephate metabolism by strain PS-5 in the presence and in the absence of metal ions [Fe(III) and Cu(II)] and humic acid were obtained. Results confirmed that Pseudomonas pseudoalcaligenes strain PS-5 was capable of mineralization of the acephate without formation of toxic metabolite methamidophos. More significantly, the Pseudomonas pseudoalcaligenes strain PS-5 could be useful as potential biological agents in effective bioremediation campaign for multi-polluted environments.

  6. Acephate affects migratory orientation of the white-throated sparrow (Zonotrichia albicollis)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Sauer, J.R.

    1995-01-01

    Migratory white-throated sparrows (Zonotrichia albicollis) were exposed to acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), an organophosphorus pesticide, to determine its effects on migratory orientation and behavior. Birds were also exposed to polarizer sheets to determine the mechanism by which acephate may affect migratory orientation. Adult birds exposed to 256 ppm acephate a.i. were not able to establish a preferred migratory orientation and exhibited random activity. All juvenile treatment groups displayed a seasonally correct southward migratory orientation. We hypothesize that acephate may have produced aberrant migratory behavior by affecting the memory of the migratory route and wintering ground. This experiment reveals that an environmentally relevant concentration of a common organophosphorus pesticide can alter migratory orientation, but its effect is markedly different between adult and juvenile sparrows. Results suggest that the survival of free-flying adult passerine migrants may be compromised following organophosphorus pesticide exposure.

  7. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene®)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  8. Acephate

    Integrated Risk Information System (IRIS)

    Integrated Risk Information System ( IRIS ) Chemical Assessment Summary U.S . Environmental Protection Agency National Center for Environmental Assessment This IRIS Summary has been removed from the IRIS database and is available for historical reference purposes . ( July 2016 ) Acephate ; CASRN 305

  9. 76 FR 56753 - Formetanate HCl and Acephate; Cancellation Order for Amendments To Terminate; Product Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... Green Beans. 70506-1 Acephate 75 Insecticide...... Succulent Green Beans. 70506-2 Acephate 90 Insecticide...... Succulent Green Beans. 70506-3 Acephate Technical Succulent Green Beans. 70506-8 Acephate 97UP Insecticide.... Succulent Green Beans. 70506-71 Acephate 90SP Manufacturing Succulent Green Beans...

  10. [Dynamic determination of the medicine concentration of poisoned blood of acephate].

    PubMed

    Chu, Jian-Xin; Shen, Ju-Hua; Jiang, Wen-Hui

    2006-06-01

    To observe rule of medicine concentration of blood and the last concentration that through hemoperfusion after poisoned by acephate. Utilizeng the patient annual bonus venous blood in hospital emergency room, the content of acephate in plasma was analyzed by gas chromatography. After hemoperfusion, the concentration of acephate showed a rapid drop and the characteristic that the concentration drops quicker if medicine concentration of blood before hemoperfusion is higher. Hemoperfusion is able to rapidly reduce the concentration of acephate in blood, its speed is determined by initial concentration and the beginning time of hemoperfusion etc.

  11. Enantioselective Dissipation of Acephate and Its Metabolite, Methamidophos, during Tea Cultivation, Manufacturing, and Infusion.

    PubMed

    Pan, Rong; Chen, Hongping; Wang, Chen; Wang, Qinghua; Jiang, Ying; Liu, Xin

    2015-02-04

    The enantioselective dissipation of acephate and its metabolite, methamidophos, was investigated during tea cultivation, manufacturing, and infusion, using QuEChERS sample preparation technique and gas chromatography coupled with a BGB-176 chiral column. Results showed that (+)-acephate and (-)-acephate dissipated following first-order kinetics in fresh tea leaves with half-lives of 1.8 and 1.9 days, respectively. Acephate was degraded into a more toxic metabolite, methamidophos. Preferential dissipation and translocation of (+)-acephate may exist in tea shoots, and (-)-methamidophos was degraded more rapidly than (+)-methamidophos. During tea manufacturing, drying and spreading (or withering) played important roles in the dissipation of acephate enantiomers. The enantiometic fractions of acephate changed from 0.495-0.496 to 0.479-0.486 (P ≤ 0.0081), whereas those of methamidophos changed from 0.576-0.630 to 0.568-0.645 (P ≤ 0.0366 except for green tea manufacturing on day 1), from fresh tea leaves to made tea. In addition, high transfer rates (>80%) and significant enantioselectivity (P ≤ 0.0042) of both acephate and its metabolite occurred during tea brewing.

  12. Pesticide (acephate) removal by GAC: a case study.

    PubMed

    Banerjee, G; Kumar, B

    2002-04-01

    Pesticides are persistent pollutants which need utmost attention in agricultural pollution. They usually accumulate in the food chain, and hence are hazardous in nature. The present study reports the performance of granular activated carbon (GAC) in the removal of acephate contained in the effluent of a nearby pesticide manufacturing industry. In the batch study, the optimum dose of GAC was found to be 85 gm/litre for almost 100% removal of acephate from its initial concentration of 2.9 mg/litre which was found in the industrial effluent under treatment. The adsorption kinetics were represented closely by Langmuir isotherm. The equilibrium time was found as 80 minutes. The adsorptive capacity of GAC for acephate (pesticide) was of the order of 0.04614 mg/gm. A column system was devised and designed based on bed depth-service time (BDST) approach with the experimental value of 'a' and 'b' as 6.125 and 47.75 respectively.

  13. Acephate and buprofezin residues in olives and olive oil.

    PubMed

    Cabras, P; Angioni, A; Garau, V L; Pirisi, F M; Cabitza, F; Pala, M

    2000-10-01

    Field trials were carried out to study the persistence of acephate and buprofezin on olives. Two cultivars, pizz'e carroga and pendolino, with very large and small fruits respectively were used. After treatment, no difference was found between the two pesticide deposits on the olives. The disappearance rates, calculated as pseudo first order kinetics, were similar for both pesticides (on average 12 days). Methamidophos, the acephate metabolite, was always present on all olives, and in some pendolino samples it showed higher residues than the maximum residue limit (MRL). During washing, the first step of olive processing, the residue level of both pesticides on the olives did not decrease. After processing of the olives into oil, no residues of acephate or methamidophos were found in the olive oil, while the residues of buprofezin were on average four times higher than on olives.

  14. Bio-remediation of acephate-Pb(II) compound contaminants by Bacillus subtilis FZUL-33.

    PubMed

    Lin, Wenting; Huang, Zhen; Li, Xuezhen; Liu, Minghua; Cheng, Yangjian

    2016-07-01

    Removal of Pb(2+) and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb(2+) and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb(2+) and biodegradation of acephate. In the present study, both Pb(2+) and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions. Batch experiments were conducted to study the influence of pH, interaction time and Pb(2+) concentration on the process of removal of Pb(2+). At the temperature of 25°C, the maximum removal of Pb(2+) by B.subtilis FZUL-33 was 381.31±11.46mg/g under the conditions of pH5.5, initial Pb(2+) concentration of 1300mg/L, and contact time of 10min. Batch experiments were conducted to study the influence of acephate on removal of Pb(2+) and the influence of Pb(2+) on biodegradation of acephate by B.subtilis FZUL-33. In the mixed system of acephate-Pb(2+), the results show that biodegradation of acephate by B.subtilis FZUL-33 released PO4(3+), which promotes mineralization of Pb(2+). The process of biodegradation of acephate was affected slightly when the concentration of Pb(2+) was below 100mg/L. Based on the results, it can be inferred that the B.subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination. Copyright © 2016. Published by Elsevier B.V.

  15. 75 FR 60231 - Acephate, Cacodylic Acid, Dicamba, Dicloran, et al.; Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... from the National Technical Information Service (NTIS), 5285 Port Royal Rd., Springfield, VA 22161... carrot, postharvest at 15 mg/kg. This MRL is different than the current tolerance established for... for diquat in or on commodities including sorghum at 2 mg/kg and soya bean (dry) at 0.2 mg/kg. These...

  16. Residues of acephate and its metabolite methamidophos in/on mango fruit (Mangifera indica L.).

    PubMed

    Mohapatra, Soudamini; Ahuja, A K; Deepa, M; Sharma, Debi

    2011-01-01

    Mango, the major fruit crop of India is affected by stone weevil, which can cause serious damage to the fruits. Acephate gives good control of mango stone weevil. Residues of acephate and its major metabolite, methamidophos were evaluated on mango fruits following repeated spray applications at the recommended dose (0.75 kg a.i. ha⁻¹) and double the recommended dose (1.5 kg a.i. ha⁻¹). Acephate residues mostly remained on the fruit peel which persisted up to 30 days. Movement of residues to the fruit pulp was detected after 1 day of application, increased to maximum of 0.14 and 0.26 mg kg⁻¹ after 3 days and reached to below detectable level (BDL) after 20 days. Methamidophos, a metabolite of acephate, was detected from 3rd day onwards in both peel and pulp and persisted up to 15 days. The residues (acephate + methamidophos) dissipated with the half-life of 5 days in peel and pulp. A safe pre-harvest interval of 30 days is recommended for consumption of mango fruits following treatment of acephate at the recommended dose of 0.75 kg a.i. ha⁻¹.

  17. 75 FR 28155 - Acephate, Cacodylic acid, Dicamba, Dicloran et al.; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532). This..., including food service, manufacturing and processing establishments, such as restaurants, cafeterias... concentration shall be limited to a maximum of 1.0 percent active ingredient. Contamination of food or food...

  18. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities.

    PubMed

    Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John; Luttrell, Randall

    2018-07-01

    Acephate (organophosphate) is frequently used to control piercing/sucking insects in field crops in southern United States, which may pose a risk to honey bees. In this study, toxicity of acephate (formulation Bracket ® 97) was examined in honey bees through feeding treatments with sublethal (pollen residue level: 0.168 mg/L) and median-lethal (LC 50 : 6.97 mg/L) concentrations. Results indicated that adult bees treated with acephate at residue concentration did not show significant increase in mortality, but esterase activity was significantly suppressed. Similarly, bees treated with binary mixtures of acephate with six formulated pesticides (all at residue dose) consistently showed lower esterase activity and body weight. Clothianidin, λ-cyhalothrin, oxamyl, tetraconazole, and chlorpyrifos may interact with acephate significantly to reduce body weight in treated bees. The dose response data (LC50: 6.97 mg/L) revealed a relatively higher tolerance to acephate in Stoneville bee population (USA) than populations elsewhere, although in general the population is still very sensitive to the organophosphate. In addition to killing 50% of the treated bees acephate (6.97 mg/L) inhibited 79.9%, 20.4%, and 29.4% of esterase, Glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, respectively, in survivors after feeding treatment for 48 h. However, P450 activity was elevated 20% in bees exposed to acephate for 48 h. Even though feeding on sublethal acephate did not kill honey bees directly, chronic toxicity to honey bee was noticeable in body weight loss and esterase suppression, and its potential risk of synergistic interactions with other formulated pesticides should not be ignored. Published by Elsevier Inc.

  19. Comparative toxicity of acephate in laboratory mice, white-footed mice, and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1984-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  20. Comparative toxicity of acephate in laboratory mice, white-footed mice and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1983-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  1. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    PubMed

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate.

    PubMed

    Fernandes, Laís S; Emerick, Guilherme L; dos Santos, Neife Aparecida G; de Paula, Eloísa Silva; Barbosa, Fernando; dos Santos, Antonio Cardozo

    2015-04-01

    Organophosphorus-induced delayed neuropathy (OPIDN) is a central and peripheral distal axonopathy characterized by ataxia and paralysis. Trichlorfon and acephate are two organophosphorus compounds (OPs) used worldwide as insecticide and which cause serious effects to non-target species. Despite that, the neuropathic potential of these OPs remains unclear. The present study addressed the neurotoxic effects and the neuropathic potential of trichlorfon and acephate in SH-SY5Y human neuroblastoma cells, by evaluating inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), neurite outgrowth, cytotoxicity and intracellular calcium. Additionally, the effects observed were compared to those of two well-studied OPs: mipafox (known as neuropathic) and paraoxon (known as non-neuropathic). Trichlorfon and mipafox presented the lowest percentage of reactivation of inhibited NTE and the lowest ratio IC50 NTE/IC50 AChE. Moreover, they caused inhibition and aging of at least 70% of the activity of NTE at sub-lethal concentrations. All these effects have been associated with induction of OPIDN. When assayed at these concentrations, trichlorfon and mipafox reduced neurite outgrowth and increased intracellular calcium, events implicated in the development of OPIDN. Acephate caused effects similar to those caused by paraoxon (non-neuropathic OP) and was only able to inhibit 70% of NTE activity at lethal concentrations. These findings suggest that trichlorfon is potentially neuropathic, whereas acephate is not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dissipation and leaching of acephate, chlorpyrifos, and their main metabolites in field soils of Malaysia.

    PubMed

    Chai, L K; Mohd-Tahir, N; Hansen, S; Hansen, H C B

    2009-01-01

    Preventive treatment with insecticides at high dosing rates before planting of a new crop- soil drenching- is a common practice in some tropical intensive cropping systems, which may increase the risk of leaching, soil functioning, and pesticide uptake in the next crop. The degradation rates and migration of acephate and chlorpyrifos and their primary metabolites, methamidophos and 3,5,6-trichloropyridinol (TCP), have been studied in clayey red yellow podzolic (Typic Paleudults), alluvial (Typic Udorthents), and red yellow podzolic soils (Typic Kandiudults) of Malaysia under field conditions. The initial concentrations of acephate and chlorpyrifos in topsoils were found to strongly depend on solar radiation. Both pesticides and their metabolites were detected in subsoils at the deepest sampling depth monitored (50 cm) and with maximum concentrations up to 2.3 mg kg(-1) at soil depths of 10 to 20 cm. Extraordinary high dissipation rates for weakly sorbed acephate was in part attributed to preferential flow which was activated due to the high moisture content of the soils, high precipitation and the presence of conducting macropores running from below the A horizons to at least 1 m, as seen from a dye tracer experiment. Transport of chlorpyrifos and TCP which both sorb strongly to soil organic matter was attributed to macropore transport with soil particles. The half-lives for acephate in topsoils were 0.4 to 2.6 d while substantially longer half-lives of between 12.6 and 19.8 d were observed for chlorpyrifos. The transport through preferential flow of strongly sorbed pesticides is of concern in the tropics.

  4. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities

    USDA-ARS?s Scientific Manuscript database

    Acephate is frequently used to control piercing/sucking insects in field crops in USA, then may pose a risk to honey bees. In this study, toxicities of acephate were examined in honey bees through feeding treatments with median-lethal (LC50: 6.97 mg/L) and sublethal (residue level in pollen: 0.168 m...

  5. A CONCISE REVIEW OF THE TOXICITY AND CARCINOGENICITY OF DIMETHYLARSINIC ACID

    EPA Science Inventory

    Dimethylarsinic acid (DMA) has been used as an herbicide (cacodylic acid) and is the major metabolite formed after exposure to tri- (arsenite) or pentavalent (arsenate) inorganic arsenic (iAs) via ingestion or inhalation in both humans and rodents. Once viewed simply as a detoxi...

  6. Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris.

    PubMed

    Zhu, Yu Cheng; Guo, Zibiao; He, Yueping; Luttrell, Randall

    2012-01-01

    The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new

  7. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  8. Analytical Methodologies for Detection of Gamma-Valerolactone, Delta-Valerolactone, Acephate and Azinphos Methyl and Their Associated Metabolites in Complex Biological Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, E.; Clark, R.; Grant, K.

    2005-01-01

    Non-invasive biomonitoring for chemicals of interest in law enforcement and similar monitoring of pesticides, together with their metabolites, can not only save money but can lead to faster medical attention for individuals exposed to these chemicals. This study describes methods developed for the analysis of gamma-valerolactone (GVL), delta-valerolactone (DVL), acephate, and azinphos methyl in saliva and serum. Liquid chromatography/mass spectrometry (LC/MS) operated in the negative and positive ion mode and gas chromatography/mass spectrometry (GC/MS) were used to analyze GVL and DVL. Although both analytical techniques worked well, lower detection limits were obtained with GC/MS. The lactones and their corresponding sodiummore » salts were spiked into both saliva and serum. The lactones were isolated from saliva or serum using newly developed extraction techniques and then subsequently analyzed using GC/MS. The sodium salts of the lactones are nonvolatile and require derivatization prior to analysis by this method. N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was ultimately selected as the reagent for derivatization because the acidic conditions required for reactions with diazomethane caused the salts to undergo intramolecular cyclization to the corresponding lactones. In vitro studies were conducted using rat liver microsomes to determine other metabolites associated with these compounds. Azinphos methyl and acephate are classified as organophosphate pesticides, and are known to be cholinesterase inhibitors in humans and insects, causing neurotoxicity. For this reason they have both exposure and environmental impact implications. These compounds were spiked into serum and saliva and prepared for analysis by GC/MS. Continuation of this research would include analysis by GC/MS under positive ion mode to determine the parent ions of the unknown metabolites. Further research is planned through an in vivo analysis of the lactones and pesticides

  9. Field tests of an acephate baiting system designed for eradicating undesirable honey bees (Hymenoptera: Apidae).

    PubMed

    Danka, R G; Williams, J L; Sugden, E A; Rivera, R

    1992-08-01

    Field evaluations were made of a baiting system designed for use by regulatory agencies in suppressing populations of undesirable feral honey bees, Apis mellifera L. (e.g., bees posing hazards [especially Africanized bees] and colonies infested with parasitic mites). Bees from feral or simulated feral (hived) colonies were lured with honey and Nasonov pheromone components to feeders dispensing sucrose-honey syrup. After 1-3 wk of passive training to feeders, colonies were treated during active foraging by replacing untreated syrup with syrup containing 500 ppm (mg/liter) acephate (Orthene 75 S). In four trials using hived colonies on Grant Terre Island, LA., 21 of 29 colonies foraged actively enough at baits to be treated, and 20 of the 22 treated were destroyed. In the lower Rio Grande Valley of Texas (two trials at each of two trials), treatments killed 11 of 16 colonies (6 of 10 hived; 50 of 6 feral). Overall results showed that all 11 colonies that collected greater than 25 mg acephate died, whereas 3 of 10 colonies receiving less than 25 mg survived. Delivering adequate doses required a minimum of approximately 100 bees per target colony simultaneously collecting treated syrup. The system destroyed target colonies located up to nearly 700 m away from baits. Major factors limiting efficacy were conditions inhibiting foraging at baits (e.g., competing natural nectar sources and temperatures and winds that restricted bee flight).

  10. Effect of repeated applications of buprofezin and acephate on soil cellulases, amylase, and invertase.

    PubMed

    Raju, M Naga; Venkateswarlu, K

    2014-10-01

    The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.

  11. Analytical Methodologies for Detection of Gamma-valerolactone, Delta-valerolactone, Acephate, and Azinphos Methyl and their Associated Metabolites in Complex Biological Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, Erika M.; Clark, Ryan J.; Grant, Karen E.

    2005-01-01

    Non-invasive biomonitoring for chemicals of interest in law enforcement and similar monitoring of pesticides together with their metabolites can not only save money but can lead to faster medical attention for individuals exposed to these chemicals. This study describes methods developed for the analysis of gamma-valerolactone (GVL), delta-valerolactone (DVL), acephate, and azinphos methyl in saliva and serum. Liquid chromatography/mass spectrometry (LC/MS) operated in the negative ion mode and in the positive ion mode and gas chromatography/mass spectrometry (GC/MS) were used to analyze GVL and DVL. Although both analytical techniques worked well, lower detection limits were obtained with GC/MS. The lactonesmore » and their corresponding sodium salts were spiked into both saliva and serum. The lactones were isolated from saliva or serum using newly developed extraction techniques and then subsequently analyzed using GC/MS. The sodium salts of the lactones are nonvolatile and require derivatization prior to analysis by this method. N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was ultimately selected as the reagent for derivatization because the acidic conditions required for reactions with diazomethane caused the salts to undergo intramolecular cyclization to the corresponding lactones. In vitro studies were conducted using rat liver microsomes to determine other metabolites associated with these compounds. Azinphos methyl and acephate are classified as organophosphate pesticides, and are known to be cholinesterase inhibitors in humans and insects, causing neurotoxicity. For this reason they have both exposure and environmental impact implications. These compounds were spiked into serum and saliva and prepared for analysis by GC/MS. Continuation of this research would include analysis by GC/MS under positive ion mode to determine the parent ions of the unknown metabolites. Further research is planned through an in vivo analysis of the lactones

  12. Comparative toxicity of Acephate, Diflubenzuron, and Malathion to larvae of the Larch Casebearer, Coleophora laricella (Lepidoptera: Coleophoridae) and adults of its parasites, Chrysocharis laricinellae1 and Dicladocerus nearcticus1,2

    Treesearch

    Marion Page; Roger B Ryan; Nancy Rappaport; Fred< sup> 3< /sup> Schmidt

    1982-01-01

    Fourth-instar larch casebearer, Coleophora laricella (Hübner), was significantly less susceptible to acephate and malathion than were adults of its parasites. Chrysocharis larcinellae(Ratz.) and Dicladocerus nearcticus Yoshimoto (P0.01) than the hosts to diflubenzuron. Malathion was equally...

  13. [Determination of buprofezin, methamidophos, acephate, and triazophos residues in Chinese tea samples by gas chromatography].

    PubMed

    Zhang, Shuiba; Yi, Jun; Ye, Jianglei; Zheng, Wenhui; Cai, Xueqin; Gong, Zhenbin

    2004-03-01

    A method has been developed for the simultaneous determination of buprofezin, methamidophos, acephate and triazophos residues in Chinese tea samples. The pesticide residues were extracted from tea samples with a mixture of ethyl acetate and n-hexane (50:50, v/v) at 45 degrees C. The extracts were subsequently treated with a column packed with 40 mg of active carbon by gradient elution with ethyl acetate and n-hexane. Buprofenzin and the three organophosphorus pesticides were analyzed by gas chromatography using a DB-210 capillary column and a nitrogen-phosphorus detector. The recoveries for spiked standards were 73.4%-96.9%. The relative standard deviations were all within 4.63%. The limits of quantitation (3sigma) in the tea samples were about 7.0-12.0 microg/kg.

  14. HEALTH AND ENVIRONMENTAL EFFECTS DOCUMENT FOR CACODYLIC ACID

    EPA Science Inventory

    Health and Environmental Effects Documents (HEEDS) are prepared for the Office of Solid Waste and Emergency Response (OSWER). his document series is intended to support listings under the Resource Conservation and Recovery Act (RCRA) as well as to provide health-related limits an...

  15. 76 FR 14393 - Notice of Receipt of Requests for Amendments To Delete Uses in Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... Technical...... Acephate Residential Turf, home gardens, ornamentals, flowers, shrubs & trees. 81964-2 Acephate 75% SP......... Acephate Residential Turf, home gardens, ornamentals, flowers, shrubs & trees. 81964-3 Acephate 90% SP......... Acephate Residential Turf, home gardens, ornamentals, flowers, shrubs...

  16. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... raw agricultural commodity as follows: Commodity Parts per million Cotton, undelinted seed 2.8 (b...

  17. Determination of Arsenical Herbicide Residues in Plant Tissues

    Treesearch

    R.M. Sachs; J.L. Michael; F.B. Anastasia; W.A. Wells

    1971-01-01

    Paper chromatographic separation of hydroxydimethylarsine oxide (cacodylic acid), monosodium methanearsonate (MSMA), sodium arsenate, and sodium arsenite was achieved with the aid of four solvent systems. Aqueous extracts of plant tissues removed essentially all the arscnicals applied, but mechanoiic fractionation was required before the extracts could be analyzed by...

  18. Comparative Phytotoxicity Among Four Arsenical Herbicides

    Treesearch

    R.M. Sachs; J.L. Michael

    1971-01-01

    Cacodylic acid (hydroxydimethylarsine oxide) was more phytotoxic than monsodium methanearsonate (MSMA), sodium arsenate, or sodium arsenite when foliarly-applied. MSMA was much more effective on dicotyledonous than on monocotyledonous species. Sodium arsenite and arsenate had little effect on grasses. A comparative study of absorption, transport, and metabolism in...

  19. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam.

    PubMed

    Liu, XingYu; Zhang, QiuPing; Li, ShiBao; Mi, Ping; Chen, DongYan; Zhao, Xin; Feng, XiZeng

    2018-05-01

    Synthetic organic insecticides, including pyrethroids, organophosphates, neonicotinoids and other types, have the potential to alter the ecosystems and many are harmful to humans. This study examines the developmental toxicity and neurotoxicity of three synthetic organic insecticides, including deltamethrin (DM), acephate (AP), and thiamethoxam (TM), using embryo-larval stages of zebrafish (Danio rerio). Results showed that DM exposure led to embryo development delay and a significant increase in embryo mortality at 24 and 48 h post-fertilization (hpf). DM and AP decreased embryo chorion surface tension at 24 hpf, along with the increase in hatching rate at 72 hpf. Moreover, DM caused ntl, shh, and krox20 misexpression in a dose-dependent manner with morphological deformities of shorter body length, smaller eyes, and larger head-body angles at 10 μg/L. TM did not show significant developmental toxicity. Furthermore, results of larval rest/wake assay indicated that DM (>0.1 μg/L) and AP (0.1 mg/L) increased activity behavior with different patterns. Interestingly, as an insect-specific pesticide, TM still could alter locomotor activity in zebrafish larvae at concentrations as low as 0.1 mg/L. Our results indicate that different types of synthetic organic insecticides could create different toxicity outcomes in zebrafish embryos and larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Brain cholinesterase activities of passerine birds in forests sprayed with cholinesterase inhibiting insecticides

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; Shea, P.J.

    1979-01-01

    Brain cholinesterase activities were determined in passerines collected from northwestern forests that had been sprayed with trichlorfon, acephate, and carbaryl at 0.56, 1.13 and 2.26 kg/ha. Trichlorfon and carbaryl inhibited cholinesterase activity slightly in only a few birds, primarily canopy dwellers. In contrast, acephate caused marked inhibition of cholinesterase activity in nearly all birds collected. The inhibition was present even 33 days after spraying. Some birds from the acephate-sprayed forests exhibited clinical signs compatible with acute acetylcholinesterase inhibition.

  1. Engineering Issue Paper: Biotransformation Pathways of Dimethylarsinic (Cacodylic) Acid in the Environment

    EPA Science Inventory

    This EIP summarizes the state of the science regarding the biotransformation of DMA(V) and was developed from peer-reviewed literature, scientific documents, EPA reports, internet sources, input from experts in the field, and other pertinent sources. This EIP includes a review o...

  2. Protonation of Excited State Pyrene-1-Carboxylate by Phosphate and Organic Acids in Aqueous Solution Studied by Fluorescence Spectroscopy

    PubMed Central

    Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2006-01-01

    Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831

  3. Fifty-ninth Christmas Bird Count. 176. Ocean City, Md

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1983-01-01

    Some organophosphorus insecticides have been reported to interfere with reproduction and even cause the decline of small mammal populations. The effects of such anticholinesterases on plasma LH concentrations were examined in male mice (Peromyscus leucopus noveboracensis) intubated with water (OW) or acephate (50 and 100 mg/kg) and sacrificed after 4 h. Brain acetylcholinesterase (AChE) activity was inhibited by 45 and 56%, and basal LH levels were reduced by 29 and 25% in mice receiving the 2 doses of acephate. Responsiveness to LHRH did not appear to be affected 4 h after intubation with 100 mg/kg acephate, as 5 ug/kg LHRH ip evoked a comparable rise in plasma LH after 30 min (2.4 and 3.6 fold) in OW-control and treated mice. Subchronic dietary exposure to 0, 25, 100, and 400 ppm acephate for 5 days resulted in a dose-dependent decline in brain AChE activity (23, 42, and 57%), but did not affect LH concentration or the weights of testes and seminal vesicles. These findings suggest that acute exposure to organophosphorus insecticides may impair reproductive function by altering LH secretion.

  4. Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection.

    PubMed

    Zhang, Baohong; Pan, Xiaoping; Venne, Louise; Dunnum, Suzy; McMurry, Scott T; Cobb, George P; Anderson, Todd A

    2008-05-30

    A reliable, sensitive, and reproducible method was developed for quantitative determination of nine new generation pesticides currently used in cotton agriculture. Injector temperature significantly affected analyte response as indicated by electron capture detector (ECD) chromatograms. A majority of the analytes had an enhanced response at injector temperatures between 240 and 260 degrees C, especially analytes such as acephate that overall had a poor response on the ECD. The method detection limits (MDLs) were 0.13, 0.05, 0.29, 0.35, 0.08, 0.10, 0.32, 0.05, and 0.59 ng/mL for acephate, trifuralin, malathion, thiamethozam, pendimethalin, DEF6, acetamiprid, brifenthrin, and lambda-cyhalothrin. This study provides a precision (0.17-13.1%), accuracy (recoveries=88-107%) and good reproducible method for the analytes of interest. At relatively high concentrations, only lambda-cyhalothrin was unstable at room temperature (20-25 degrees C) and 4 degrees C over 10 days. At relatively low concentrations, acephate and acetamiprid were also unstable regardless of temperature. After 10 days storage at room temperature, 30-40% degradation of lambda-cyhalothrin was observed. It is recommended that acephate, acetamiprid, and lambda-cyhalothrin be stored at -20 degrees C or analyzed immediately after extraction.

  5. Orthene? toxicity to little brown bats (Myotis lucifugus): Acetylcholinesterase inhibition, coordination loss, and mortality

    USGS Publications Warehouse

    Clark, D.R.; Rattner, B.A.

    1987-01-01

    The 24-h LD50 of Orhene (active ingredient acephate, acetylphosphoramidothioic acid o,s-dimethyl ester, CAS 30560-19-1) to little brown bats (Myotis lucifugus) was high (> 1,500 mg acephate/kg) and at least several times greater than the LD50 for mice (Mus musculus) (720 mg/kg). Twenty-four hours after dosing, all surviving mice appeared behaviorally normal, but 9 of 30 surviving bats could not right themselves when placed on their backs. When dead and incapacitated bats were combined to calculate an ED50 (median effective dose), the resultant estimate (687 mg/kg) did not differ (p > 0.05) from the LD50 for mice. Serum cholinesterase (ChE) activity in control bats was 3.2 times greater than in mice. The relationship between the naturally high level of ChE and the relative tolerance of bats to organophosphorus insecticides is unexplained. Toxicity of Orthene was clearly less than that reported elsewhere for methyl parathion (phosphorothioic acid o,o-dimethyl o-[4-nitrophenyl] ester, CAS 298-00-0). This finding may be useful in selection of a chemical for agricultural use, but conclusions about the safety of Orthene to this bat species, or to others, must remain tentative until confirmed by studies under field conditions. Because bats are long-lived with low reproductive rates and slow recruitment, any additional mortality in the wild could be critical to population survival.

  6. Clastogenic and physiological response of chromosomes to nine pesticides in the Vicia faba in vivo root tip assay system.

    PubMed

    deKergommeaux, D J; Grant, W F; Sandhu, S S

    1983-10-01

    9 common pesticides were assayed for clastogenic and physiological activity using Vicia faba as a eukaryotic, whole-organism, test system. The compounds tested included the insecticides acephate, demeton, monocrotophos, parathion-methyl, and trichlorfon; the fungicides captan and folpet; and the herbicides bromacil and simazine. The chemicals have been grouped according to relative genotoxicity (strongly positive: demeton, parathion-methyl; positive: folpet, acephate, monocrotophos, captan; weakly positive: bromacil, trichlorfon, simazine). The results were compared with those reported from other assay systems.

  7. Pesticide-induced quadriplegia in a 55-year-old woman.

    PubMed

    Beavers, Charles T; Parker, Joseph J; Flinchum, Dane A; Weakley-Jones, Barbara A; Jortani, Saeed A

    2014-12-01

    Acephate is a commercial organophosphate pesticide formerly used in households and now used primarily for agriculture. Poisoning symptoms include salivation, lacrimation, urination, defecation, gastrointestinal illness, and emesis. In addition to these classic symptoms, neurodegeneration can result from increased and continued exposure of organophosphates. This 55-year-old woman presented with organophosphate-induced delayed neuropathy in the form of quadriplegia due to the commonly used pesticide acephate. She was exposed to this pesticide through multiple sprayings in her work office with underrecognized poisoning symptoms. She presented to her primary care physician with neuropathic pain and paralysis in her arm following the sprayings and eventual complete paralysis. The patient lived for 2 years following her toxic exposure and quadriplegia. A complete autopsy after her death confirmed a transverse myelitis in her spinal cord. We conclude that in susceptible individuals, acephate in excessive amounts can produce severe delayed neurotoxicity as demonstrated in animal studies.

  8. Cholinesterase inhibition in meadow voles Microtus pennsylvanicus following field applications of Orthene

    USGS Publications Warehouse

    Jett, David A.

    1986-01-01

    Brain acetylcholinesterase activity in field-caught meadow voles (Microtus pennsylvanicus) was depressed after a field-spray of Orthene (acephate: acetylphosphoramidothioic acid O,S-dimethyl ester) by as much as 32% in 1982 and 38% in 1983. Short-term recovery was demonstrated and occurred in a time-dependent fashion in 1982. Plasma cholinesterase levels were move variable but also were depressed. Residues were detected in vegetation samples and in the gastrointestinal tracts of exposed voles. Residues in vegetation were diluted or absent 7 to 8 d following the treatment.

  9. Organophosphorus insecticide induced decrease in plasma luteinizing hormone concentration in white-footed mice

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1985-01-01

    Oral intubation of 50 and 100 mg/kg acephate inhibited brain acetylcholinesterase (AChE) activity by 45% and 56%, and reduced basal luteinizing hormone (LH) concentration by 29% and 25% after 4 h in white-footed mice (Peromyscus leucopus noveboracensis). Dietary exposure to 25, 100, and 400 ppm acephate for 5 days substantially inhibited brain AChE activity, but did not affect plasma LH concentration. These preliminary findings suggest that acute exposure to organophosphorus insecticides may affect LH secretion and possibly reproductive function.

  10. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts

    NASA Astrophysics Data System (ADS)

    Chambarelli, L. L.; Pinho, M. A.; Abraçado, L. G.; Esquivel, D. M. S.; Wajnberg, E.

    Magnetic nanoparticles in the Apis mellifera abdomens are well accepted as involved in their magnetoreception mechanism. The effects of sample preparation on the time evolution of magnetic particles in the honeybee body parts (antennae, head, thorax and abdomen) were investigated by Ferromagnetic Resonance (FMR) at room temperature (RT), for about 100 days. Three preparations were tested: (a) washed with water (WT); (b) as (a), kept in glutaraldehyde 2.5% in 0.1 M cacodylate buffer (pH 7.4) for 24 h and washed with cacodylate buffer (C); (c) as (a), kept in glutaraldehyde 2.5% for 24 h and washed with glutaraldehyde 2.5% in cacodylate buffer (GLC). The four body parts of young and adult worker presented magnetic nanoparticles. The Mn 2+ lines are observed except for the antennae spectra. The high field (HF) and low field (LF) components previously observed in the spectra of social insects, are confirmed in these spectra. The HF line is present in all spectra while the LF is easily observed in the spectra of the young bee and it appears as a baseline shift in spectra of some adult parts. The HF intensity of the abdomen is commonly one order of magnitude larger than any other body parts. This is the first systematic study on the conservation of magnetic material in all body parts of bees. The results show that the time evolution of the spectra depends on the body part, conserving solution and bee age. Further measurements are necessary to understand these effects and extend it to other social insects.

  11. Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves.

    PubMed

    Byrne, Frank J; Urena, Anthony A; Robinson, Lindsay J; Krieger, Robert I; Doccola, Joe; Morse, Joseph G

    2012-05-01

    Trunk injections of systemic insecticides were evaluated for the management of avocado thrips. Insecticide residues were quantified in leaves to determine when after treatment, and for how long, toxic concentrations of the insecticides were present. Residues in fruit were quantified to determine whether trunk injection of insecticides might present a greater risk than traditional application methods for contaminating fruit. Residues of imidacloprid and dinotefuran were at least tenfold higher in leaves when trees were treated via trunk injection compared with soil application. Dinotefuran uptake was more rapid than imidacloprid, and no residues were detected within fruit. Acephate was also mobilized very rapidly and gave good control of thrips in bioassays; however, residues of acephate and its insecticidal metabolite methamidophos were detected in the fruit for up to 4 weeks after injection. Avermectin uptake was very slow, and it was ineffective against avocado thrips. Trunk injections of acephate and dinotefuran permitted rapid uptake into avocados, and they are strong candidates as control methods for avocado thrips. However, residues of organophosphates in fruit could necessitate increased preharvest intervals. Residues of neonicotinoids were below detection limits in fruit, suggesting that neonicotinoids may be the more suitable control option of the two chemical classes. Copyright © 2012 Society of Chemical Industry.

  12. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    PubMed

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    PubMed

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Direct Aqueous Injection-Liquid Chromatography/Tandem Mass Spectrometry (DAI-LC/MS/MS)

    EPA Pesticide Factsheets

    EPA’s Selected Analytical Methods for Environmental Remediation and Recovery (SAM) lists this method for preparation and analysis of drinking water samples to detect and measure acephate, diisopropyl methylphosphonate (DIMP), methamidophos and thiofanox.

  15. Effects of Fixatives and Buffers upon the Morphology of Heart and Skeletal Muscle Mitochondria from Exhausted Rats.

    ERIC Educational Resources Information Center

    Gale, James B.

    This study describes the effects of several fixatives and buffers on the morphology of mitochondria from resting and exhausted rats. Rats were run to exhaustion and adjacent portions from the left ventricle or from the soleus were treated with the following fixation procedures: (a) glutaraldehyde buffered with cacodylate, S-collidine, or phosphate…

  16. The history of arsenical pesticides and health risks related to the use of Agent Blue.

    PubMed

    Bencko, Vladimir; Yan Li Foong, Florence

    2017-06-12

    Arsenicals in agriculture. Beginning in the 1970s, the use of arsenic compounds for such purposes as wood preservatives, began to grow. By 1980, in the USA, 70% of arsenic had been consumed for the production of wood preservatives. This practice was later stopped, due to the US Environmental Protection Agency (EPA) ban of the arsenic-and chromium-based wood preservative chromated copper arsenate. In the past, arsenical herbicides containing cacodylic acid as an active ingredient have been used extensively in the USA, from golf courses to cotton fields, and drying-out the plants before harvesting. The original commercial form of Agent Blue was among 10 toxic insecticides, fungicides and herbicides partially deregulated by the US EPA in February 2004, and specific limits on toxic residues in meat, milk, poultry and eggs, were removed. Today, however, they are no longer used as weed-killers, with one exception - monosodium methanearsonate (MSMA), a broadleaf weed herbicide for use on cotton. Severe poisonings from cacodylic acid caused headache, dizziness, vomiting, profuse and watery diarrhea, followed by dehydration, gradual fall in blood pressure, stupor, convulsions, general paralysis and possible risk of death within 3-14 days.The relatively frequent use of arsenic and its compounds in both industry and agriculture points to a wide spectrum of opportunities for human exposure. This exposure can be via inhalation of airborne arsenic, contaminated drinking water, beverages, or from food and drugs. Today, acute organic arsenical poisonings are mostly accidental. Considerable concern has developed surrounding its delayed effects, for its genotoxic and carcinogenic potential, which has been demonstrated in epidemiological studies and subsequent animal experiments. Conclusions. There is substantial epidemiological evidence for an excessive risk, mostly for skin and lung cancer, among humans exposed to organic arsenicals in occupational and environmental settings

  17. Herbicides for Forest Plantations

    Treesearch

    H. H. Hadley; C. B. Briscoe

    1966-01-01

    MSMA, sodium cacodylate, diquat, aminotriazole, paraquat + surfactant, 2,4-0 amine, ametryne, and picram were tested for use as herbicides in forest plantations. MSMA gave best weed control per dollar of her bicide. Picram also gave good control on dry sites, although more expensive than MSMA, but damaged planted trees. When herbicides were applied during or just...

  18. Evaluation of a single application of Neonicotnoid and multi-application contact insecticides for flatheaded borer management in field grown Acer rubrum L. cultivars

    USDA-ARS?s Scientific Manuscript database

    Two trials evaluated insecticides for flatheaded borer (Chrysobothris femorata [Olivier]) control and red maple (Acer rubrum L.) cultivar growth over a 4-year period. Soil-applied systemic insecticides (acephate, imidacloprid, clothianidin, dinotefuran, and thiamethoxam) and trunk-applied contact i...

  19. Elevated metabolic dextoxification associated with multiple/cross resistance to defferent insecticide classes in tarnished plant bug

    USDA-ARS?s Scientific Manuscript database

    Tarnished plant bugs (TPB, Lygus lineolaris) were collected from multiple locations in the Delta regions of Mississippi, Arkansas, and Louisiana (covering 200 miles in E-W and N-S directions), and were subjected to bioassays to acephate, imidacloprid, dicrotophos, thiamethoxam, and sulfoxaflor (repr...

  20. Direct, indirect, and residual, toxicities of insecticide sprays to western spruce, budworm, Chroistoneura occidentalis (Lepidoptera: Tortricidae)

    Treesearch

    Jacqueline L. Robertson; Nancy L. Rappaport

    1979-01-01

    The toxicities of acephate, aminocarb, carbaryl, chlorpyrifos, chlorpyrifos-methyl, methomyl, mexacarbate, permethrin, and trichlorfon to last instar wetern spruce budworm, Choristoneura occidentalis Freeman, were significantly altered by the presence of hostplant foliage. The pyrethroid permethrin was significantly more toxic when sprayed directly...

  1. Longitudinal measurements of tarnished plant bug (Hemiptera: Miridae) susceptibility to insecticides in Arkansas, Louisiana and Mississippi: Associations with insecticide use and insect control recommendations

    USDA-ARS?s Scientific Manuscript database

    Dose-response assays were conducted from 2008 through 2015 to measure the susceptibility of field populations of Lygus lineolaris (Palisot de Beauvois) from the Delta regions of Arkansas, Louisiana and Mississippi to acephate, imidacloprid, thiamethoxam, permethrin and sulfoxaflor. A total of 229 fi...

  2. A sampling method to determine insecticide residues on surfaces and its application to food-handling establishments.

    PubMed

    Leidy, R B; Wright, C G; Dupree, H E

    1987-07-01

    Known amounts of acephate, chlorpyrifos, and diazinon were applied to Formica, unfinished plywood, stainless steel, and vinyl tile. Cotton-ball and dental wick materials were dipped in 2-propanol and "swiped" over the treated surface area two time. More acephate was found on the second swipe compared to the first from vinyl tile, similar amounts on both swipes from plywood, and less on the second swipe from formica and stainless steel. The ratio of chlorpyrifos on Swipe 1 compared to Swipe 2 found with cotton-ball on both formica and stainless steel surfaces was equivalent (6:1), but a considerable difference was seen when two dental wick swipes were used. Residues of diazinon removed from formica and stainless steel were equivalent, regardless of the swiping material used. Residues of chlorpyrifos were detected by taking swipes of surfaces in two restaurants and a supermarket up to 6 mo after a prescribed application by a commercial pest control firm. The data show that measurable amounts of chloropyrifos can be detected on surfaces not treated with the insecticide for at least 6 mo.

  3. Sublethal effects of insecticides used in soybean on the parasitoid Trichogramma pretiosum.

    PubMed

    de Paiva, Ana Clara Ribeiro; Beloti, Vitor Hugo; Yamamoto, Pedro Takao

    2018-05-01

    To control crop pests, parasitoid wasps of the genus Trichogramma are one alternative to the use of insecticides. Since a wide variety of agrochemicals may be applied to the same crops, it is essential to assess the selectivity of insecticides used for pest control on Trichogramma pretiosum. Information on which insecticides are less harmful to T. pretiosum can improve biological control using this insect, an important tactic in IPM programs for field crops. This study aimed to determine the effects of insecticides on the pupal stage and on the parasitism capacity of T. pretiosum. Lambda-cyhalothrin + thiamethoxam were slightly harmful and chlorpyriphos was moderately harmful to the pupal stage, while acephate, chlorfenapyr and flubendiamide, although considered innocuous, affected the succeeding generations of wasps, with low emergence of F 1 . Chlorfenapyr, chlorpyriphos and lambda-cyhalothrin + thiamethoxam reduced the parasitism, and acephate had a deleterious effect on the generation that contacted the insecticide residue. For an effective IPM program, it is important to apply selective insecticides. Further studies are needed to determine the selectivity of these insecticides under field conditions.

  4. Isolation of a New Herpesvirus from Human CD4+ T Cells

    DTIC Science & Technology

    1990-01-01

    of (PBLs) by negative selection using immunoadsorption with lymphocyte- infected with the RK virus exhibited a cytopathic goat anti -mouse...human herpesvirus 6 (HHV-6). is the causative min in 0.1 M cacodylate buffer, pH 7.2). stained with 1% agent of roseola infantum, a common childhood... herpesvirus 6?humn herp eviru8S/ -CD4+ human T cellsd latency ,T cell activation4~ virus laec 1 .1. ’~ Y ’ ") X)I- 19. ABSTRACT (Continue an peyerre if

  5. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.; Bradbury, S.P.

    1981-01-01

    Oral doses of the organophosphorus pesticides acephate, dicrotophos, fensulfothion, fonofos, malathion, and parathion were administered to mallard ducklings (Anas platyrhynchos), and brain and plasma cholinesterase (ChE) activities were determined for up to 77 d after dosing. In vivo recovery of brain ChE activity to within 2 standard deviations of the mean activity of undosed birds occurred within 8 d, after being depressed an average of 25-58% at 24 h after dosing. In vivo recovery of plasma ChE appeared as fast as or faster than that of brain, but the pattern of recovery was more erratic and therefore statistical comparison with brain ChE recovery was not attempted. In vitro tests indicated that the potential for dephosphorylation to contribute to in vivo recovery of inhibited brain ChE differed among chemical treatments. Some ducklings died as a result of organophosphate dosing. In an experiment in which ducklings within each treatment group received the same dose (mg/kg), the brain ChE activity in birds that died was less than that in birds that survived. Brain ChE activities in ducklings that died were significantly different among pesticide treatments: fensulfothion > parathion> acephate > malathion (p < 0.05).

  6. Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials.

    PubMed

    Fernandes, Maria E S; Alves, Flávia M; Pereira, Renata C; Aquino, Leonardo A; Fernandes, Flávio L; Zanuncio, José C

    2016-08-01

    Lethal and sublethal effects of insecticides on target and non-target arthropods are a concern of pest management programs. Cycloneda sanguinea, Orius insidiosus and Chauliognathus flavipes are important biological control agents for aphids, whitefly, lepidopterus eggs, thrips and mites. All three test species were subjected to a toxicity study using the insecticides acephate, bifenthrin, chlorantraniliprole, chlorpyrifos, deltamethrin, imidacloprid, and thiamethoxam. Experiments were done in the lab and field. In the laboratory we evaluated the mortality and sublethal effects of the concentration that killed 20% of the population (LC20) on feeding, repellence and reproduction of the species tested. The lethal effects of these insecticides at the recommended doses was evaluated in the field. Concentration-response bioassays indicated chlorantraniliprole had the lowest toxicity, while chlorpyrifos and acephate were the most toxic. Test species exposed to filter paper surfaces treated with pyrethroids, neonicotinoids and organophosphates were repelled. On the other hand, test species were not repelled from surfaces treated with chlorantraniliprole. Chlorantraniliprole therefore seemed to be the least dangerous insecticide for these three beneficial arthropod test species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes.

    PubMed

    Wu, Chuan; Ye, Zhihong; Shu, Wensheng; Zhu, Yongguan; Wong, Minghung

    2011-05-01

    Root aeration, arsenic (As) accumulation, and speciation in rice of 20 different genotypes with regular irrigation of water containing 0.4 mg As l(-1) were investigated. Different genotypes had different root anatomy demonstrated by entire root porosity (ranging from 12.43% to 33.21%), which was significantly correlated with radial oxygen loss (ROL) (R=0.64, P<0.01). Arsenic accumulation differed between genotypes, but there were no significant differences between Indica and Japonica subspecies, as well as paddy and upland rice. Total ROL from entire roots was correlated with metal tolerance (expressed as percentage mean of control straw biomass, R=0.69, P<0.01) among the 20 genotypes; total As concentration (R=-0.67, P<0.01) and inorganic As concentration (R=-0.47, P<0.05) in rice grains of different genotypes were negatively correlated with ROL. There were also significant genotype effects in percentage inorganic As (F=15.8, P<0.001) and percentage cacodylic acid (F=22.1, P<0.001), respectively. Root aeration of different genotypes and variation of genotypes on As accumulation and speciation would be useful for selecting genotypes to grow in areas contaminated by As.

  8. 40 CFR 180.108 - Acephate; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphoramidothioate, in or on the commodity. Commodity 1 Parts per million Bean, dry, seed 3.0 Bean, succulent 3.0... phosphoramidothioate, in or on the commodity. Commodity Parts per million Bean, dry, seed 1 Bean, succulent 1 Brussels...

  9. 40 CFR 180.108 - Acephate; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphoramidothioate, in or on the commodity. Commodity 1 Parts per million Bean, dry, seed 3.0 Bean, succulent 3.0... phosphoramidothioate, in or on the commodity. Commodity Parts per million Bean, dry, seed 1 Bean, succulent 1 Brussels...

  10. 40 CFR 180.108 - Acephate; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphoramidothioate, in or on the commodity. Commodity 1 Parts per million Bean, dry, seed 3.0 Bean, succulent 3.0... phosphoramidothioate, in or on the commodity. Commodity Parts per million Bean, dry, seed 1 Bean, succulent 1 Brussels...

  11. 40 CFR 180.108 - Acephate; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphoramidothioate, in or on the commodity. Commodity 1 Parts per million Bean, dry, seed 3.0 Bean, succulent 3.0... phosphoramidothioate, in or on the commodity. Commodity Parts per million Bean, dry, seed 1 Bean, succulent 1 Brussels...

  12. 40 CFR 180.108 - Acephate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... establishments, including food service, manufacturing and processing establishments, such as restaurants... avoid atomization or splashing of the spray. Contamination of food or food-contact surfaces shall be... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.108...

  13. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  14. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  15. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  16. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  17. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  18. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  19. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  20. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  1. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  2. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  3. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  4. Brimstone chemistry under laser light assists mass spectrometric detection and imaging the distribution of arsenic in minerals.

    PubMed

    Lal, Swapnil; Zheng, Zhaoyu; Pavlov, Julius; Attygalle, Athula B

    2018-05-23

    Singly charged As2n+1 ion clusters (n = 2-11) were generated from elemental arsenic by negative-ion laser-ablation mass spectrometry. The overall abundance of the gaseous As ions generated upon laser irradiation was enhanced nearly a hundred times when As-bearing samples were admixed with sulfur. However, sulfur does not act purely as an inert matrix: irradiating arsenic-sulfur mixtures revealed a novel pathway to generate and detect a series of [AsSn]- clusters (n = 2-6). Intriguingly, the spectra recorded from As2O3, NaAsO2, Na3AsO4, cacodylic acid and 3-amino-4-hydroxyphenylarsonic acid together with sulfur as the matrix were remarkably similar to that acquired from an elemental arsenic and sulfur mixture. This result indicated that arsenic sulfide cluster-ions are generated directly from arsenic compounds by a hitherto unknown pathway. The mechanism of elemental sulfur extracting chemically bound arsenic from compounds and forming [AsSn]- clusters is enigmatic; however, this discovery has a practical value as a general detection method for arsenic compounds. For example, the method was employed for the detection of As in its minerals, and for the imaging of arsenic distribution in minerals such as domeykite. LDI-MS data recorded from a latent image imprinted on a piece of paper from a flat mineral surface, and wetting the paper with a solution of sulfur, enabled the localization of arsenic in the mineral. The distribution of As was visualized as false-color images by extracting from acquired data the relative intensities of m/z 139 (AsS2-) and m/z 171 (AsS3-) ions.

  5. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  6. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  7. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  8. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  9. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  10. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  11. Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.

    PubMed Central

    Haslewood, E S; Haslewood, G A

    1976-01-01

    1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488

  12. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  13. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  14. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  15. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  16. Aspartic acid

    MedlinePlus

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  17. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  18. 5-(Tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acid-like alkyloxyarylcarboxylic acids.

    PubMed

    Parker, R A; Kariya, T; Grisar, J M; Petrow, V

    1977-06-01

    5-(Tetradecyloxy)-2-furancarboxylic acid (91, RMI 14514) was found to lower blood lipids and to inhibit fatty acid synthesis with minimal effects on liver weight and liver fat content. This fatty acid-like compound represents a new class of hypolipidemic agent; it is effective in rats and monkeys. The compound resulted from discovery of hypolipidemic activity in certain beta-keto esters, postulation and confirmation of the corresponding benzoic acids as active metabolites, and systematic exploration of the structure--activity relationships.

  19. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  20. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  1. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  2. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  4. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  5. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    PubMed

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  6. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  7. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  8. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  9. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  10. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  11. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    PubMed

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  13. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Residual susceptibility of the red imported fire ant (Hymenoptera: Formicidae) to four agricultural insecticides.

    PubMed

    Seagraves, Michael P; McPherson, Robert M

    2003-06-01

    The red imported fire ant, Solenopsis invicta Buren, is an abundant predator in cropping systems throughout its range. It has been documented to be an important predator of numerous crop pests, as well as being an agricultural pest itself. Information on the impact of insecticides on natural enemies such as fire ants is necessary for the integration of biological and chemical control tactics in an effective pest management program. Therefore, a residual vial bioassay was developed to determine the concentration-mortality responses of S. invicta workers to four commonly used insecticides: acephate, chlorpyrifos, methomyl and lambda-cyhalothrin. Fire ant workers showed a mortality response to serial dilutions to all four chemicals. Methomyl (LC50 0.04 microg/vial, fiducial limits 0.03-0.06) was the most toxic, followed by chlorpyrifos (LC50 0.11 microg/vial, fiducial limits 0.07-0.17) and acephate (LC50 0.76 microg/vial, fiducial limits 0.50-1.04). Of the chemicals assayed, it took a much higher concentration of lambda-cyhalothrin (LC50 2.30 microg/vial, fiducial limits 1.57-3.59) to kill 50% of the workers compared with the other three chemicals. The results of this study demonstrate the wide range in responses of fire ants to four insecticides that are labeled and commonly used on numerous agricultural crops throughout the United States. These results further suggest the possibility of using a discriminating dose of lambda-cyhalothrin to control the target pest species while conserving fire ants in the agricultural systems in which their predatory behavior is beneficial to the integrated pest management program.

  15. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India.

    PubMed

    Malathi, Vijayakumar Maheshwari; Jalali, Sushil K; Gowda, Dandinashivara K Sidde; Mohan, Muthugounder; Venkatesan, Thiruvengadam

    2017-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the major pests of rice throughout Asia. Extensive use of insecticides for suppressing N. lugens has resulted in the development of insecticide resistance leading to frequent control failures in the field. The aim of the present study was to evaluate resistance in the field populations of N. lugens from major rice growing states of South India to various insecticides. We also determined the activity of detoxifying enzymes (esterases [ESTs], glutathione S-transferases [GSTs], and mixed-function oxidases [MFOs]). Moderate levels of resistance were detected in the field populations to acephate, thiamethoxam and buprofezin (resistance factors 1.05-20.92 fold, 4.52-14.99 fold, and 1.00-18.09 fold, respectively) as compared with susceptible strain while there were low levels of resistance to imidacloprid (resistance factor 1.23-6.70 fold) and complete sensitivity to etofenoprox (resistance factor 1.05-1.66 fold). EST activities in the field populations were 1.06 to 3.09 times higher than the susceptible strain while for GST and MFO the ratios varied from 1.29 to 3.41 and 1.03 to 1.76, respectively. The EST activity was found to be correlated to acephate resistance (r = 0.999, P ≥ 0.001). The high selection pressure of organophosphate, neonicotinoid, and insect growth regulator (IGR) in the field is likely to be contributing for resistance in BPH to multiple insecticides, leading to control failures. The results obtained will be beneficial to IPM recommendations for the use of effective insecticides against BPH. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  16. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda.

    PubMed

    Zhu, Yu Cheng; Blanco, Carlos A; Portilla, Maribel; Adamczyk, John; Luttrell, Randall; Huang, Fangneng

    2015-07-01

    Fall armyworm (FAW) is a damaging pest of many economic crops. Long-term use of chemical control prompted resistance development to many insecticide classes. Many populations were found to be significantly less susceptible to major Bt toxins expressed in transgenic crops. In this study, a FAW strain collected from Puerto Rico (PR) with 7717-fold Cry1F-resistance was examined to determine if it had also developed multiple/cross resistance to non-Bt insecticides. Dose response assays showed that the PR strain developed 19-fold resistance to acephate. Besides having a slightly smaller larval body weight and length, PR also evolved a deep (2.8%) molecular divergence in mitochondrial oxidase subunit II. Further examination of enzyme activities in the midgut of PR larvae exhibited substantial decreases of alkaline phosphatase (ALP), aminopeptidase (APN), 1-NA- and 2-NA-specific esterase, trypsin, and chymotrypsin activities, and significant increases of PNPA-specific esterase and glutathione S-transferase (GST) activities. When enzyme preparations from the whole larval body were examined, all three esterase, GST, trypsin, and chymotrypsin activities were significantly elevated in the PR strain, while ALP and APN activities were not significantly different from those of susceptible strain. Data indicated that multiple/cross resistances may have developed in the PR strain to both Bt toxins and conventional insecticides. Consistently reduced ALP provided evidence to support an ALP-mediated Bt resistance mechanism. Esterases and GSTs may be associated with acephate resistance through elevated metabolic detoxification. Further studies are needed to clarify whether and how esterases, GSTs, and other enzymes (such as P450s) are involved in cross resistance development to Bt and other insecticide classes. Published by Elsevier Inc.

  17. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis.

    PubMed

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2015-01-01

    This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. Published by the BMJ Publishing Group Limited. For

  18. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  19. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  20. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  1. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  2. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  3. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  4. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  5. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    PubMed

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  7. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  8. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    PubMed

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  9. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  10. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  11. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  12. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely used...

  13. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  14. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  15. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  16. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  17. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  18. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    NASA Astrophysics Data System (ADS)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  19. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  20. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  1. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  2. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  3. Short communication: Eicosatrienoic acid and docosatrienoic acid do not promote vaccenic acid accumulation in mixed ruminal cultures.

    PubMed

    AbuGhazaleh, A A; Holmes, L D; Jacobson, B N; Kalscheur, K F

    2006-11-01

    Previous research found that docosahexaenoic acid (C22:6n-3) was a component of fish oil that promotes trans-C18:1 accumulation in ruminal cultures when incubated with linoleic acid. The objective of this study was to determine if eicosatrienoic acid (C20:3n-3) and docosatrienoic acid (C22:3n-3), n-3 fatty acids in fish oil, promote accumulation of trans-C18:1, vaccenic acid (VA) in particular, using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of C20:3n-3 (ETA), control plus 5 mg of C22:3n-3 (DTA), control plus 15 mg of linoleic acid (LA), control plus 5 mg of C20:3n-3 and 15 mg of linoleic acid (ETALA), and control plus 5 mg of C22:3n-3 and 15 mg of linoleic acid (DTALA). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the concentrations of trans-C18:1 (0.87, 0.88, and 0.99 mg/culture), and VA (0.52, 0.56, and 0.62 mg/culture) were similar for the control, ETA, and DTA cultures, respectively. The concentrations of trans-C18:1 (5.51, 5.41, and 5.36 mg/culture), and VA (4.78, 4.62, and 4.59 mg/culture) were also similar between LA, ETALA, and DTALA cultures, respectively. These data suggest that C20:3n-3 and C22:3n-3 are not the active components in fish oil that promote VA accumulation when incubated with linoleic acid.

  4. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  5. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  6. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  7. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  8. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schick, P.K.; Webster, P.

    1987-05-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with (/sup 14/C)-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of (/sup 14/C)-20:4 into total MK phospholipids, 16% andmore » 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of (/sup 14/C)-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of (/sup 14/C)-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA.« less

  10. Nicotinic Acid Metabolism, V. A Cobamide Coenzyme-Dependent Conversion of α-Methyleneglutaric Acid to Dimethylmaleic Acid

    PubMed Central

    Kung, H. F.; Cederbaum, S.; Tsai, L.; Stadtman, T. C.

    1970-01-01

    A new B12-coenzyme-dependent isomerization, catalyzed by extracts of a nicotinate-fermenting clostridium, results in the conversion of α-methyleneglutaric acid to dimethylmaleic acid. These two acids are intermediates in the multistep anaerobic process wherein nicotinate is converted, ultimately, to one mole each of propionate, acetate, carbon dioxide, and ammonia. Dimethylmaleic acid reacts in its anhydride form with 2,4-dinitrophenylhydrazine to form N-2′,4′-dinitrophenyl-anilino-3,4-dimethylmaleimide. The characteristic reddish color exhibited by the latter derivative in alkaline solution serves as a convenient quantitative assay for dimethylmaleic acid. Comparison of the 2,4-dinitrophenylhydrazine derivatives of the product of the enzymic reaction and of synthetic dimethylmaleic anhydride showed them to be identical in every respect. PMID:5266166

  11. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  12. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  13. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  14. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  15. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  16. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts. (a...

  18. Nitrous Acid as an Oxidant in Acidic Media

    DTIC Science & Technology

    1979-09-25

    nitroso oxidations were run in sulfuric acid. The Hammett acidity function is used as the abscissa because it conveniently represents the acidity region...oxidation. 13 Consistent with the general mechanism, equations (1)-(3), and in contrast to nitration, phenol nitrosation displays a primary kinetic...oxidized 1(III) + Alc - 104O + C-O (4) with the only route now removing HNO being NO+ + H - H + + 2N0 (5) Apparently while alcohol remains, equation (5

  19. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  20. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  1. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  2. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  3. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.

  4. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  5. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  6. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  7. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.

    PubMed

    Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J

    2009-02-01

    Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.

  9. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].

    PubMed

    Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie

    2012-10-01

    To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.

  10. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006)

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong

    2010-10-01

    Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the

  11. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE PAGES

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira; ...

    2017-03-28

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  12. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  13. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  14. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  15. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Hydroxamic acids as weak base indicators: protonation in strong acid media.

    PubMed

    García, B; Ibeas, S; Hoyuelos, F J; Leal, J M; Secco, F; Venturini, M

    2001-11-30

    The protonation equilibria of N-phenylbenzohydroxamic, benzohydroxamic, salicylhydroxamic, and N-p-tolylcinnamohydroxamic acids have been studied at 25 degrees C in concentrated sulfuric, hydrochloric, and perchloric acid media; the UV-vis spectral measurements were analyzed using the Hammett equation and the Bunnett-Olsen and excess acidity methods. The medium effects observed in the UV spectral curves were corrected with the Cox-Yates and vector analysis methods. The H(A) acidity function based on benzamides provided the best results. The range of variation of the solvation coefficient m is similar to that of amides, this indicating similar solvation requirements for amides and hydroxamic acids. For the same substrate, the observed variations of pK(BH)(+) with the mineral acid used was justified by formation of solvent-separated ion pairs; for the same mineral acid, the observed changes in pK(BH)(+) can be explained by the solvation of BH(+). The change of the pK(BH)(+) values was in reasonably good agreement with the sequence of the catalytic efficiency of the mineral acids used, HCl > H(2)SO(4) > HClO(4).

  17. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  18. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12

    PubMed Central

    Pfeuffer, Maria; Jaudszus, Anke

    2016-01-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  20. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives.

    PubMed

    Vollmer, Maren; Schröter, David; Esders, Selma; Neugart, Susanne; Farquharson, Freda M; Duncan, Sylvia H; Schreiner, Monika; Louis, Petra; Maul, Ronald; Rohn, Sascha

    2017-10-01

    The almost forgotten crop amaranth has gained renewed interest in recent years due to its immense nutritive potential. Health beneficial effects of certain plants are often attributed to secondary plant metabolites such as phenolic compounds. As these compounds undergo significant metabolism after consumption and are in most cases not absorbed very well, it is important to gain knowledge about absorption, biotransformation, and further metabolism in the human body. Whilst being hardly found in other edible plants, caffeoylisocitric acid represents the most abundant low molecular weight phenolic compound in many leafy amaranth species. Given that this may be a potentially bioactive compound, gastrointestinal microbial degradation of this substance was investigated in the present study by performing in vitro fermentation tests using three different fecal samples as inocula. The (phenolic) metabolites were analyzed using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Furthermore, quantitative polymerase chain reaction (qPCR) analyses were carried out to study the influence on the microbiome and its composition. The in vitro fermentations led to different metabolite profiles depending on the specific donor. For example, the metabolite 3-(4-hydroxyphenyl)propionic acid was observed in one fermentation as the main metabolite, whereas 3-(3-hydroxyphenyl)propionic acid was identified in the other fermentations as important. A significant change in selected microorganisms of the gut microbiota however was not detected. In conclusion, caffeoylisocitric acid from amaranth, which is a source of several esterified phenolic acids in addition to chlorogenic acid, can be metabolized by the human gut microbiota, but the metabolites produced vary between individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  3. Nucleic Acid Immunity.

    PubMed

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  4. Uric acid - urine

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  5. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  6. Bile acids: regulation of apoptosis by ursodeoxycholic acid

    PubMed Central

    Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.

    2009-01-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220

  7. Bile acids: regulation of apoptosis by ursodeoxycholic acid.

    PubMed

    Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P

    2009-09-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.

  8. Effects of the insecticide, orthene, on unconfined populations of the meadow vole (Microtus pennsylvanicus). I. Capture/recapture procedures; II. Residues and cholinesterase inhibition

    USGS Publications Warehouse

    Jett, David A.

    1983-01-01

    In 1982 and 1983. the population demography of M. pennsylvanicus was not altered significantly by single or double applications of Orthene. Although inconsistencies in population size, survival, and recruitment were not explained by differences between control and experimental grids in breeding, emigration, interspecific competition, or pesticide-induced mortality, there may have been fundamental microhabitat differences between grids in both years, and this is supported by prespray data. Slight differences between grids may also reflect the random error associated with the models used to estimate parameters. No evidence was found to indicate an effect on relative weight change or average distances moved. The level of brain AChE in 1982 during sequential days after spraying was significantly lower than control levels. However, this inhibition was not enough to cause direct mortality. Recovery of brain AChe was gradual, probably reflecting continual re-exposure through the diet. Acephate and methamidophos residues were present in the vegetation collected from sprayed areas immediately following treatment, but were reduced or absent after 8 days. AChE inhibition in 1982 and 1983 extended beyond the disappearance of residues in the vegetation. Residues were only present in the G.l. tracts of voles collected immediately following treatment due to rapid metabolism and excretion. Levels in the vegetation and G.l. tracts in 1982 and 1983 were well below the rat oral LD50 of acephate. It is concluded that Orthene applied at recommended levels, in a single or double treatment, should not affect unconfined populations of M. pennsylvanicus in Maryland old-field habitats. Furthermore, this study confirms this method as a sensitive means to determine the overall impact of insecticides on wildlife populations. However, caution must be exercised to insure that all control and experimental areas are closely scrutinized for habitat differences.

  9. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera).

    PubMed

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3-13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide.

  10. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera)

    PubMed Central

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3–13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide. PMID:28591204

  11. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  12. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources ofmore » EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.« less

  13. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  14. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  15. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  16. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  17. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids

    NASA Technical Reports Server (NTRS)

    Kawamura, Kimitaka; Kaplan, I. R.

    1987-01-01

    Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.

  18. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  19. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  1. Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1

    PubMed Central

    Terzaghi, William B.

    1989-01-01

    This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997

  2. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  3. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  4. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait

    PubMed Central

    Xia, En-Qin; Wang, Bo-Wei; Xu, Xiang-Rong; Zhu, Li; Song, Yang; Li, Hua-Bin

    2011-01-01

    Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials. PMID:21954361

  5. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.

    PubMed

    Clifford, Michael N; Jaganath, Indu B; Ludwig, Iziar A; Crozier, Alan

    2017-12-13

    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.

  6. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  7. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  8. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  9. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  10. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  11. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  12. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  14. Valproic Acid

    MedlinePlus

    ... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... acid. Talk to your doctor about birth control methods that will work for you. If you become ...

  15. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  16. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  18. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  19. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  20. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  1. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  2. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  3. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This ... before the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  5. Fatty Acids of Myxococcus xanthus

    PubMed Central

    Ware, Judith C.; Dworkin, Martin

    1973-01-01

    Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria. PMID:4197903

  6. Secular trend of serum docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid concentrations among Japanese-a 4- and 13-year descriptive epidemiologic study.

    PubMed

    Otsuka, Rei; Kato, Yuki; Imai, Tomoko; Ando, Fujiko; Shimokata, Hiroshi

    2015-03-01

    Cross-sectional studies have shown age-related increases in blood docosahexaenoic and eicosapentaenoic acid and decreases in arachidonic acid. We describe serum docosahexaenoic, eicosapentaenoic, and arachidonic acid concentrations over 13 years (1997-2012) across four study waves and serum fatty acid composition over 4 years (2006-2012) between two study waves according to age groups by sex in the same subjects. We included 443 men and 435 women aged 40-79 years at baseline. Serum arachidonic acid concentrations increased in all sex and age groups over 13 years, and eicosapentaenoic or docosahexaenoic acid concentrations increased in males and females who were younger and middle-aged at baseline. Only serum arachidonic acid composition increased over 4 years in men and women who were 40-69 years at baseline, even after adjustment for arachidonic acid intake. These findings suggest a secular increase trend in serum arachidonic acid levels over 13 years among randomly selected community-dwelling middle-aged and elderly Japanese. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    PubMed

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  8. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  9. Citric acid urine test

    MedlinePlus

    Urine - citric acid test; Renal tubular acidosis - citric acid test; Kidney stones - citric acid test; Urolithiasis - citric acid test ... No special preparation is necessary for this test. But the results ... test is usually done while you are on a normal diet. Ask your ...

  10. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  11. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  13. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  14. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    USDA-ARS?s Scientific Manuscript database

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  15. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  16. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  17. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  18. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    PubMed

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  19. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  20. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  1. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  2. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  3. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  4. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  5. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    PubMed Central

    Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295

  6. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  7. Experiment Comparison between Engineering Acid Dew Point and Thermodynamic Acid Dew Point

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Deng, Jianhua

    2018-06-01

    in order to realize the accurate prediction of acid dew point, a set of measurement system of acid dew point for the flue gas flue gas in the tail of the boiler was designed and built, And measured at the outlet of an air preheater of a power plant of 1 000 MW, The results show that: Under the same conditions, with the test temperature decreases, Nu of heat transfer tubes, fouling and corrosion of pipe wall and corrosion pieces gradually deepened. Then, the measured acid dew point is compared with the acid dew point obtained by using the existing empirical formula under the same coal type. The dew point of engineering acid is usually about 40 ° lower than the dew point of thermodynamic acid because of the coupling effect of fouling on the acid liquid, which can better reflect the actual operation of flue gas in engineering and has certain theoretical guidance for the design and operation of deep waste heat utilization system significance.

  8. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  9. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    PubMed

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  10. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  11. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis

    PubMed Central

    Eijkelkamp, Bart A.; Begg, Stephanie L.; Pederick, Victoria G.; Trapetti, Claudia; Gregory, Melissa K.; Whittall, Jonathan J.; Paton, James C.; McDevitt, Christopher A.

    2018-01-01

    Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections. PMID:29867785

  12. Pretreatment of corn stover by solid acid for d-lactic acid fermentation.

    PubMed

    Wang, Xiqing; Wang, Gang; Yu, Xiaoxiao; Chen, Huan; Sun, Yang; Chen, Guang

    2017-09-01

    Solid acid is a new acid that is safe and green, which has been widely used in the fields of acid pickling. In this study, we adopted solid acid to pretreat corn stover and used the pretreated corn stover in the fermentation of d-lactic acid. Finally, we obtained optimal conditions for the pretreatment of corn stover by solid acid: digestion temperature of 120°C, digestion time of 80min, and solid acid concentration of 1.5%. Then adding cellulase of 30FPU/g, the conversion rate of glucose reached 71.06% after enzymatic hydrolysis for 72h. In addition, the changes of corn stover structure after pretreatment were further represented by using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, we used the pretreated corn stover as fermentation substrate and Lactobacillus. delbrueckii sp. bulgaricus as the starting strain to produce d-lactic acid. The yield reached 18g/L, with the optical purity being 99%e.e. This research has provided a new way to comprehensively utilizae corn stover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Urinary and plasma organic acids and amino acids in chronic fatigue syndrome.

    PubMed

    Jones, Mark G; Cooper, Elizabeth; Amjad, Saira; Goodwin, C Stewart; Barron, Jeffrey L; Chalmers, Ronald A

    2005-11-01

    Previous work by others have suggested the occurrence of one or more chemical or metabolic 'markers' for ME/CFS including specific amino acids and organic acids and a number of unidentified compounds (CFSUM1, CFSUM2). We have shown elsewhere that CFSUM1 is partially derivatised pyroglutamic acid and CFSUM2 partially derivatised serine and have suggested and demonstrated that the analytical methods used were unsuitable to identify or to accurately quantify urinary metabolites. We have now made a detailed analysis of plasma and urinary amino acids and of urinary organic acids from patients with ME/CFS and from three control groups. Fasting blood plasma and timed urine samples were obtained from 31 patients with CFS, 31 age and sex-matched healthy controls, 15 patients with depression and 22 patients with rheumatoid arthritis. Plasma and urinary amino acids and urinary organic acids were determined using established and validated methods and data compared by statistical analysis. None of the previously reported abnormalities in urinary amino acids or of organic acids could be confirmed. Results however provide some evidence in patients with ME/CFS for underlying inflammatory disease and for reduced intramuscular collagen with a lowered threshold for muscle micro-injury. These factors in combination may provide a basis for the fatigue and muscle pain that are the major symptoms in these patients.

  14. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Lawson, Marcus A; Chiu, Gabriel S; Blevins, Neil A; Kwakwa, Kristin A; Freund, Gregory G

    2014-09-01

    Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  16. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  17. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts.

    PubMed

    Brown, E R; Subbaiah, P V

    1994-12-01

    To better understand the mode of action of omega 3 fatty acids in cell membranes, human foreskin fibroblasts were grown in serum-free medium supplemented with 50 microM oleic acid linoleic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), and the effects on membrane composition, fluorescence polarization and enzyme activities were followed. The cells were enriched with EPA and DHA up to 7 and 13% of total lipids, respectively, of which > 95% was associated with phospholipids. In addition, the concentration of 22:5n-3 increased with both EPA and DHA to 7.5, and 2.1% of the total fatty acids, respectively. When compared to controls (oleic acid), cells treated with DHA showed a decrease in cholesterol, phospholipids, arachidonic acid (AA) and free cholesterol/phospholipid ratio (P < 0.05). In the presence of EPA, only decreases in AA and cholesterol were significant (P < 0.05). Membrane fluidity, assessed by fluorescence anisotropy, was increased 16% in cells enriched with DHA (P < 0.05), but showed no change with EPA or linoleic acid. There was an increase in membrane-associated 5'-nucleotidase (+27%) and adenylate cyclase (+19%) activities (P < 0.05), in DHA-enriched, but not in EPA-enriched cells, when compared with oleate controls. The studies show that incorporation of DHA, but not EPA, into cell membranes of fibroblasts alters membrane biophysical characteristics and function. We suggest that these two major n-3 fatty acids of fish oils have differential effects on cell membranes, and this may be related to the known differences in their physiological effects.

  18. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  19. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  20. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  1. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  2. Sulfuric Acid on Europa

    NASA Image and Video Library

    1999-09-30

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. http://photojournal.jpl.nasa.gov/catalog/PIA02500

  3. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  4. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  5. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  7. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  8. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  9. Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.

    PubMed

    Steele, R D

    1986-06-01

    A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.

  10. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  11. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  12. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography.

    PubMed

    Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping

    2012-12-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used in this study. Under the experimental conditions, the UV peaks of salicylic acid and 2,3-dihydroxybenzoic acid were well separated from the peaks of humic acid in the chromatogram. Concentrations of the two small organic acids could be accurately determined from their peak areas. The concentration of humic acid in the mixture could then be derived from mass balance calculations. The measured results agreed well with the nominal concentrations. The detection limits are 0.05 mg/L and 0.01 mg/L for salicylic acid and 2,3-dihydroxybenzoic acid, respectively. Applicability of the method to natural samples was tested using groundwater, glacier, and river water samples (both original and spiked with salicylic acid and 2,3-dihydroxybenzoic acid) with a total organic carbon concentration ranging from 2.1 to 179.5 mg C/L. The results obtained are promising, especially for groundwater samples and river water samples with a total organic carbon concentration below 9 mg C/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  14. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    NASA Astrophysics Data System (ADS)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  15. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  16. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  17. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  18. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  19. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  20. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  1. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  6. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  7. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  8. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  9. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  11. Sleep disorders and the prevalence of asymptomatic nocturnal acid and non-acid reflux.

    PubMed

    Herdman, Christine; Marzio, Dina Halegoua-De; Shah, Paurush; Denuna-Rivera, Susie; Doghramji, Karl; Cohen, Sidney; Dimarino, Anthony J

    2013-01-01

    Nocturnal acid reflux is associated with symptomatic and asymptomatic sleep arousals, leading to fragmented sleep. The frequency and influence of acid reflux in patients with various forms of insomnia has not been reported. The aim of this study was to quantify nocturnal acid and nonacid reflux in patients with primary sleep disorders as previously diagnosed by polysomnography. THIRTY ONE SUBJECTS WERE STUDIED: (A) 9 subjects with a polysomnographically diagnosed sleep disorder (1 with restless legs syndrome, 4 with narcolepsy, 4 with periodic limb movement disorder); (B) 12 subjects with primary insomnia (PI) and unrevealing polysomnography; and (C) 10 controls without disturbed sleep. All subjects underwent a physical examination and 24 h transnasal pH and impedance monitoring to detect acid and non-acid reflux. The 21 subjects with fragmented sleep due to a primary sleep disorder had significantly more recumbent acid exposure (>1.2% of time) as compared with control subjects (33% versus 0%). When fragmented sleep subjects were divided into two groups, 17% of PI subjects and 55% of subjects with a diagnosed sleep disorder had significant recumbent acid exposure (P=0.009). Likewise, the median recumbent nonacid events were increased in the sleep disordered group (P=0.011). This study indicates that patients with primary sleep disorders have prominent nocturnal acid reflux without symptoms of daytime acid reflux. Acid reflux is most prominent in patients with polysomnographic findings of disturbed sleep as compared to patients with PI; while non acid reflux is increased minimally in these patients.

  12. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    PubMed

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  13. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    PubMed Central

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-01-01

    Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance. PMID:17147830

  14. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid.

    PubMed

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-12-06

    Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L-ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. 5,6-O-isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  15. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  16. Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.

    PubMed

    Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto

    2018-05-01

    Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.

  17. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  18. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  19. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  20. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  1. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    PubMed

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  3. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  4. Safety of folic acid

    PubMed Central

    Field, Martha S.

    2017-01-01

    Abstract There is a large body of literature demonstrating the efficacy of maternal folic acid intake in preventing birth defects, as well as investigations into potential adverse consequences of consuming folic acid above the upper intake level (UL). Recently, two authoritative bodies convened expert panels to assess risks from high intakes of folic acid: the U.S. National Toxicology Program and the UK Scientific Advisory Committee on Nutrition. Overall, the totality of the evidence examined by these panels, as well as studies published since the release of their reports, have not established risks for adverse consequences resulting from existing mandatory folic acid fortification programs that have been implemented in many countries. Current folic acid fortification programs have been shown to support public health in populations, and the exposure levels are informed by and adherent to the precautionary principle. Additional research is needed to assess the health effects of folic acid supplement use when the current upper limit for folic acid is exceeded. PMID:29155442

  5. Uric acid nephrolithiasis: An update.

    PubMed

    Cicerello, Elisa

    2018-04-01

    Uric acid nephrolithiasis appears to increase in prevalence. While a relationship between uric acid stones and low urinary pH has been for long known, additional association with various metabolic conditions and pathophysiological basis has recently been elucidated. Some conditions such as diabetes and metabolic syndrome disease, excessive dietary intake, and increased endogenous uric acid production and/or defect in ammoniagenesis are associated with low urinary pH. In addition, the phenomenon of global warming could result in an increase in areas with greater climate risk for uric acid stone formation. There are three therapeutic steps to be taken for management of uric acid stones: identification of urinary pH profiles, assessment of urinary volume status, and identification of disorders leading to excessive uric acid production. However, the most important factor for uric acid stone formation is acid urinary pH, which is a prerequisite for uric acid precipitation. This article reviews recent insights into the pathophysiology of uric acid stones and their management.

  6. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  7. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less

  8. Method for isolating nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids formore » a wide variety of applications including, sequencing or species population analysis.« less

  9. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  10. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  11. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  12. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  13. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  14. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  15. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Cooper, G. W.; Pizzarello, S.

    1995-01-01

    Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.

  16. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  18. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  19. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  1. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... and the A.D.A.M. Editorial team. Amino Acid Metabolism Disorders Read more B Vitamins Read more ...

  2. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  3. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  4. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  5. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  6. An Unambiguous Nomenclature for the Acyl-quinic Acids Commonly Known as Chlorogenic Acids.

    PubMed

    Abrankó, László; Clifford, Michael N

    2017-05-10

    The history of the acyl-quinic acids is briefly reviewed, the merits and limitations of the various nomenclature systems applicable are critically compared, and their limitations are highlighted, in particular their inability to provide an unambiguous description of all quinic acid enantiomers and diastereoisomers and associated acyl-quinic acids. Recommendations are made for a nomenclature system that in combination with IUPAC numbering achieves this objective. A comprehensive set of structures for the quinic acid enantiomers and diastereoisomers is presented. The Supporting Information provides an explanation of trivial names and a decision tree to determine which quinic acid isomer a structure represents.

  7. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats.

    PubMed

    Ide, Takashi; Azechi, Ayana; Kitade, Sayaka; Kunimatsu, Yoko; Suzuki, Natsuko; Nakajima, Chihiro

    2013-04-01

    Dietary sesamin (1:1 mixture of sesamin and episesamin) decreases fatty acid synthesis but increases fatty acid oxidation in rat liver. Dietary α-lipoic acid lowers hepatic fatty acid synthesis. These changes can account for the serum lipid-lowering effect of sesamin and α-lipoic acid. It is expected that the combination of these compounds in the diet potentially ameliorates lipid metabolism more than the individual compounds. We therefore studied the combined effect of sesamin and α-lipoic acid on lipid metabolism in rats. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2 g/kg sesamin and containing 0 or 2.5 g/kg α-lipoic acid for 22 days. Sesamin and α-lipoic acid decreased serum lipid concentrations and the combination of these compounds further decreased the parameters in an additive fashion. These compounds reduced the hepatic concentration of triacylglycerol, the lignan being less effective in decreasing this value. The combination failed to cause a stronger decrease in hepatic triacylglycerol concentration. The combination of sesamin and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid antagonized the stimulating effect of sesamin of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes and carnitine concentration in the liver. This may account for the failure to observe strong reductions in hepatic triacylglycerol concentration in rats given a diet containing both sesamin and α-lipoic acid.

  8. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  10. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  11. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  12. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  13. Toxicology of Perfluorodecanoic Acid

    DTIC Science & Technology

    1990-11-01

    Perfluorodecanoic Acid ( PFOA ) and Thyroid Status. A. Statement of Problem: 1. Toxic doses of PFDA result in reduction of feed intake, body weight, serum...hypophagia and body weight loss). ii. Perfluoroaecanoic Acid ( PFOA ) and Lipid Metabolism in the Rat. A. Statement of Problem: 1. PFDA in a dose... perfluorinated acids are not available commercially. B. Objectives: 1. To synthesize perfluoro -n-decanoic acid ( PFDA ) with 14C-labeling in the C-I position. 2. To

  14. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  15. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  16. Biotransformation of linoleic acid and bile acids by Eubacterium lentum.

    PubMed Central

    Eyssen, H; Verhulst, A

    1984-01-01

    Eubacterium lentum is a gram-positive, nonsporeforming, nonmotile, asaccharolytic anaerobe. In the present investigations, 3 E. lentum strains (group E) isolated from rat feces were compared with 30 E. lentum strains (groups A, B, C, and D) previously studied by Macdonald et al. (I. A. Macdonald, J. F. Jellet, D. E. Mahony, and L. V. Holdeman, Appl. Environ. Microbiol. 37:992-1000, 1979). All strains alkalized (pH 8 to 8.5) arginine-containing (2 to 15 mg/ml) culture media, and growth of the majority of the strains was stimulated by arginine. All strains converted linoleic acid into transvaccenic acid by shifting the 12,13-cis double bond of linoleic acid into an 11,12-trans(?) double bond followed by biohydrogenation of the 9,10-cis double bond. Hence, biohydrogenation of linoleic acid is a new general characteristic of E. lentum. The 33 strains were also studied for bile acid deconjugase and hydroxysteroid dehydrogenase (HSDH) activities. The 6 strains in group D were steroid inactive; the 27 strains in groups A, B, C, and E were steroid active. The steroid-active group contained bile acid deconjugase-producing strains (groups C and E, plus strain 116 in group A) and nondeconjugating strains. All nondeconjugating strains of groups A and B developed 7 alpha- and 12 alpha-HSDH activities and contained 3 alpha-HSDH-positive strains and 3 alpha-HSDH-negative strains. Deconjugating strains varied in HSDH activities. PMID:6582800

  17. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... measure and monitor the person's vital signs, including temperature, pulse, breathing rate, and blood pressure. Tests that ...

  18. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... for testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  19. Use of topical tranexamic acid or aminocaproic acid to prevent bleeding after major surgical procedures.

    PubMed

    Ipema, Heather J; Tanzi, Maria G

    2012-01-01

    To evaluate the literature describing topical use of tranexamic acid or aminocaproic acid for prevention of postoperative bleeding after major surgical procedures. Literature was retrieved through MEDLINE (1946-September 2011) and International Pharmaceutical Abstracts (1970-September 2011) using the terms tranexamic acid, aminocaproic acid, antifibrinolytic, topical, and surgical. In addition, reference citations from publications identified were reviewed. All identified articles in English were evaluated. Clinical trials, case reports, and meta-analyses describing topical use of tranexamic acid or aminocaproic acid to prevent postoperative bleeding were included. A total of 16 publications in the setting of major surgical procedures were included; the majority of data were for tranexamic acid. For cardiac surgery, 4 trials used solutions containing tranexamic acid (1-2.5 g in 100-250 mL of 0.9% NaCl), and 1 trial assessed a solution containing aminocaproic acid (24 g in 250 mL of 0.9% NaCl). These solutions were poured into the chest cavity before sternotomy closure. For orthopedic procedures, all of the data were for topical irrigation solutions containing tranexamic acid (500 mg-3 g in 50-100 mL of 0.9% NaCl) or for intraarticular injections of tranexamic acid (250 mg to 2 g in 20-50 mL of 0.9% sodium chloride, with or without carbazochrome sodium sulfate). Overall, use of topical tranexamic acid or aminocaproic acid reduced postoperative blood loss; however, few studies reported a significant reduction in the number of packed red blood cell transfusions or units given, intensive care unit stay, or length of hospitalization. Topical application of tranexamic acid and aminocaproic acid to decrease postsurgical bleeding after major surgical procedures is a promising strategy. Further data are needed regarding the safety of this hemostatic approach.

  20. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    PubMed

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P < .001). The pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  2. Comparative Evaluation of Efficacy and Tolerability of Glycolic Acid, Salicylic Mandelic Acid, and Phytic Acid Combination Peels in Melasma.

    PubMed

    Sarkar, Rashmi; Garg, Vijay; Bansal, Shivani; Sethi, Sumit; Gupta, Chitra

    2016-03-01

    Melasma is acquired symmetric hypermelanosis characterized by light-to-deep brown pigmentation over cheeks, forehead, upper lip, and nose. Treatment of this condition is difficult and associated with high recurrence rates. Chemical peels have become a popular modality in the treatment of melasma. To compare the therapeutic efficacy and tolerability of glycolic acid (35%) versus salicylic-mandelic (SM) acid (20% salicylic/10% mandelic acid) versus phytic combination peels in Indian patients with melasma. Ninety patients diagnosed with melasma were randomly assigned into 3 groups of 30 patients each. Group A received glycolic acid (GA-35%) peel, Group B received SM acid, and Group C received phytic combination peels. Each group was primed with 4% hydroquinone and 0.05% tretinoin cream for 4 weeks before treatment. Chemical peeling was done after every 14 days in all groups until 12 weeks. Clinical evaluation using melasma area and severity index (MASI) score and photography was recorded at every visit and follow-up was done until 20 weeks. There was a decrease in MASI score in all 3 groups but it was statistically significantly lower in Group A than Group C (p = .00), and it was also statistically significantly lower in Group B than Group C (p = .00) but there was no statistically significant difference between Groups A and B (p = .876). Objective response to treatment evaluated by reduction in MASI scoring after 12 weeks was 62.36% reduction in GA group, 60.98% reduction in SM group, and 44.71% in phytic acid group. It is concluded that GA (35%) and SM acid peels are both equally efficacious and a safe treatment modality for melasma in Indian skin, and are more effective than phytic acid peels. Salicylic-mandelic peels are better tolerated and more suitable for Indian skin.

  3. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  4. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  5. Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption.

    PubMed

    Bajor, Antal; Kilander, Anders; Fae, Anita; Gälman, Cecilia; Jonsson, Olof; Ohman, Lena; Rudling, Mats; Sjövall, Henrik; Stotzer, Per-Ove; Ung, Kjell-Arne

    2006-04-01

    Bile acid malabsorption as reflected by an abnormal Se-labelled homocholic acid-taurine (SeHCAT) test is associated with diarrhoea, but the mechanisms and cause-and-effect relations are unclear. Primarily, to determine whether there is a reduced active bile acid uptake in the terminal ileum in patients with bile acid malabsorption. Secondarily, to study the linkage between bile acid malabsorption and hepatic bile acid synthesis. Ileal biopsies were taken from patients with diarrhoea and from controls with normal bowel habits. Maximal active bile acid uptake was assessed in ileal biopsies using a previously validated technique based on uptake of C-labelled taurocholate. To monitor the hepatic synthesis, 7alpha-hydroxy-4-cholesten-3-one, a bile acid precursor, was assayed in blood. The SeHCAT-retention test was used to diagnose bile acid malabsorption. The taurocholate uptake in specimens from diarrhoea patients was higher compared with the controls [median, 7.7 (n=53) vs 6.1 micromol/g per min (n=17)] (P<0.01) but no difference was seen between those with bile acid malabsorption (n=18) versus diarrhoea with a normal SeHCAT test (n=23). The SeHCAT values and 7alpha-hydroxy-4-cholesten-3-one were inversely correlated. The data do not support bile acid malabsorption being due to a reduced active bile acid uptake capacity in the terminal ileum.

  6. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  7. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    USDA-ARS?s Scientific Manuscript database

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  8. Three-dimensional structure of Erwinia carotovora L-asparaginase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less

  9. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  10. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  11. Acid Rather than Non-Acid Reflux Burden is a Predictor of Tooth Erosion

    PubMed Central

    Ganesh, Meenakshi; Hertzberg, Anne; Nurko, Samuel; Needleman, Howard; Rosen, Rachel

    2015-01-01

    Objectives The relationship between tooth erosion (TE) and gastroesophageal reflux (GER) in children has not been clearly established and there are no studies to determine the relationship with refluxate height, non-acid reflux and erosions. The aim of this study was to determine the relationship between TE and acid and non-acid GER measured using combined pH and multichannel intraluminal impedance (pH-MII). Methods We conducted a prospective cohort study of children presenting for pH-MII testing. Once consented, patients completed questionnaires about their reflux symptoms and diet, and then underwent pH-MII catheter placement and a dental examination. The Keels-Coffield erosion index was used to score extent and severity of TE. Reflux parameters of patients with and without TE were compared using Student's t test. Results Twenty-seven patients participated in the study, all of whom were on acid suppression at the time of pH-MII testing. Ten out of 27 patients (37%) had TE. There were significant positive correlations between acid reflux episodes (r=0.44, p=0.02), the % time that acid reflux was present in the distal esophagus (r=0.44, p=0.02), and reflux index (r=0.54, p=0.004) with number of TE in a given patient. The % time that acid reflux was present in the proximal esophagus was positively correlated with the number of teeth erosions per patient with borderline significance (r=0.38, p=0.05). Conclusions There was a positive correlation between acid reflux parameters and TE. Acid, rather than non-acid reflux, seems to have a significant role in the pathogenesis of TE. PMID:26230904

  12. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  13. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  16. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid.

    PubMed

    Juarez, B; Martinez-Toledo, M V; Gonzalez-Lopez, J

    2005-06-01

    Growth and utilization of different phenolic acids present in olive mill wastewater (OMW) by Azotobacter chroococcum were studied in chemically defined media. Growth and utilization of phenolic acids were only detected when the microorganism was cultured on p-hydroxybenzoic acid at concentration from 0.01% to 0.5% (w/v) and protocatechuic acid at concentration from 0.01% to 0.3% (w/v) as sole carbon sources suggesting that only these phenolic compounds could be utilized as a carbon source by A. chroococcum. Moreover when culture media were added with a mixture of 0.3% of protocatechuic acid and 0.3% p-hydroxybenzoic acid, the microorganism degradated in first place protocatechuic acid and once the culture medium was depleted of this compound, the degradation of p-hydroxybenzoic acid commenced very fast.

  17. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  18. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  19. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Role of bile acids and bile acid binding agents in patients with collagenous colitis.

    PubMed

    Ung, K A; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-02-01

    In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the (75)Se-homocholic acid taurine ((75)SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the (75)SeHCAT test. Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The (75)SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with (75)SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal (75)SeHCAT tests. Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.

  1. Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.

    PubMed

    Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun

    2018-04-30

    More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.

  2. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran.

    PubMed

    Levin, Eran; McCue, Marshall D; Davidowitz, Goggy

    2017-02-08

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13 C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals. © 2017 The Author(s).

  3. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran

    PubMed Central

    McCue, Marshall D.; Davidowitz, Goggy

    2017-01-01

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients—amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals. PMID:28148746

  4. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  5. Role of bile acids and bile acid binding agents in patients with collagenous colitis

    PubMed Central

    Ung, K; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-01-01

    BACKGROUND—In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis.
AIMS—To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis.
METHODS—Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the 75Se-homocholic acid taurine (75SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the 75SeHCAT test.
RESULTS—Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The 75SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with 75SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal 75SeHCAT tests.
CONCLUSION—Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.


Keywords: bile acid malabsorption; collagenous colitis; diarrhoea; cholestyramine; colestipol PMID:10644309

  6. Crystallization of uric acid

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Vaidyan, V. K.; Kanakavel, M.; Ramasamy, P.

    1993-09-01

    Crystals of uric acid have been grown in tetra methoxy silane and silica gel medium. Small winged, transparent, platy crystals of uric acid of about 0.5x0.5x0.1 mm were grown and were found to be hydrated uric acid.

  7. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii.

    PubMed

    Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng

    2018-07-01

    The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  9. Individual bile acids have differential effects on bile acid signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  10. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption.

    PubMed

    Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J

    2017-07-01

    Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.

  11. Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen.

    PubMed

    Koppová, I; Lukás, F; Kopecný, J

    2006-01-01

    Microorganisms with high activity of linoleic acid delta12-cis,delta11-trans-isomerase were isolated from the digestive tract of ruminants and characterized. The isolate with the highest isomerase activity was identified as Pseudobutyrivibrio ruminis. The susceptibility of this strain to 3 fatty acids added to the grow medium was determined. A significant inhibition of bacterial growth (during a 3-d period) by linoleic acid (0.1 %) and oleic acid (5 ppm) was observed; no inhibition was found in the presence of stearic acid.

  12. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    PubMed Central

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  13. The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.

    PubMed

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2006-01-01

    Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.

  14. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  16. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  17. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  18. Zoledronic Acid Injection

    MedlinePlus

    ... acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and ... Zoledronic acid (Reclast) is also used to treat osteoporosis in men, and to prevent or treat osteoporosis ...

  19. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  20. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  1. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  2. Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts.

    PubMed

    Sano, Katsura; Gotoh, Mari; Dodo, Kyoko; Tajima, Noriaki; Shimizu, Yoshibumi; Murakami-Murofushi, Kimiko

    2018-01-01

    Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1-3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.

  3. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    PubMed

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  4. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. PMID:23737849

  5. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  6. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.

    PubMed

    Siegfried, C M; Doisy, E A; Elliott, W H

    1975-01-24

    The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.

  7. Fatty acid synthesis in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1967-01-01

    1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364

  8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    PubMed Central

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  9. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  10. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  11. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain.

    PubMed

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-05-21

    Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.

  12. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  13. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.

  14. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  15. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to

  16. Effect of Hydrochloric Acid Concentration on the Conversion of Sugarcane Bagasse to Levulinic Acid

    NASA Astrophysics Data System (ADS)

    Anggorowati, Heni; Jamilatun, Siti; Cahyono, Rochim B.; Budiman, Arief

    2018-01-01

    Levulinic acid is a new green platform chemical used to the synthesis of a variety of materials for numerous applications such as fuel additives, polymers and resins. It can be produced using renewable resources such as biomass like sugarcane bagasse which are cheap and widely available as waste in Indonesia. In this study, sugarcane bagasse was hydrolyzed using hydrochloric acid with a solid liquid ratio 1:10. The effects of hydrochloric acid concentration at temperature of 180 °C and reaction time of 30 min were studied. The presence of levulinic acid in product of hydrolysis was measured with gas chromatography (GC). It was found that the highest concentration of levulinic acid was obtained at 1 M hydrochloric acid in 25.56 yield%.

  17. [Effects of low molecular weight organic acids on speciation of exogenous Cu in an acid soil].

    PubMed

    Huang, Guo-Yong; Fu, Qing-Ling; Zhu, Jun; Wan, Tian-Ying; Hu, Hong-Qing

    2014-08-01

    In order to ascertain the effect of LMWOA (citric acid, tartaric acid, oxalic acid) on Cu-contaminated soils and to investigate the change of Cu species, a red soil derived from quartz sandstone deposit was added by Cu (copper) in the form of CuSO4 x 5H2O so as to simulate soil Cu pollution, keeping the additional Cu concentrations were 0, 100, 200, 400 mg x kg(-1) respectively. After 9 months, different LMWOA was also added into the simulated soil, keeping the additional LMWOAs in soil were 0, 5, 10, 20 mmol x kg(-1) respectively. After 2 weeks incubation, the modified sequential extraction method on BCR (European Communities Bureau of Reference) was used to evaluate the effects of these LMWOAs on the changes of copper forms in soil. The result showed that the percentage of weak acid dissolved Cu, the most effective form in the soil increased with three organic acids increase in quantity in the simulated polluted soil. And there was a good activation effect on Cu in the soil when organic acid added. Activation effects on Cu increased with concentration of citric acid increasing, but it showed a rise trend before they are basically remained unchanged in the case of tartaric acid and oxalic acid added in the soil. On the contrary, the state of the reduction of copper which was regarded as a complement for effective state decreased with the increased concentration of organic acid in the soil, especially with citric acid. When 20 mmol x kg(-1) oxalic acid and citric acid were added into the soil, the activation effect was the best; whereas for tartaric, the concentration was 10 mmol x kg(-1). In general, the effect on the changes of Cu forms in the soil is citric acid > tartaric acid > oxalic acid.

  18. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  19. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  20. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. 6-methyl-8-hexadecenoic acid: A novel fatty acid from the marine spongeDesmapsama anchorata.

    PubMed

    Carballeira, N M; Maldonado, M E

    1988-07-01

    The novel fatty acid 7-methyl-8-hexadecenoic (1) was identified in the marine spongeDesmapsama anchorata. Other interesting fatty acids identified were 14-methyl-8-hexadecenoic (2), better known through its methyl ester as one of the components of the sex attractant of the female dermestid beetle, and the saturated fatty acid 3-methylheptadecanoic (3), known to possess larvicidal activity. The main phospholipid fatty acids encountered inD. anchorata were palmitic (16∶0), behenic (22∶0) and 5,9-hexacosadienoic acid (26∶2), which together accounted for 50% of the total phospholipid fatty acid mixture.

  2. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  3. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  4. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  5. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  6. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  7. New insights into bile acid malabsorption.

    PubMed

    Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F

    2011-10-01

    Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.

  8. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  9. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  10. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  11. Structures of chloralide, ?-lactic acid chloralide, malic acid chloralide and citric acid chloralide

    NASA Astrophysics Data System (ADS)

    Koh, L. L.; Huang, H. H.; Chia, L. H. L.; Liang, E. P.

    1995-06-01

    The crystal and molecular structures of chloralide ( 1), D-lactic acid chloralide ( 2), malic acid chloralide ( 3) and citric acid chloralide ( 4) have been determined by X-ray diffraction methods. Compound 1 crystallizes in the monoclinic space group, {P2 1}/{c}, a = 6.201(2), b = 17.11(2), c = 10.357(6) Å, β = 95.21(4)°, Z = 4; compound 2 in the monoclinic space group P2 1, a = 7.600(4), b = 5.902(4), c = 9.743(6) Å, β = 99.20(5), Z = 2; compound 3 in the monoclinic space group {P2 1}/{c}, a = 16.500(6), b = 5.819(3), c = 10.120(4) Å, β = 91.41(3), Z = 4; compound 4 in the monoclinic space group {P2 1}/{c}, a = 12.041(3), b = 6.1190(10), c = 17.259(4) Å, β = 101.85(2), Z = 4. The five-membered ring systems of all the compounds are slightly twisted out-of-plane, that of compound 4 being the most puckered. The CCl 3 group is trans to the second CCl 3 group in 1, to the CH 3 group in 2 and to the CH 2COOH group in 3. The two CH 2COOH groups in 4 are disposed axially with respect to the ring. Dipole moment and Kerr constant data for D-lactic acid chloralide suggest a structure in solution which is consistent with the X-ray results. The IR spectra of 2, 3 and 4 are discussed in relation to the structures of these compounds.

  12. Synthesis and characterization of 3-ketohexadecanoic acid-1-14-C, DL-3-hydroxyhexadecanoic acid-1-14-C, and trans-2-hexadecenoic acid-1-14-C.

    PubMed

    Jones, J A; Blecher, M

    1966-05-01

    The chemical synthesis and characterization of three intermediates in the Beta oxidation of palmitic acid-1-(14)C by rat liver mitochondria, namely, 3-ketohexadecanoic acid-1-(14)C, DL-3-hydroxyhexadecanoic acid-1-(14)C, and trans-2-hexadecenoic acid-1-(14)C, are described.

  13. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  14. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  15. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  17. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  18. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    PubMed Central

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  19. Anharmonicity in Amino Acids

    NASA Astrophysics Data System (ADS)

    Martinho, Herculano; Lima, Thamires; Ishikawa, Mariana

    2012-02-01

    Two special dynamical transitions of universal character have been recently observed in macromolecules (lysozyme, myoglobin, bacteriorhodopsin, DNA, and RNA) at T^*˜100 - 150 K and TD˜180 - 220 K. The underlying mechanisms governing these transitions have been subject of debate. In the present work it is reported a survey on the temperature dependence of structural, vibrational and thermodynamical properties of a nearly anhydrous amino acid (orthorhombic polymorph of the amino acids L-cysteine and L-proline at a hydration level of 3.5%). The temperature dependence of X-Ray diffraction, Raman spectroscopy, and specific heat were considered. The data were analyzed considering amino acid-amino acid, amino acid-water, and water-water phonon-phonon interactions, and molecular rotors activation. Our results indicated that the two referred temperatures define the triggering of very simple and specific events that govern all the interactions of the biomolecule: activation of CH2 rigid rotors (Tacid and water dimer vibrational modes (T^*TD).

  20. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  1. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It is...

  2. Acid Lipase Disease

    MedlinePlus

    ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ...

  3. CINNAMIC ACID HYDROXYLASE IN SPINACH,

    DTIC Science & Technology

    An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating

  4. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  6. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  7. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    PubMed

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, p<0.01) and postprandial acid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, p<0.05) in all patients without affecting the total number of reflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  8. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  9. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  10. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  12. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    USDA-ARS?s Scientific Manuscript database

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  13. Treatment of menorrhagia during menstruation: randomised controlled trial of ethamsylate, mefenamic acid, and tranexamic acid.

    PubMed Central

    Bonnar, J.; Sheppard, B. L.

    1996-01-01

    OBJECTIVE: To compare the efficacy and acceptability of ethamsylate, mefenamic acid, and tranexamic acid for treating menorrhagia. DESIGN: Randomised controlled trial. SETTING: A university department of obstetrics and gynaecology. SUBJECTS: 76 women with dysfunctional uterine bleeding. INTERVENTIONS: Treatment for five days from day 1 of menses during three consecutive menstrual periods. 27 patients were randomised to take ethamsylate 500 mg six hourly, 23 patients to take mefenamic acid 500 mg eight hourly, and 26 patients to take tranexamic acid 1 g six hourly. MAIN OUTCOMES MEASURES: Menstrual loss measured by the alkaline haematin method in three control menstrual periods and three menstrual periods during treatment; duration of bleeding; patient's estimation of blood loss; sanitary towel usage; the occurrence of dysmenorrhoea; and unwanted events. RESULTS: Ethamsylate did not reduce mean menstrual blood loss whereas mefenamic acid reduced blood loss by 20% (mean blood loss 186 ml before treatment, 148 ml during treatment) and tranexamic acid reduced blood loss by 54% (mean blood loss 164 ml before treatment, 75 ml during treatment). Sanitary towel usage was significantly reduced in patients treated with mefenamic acid and tranexamic acid. CONCLUSIONS: Tranexamic acid given during menstruation is a safe and highly effective treatment for excessive bleeding. Patients with dysfunctional uterine bleeding should be offered medical treatment with tranexamic acid before a decision is made about surgery. PMID:8806245

  14. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  15. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  16. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  17. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  18. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.

    PubMed

    Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W

    2009-11-01

    Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.

  19. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  2. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  3. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    PubMed

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  4. Protecting‐Group‐Free Amidation of Amino Acids using Lewis Acid Catalysts

    PubMed Central

    Sabatini, Marco T.; Karaluka, Valerija; Lanigan, Rachel M.; Boulton, Lee T.; Badland, Matthew

    2018-01-01

    Abstract Amidation of unprotected amino acids has been investigated using a variety of ‘classical“ coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions. PMID:29505683

  5. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  6. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  7. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    PubMed

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  8. Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene.

    PubMed Central

    Cooper, D G; Zajic, J E; Gracey, D E

    1979-01-01

    The saponifiable carboxylic acids of the extracellular product of Corynebacterium lepus grown on kerosene have been isolated and characterized. About 25% of these acids were a mixture of simple, saturated fatty acids ranging from C13 to C24 and including both even and odd homologues. The distribution of these acids was bimodal, with maxima at C15 and C21. The other 75% of the acids was a mixture of corynomycolic acids [R1--CH(OH)--CH(R2)--COOH] ranging from C28 to C43. The R1 alkyl fragments varied from C16 to C25, and R2 fragments varied from C6 to C14. Both even and odd corynomycolic acid homologues were observed, and the distribution had a single pronounced maximum at C32 and C33. Bacterial utilization of the carboxylic oxidation products of the kerosene substrate is suggested to account for the wide distribution in chain length of these saturated fatty acids and for the observation of both even and odd homologues. PMID:422512

  9. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

    PubMed Central

    2012-01-01

    The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

  10. Vibrational studies in aqueous solutions. Part II. The acid oxalate ion and oxalic acid

    NASA Astrophysics Data System (ADS)

    Shippey, T. A.

    1980-08-01

    Assignments for oxalic acid in solution are re-examined. A detailed assignment of the IR and Raman spectra of the acid oxalate ion is presented for the first time. Raman spectroscopy is used to study the first ionization of oxalic acid.

  11. Thermometric titration of acids in pyridine.

    PubMed

    Vidal, R; Mukherjee, L M

    1974-04-01

    Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.

  12. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  13. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  14. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  15. Salicylic Acid Topical

    MedlinePlus

    ... stinging in the area where you applied topical salicylic acid Some side effects can be serious. If you experience any of ... of the eyes, face, lips, or tongue Topical salicylic acid may cause other side effects. Call your doctor if you have any unusual ...

  16. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  17. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  18. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    PubMed

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  20. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  1. Amino Acid Control over Deoxyribonucleic Acid Synthesis in Escherichia coli Infected With T-Even Bacteriophage

    PubMed Central

    Donini, Pierluigi

    1970-01-01

    Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067

  2. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils.

    PubMed

    Cansev, M; Wurtman, R J

    2007-08-24

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g. uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5'-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipid levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and synapsin-1) but not in those of a ubiquitous structural protein, beta-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective.

  3. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  4. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  5. Role of Acid and Weakly Acidic Reflux in Gastroesophageal Reflux Disease Off Proton Pump Inhibitor Therapy

    PubMed Central

    Sung, Hea Jung; Moon, Sung Jin; Kim, Jin Su; Lim, Chul Hyun; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Myung-Gye

    2012-01-01

    Background/Aims Available data about reflux patterns and symptom determinants in the gastroesophageal reflux disease (GERD) subtypes off proton pump inhibitor (PPI) therapy are lacking. We aimed to evaluate reflux patterns and determinants of symptom perception in patients with GERD off PPI therapy by impedance-pH monitoring. Methods We retrospectively reviewed the impedance-pH data in patients diagnosed as GERD based on results of impedance-pH monitoring, endoscopy and/or typical symptoms. The characteristics of acid and weakly acidic reflux were evaluated. Symptomatic and asymptomatic reflux were compared according to GERD subtypes and individual symptoms. Results Forty-two patients (22 males, mean age 46 years) were diagnosed as GERD (17 erosive reflux disease, 9 pH(+) non-erosive reflux disease [NERD], 9 hypersensitive esophagus and 7 symptomatic NERD). A total of 1,725 reflux episodes were detected (855 acid [50%], 857 weakly acidic [50%] and 13 weakly alkaline reflux [< 1%]). Acid reflux was more frequently symptomatic and bolus clearance was longer compared with weakly acidic reflux. In terms of globus, weakly acidic reflux was more symptomatic. Symptomatic reflux was more frequently acid and mixed reflux; these associations were more pronounced in erosive reflux disease and symptomatic NERD. The perception of regurgitation was related to acid reflux, while that of globus was more related to weakly acidic reflux. Conclusions In patients not taking PPI, acid reflux was more frequently symptomatic and had longer bolus clearance. Symptomatic reflux was more frequently acid and mixed type; however, weakly acidic reflux was associated more with globus. These data suggest a role for impedance-pH data in the evaluation of globus. PMID:22837877

  6. Role of Acid and weakly acidic reflux in gastroesophageal reflux disease off proton pump inhibitor therapy.

    PubMed

    Sung, Hea Jung; Cho, Yu Kyung; Moon, Sung Jin; Kim, Jin Su; Lim, Chul Hyun; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Myung-Gye

    2012-07-01

    Available data about reflux patterns and symptom determinants in the gastroesophageal reflux disease (GERD) subtypes off proton pump inhibitor (PPI) therapy are lacking. We aimed to evaluate reflux patterns and determinants of symptom perception in patients with GERD off PPI therapy by impedance-pH monitoring. We retrospectively reviewed the impedance-pH data in patients diagnosed as GERD based on results of impedance-pH monitoring, endoscopy and/or typical symptoms. The characteristics of acid and weakly acidic reflux were evaluated. Symptomatic and asymptomatic reflux were compared according to GERD subtypes and individual symptoms. Forty-two patients (22 males, mean age 46 years) were diagnosed as GERD (17 erosive reflux disease, 9 pH(+) non-erosive reflux disease [NERD], 9 hypersensitive esophagus and 7 symptomatic NERD). A total of 1,725 reflux episodes were detected (855 acid [50%], 857 weakly acidic [50%] and 13 weakly alkaline reflux [< 1%]). Acid reflux was more frequently symptomatic and bolus clearance was longer compared with weakly acidic reflux. In terms of globus, weakly acidic reflux was more symptomatic. Symptomatic reflux was more frequently acid and mixed reflux; these associations were more pronounced in erosive reflux disease and symptomatic NERD. The perception of regurgitation was related to acid reflux, while that of globus was more related to weakly acidic reflux. In patients not taking PPI, acid reflux was more frequently symptomatic and had longer bolus clearance. Symptomatic reflux was more frequently acid and mixed type; however, weakly acidic reflux was associated more with globus. These data suggest a role for impedance-pH data in the evaluation of globus.

  7. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  8. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  9. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids.

    PubMed

    Batta, A K; Shefer, S; Salen, G

    1981-05-01

    Separation of the glycine and taurine conjugates of ursodeoxycholic acid from those of lithocholic acid, chenodeoxycholic acid, deoxycholic acid, and cholic acid by thin-layer chromatography is described. Thus, on running a silica gel G plate first in a solvent system of n-butanol-water 20:3 and then in a second solvent system of chloroform-isopropanol-acetic acid-water 30:20:4:1, all the above-mentioned conjugated bile acids are separated from one another. The application of this method to study the change in the biliary bile acid conjugation pattern in ursodeoxycholic acid-fed gallstone patients is described.

  11. Phosphoric acid as an asphalt modifier guidelines for use : acid type.

    DOT National Transportation Integrated Search

    2008-01-01

    Any grade of phosphoric acid can be used as an asphalt modifier. The stiffening effect is asphalt dependent. All grades of acid will yield similar results. However, the more diluted grades contain water, which may result in foaming problems as the wa...

  12. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    PubMed

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  13. Managing bile acid diarrhoea.

    PubMed

    Walters, Julian R F; Pattni, Sanjeev S

    2010-11-01

    Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the (75)Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea.

  14. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  15. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  16. Phosphonic acid: preparation and applications

    PubMed Central

    Sevrain, Charlotte M; Berchel, Mathieu; Couthon, Hélène

    2017-01-01

    The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H3PO3) and that produce a phosphonic acid functional group simultaneously to the formation of the P–C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids. PMID:29114326

  17. Phosphonic acid: preparation and applications.

    PubMed

    Sevrain, Charlotte M; Berchel, Mathieu; Couthon, Hélène; Jaffrès, Paul-Alain

    2017-01-01

    The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H 3 PO 3 ) and that produce a phosphonic acid functional group simultaneously to the formation of the P-C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids.

  18. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  19. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    PubMed

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  1. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  2. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  3. Of mental models, assumptions and heuristics: The case of acids and acid strength

    NASA Astrophysics Data System (ADS)

    McClary, Lakeisha Michelle

    This study explored what cognitive resources (i.e., units of knowledge necessary to learn) first-semester organic chemistry students used to make decisions about acid strength and how those resources guided the prediction, explanation and justification of trends in acid strength. We were specifically interested in the identifying and characterizing the mental models, assumptions and heuristics that students relied upon to make their decisions, in most cases under time constraints. The views about acids and acid strength were investigated for twenty undergraduate students. Data sources for this study included written responses and individual interviews. The data was analyzed using a qualitative methodology to answer five research questions. Data analysis regarding these research questions was based on existing theoretical frameworks: problem representation (Chi, Feltovich & Glaser, 1981), mental models (Johnson-Laird, 1983); intuitive assumptions (Talanquer, 2006), and heuristics (Evans, 2008). These frameworks were combined to develop the framework from which our data were analyzed. Results indicated that first-semester organic chemistry students' use of cognitive resources was complex and dependent on their understanding of the behavior of acids. Expressed mental models were generated using prior knowledge and assumptions about acids and acid strength; these models were then employed to make decisions. Explicit and implicit features of the compounds in each task mediated participants' attention, which triggered the use of a very limited number of heuristics, or shortcut reasoning strategies. Many students, however, were able to apply more effortful analytic reasoning, though correct trends were predicted infrequently. Most students continued to use their mental models, assumptions and heuristics to explain a given trend in acid strength and to justify their predicted trends, but the tasks influenced a few students to shift from one model to another model. An

  4. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    PubMed Central

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  5. From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis

    PubMed Central

    YAMAMOTO, Hisashi

    2008-01-01

    This review focuses on the development of acid catalysis for selective organic transformations conducted in our laboratories for the past 30 years. Several important concepts in designing of catalysts are described with some examples. Further, recent developments in super Brønsted acid and their applications in a one-pot procedure to construct complex molecules with high diastereoselectivities are described. PMID:18941293

  6. Biomedical research of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline.

    PubMed

    Zhang, Weipeng; Shao, Jianmin

    2010-08-01

    The biomedical properties of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline were analyzed in this article. The cytotoxicity of the copolymer films was tested in vitro using human embryonic kidney (HEK) 293 cells. The cell proliferation, cell cycle, cell apoptosis, and hemolysis of the polymers were also investigated. No significant cytotoxic response was detected statistically by cytotoxicity assay, and the results of cell apoptosis and cell cycle showed that there were no statistically significant differences in them. Generally, the cells spread and grew well on polymer film. Meanwhile, the extent of hemolysis on the polymers was acceptable. Evaluation of cytotoxicity by cell cycle and apoptosis as a supplementary assay is correspondingly discussed in this article. (c) 2010 Wiley Periodicals, Inc.

  7. Regional oesophageal sensitivity to acid and weakly acidic reflux in patients with non-erosive reflux disease.

    PubMed

    Emerenziani, S; Ribolsi, M; Sifrim, D; Blondeau, K; Cicala, M

    2009-03-01

    The mechanisms underlying symptoms in non-erosive reflux disease (NERD) remain to be elucidated. Non-erosive reflux disease patients appear to be more sensitive to intraluminal stimula than erosive patients, the proximal oesophagus being the most sensitive. In order to assess regional oesophageal changes in reflux acidity and sensitivity to reflux, according either to the acidity or the composition of the refluxate, combined multiple pH and multiple pH-impedance (pH-MII) was performed in 16 NERD patients. According to multiple pH-metry, 29% and 12% of reflux events reached the middle and proximal oesophagus respectively, and 35% and 19% according to conventional pH-MII (P < 0.05). The per-individual analysis confirmed the difference between the two techniques. According to combined distal and proximal pH-MII, approximately 30% of distal acid reflux became weakly acidic at the proximal oesophagus. In all patients, the frequency of symptomatic refluxes, both acid and weakly acidic, was significantly higher at the proximal, compared with distal oesophagus (25 +/- 8%vs 11 +/- 2% for acid reflux and 27 +/- 8%vs 8 +/- 2% for weakly acidic reflux; P < 0.05). Compared with multiple pH-metry, pH-MII shows a higher sensitivity in the detection of proximal reflux. As approximately 30% of acid reflux becomes weakly acidic along the oesophageal body, to better characterize proximal reflux, in clinical practice, combined proximal pH-impedance monitoring should be used. In NERD patients, the proximal oesophagus seems to be more sensitive to both acid and weakly acidic reflux.

  8. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  9. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance[S

    PubMed Central

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-01-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a “push” (synthesis) and “pull” (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  10. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  11. Shaping up nucleic acid computation.

    PubMed

    Chen, Xi; Ellington, Andrew D

    2010-08-01

    Nucleic acid-based nanotechnology has always been perceived as novel, but has begun to move from theoretical demonstrations to practical applications. In particular, the large address spaces available to nucleic acids can be exploited to encode algorithms and/or act as circuits and thereby process molecular information. In this review we not only revisit several milestones in the field of nucleic acid-based computation, but also highlight how the prospects for nucleic acid computation go beyond just a large address space. Functional nucleic acid elements (aptamers, ribozymes, and deoxyribozymes) can serve as inputs and outputs to the environment, and can act as logical elements. Into the future, the chemical dynamics of nucleic acids may prove as useful as hybridization for computation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Clinical use of acid steatocrit.

    PubMed

    Van den Neucker, A; Pestel, N; Tran, T M; Forget, P P; Veeze, H J; Bouquet, J; Sinaasappel, M

    1997-05-01

    Malabsorption of fat is an important gastrointestinal cause of malnutrition and growth retardation in childhood. The gold standard for the evaluation of fat malabsorption is the faecal fat balance method. The acid steatocrit method has recently been introduced as a simple method to evaluate faecal fat. The present study was aimed at evaluating the acid steatocrit in clinical practice. Faecal fat excretion and acid steatocrit results were determined in 42 children, half with and half without fat malabsorption. Acid steatocrit results correlated significantly with both faecal fat excretion (p < 0.01) and faecal fat concentration (p < 0.001). Sensitivity and specificity of the acid steatocrit for the diagnosis of malabsorption were 90% and 100%, respectively. We consider the acid steatocrit method useful for the screening and monitoring of patients with steatorrhoea.

  13. Studies on the riboflavin, pantothenic acid, nicotinic acid and choline requirements of young Embden geese

    USGS Publications Warehouse

    Serafin, J.A.

    1981-01-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined.

  14. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma

    PubMed Central

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel. PMID:28299301

  15. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  16. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils

    PubMed Central

    Cansev, M.; Wurtman, R. J.

    2007-01-01

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g., uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5′-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipids levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and Synapsin-1) but not in those of a ubiquitous structural protein, β-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective. PMID:17683870

  17. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  18. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE PAGES

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.; ...

    2018-06-04

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  19. Trichloroacetic Acid Versus Salicylic Acid in the Treatment of Acne Vulgaris in Dark-Skinned Patients.

    PubMed

    Abdel Meguid, Azza Mahfouz; Elaziz Ahmed Attallah, Dalia Abd; Omar, Howida

    2015-12-01

    Treatment options for acne include chemical peeling. Trichloroacetic acid (TCA) has been used for treating acne. The ability of TCA to diminish corneocyte cohesion and keratinocyte plugging addresses this mode of treatment. Salicylic acid is an excellent keratolytic agent. It is believed to function through solubilization of intercellular cement, thereby reducing corneocyte adhesion. Comparing the therapeutic efficacy of TCA 25% peels with those of salicylic acid 30% in patients with acne vulgaris. Twenty patients, Fitzpatrick skin Types III to V with facial acne, were enrolled. Twenty-five percent of TCA was applied to the right half of the face and 30% salicylic acid to the left half at 2-week interval for 2 months. Total improvement was more frequent with salicylic acid peeling (95%) versus (85%) with TCA. Total comedones improvement was more frequent with TCA peeling (80%) versus (70%) with salicylic acid. Improvement of inflammatory lesions was more frequent among the side treated with salicylic acid (85%) versus (80%) with TCA peeling. However, the results did not reach the statistical significance level. Trichloroacetic acid is more superior in treating comedonal lesions, whereas salicylic is more superior in treating inflammatory lesions, without significant different between their results.

  20. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aconitic acid. 184.1007 Section 184.1007 Food and... Substances Affirmed as GRAS § 184.1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid... results in decomposition of aconitic acid. (3) Heavy metals (as Pb). Not more than 10 parts per million...