Science.gov

Sample records for acer saccharum saplings

  1. Monitoring the Health of Sugar Maple, "Acer Saccharum"

    ERIC Educational Resources Information Center

    Carlson, Martha

    2013-01-01

    The sugar maple, "Acer saccharum," is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming…

  2. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    PubMed

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines. PMID:22032697

  3. Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall).

    PubMed

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2016-07-01

    Selection cutting is a treatment that emulates tree-by-tree replacement for forests with uneven-age structures. It creates small openings in large areas and often generates a more homogenous forest structure (fewer large leaving trees and defective trees) that differs from old-growth forest. In this study, we evaluated whether this type of harvesting has an impact on genetic diversity of sugar maple (Acer saccharum Marshall). Genetic diversity among seedlings, saplings, and mature trees was compared between selection cut and old-growth forest stands in Québec, Canada. We found higher observed heterozygosity and a lower inbreeding coefficient in mature trees than in younger regeneration cohorts of both forest types. We detected a recent bottleneck in all stands undergoing selection cutting. Other genetic indices of diversity (allelic richness, observed and expected heterozygosity, and rare alleles) were similar between forest types. We concluded that the effect of selection cutting on the genetic diversity of sugar maple was recent and no evidence of genetic erosion was detectable in Québec stands after one harvest. However, the cumulative effect of recurring applications of selection cutting in bottlenecked stands could lead to fixation of deleterious alleles, and this highlights the need for adopting better forest management practices. PMID:27330554

  4. Monitoring the health of sugar maple, Acer saccharum

    NASA Astrophysics Data System (ADS)

    Carlson, Martha

    The sugar maple, Acer saccharum, is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming climate. This study measures the health of sugar maples on 12 privately owned forests and at three schools in New Hampshire. Laboratory quantitative analyses of leaves, buds and sap as well as qualitative measures of leaf and bud indicate that record high beat in 2012 stressed the sugar maple. The study identifies several laboratory and qualitative tests of health which seem most sensitive and capable of identifying stress early when intervention in forest management or public policy change might counter decline of the species. The study presents evidence of an unusual atmospheric pollution event which defoliated sugar maples in 2010. The study examines the work of citizen scientists in Forest Watch, a K-12 school program in which students monitor the impacts of ozone on white pine, Pinus strobus, another keystone species in New Hampshire's forest. Finally, the study examines three simple measurements of bud, leaf and the tree's acclimation to light. The findings of these tests illuminate findings in the first study. And they present examples of what citizen scientists might contribute to long-term monitoring of maples. A partnership between science and citizens is proposed to begin long-term monitoring and to report on the health of sugar maples.

  5. Effect of Elevated Atmospheric CO2 and Temperature on Leaf Optical Properties and Chlorophyll Content in Acer saccharum (Marsh.)

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.

    1999-01-01

    Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.

  6. Characterizing water use strategies of Acer saccharum, Liriodendron tulipifera, and Quercus spp. during a severe drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Novick, K. A.; Dragoni, D.; Moore, W.; Roman, D. T.

    2014-12-01

    In many areas, drought is expected to occur more frequently and intensely in the future due to climate change; however, drought effects on ecosystem-scale fluxes in diverse forests will reflect the diversity of water use strategies among the dominant tree species. For three years (2011-2013) that included a severe drought event (in 2012), we measured the sap flow densities along the sapwood profiles (four radial depths: 1, 2, 3, 4 cm) in Acer saccharum, Liriodendron tulipifera, and Quercus spp. using the compensation heat pulse technique at the Morgan-Monroe State Forest (Indiana, USA). Sap flow velocity varies along the radial profile of the stem, and thus characterizing its pattern is important for estimating whole tree sap flow, and for characterizing the extent to which water stress alters the radial pattern of flow. We also focused on the nocturnal sap flow, which may be used to replenish stored water depleted during the daytime, in order to assess the extent to which the three species rely on hydraulic capacitance to cope with water stress. Sap flow densities along the sapwood profile of all three species tended to increase toward the cambium under moderate climate, while the tendency was reversed under severe drought. This shift may indicate greater reliance on stored water in the inner sapwood or cavitation of outer sapwood during the drought. It was also noticeable that Quercus spp. showed lower maximum sap flow density and narrower range (1.5 - 4.6 cm h-1) than other species (A. saccharum: 1.0 - 20.8 cm h-1, L. tulipifera: < 0.1 - 45.2 cm h-1) during 3 years of measurements. In addition, nocturnal/diurnal ratios of volumetric sap flows were significantly higher in the drought year for A. saccharum (0.140.01 in 2011 and 0.200.01 in 2013 vs. 0.290.01 in 2012) and L. tulipifera (0.140.00 in 2011 and 0.090.01 in 2013 vs. 0.300.01 in 2012), while Quercus spp. didn't show a significant difference between moderate and drought years. This may be due to the

  7. Regional growth decline of sugar maple (Acer saccharum) and its potential causes

    USGS Publications Warehouse

    Bishop, Daniel A.; Beier, Colin M.; Pederson, Neil; Lawrence, Gregory B.; Stella, John C; Sullivan, Timothy J.

    2015-01-01

    Sugar maple (Acer saccharum Marsh) has experienced poor vigor, regeneration failure, and elevated mortality across much of its range, but there has been relatively little attention to its growth rates. Based on a well-replicated dendrochronological network of range-centered populations in the Adirondack Mountains (USA), which encompassed a wide gradient of soil fertility, we observed that the majority of sugar maple trees exhibited negative growth trends in the last several decades, regardless of age, diameter, or soil fertility. Such growth patterns were unexpected, given recent warming and increased moisture availability, as well as reduced acidic deposition, which should have favored growth. Mean basal area increment was greater on base-rich soils, but these stands also experienced sharp reductions in growth. Growth sensitivity of sugar maple to temperature and precipitation was non-stationary during the last century, with overall weaker relationships than expected. Given the favorable competitive status and age structure of the Adirondack sugar maple populations sampled, evidence of widespread growth reductions raises concern over this ecologically and economically important tree. Further study will be needed to establish whether growth declines of sugar maple are occurring more widely across its range.

  8. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    PubMed

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  9. In vivo and in situ rhizosphere respiration in Acer saccharum and Betula alleghaniensis seedlings grown in contrasting light regimes.

    PubMed

    Delagrange, Sylvain; Huc, Frédéric; Messier, Christian; Dizengremel, Pierre; Dreyer, Erwin

    2006-07-01

    A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-l pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21 degrees C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration. PMID:16585038

  10. The changes in leaf reflectance of sugar maple (Acer saccharum Marsh) seedlings in response to heavy metal stress

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Schnetzler, C. C.; Marshall, P. E.

    1983-01-01

    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660 nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650 nm. The differences may possibly be due to different water regimes in the two investigations. Previously announced in STAR as N81-29729

  11. The changes in leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) in response to heavy metal stress

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Schnetzler, C. C.; Marshall, P. E.

    1981-01-01

    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650nm. The differences may possible be due to different water regimes in the two investigations.

  12. New Hampshire Sugar Makers Participate in Climate Change Study of Acer Saccharum

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Carlson, M.

    2012-12-01

    A dozen maple sugar producers in New Hampshire have participated for the past three years in a study of sugar maple (Acer saccharum) and its response to climate-related and other stress agents. A dominant tree in the northeastern temperate forest, the sugar maple is projected to lose 52% of its range in the United States due to climate change stresses in this century. The species is already severely stressed by acid deposition as well as a wide array of environmental predators and pathogens. Engaging the public in studies of climate change is of pressing importance. Climate change is ubiquitous and is expressed in a wide variety of phenomena—changing patterns of seasonal temperature and precipitation, more severe storms, changing atmospheric chemistry, phenologic chemistry change, ecotone shifts and new invasive competitors and predators. Scientists need citizen partners who are trained observers and who are familiar with protocols for monitoring, reporting and questioning what they observe. There is also a growing need for a public that is informed about climate change and variability so citizens can understand and support policy changes as needed to address climate change. In New Hampshire, sugar makers have collected maple sap samples at four times early in the sap season each year since 2010. The samples are collected and stored according to strict chemical protocols. The sugar makers have provided UNH and U.S. Forest Service chemists with significant numbers of sap samples for analysis of their phenolic chemistry. Correlating the sap chemistry with high spectral resolution reflectance measures of maple foliage, we are exploring whether changes in sap phenolics may signal distress or of long-term health of the trees. In addition, the sugar makers have provided access to their sugar orchards for monthly sampling of leaves and buds, beginning in May and continuing through the Fall. The three years of data are building long-term evidence of changes in maple

  13. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K

    2008-05-01

    Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually "sun" individuals in the spring prior to their longer period in the summer shade. PMID:18347817

  14. Photosynthesis and water-use efficiency of sugar maple (Acer saccharum) in relation to pear thrips defoliation.

    PubMed

    Ellsworth, D S; Tyree, M T; Parker, B L; Skinner, M

    1994-06-01

    An experimental introduction of pear thrips (Taeniothrips inconsequens Uzel), a major defoliator in sugar maple (Acer saccharum Marsh.) forests in northeastern North America, was conducted in a field plantation to determine if compensatory gas exchange occurs in response to feeding damage by this piercing-sucking insect. Sugar maple trees were enclosed in netting (167 micro m mesh) and pear thrips adults were introduced before leaf expansion in the spring. Pear thrips reduced whole-tree leaf area by approximately 23% and reduced leaf size (both mass and area) by 20% in the upper crown. Measurements of net CO(2) assimilation rate (A(net)) and stomatal conductance (g(s)) were made on tagged foliage that was later analyzed for stable carbon isotope composition (delta(13)C) to provide estimates of short- and long-term leaf water use efficiency (WUE). Pear thrips feeding reduced A(net) for fully expanded leaves by approximately 20%, although leaf chlorophyll content and leaf mass per unit area were apparently not affected. Comparison of A(net), g(s), instantaneous WUE and leaf delta(13)C between damaged and control trees as well as visibly undamaged versus moderately damaged foliage on pear thrips-infested trees indicated that there were no effects of pear thrips feeding damage on WUE or leaf delta(13)C. Long-term WUE among sugar maple trees in the field plantation, indicated by leaf delta(13)C analysis, was related to shorter-term estimates of leaf gas exchange behavior such as g(s) and calculated leaf intercellular CO(2) concentration (C(i)). We conclude that pear thrips feeding has no effect on leaf WUE, but at the defoliation levels in our experiment, it may reduce leaf A(net), as a result of direct tissue damage or through reduced g(s). Therefore, even small reductions in leaf A(net) by pear thrips feeding damage may have an important effect on the seasonal carbon balance of sugar maple when integrated over the entire growing season. PMID:14967678

  15. Climate Change in the School Yard: Monitoring the Health of Acer Saccharum with A Maple Report Card

    NASA Astrophysics Data System (ADS)

    Carlson, M.; Diller, A.; Rock, B. N.

    2012-12-01

    K-12 Teachers and students engage in authentic science and a research partnership with scientists in Maple Watch, a University of New Hampshire outreach program. Maple Watch is a hands-on, inquiry-based program in which students learn about climate change and air quality as well as many other environmental stress factors which may affect the health of sugar maple. The iconic New England tree is slated to lose 52% of its range in this century. Maple Watch builds on the 20-year record of Forest Watch, a K-12 program in which students and teachers have contributed annual research specimens and data to a UNH study of tropospheric ozone and its impact on white pine (Pinus strobus). Maple Watch students monitor sugar maples (Acer saccharum) year-round for signals of strain and disease. Students report the first run in sap season, bud burst and leaf development, and leaf senescence and fall. Across New England the timing of these phenologic events is changing with climate warming. Students assess maple health with simple measures of leaf development in May, leaf senescence in early fall and bud quality in late fall. Simple student arithmetic rankings of leaf and bud health correlate with chlorophyll content and spectral reflectance measures that students can analyze and compare with researchers at UNH. Grading their trees for each test on a one-two-three scale, students develop a Maple Report Card for each type of measurement, which presents an annual portrait of tree health. Year-by-year, schools across the sugar maple's 31 million acre range could monitor changes in tree health. The change over time in maple health can be graphed in parallel with the Goddard Space Institute's Common Sense Climate Index. Four teachers, listed as co-authors here, began a pilot study with Maple Watch in 2010, contributing sap samples and sharing curricular activities with UNH. Pilot Maple Watch schools already manage stands of sugar maples and make maple syrup and are assisting in training

  16. High Energy Charge as a Requirement for Axis Elongation in Response to Gibberellic Acid and Kinetin during Stratification of Acer saccharum Seeds 1

    PubMed Central

    Simmonds, J. A.; Dumbroff, E. B.

    1974-01-01

    The growth potential of embryonic axes of Acer saccharum Marsh. increased during moist storage at 5 C but not at 20 C. During the period of increasing growth potential, the oxygen consumption of the axes remained constant. It was possible to distinguish three phases of the stratification-germination process at 5 C with respect to response of the axis to gibberellic acid and kinetin. From 0 to 10 days the growth regulators had no effect on elongation; from 10 to 60 days axis elongation was stimulated; and between day 60 and day 75, when germination had begun, the growth substances were inhibitory. The adenylate energy charge remained low (0.15) in axes of dry dormant seeds but increased to 0.78 following imbibition of water and 10 days of moist storage at 5 C. This phenomenon was not specifically related to low temperature stratification, since a rapid increase in the energy charge of the axes also occurred following imbibition and moist storage at 20 C. The excised axes would elongate in response to the growth substances only when a high energy charge (approximately 0.8) was maintained. PMID:16658660

  17. Simulated root dynamics of a 160-year-old sugar maple (Acer saccharum Marsh.) tree with and without ozone exposure using the TREGRO model.

    PubMed

    Retzlaff, W. A.; Weinstein, D. A.; Laurence, J. A.; Gollands, B.

    1996-01-01

    Because of difficulties in directly assessing root responses of mature forest trees exposed to atmospheric pollutants, we have used the model TREGRO to analyze the effects of a 3- and a 10-year exposure to ozone (O(3)) on root dynamics of a simulated 160-year-old sugar maple (Acer saccharum Marsh.) tree. We used existing phenological, allometric, and growth data to parameterize TREGRO to produce a simulated 160-year-old tree. Simulations were based on literature values for sugar maple fine root production and senescence and the photosynthetic responses of sugar maple seedlings exposed to O(3) in open-top chambers. In the simulated 3-year exposure to O(3), 2 x ambient atmospheric O(3) concentrations reduced net carbon (C) gain of the 160-year-old tree. This reduction occurred in the C storage pools (total nonstructural carbohydrate, TNC), with most of the reduction occurring in coarse (woody) roots. Total fine root production and senescence were unaffected by the simulated 3-year exposure to O(3). However, extending the simulated O(3) exposure period to 10 years depleted the TNC pools of the coarse roots and reduced total fine root production. Similar reductions in TNC pools have been observed in forest-grown sugar maple trees exhibiting symptoms of stress. We conclude that modeling can aid in evaluating the belowground response of mature forest trees to atmospheric pollution stress and could indicate the potential for gradual deterioration of tree health under conditions of long-term stress, a situation similar to that underlying the decline of sugar maple trees. PMID:14871784

  18. The influence of soil-site factors on sugar maple (Acer saccharum Marsh.) growth response to climatic change in central Ontario

    NASA Astrophysics Data System (ADS)

    Schutten, K.; Gedalof, Z.

    2010-12-01

    Over the past several decades, concerns about climatic change and its potential impacts on Canada’s various geographical regions and associated ecological processes have grown steadily, especially among land and resource managers. As these risks transition into tangible outcomes in the field, it will be important for resource managers to understand historical climatic variability and natural ecological trends in order to effectively respond to a changing climate. Sugar maple (Acer saccharum Marsh.) is considered a stable endpoint for mature forests in the northern hardwood community of central Ontario, and it tends to be the dominant species, in a beech-ironwood-yellow birch matrix. In North America, this species is used for both hardwood lumber and for maple sugar (syrup) products; where it dominates, large recreational opportunities also exist. There are many biotic and abiotic factors that play a large role in the growth and productivity of sugar maple stands, such as soil pH, moisture regime, and site slope and aspect. This research undertaking aims to add to the body of literature addressing the following question: how do site factors influence the sensitivity of sugar maple growth to climatic change? The overall objective of the research is to evaluate how biotic and abiotic factors influence the sensitivity of sugar maple annual radial growth to climatic variability. This research will focus on sugar maple growth and productivity in Algonquin Provincial Park, and the impact that climatic variability has had in the past on these stands based on site-specific characteristics. In order to complete this goal, 20 sites were identified in Algonquin Provincial Park based on variability of known soil and site properties. These sites were visited in order to collect biotic and abiotic site data, and to measure annual radial growth increment of trees. Using regional climate records and standard dendrochronological methods, the collected increment growth data will be

  19. Sapindaceae and Acer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Acer (maples) is treated for The Jepson Manual of the higher plants of California, a detailed floristic manual for the state published by the University of California. Six species are recognized; full morphological descriptions, dichotomous keys, and brief summaries of geographical and ec...

  20. ACER 2013-2014 Annual Report

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, 2015

    2015-01-01

    The Australian Council for Educational Research (ACER) is one of the world's leading educational research centres. ACER's mission is to create and promote research-based knowledge, products and services that can be used to improve learning across the life span. This annual report describes ACER's milestones and accomplishments for the 2013-2014…

  1. ACER Chemistry Test Item Collection (ACER CHEMTIC Year 12 Supplement).

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    This publication contains 317 multiple-choice chemistry test items related to topics covered in the Victorian (Australia) Year 12 chemistry course. It allows teachers access to a range of items suitable for diagnostic and achievement purposes, supplementing the ACER Chemistry Test Item Collection--Year 12 (CHEMTIC). The topics covered are: organic…

  2. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  3. Genome size variation in three Saccharum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharum species are autopolyploid with ploidy level ranging from 5x to 16x, and is considered one of the most complex genomes among crop plants. In this study, the genome sizes of 28 S. spontaneum accessions, 15 S. officinarum accessions, 28 S. robustum accessions, and 12 Saccharum Hybrids were an...

  4. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest.

    PubMed

    Sobek, Stephanie; Scherber, Christoph; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2009-05-01

    Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory-diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany's largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory-tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies. PMID:19238448

  5. Field identification of birdseye in sugar maple (acer saccharum marsh. ). Forest Service research paper

    SciTech Connect

    Bragg, D.C.; Stokke, D.D.

    1994-01-01

    Birdseye grain distortions in sugar maple must be identified to capture the full value of a timber sale throughout the economic range of birdseye's occurrence. Even when relatively common, birdseye veneer typically makes up less than 1 percent of the harvested volume, but may account for one-half of the value of the sale. Field identification of birdseye sugar maple is critical for two principal reasons: (1) it allows for the enumeration of a valuable resource that may influence management decisions, and (2) it may prevent improper manufacturing of logs at the job site. Both factors should help increase overall timber sale return. The objective of the paper is to provide a background on birdseye sugar maples and a detailed sequential methodology for field identification of birdseye in standing trees.

  6. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.

    PubMed

    Dickey, C A; Heal, K V; Stidson, R T; Koren, R; Schröder, P; Cape, J N; Heal, M R

    2004-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health. PMID:15158031

  7. How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea

    2016-04-01

    Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to

  8. ACER3 supports development of acute myeloid leukemia.

    PubMed

    Chen, Chen; Yin, Yancun; Li, Chunling; Chen, Jinliang; Xie, Jingjing; Lu, Zhigang; Li, Minjing; Wang, Yuesi; Zhang, Cheng Cheng

    2016-09-01

    No new therapy for acute myeloid leukemia (AML) has been approved for more than 30 years. To effectively treat AML, new molecular targets and therapeutic approaches must be identified. In silico analysis of several databases of AML patients demonstrated that the expression of alkaline ceramidase 3 (ACER3) significantly inversely correlates with the overall survival of AML patients. To determine whether ACER3 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit acer3 expression in human AML cells including NB4, U937, and THP-1 cells. The ACER3 deficiency resulted in decreased cell growth and colony formation, elevated apoptosis, and lower AKT signaling of leukemia cells. Our study indicates that ACER3 contributes to AML pathogenesis, and suggests that alkaline ceramidase inhibition is an option to treat AML. PMID:27470583

  9. Effects of elevated temperature and elevated CO{sub 2} on foliar senescence of Acer seedlings

    SciTech Connect

    Hartz, J.S.; Norby, R.J. |

    1995-06-01

    An important response mechanism of trees to a warmer, CO{sub 2}-enriched atmosphere could be an alteration of phenological relationships. Autumn leaf senescence and abscission were tracked in sugar maple (Acer saccharum) and red maple (A. rubrum) seedlings growing in open-top chambers in ambient or elevated CO{sub 2} in combination with ambient or elevated temperature. Chlorophyll concentration was estimated weekly with a portable reflectance meter calibrated against conventional analysis of chlorophyll in leaf extracts. Abscission was quantified as the percentage of total plant leaf area that had abscised by certain dates. In both species chlorophyll loss from mid-October to mid-November was retarded in plants grown since May at a constant temperature offset 4{degrees}C higher than ambient. Likewise, leaf abscission began later and progressed more slowly in the warmer chambers. These plants still had 80% of their leaf area attached, and the leaves were still green, at the end of the growing season. Carbon dioxide concentration had little effect on leaf senescence or abscission. The results demonstrate the potential for climate warming to extend the growing season, which could enhance plant productivity. However, delayed senescence could also cause nutrient loss by disrupting retranslocation from leaves prior to the end of the growing season.

  10. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp.) and its wild progenitor species Saccharum spontaneum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A striking characteristic of modern sugarcane is that all sugarcane cultivars (Saccharum spp.) share a common cytoplasm from S. officinarum. To explore the potential value of S. spontaneum cytoplasm, new Saccharum hybrids with a S. spontaneum cytoplasm were developed at the USDA-ARS, sugarcane resea...

  11. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    PubMed Central

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

  12. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    PubMed Central

    Song, Jian; Yang, Xiping; Resende, Marcio F. R.; Neves, Leandro G.; Todd, James; Zhang, Jisen; Comstock, Jack C.; Wang, Jianping

    2016-01-01

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes. PMID:27375658

  13. Natural Allelic Variations in Highly Polyploidy Saccharum Complex.

    PubMed

    Song, Jian; Yang, Xiping; Resende, Marcio F R; Neves, Leandro G; Todd, James; Zhang, Jisen; Comstock, Jack C; Wang, Jianping

    2016-01-01

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes. PMID:27375658

  14. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE PAGESBeta

    Song, Jian; Yang, Xiping; Resende, Marcio F. R.; Neves, Leandro G.; Todd, James; Zhang, Jisen; Comstock, Jack C.; Wang, Jianping

    2016-06-08

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed basedmore » on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non -redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp, diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  15. A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall.

    PubMed

    Hanson, P J; Todd, D E; Amthor, J S

    2001-04-01

    Global climatic change may cause changes in regional precipitation that have important implications for forest growth in the southern United States. In 1993, a stand-level experiment was initiated on Walker Branch Watershed, Tennessee, to study the sensitivity of forest saplings and large trees to changes in soil water content. Soil water content was manipulated by gravity-driven transfer of precipitation throughfall from a dry treatment plot (-33%) to a wet treatment plot (+33%). A control plot was included. Each plot was 6400 m2. Measurements of stem diameter and observations of mortality were made on large trees and saplings of Acer rubrum L., Cornus florida L., Liriodendron tulipifera L., Nyssa sylvatica Marsh, Quercus alba L. and Quercus prinus L. every 2 weeks during six growing seasons. Saplings of C. florida and A. rubrum grew faster and mortality was less on the wet plot compared with the dry and control plots, through 6 years of soil water manipulation. Conversely, diameter growth of large trees was unaffected by the treatments. However, tree diameter growth averaged across treatments was affected by year-to- year changes in soil water status. Growth in wet years was as much as 2-3 times greater than in dry years. Relationships between tree growth, phenology and soil water potential were consistent among species and quantitative expressions were developed for application in models. These field growth data indicate that differences in seasonal patterns of rainfall within and between years have greater impacts on growth than percentage changes in rainfall applied to all rainfall events. PMID:11282574

  16. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) is a large-stature perennial grass that is cultivated in approximately 80 nations in tropical, semi-tropical, and subtropical regions of the world primarily for its ability to store high concentrations of sucrose in the stem. About 70% of the world’s sugar supply in the f...

  17. Natural allelic variations in highly polyploidy Saccharum complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) as important sugar and biofuel crop are highly polypoid with complex genomes. A large amount of natural phenotypic variation exists in sugarcane germplasm. Understanding its allelic variance has been challenging but is a critical foundation for discovery of the genomic seq...

  18. Characterization of saccharum species germplasm for starch content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The renewed interest in wild Saccharum species germplasm across sugarcane breeding programs has been necessitated by the need to widen the genetic base of breeding populations. Modern sugarcane cultivars were derived from inter-specific hybridization between S. officinarum and S. spontaneum. Very fe...

  19. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance.

    PubMed

    Wu, Jian-Xin; Li, Jian; Liu, Zhe; Yin, Jian; Chang, Zhen-Yi; Rong, Chan; Wu, Jia-Li; Bi, Fang-Cheng; Yao, Nan

    2015-03-01

    Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer-1 T-DNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild-type plants. Quantitative sphingolipid profiling showed that acer-1 mutants and the artificial microRNA-mediated silenced line amiR-ACER-1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer-1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants. PMID:25619405

  20. Weak trophic interactions among birds, insects and white oak saplings (Quercus alba)

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2002-01-01

    We examined the interactions among insectivorous birds, arthropods and white oak saplings (Quercus alba L.) in a temperate deciduous forest under 'open' and 'closed' canopy environments. For 2 y, we compared arthropod densities, leaf damage and sapling growth. Saplings from each canopy environment were assigned to one of four treatments: (1) reference, (2) bird exclosure, (3) insecticide and (4) exclosure + insecticide. Sap-feeding insects were the most abundant arthropod feeding guild encountered and birds reduced sap-feeder densities in 1997, but not in 1998. Although there was no detectable influence of birds on leaf-chewer densities in either year, leaf damage to saplings was greater within bird exclosures than outside of bird exclosures in 1997. Insecticide significantly reduced arthropod densities and leaf damage to saplings, but there was no corresponding increase in sapling growth. Growth and biomass were greater for saplings in more open canopy environments for both years. Sap-feeder densities were higher on closed canopy than open canopy saplings in 1997, but canopy environment did not influence the effects of birds on lower trophic levels. Although previous studies have found birds to indirectly influence plant growth and biomass, birds did not significantly influence the growth or biomass of white oak saplings during our study.

  1. Molecular characterization and differential expression of two duplicated dorant receptor genes, AcerOr1 and AcerOr3, in Apis cerana cerana.

    PubMed

    Zhao, Huiting; Gao, Pengfei; Du, Haiyan; Ma, Weihua; Tian, Songhao; Jiang, Yusuo

    2014-04-01

    Insects use olfaction to recognize a wide range of volatile cues, to locate food sources, mates, hosts and oviposition sites. These chemical volatiles are perceived by odorant receptors (ORs) expressed on the dendritic membrane of olfactory neurons, most of which are housed within the chemosensilla of antennae. Most insect ORs are tandemly arrayed on chromosomes and some of them are formed by gene duplication. Here, we identified a pair of duplicated Or genes, AcerOr1 and AcerOr3, from the antennae of the Asian honeybee, Apis cerana cerana, and reported their molecular characterization and temporal expression profiles. The results showed that these two genes shared high similarity both in sequence and the gene structure. Quantitative real-time PCR analysis of temporal expression pattern indicated that in drones the expression pattern of these two genes were very similar. The transcripts expressed weakly in larvae and pupae, then increased gradually in adults. In workers, the expression level of AcerOr1 changed more drastically and expressed higher than that of AcerOr3. However, both reached their highest expression level in one-day-old adults. In addition, the expression profiles between different sexes revealed that AcerOr3 appear to be expressed biased in male antennae. These results suggest that AcerOr1 may perceive odours of floral scents, while AcerOr3 may detect odours critical to male behaviour, such as the queen substance cues. PMID:24840823

  2. Species-specific accumulation of interspersed sequences in genus Saccharum.

    PubMed

    Nakayama, Shigeki

    2004-12-01

    The genus Saccharum consists of two wild and four cultivated species. Novel interspersed sequences were isolated from cultivated sugar cane S. officinarum. These sequences were accumulated in all four cultivated species and their wild ancestral species S. robustum, but were not detected in the other wild species S. spontaneum and the relative Erianthus arundinaceus. The species-specific accumulation of interspersed sequences would correlate to the domestication of sugar canes. PMID:15729004

  3. Promoting utilization of Saccharum spp. genetic resources though genetic diversity analysis and core collection construction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other importa...

  4. Predation of caterpillars on understory saplings in an Ozark forest

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2003-01-01

    Predators of caterpillars (Lepidoptera larvae) can indirectly enhance economic gains from plant resources by reducing herbivore damage to plants. For this study, we directly observed predation of caterpillars on understory trees in the Ozarks. Our objectives were to determine the relative importance of diurnal guilds of caterpillar predators, the time of day most diurnal predation events occur, and whether predators spend more time feeding in open or closed canopy areas. Once per month, June-September, we tethered caterpillars to understory saplings and recorded all predation events. Only invertebrate predators were observed feeding on caterpillars, and most predation events were attributed to ants and vespids (wasps, hornets and yellow jackets). Predation by vertebrate predators such as birds, small mammals, reptiles and amphibians was not observed. Most predation events took place at mid-day between 1200 and 1600 hrs. Predation pressure differed significantly over the four observation dates with peak ant predation in July and peak vespid predation in September. Canopy environment appeared to influence predation events as there was a trend towards higher vespid predation of caterpillars on open canopy as opposed to closed canopy saplings. Ants and vespids accounted for 90% of observed predation events; therefore they appear to be important predators of caterpillars during the summer months. Future studies at earlier sampling dates would be valuable in determining whether the relative importance of other diurnal guilds of caterpillar predators might be greater in the spring.

  5. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    PubMed

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects. PMID:22147441

  6. Fast recovery of carbon fluxes in beech saplings after drought

    NASA Astrophysics Data System (ADS)

    Blessing, Carola; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina

    2015-04-01

    Drought is known to down-regulate above and belowground gas-exchange and to slow down carbon transport from shoot to the soil/root system of beech (Fagus sylvatica L.). However, given more frequent drought spells in a future climate, the resilience of beech to drought will also depend on the speed and magnitude of recovery of above and belowground carbon fluxes. In a climate chamber study with beech saplings, we measured shoot and soil CO2 fluxes and their carbon isotope signature during drought and consecutive recovery using laser spectroscopy. We aimed to determine the speed of recovery from drought after re-watering and to assess the coupling between above and belowground gas-exchange and carbon isotope fluxes at natural abundance during drought and subsequent recovery. CO2 fluxes responded strongly to drought; photosynthesis was decreased by 34%, soil respiration (during light) by 41% and stomatal conductance by 65%. Despite this drastic decrease in gas-exchange, carbon fluxes recovered within few days after re-watering - faster for aboveground physiological variables (four days) compared to soil respiration (seven days) - pointing towards a resilient behaviour of beech saplings to drought. Moreover, the drought response in soil respiration was better explained by stomatal conductance (R2=0.8) rather than photosynthesis (R2=0.62). Consequently, stomatal conductance, and thus water-mediated processes, played a pivotal role driving the coupling of above and belowground CO2 fluxes. Further, drought caused photosynthetic isotope discrimination to decrease by 8o which in turn was reflected in a significant increase in δ13C of recent photoassimilates (1.5-2.5 obar) , and could be also traced to δ13C of soil respiration, which increased by 1-1.5 obar) . However, the coupling between the isotopic signatures of above and belowground carbon fluxes (R2=0.15) was less pronounced compared to the coupling of above and belowground gas-exchange (R2=0.8). In summary, our

  7. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.

    PubMed

    Zhu, J-R; Zhou, H; Pan, Y-B; Lu, X

    2014-01-01

    A striking characteristic of modern sugarcane is that all sugarcane cultivars (Saccharum spp) share a common cytoplasm from S. officinarum. To explore the potential value of S. spontaneum cytoplasm, new Saccharum hybrids with an S. spontaneum cytoplasm were developed at the United States Department of Agriculture-Agricultural Research Service, Sugarcane Research Laboratory, through a combination of conventional and molecular breeding approaches. In this study, we analyzed the genetic variability among the chloroplast genomes of four sugarcane cultivars, eight S. spontaneum clones, and three F1 progeny containing an S. spontaneum cytoplasm. Based on the complete chloroplast genome sequence information of two sugarcane cultivars (NCo 310 and SP 80-3280) and five related grass species (barley, maize, rice, sorghum, and wheat), 19 polymerase chain reaction primer pairs were designed targeting various chloroplast DNA (cpDNA) segments with a total length varying from 4781 to 4791 bp. Ten of the 19 cpDNA segments were polymorphic, harboring 14 mutation sites [a 15-nt insertion/deletion (indel), a 5-nt indel, two poly (T) tracts, and 10 single nucleotide polymorphisms]. We demonstrate for the first time that the chloroplast genome of S. spontaneum was maternally inherited. Comparative sequence homology analyses clustered sugarcane cultivars into a distinctive group away from S. spontaneum and its progeny. Three mutation sites with a consistent, yet species-specific, nucleotide composition were found, namely, an A/C transversion and two indels. The genetic variability among cpDNA of sugarcane cultivars and S. spontaneum will be useful information to determine the maternal origin in the Saccharum genus. PMID:24615073

  8. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings.

    PubMed

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-03-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding. PMID:25171334

  9. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings

    PubMed Central

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-01-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding. PMID:25171334

  10. Siring Success and Paternal Effects in Heterodichogamous Acer opalus

    PubMed Central

    Gleiser, Gabriela; Segarra-Moragues, José Gabriel; Pannell, John Richard; Verdú, Miguel

    2008-01-01

    Background and Aims Heterodichogamy (a dimorphic breeding system comprising protandrous and protogynous individuals) is a potential starting point in the evolution of dioecy from hermaphroditism. In the genus Acer, previous work suggests that dioecy evolved from heterodichogamy through an initial spread of unisexual males. Here, the question is asked as to whether the different morphs in Acer opalus, a species in which males co-exist with heterodichogamous hermaphrodites, differ in various components of male in fitness. Methods Several components of male fertility were analysed. Pollination rates in the male phase were recorded across one flowering period. Pollen viability was compared among morphs through hand pollinations both with pollen from a single sexual morph and also simulating a situation of pollen competition; in the latter experiment, paternity was assessed with microsatellite markers. It was also determined whether effects of genetic relatedness between pollen donors and recipients could influence the siring success. Finally, paternal effects occurring beyond the fertilization process were tested for by measuring the height reached by seedlings with different sires over three consecutive growing seasons. Key Results The males and protandrous morphs had higher pollination rates than the protogynous morph, and the seedlings they sired grew taller. No differences in male fertility were found between males and protandrous individuals. Departures from random mating due to effects of genetic relatedness among sires and pollen recipients were also ruled out. Conclusions Males and protandrous individuals are probably better sires than protogynous individuals, as shown by the higher pollination rates and the differential growth of the seedlings sired by these morphs. In contrast, the fertility of males was not higher than the male fertility of the protandrous morph. While the appearance of males in sexually specialized heterodichogamous populations is possible

  11. Sex Change Towards Female in Dying Acer rufinerve Trees

    PubMed Central

    NANAMI, SATOSHI; KAWAGUCHI, HIDEYUKI; YAMAKURA, TAKUO

    2004-01-01

    • Background and Aims Sex changes within the genus Acer (Aceraceae) may occur because of associations of sex expression and plant health. In this study, a natural population of Acer rufinerve was monitored to clarify the sex change patterns, the relationship between sex expression and plant health, and the causal environmental conditions that precede sex changes. • Methods Sex expression, growth rate and mortality of A. rufinerve trees in a natural population were monitored from 1992 to 1997. • Key Results Three types of sex expression were observed among A. rufinerve: male, female and bisexual. Among the three types of sex expression, sex changes occurred in all directions. In the growing season of 1994, precipitation was reduced. Stem growth rate decreased and mortality was high in 1994. In the spring of 1995, a drastic sex change from male to female or to bisexual occurred. As a result, the sex ratio became female‐biased in 1995, although it had been male‐biased from 1992 to 1994. In 1996 and 1997, the proportion of males in the population increased, partly as a result of female mortality and partly as a result of female‐to‐male sex changes. Sex expression of A. rufinerve was associated with their growth rate and mortality. The growth rate decreased for trees whose sex changed from male to female or to bisexual, and increased for trees whose sex changed from female to male or to bisexual. Dead trees reproduced as females before they died, except for those that died as males in 1994. • Conclusions One explanation for the sex change towards increasing femaleness for this A. rufinerve population in 1995 was the deterioration of plant health in the previous growing season, because of reduced precipitation. Sex changes of unhealthy and dying A. rufinerve towards femaleness may facilitate re‐occupancy by offspring in gaps created by the death of A. rufinerve trees. PMID:15102611

  12. First year sugar maple (Acer saccharum, Marsh. ) seedling nutrition, vesicular-arbuscular mycorrhizal colonization, physiology, and growth along an acidic deposition gradient in Michigan

    SciTech Connect

    McLaughlin, J.W.

    1992-01-01

    A field study was conducted to evaluate the use of foliar amino acid and root reducing sugar accumulations to separate acidic deposition from natural (i.e., soil phosphorus, mycorrhizae, and temperature) ecosystem stressors on first-year sugar maple seedling growth in three Michigan forests. Seedling growth was greatest at the sites exposed to highest levels of acidic deposition. However, sites receiving greatest acidic deposition rates also had high available soil phosphorus contents. No significant differences occurred, suggesting increased nitrogen loadings were not reflected in seedling tissue nitrogen. Seedling root or foliar calcium, magnesium, or potassium also were not significantly different, suggesting those elements were not growth limiting. Significant differences, however, occurred for seedling arginine and glutamine concentrations in foliage and reducing sugar concentrations in roots and were negatively correlated with seedling tissue phosphorus concentrations, suggesting phosphorus was limiting seedling growth at the low acidic deposition site. Vesicular-arbuscular mycorrhizal colonization of seedling roots was greater at the low acidic deposition site and positively correlated with seedling amino acid and reducing sugar accumulation but negatively correlated with sucrose concentrations in seedling roots, indicating that the fungal partner may have stimulated sucrose degradation to reducing sugars. Both air and soil temperatures were positively correlated with total sugar and sucrose concentrations in seedling roots. High levels of arginine, glutamine, and reducing sugars were negatively correlated with seedling growth indicating that seedlings at the low acidic deposition site were more stressed than seedlings at the sites receiving higher levels of pollutant loads. The results suggest differences in foliar arginine and glutamine and root reducing sugars in the forests in this study are likely due to natural rather than acidic deposition stress.

  13. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA

    PubMed Central

    Momen, Bahram; Behling, Shawna J.; Lawrence, Greg B.; Sullivan, Joseph H.

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor, which can impede seedling survival. PMID:26291323

  14. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA.

    PubMed

    Momen, Bahram; Behling, Shawna J; Lawrence, Greg B; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor, which can impede seedling survival. PMID:26291323

  15. Photosynthetic and growth response of sugar maple (Acer saccharum Marsh.) mature trees and seedlings to calcium, magnesium, and nitrogen additions in the Catskill Mountains, NY, USA

    USGS Publications Warehouse

    Momen, Bahram; Behling, Shawna J; Lawrence, Gregory B.; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor, which can impede seedling survival.

  16. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes.

    PubMed Central

    Ming, R; Liu, S C; Lin, Y R; da Silva, J; Wilson, W; Braga, D; van Deynze, A; Wenslaff, T F; Wu, K K; Moore, P H; Burnquist, W; Sorrells, M E; Irvine, J E; Paterson, A H

    1998-01-01

    The complex polyploid genomes of three Saccharum species have been aligned with the compact diploid genome of Sorghum (2n = 2x = 20). A set of 428 DNA probes from different Poaceae (grasses) detected 2460 loci in F1 progeny of the crosses Saccharum officinarum Green German x S. spontaneum IND 81-146, and S. spontaneum PIN 84-1 x S. officinarum Muntok Java. Thirty-one DNA probes detected 226 loci in S. officinarum LA Purple x S. robustum Molokai 5829. Genetic maps of the six Saccharum genotypes, including up to 72 linkage groups, were assembled into "homologous groups" based on parallel arrangements of duplicated loci. About 84% of the loci mapped by 242 common probes were homologous between Saccharum and Sorghum. Only one interchromosomal and two intrachromosomal rearrangements differentiated both S. officinarum and S. spontaneum from Sorghum, but 11 additional cases of chromosome structural polymorphism were found within Saccharum. Diploidization was advanced in S. robustum, incipient in S. officinarum, and absent in S. spontaneum, consistent with biogeographic data suggesting that S. robustum is the ancestor of S. officinarum, but raising new questions about the antiquity of S. spontaneum. The densely mapped Sorghum genome will be a valuable tool in ongoing molecular analysis of the complex Saccharum genome. PMID:9832541

  17. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees

    PubMed Central

    Martin, Adam R.; Thomas, Sean C.; Zhao, Yong

    2013-01-01

    Wood anatomical traits are important correlates of life-history strategies among tree species, yet little is known about wood chemical traits. Additionally, size-dependent changes in wood chemical traits have been rarely examined, although these changes may represent an important aspect of tree ontogeny. Owing to selection for pathogen resistance and biomechanical stability, we predicted that saplings would show higher lignin (L) and wood carbon (Cconv), and lower holocellulose (H) concentrations, compared with conspecific large trees. To test these expectations, we quantified H, L and Cconv in co-occurring Panamanian tree species at the large tree vs. sapling size classes. We also examined inter- and intraspecific patterns using multivariate and phylogenetic analyses. In 15 of 16 species, sapling L concentration was higher than that in conspecific large trees, and in all 16 species, sapling H was lower than that in conspecific large trees. In 16 of 24 species, Cconv was higher in saplings than conspecific large trees. All large-tree traits were unrelated to sapling values and were unrelated to four life-history variables. Wood chemical traits did not show a phylogenetic signal in saplings, instead showing similar values across distantly related taxa; in large trees, only H showed a significant phylogenetic signal. Size-dependent changes in wood chemistry show consistent and predictable patterns, suggesting that ontogenetic changes in wood chemical traits are an important aspect of tree functional biology. Our results are consistent with the hypothesis that at early ontogenetic stages, trees are selected for greater L to defend against cellulose-decaying pathogens, or possibly to confer biomechanical stability.

  18. Effects of herbivory and flooding on reforestation of baldcypress (Taxodium distichum [L.]) saplings planted in Caddo Lake, Texas

    USGS Publications Warehouse

    Keeland, Bobby D.; Dale, Rassa O.; Darville, Roy; McCoy, John W.

    2011-01-01

    The effects of herbivory and flooding were examined on survival and growth of planted baldcypress (Taxodium distichum (L.) Rich.) saplings at three sites in Caddo Lake, TX, over a 4-yr period. There were two flood regimes (shallow periodic and deep continuous), where half of the saplings in each flood regime were protected by tree shelters to prevent herbivory. By the end of the first year, over 80% of saplings survived with half of saplings classified as healthy. By the end of the fourth year, only half of the saplings were alive and one-third were healthy. At all three sites, the combination of no protection and continuous flooding resulted in a significant number of missing saplings. Likewise, most unprotected saplings in periodic flooding were missing by the end of the study. Saplings clipped by herbivores showed about 50% chance of recovery, but many of the sprouts were of poor quality. Protected saplings in tree shelters achieved significantly greater survival and height growth.

  19. Do competition and herbivory alter the internal nitrogen dynamics of birch saplings?

    PubMed

    Millett, J; Millard, P; Hester, A J; McDonald, A J S

    2005-11-01

    Deciduous trees recycle nitrogen within their tissues. The aim of this study was to test the hypothesis that reductions in plant growth, caused by competition and herbivory, reduce the sink strength for N during autumn nutrient withdrawal, and reduce the storage capacity and hence the amount of N remobilized in the following spring. We used (15)N-labelled fertilizer to quantify N uptake, leaf N withdrawal and remobilization. Betula pubescens saplings were grown with either Molinia caerulea or Calluna vulgaris, and subjected to simulated browsing damage. Competition reduced B. pubescens leaf N withdrawal and remobilization, with C. vulgaris having a greater effect than M. caerulea. However, simulated browsing had no significant effect on sapling N dynamics. The patterns of leaf N withdrawal and remobilization closely followed sapling dry mass. We conclude that the effect of competition on sapling mass reduces their N-storage capacity. This reduces sink strength for leaf N withdrawal and the source strength for remobilized N. The ability of saplings to compensate for browsing damage removed any potential effect of browsing on N dynamics. PMID:16219080

  20. Energycane (Saccharum spp. x Saccharum spontaneum L.) Biomass Production, Reproduction, and Weed Risk Assessment Scoring in the Humid Tropics and Subtropics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing interest in developing biofuel crops, but there is little information on energy grass production in the humid tropics. The present study evaluated the performance of 14 energycane (Saccharum spp. × S. spontaneum) clones, elephantgrass and two sugarcane varieties in the humid tropics...

  1. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  2. Simulated herbivory advances autumn phenology in Acer rubrum

    NASA Astrophysics Data System (ADS)

    Forkner, Rebecca E.

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple ( Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ˜7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ˜16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  3. SAPling: a Scan-Add-Print barcoding database system to label and track asexual organisms

    PubMed Central

    Thomas, Michael A.; Schötz, Eva-Maria

    2011-01-01

    SUMMARY We have developed a ‘Scan-Add-Print’ database system, SAPling, to track and monitor asexually reproducing organisms. Using barcodes to uniquely identify each animal, we can record information on the life of the individual in a computerized database containing its entire family tree. SAPling has enabled us to carry out large-scale population dynamics experiments with thousands of planarians and keep track of each individual. The database stores information such as family connections, birth date, division date and generation. We show that SAPling can be easily adapted to other asexually reproducing organisms and has a strong potential for use in large-scale and/or long-term population and senescence studies as well as studies of clonal diversity. The software is platform-independent, designed for reliability and ease of use, and provided open source from our webpage to allow project-specific customization. PMID:21993779

  4. Differential detection of transposable elements between Saccharum species

    PubMed Central

    de Souza, Marislane Carvalho Paz; Silva, Jéssica Naiana; Almeida, Cícero

    2013-01-01

    Cultivars of sugarcane (Saccharum) are hybrids between species S. officinarum (x = 10, 2n = 8x = 80) and S. spontaneum (x = 8, 2n = 5 – 16x = 40 – 128). These accessions have 100 to 130 chromosomes, 80–85% of which are derived from S. officinarum, 10–15% from S. spontaneum, and 5–10% are possible recombinants between the two genomes. The aim of this study was to analyze the repetition of DNA sequences in S. officinarum and S. spontaneum. For this purpose, genomic DNA from S. officinarum was digested with restriction enzymes and the fragments cloned. Sixty-eight fragments, approximately 500 bp, were cloned, sequenced and had their identity analyzed in NCBI, and in the rice, maize, and sorghum genome databases using BLAST. Twelve clones containing partial transposable elements, one single-copy control, one DNA repetitive clone control and two genome controls were analyzed by DNA hybridization on membrane, using genomic probes from S. officinarum and S. spontaneum. The hybridization experiment revealed that six TEs had a similar repetitive DNA pattern in the genomes of S. officinarum and S. spontaneum, while six TEs were more abundant in the genome of S. officinarum. We concluded that the species S. officinarum and S. spontaneum have differential accumulation LTR retrotransposon families, suggesting distinct insertion or modification patterns. PMID:24130449

  5. Photosynthetic and leaf water potential responses of Alnus glutinosa saplings to stem-base inoculaton with Phytophthora alni subsp. alni.

    PubMed

    Clemenz, Christian; Fleischmann, Frank; Häberle, Karl-Heinz; Matyssek, Rainer; Osswald, Wolfgang

    2008-11-01

    Three-year-old Alnus glutinosa (L.) Gaertn. (alder) saplings were single or double inoculated at the stem base with Phytophthora alni subsp. alni Brasier & S.A. Kirk under natural climatic conditions. Lesion formation on the bark showed a biphasic pattern of development, with extension occurring at a moderate rate in spring, and more rapidly during late summer. However, large variability was encountered in pathogen development within the population of infected saplings, ranging from high susceptibility to almost complete resistance. Infection resulted in severe growth retardation, and death within two years of inoculation in 75% of the saplings. During disease development, rates of transpiration and CO(2) uptake were significantly reduced. Consequently, minimum leaf water potentials were less negative in infected saplings than in control saplings. Surviving saplings matched control trees in photosynthetic capacity, transpiration rate and water potential during the second year of infection. Leaf starch concentration of infected saplings was significantly higher than in control saplings, possibly indicating that the destruction of bark tissue by the pathogen impaired phloem transport from leaves to roots. PMID:18765375

  6. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp.) and its wild progenitor species S. spontaneum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A striking characteristic of modern sugarcane is that all sugarcane cultivars (Saccharum spp.) share a common cytoplasm from S. officinarum. To explore the potential value of S. spontaneum cytoplasm, new Saccharum hybrids with a S. spontaneum cytoplasm were developed at the USDA-ARS, sugarcane resea...

  7. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    PubMed

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. PMID:27231270

  8. Aphid infestation affecting the biogeochemistry of European beech saplings

    NASA Astrophysics Data System (ADS)

    Michalzik, B.; Levia, D. F., Jr.; Bischoff, S.; Näthe, K.

    2014-12-01

    Mass outbreaks of herbivore insects are known to perturb the functional properties of forests. However, it is less clear how endemic to moderate aboveground herbivory affects the vertical flow of nutrients from tree canopies to the soil. Here, we report on the effects of low to moderate infestation levels of the woolly beech aphid (Phyllaphis fagi L.) on the nutrient dynamics and hydrology of European beech (Fagus sylvatica L.). In a potted sapling experiment, we followed the vertical dynamics of nutrients via throughfall (TF), stemflow (SF) and litter leachates (LL) collected over ten weeks underneath infested and uninfested control trees. Aphid infestation amplifies the fluxes of K+, Mn2+ and particulate nitrogen (0.45μm < PN < 500 μm) in TF solution by 42% for K+, 59% for Mn2+ and 13% for PN relative to the control. In contrast, fluxes of NH4-N and SO4-S diminished during peaking aphid abundance by 26 and 16%, respectively. Differences in canopy-derived dissolved nitrogen and carbon compounds, sulfur (S), Ca2+, Mg2+, Na+ were < 10%. The effect of aphid abundance on nutrient dynamics was most notable in TF and SF and diminished in LL.Aphid infestation greatly altered the SF fluxes of DOC, K+, Mn2+, DON and sulfur-species, which were significantly concentrated at the tree base by "funneling" the rainfall through the canopy biomass to the trunk. Normalized to one square meter, water and nutrient fluxes were amplified by a factor of up to 200 compared to TF.Imaging of leaf surfaces by scanning electron microscopy exhibited notable differences of the surface morphology and microbiology of control, lightly infested, and heavily infested leaves. This observation might point to an aphid-mediated alteration of the phyllosphere ecology triggering the microbial uptake of NH4-N and SO4-S and its transformation to particulate N by magnified biomass growth of the phyllosphere microflora, consequently changing the chemical partitioning and temporal availability of nitrogen.

  9. INITIAL GROWTH AND ONTOGENY OF BIGLEAF MAPLE (ACER MACROPHYLLUM) IN AN ENRICHED CARBON DIOXIDE ENVIRONMENT

    EPA Science Inventory

    A controlled-environment experiment was initiated to evaluate the influence of CO2 enrichment on the growth and ontogeny of bigleaf maple (Acer macrophyllum). evelopment of seedlings was monitored from seed germination through the first five months of ontogeny in growth chambers ...

  10. The Astronomical Roots of Sapling Learning: Building a Comprehensive Online Homework System for Astro 101

    NASA Astrophysics Data System (ADS)

    Urban, A.

    2014-07-01

    I discuss the method of creating a library of questions for Astro 101 within the Sapling Learning homework system, as well as the philosophy behind the types of homework questions (and feedback) that are being written. The system's features were built around meeting five basic goals: flexibility, engaging content, peer instruction, immediate instructional feedback, and exploration.

  11. Building a Comprehensive Online Homework System for Astro 101 within Sapling Learning

    NASA Astrophysics Data System (ADS)

    Urban, Andrea

    2014-01-01

    What does an effective homework system for Astro 101 look like? We discuss the method of creating a library of questions for Astro 101 as well as the philosophy behind the types of homework questions (and feedback) that are written within the Sapling Learning homework system. We also discuss which topics may require deeper investigations and how they can be addressed using interactive simulations.

  12. Using goats and sheep to control juniper saplings: what we've learned

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary findings and conclusions were synthesized from a series of papers published between 2006-2014 from studies conducted at CRLRC and the NMSU Campus Farm seeking to determine the feasibility of using sheep and goats to suppress oneseed juniper sapling encroachment. We found that protein sup...

  13. FOLIAR INJURY SYMPTOMS AND PIGMENT CONCENTRATIONS IN RED SPRUCE SAPLINGS IN THE SOUTHERN APPALACHIANS

    EPA Science Inventory

    The frequency and percent surface area covered by necrotic flecking on red spruce (Picea rubens Sarg.) needles from sapling-sized trees were examined on nine research sites on three mountains in the southern Appalachians. oliar pigment analysis was conducted on trees from two of ...

  14. Do isolated gallery-forest trees facilitate recruitment of forest seedlings and saplings in savannna?

    NASA Astrophysics Data System (ADS)

    Azihou, Akomian Fortuné; Glèlè Kakaï, Romain; Sinsin, Brice

    2013-11-01

    Facilitation is an ecological process that allows some species to establish in environments they can hardly afford in the absence of the process. This study investigated if the subcanopy of gallery-forest trees isolated in savanna is suitable for the early recruitment of forest woody species. We measured tree crown area as well as the density of seedlings and saplings of gallery-forest tree species beneath isolated trees and in the savanna matrix along 50 transects of 5-km long and 600 m wide located along four gallery forests. We then tested the nurse-plant effect and Janzen-Connell hypothesis beneath isolated trees. We also examined the relationships between the crown area and the density of seedlings and saplings. Among the eight identified tree species isolated in savanna, only Daniellia oliveri and Khaya senegalensis showed nurse-plant effect and promoted a significant, yet low early recruitment with a seedling-to-sapling survival of 0.044 and 0.578, respectively. The suitability of the subcanopy of isolated trees decreased with the recruitment progression and Janzen-Connell effects were absent. Seedlings had neutral association with the crown area of isolated trees which shifted to positive at the sapling stage. The species of the isolated tree and the crown area explained less than 20% of total variance, indicating that other predictive factors are important in explaining the nurse-plant effect observed in this study.

  15. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.

    PubMed

    Zang, Ulrich; Goisser, Michael; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer; Matzner, Egbert; Borken, Werner

    2014-01-01

    Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair

  16. The Addenbrooke's Cognitive Examination Revised (ACE-R) and its sub-scores: normative values in an Italian population sample.

    PubMed

    Siciliano, Mattia; Raimo, Simona; Tufano, Dario; Basile, Giuseppe; Grossi, Dario; Santangelo, Franco; Trojano, Luigi; Santangelo, Gabriella

    2016-03-01

    The Addenbrooke's Cognitive Examination Revised (ACE-R) is a rapid screening battery, including five sub-scales to explore different cognitive domains: attention/orientation, memory, fluency, language and visuospatial. ACE-R is considered useful in discriminating cognitively normal subjects from patients with mild dementia. The aim of present study was to provide normative values for ACE-R total score and sub-scale scores in a large sample of Italian healthy subjects. Five hundred twenty-six Italian healthy subjects (282 women and 246 men) of different ages (age range 20-93 years) and educational level (from primary school to university) underwent ACE-R and Montreal Cognitive Assessment (MoCA). Multiple linear regression analysis revealed that age and education significantly influenced performance on ACE-R total score and sub-scale scores. A significant effect of gender was found only in sub-scale attention/orientation. From the derived linear equation, a correction grid for raw scores was built. Inferential cut-offs score were estimated using a non-parametric technique and equivalent scores (ES) were computed. Correlation analysis showed a good significant correlation between ACE-R adjusted scores with MoCA adjusted scores (r = 0.612, p < 0.001). The present study provided normative data for the ACE-R in an Italian population useful for both clinical and research purposes. PMID:26563847

  17. Physiological and morphological responses of pine and willow saplings to post-fire salvage logging

    NASA Astrophysics Data System (ADS)

    Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.

    2015-12-01

    With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.

  18. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii.

    PubMed

    Mitamura, Masako; Yamamura, Yasuo; Nakano, Takashi

    2009-01-01

    Although the environmental change by canopy gap formation in a forest improves the light availability for the saplings on the forest floor, it may result in stresses on the saplings due to high radiation and drought. In large-scale gaps, the photosynthesis of shade-tolerant species may be inhibited by high radiation and drought stress if they lack effective tolerance or avoidance mechanisms for the stresses. We investigated the photosynthetic traits and water relations of Abies veitchii Lindl. saplings in an open habitat created by an avalanche and in a nearby forest floor habitat undisturbed by the avalanche. We analyzed the influence of exposed conditions on sapling photosynthesis. The maximum photosynthetic rate of the saplings in the open habitat was lower than that in the forest habitat. The ratio of variable to maximum chlorophyll fluorescence (F(v)/F(m)) was lower in the open habitat than that in the forest habitat during the late growing season, indicating that the open habitat saplings suffer photoinhibition of photosystem II for a long period. A lower Rubisco concentration in needles in the open habitat indicated the breakdown of this photosynthetic protein because of excess solar energy resulting from serious photoinhibition. The shoot water potential of the saplings in the open habitat at daytime was higher than that of the saplings in the forest habitat because of less transpiration caused by the remarkable stomatal closure in the open habitat. Although these acclimations to high radiation improve the tolerance of A. veitchii saplings to high radiation and drought stress, they would result in low gain of daily carbon and a reduction in growth in the open habitat. PMID:19203939

  19. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna.

    PubMed

    Riginos, Corinna; Young, Truman P

    2007-10-01

    Plant-plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree-grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the

  20. A Genetic Linkage Map of Louisiana Sugarcane (Saccharum spp. hybrids) using AFLP and SSR Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern sugarcane cultivars (Saccharum spp. hybrids) are polyploid and aneuploid inter-specific hybrids. They are believed to originate from the initial hybridizations between S. officinarum (x = 10) and S. spontaneum (x = 8), where S. officinarum is normally the recurrent parent. From repeated bac...

  1. Elimination of a reproductive barrier facilitates intergeneric hybridization of Sorghum bicolor and Saccharum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing interest in bioenergy production has increased efforts to breed for greater biomass through intra- and inter-generic hybridization. Both sorghum (Sorghum bicolor) and sugarcane (Saccharum spp.) are now being bred to enhance the quantity and quality of biomass while maintaining or improving ...

  2. Assessment of genetic diversity in Saccharum using SSR markers and capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess the genetic diversity amongst 12 Saccharum clones from 3 species using SSR markers and CE (capillary electrophoresis). Genomic DNA of 12 sugarcane cultivars was amplified with 19 SSR primer pairs. A total of 229 bands generated with a size range between 100 and 26...

  3. Interspecific Variation in the Promoter Region of A Sucrose Synthase Gene in the Genus Saccharum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase is an important enzyme of sucrose metabolism in sugarcane, a polyploid interspecific hybrid of the genus Saccharum. One of the genes for sucrose synthase (Sus2, homologous to maize Sh1) is more highly expressed in sucrose-storing hybrids than in low sucrose S. spontaneum. We amplifi...

  4. Regional testing of energycane (Saccharum spp) genotypes as a potential bioenergy crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) has been a cash crop in the Deep South since 1795, but the area of production has been limited by its lack of cold hardiness. Energycanes are complex hybrids derived from crosses of domestic sugarcane varieties and S. spontaneum (a cold-hardy relative). They are typicall...

  5. Genetic diversity assessment of Saccharum species and elite cultivars from China using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity amongst 52 sugarcane clones including Saccharum species and cultivars (used for breeding and commercial production since the beginning of 20th century) has been assessed using 21 Simple Sequence Repeat (SSR) markers and capillary electrophoresis (CE) technique. Use of 21 SSR primer...

  6. Elimination of a reproductive barrier facilitates intergeneric hybridization of Sorghum bicolor and Saccharum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum (Sorghum bicolor) and sugarcane (Saccharum spp.) are now being bred to enhance the quantity and quality of biomass while maintaining or improving biotic and abiotic stress tolerances. Introgression of complementary traits between sorghum and sugarcane may be an important tool for breeders, ...

  7. Is there evidence of adaptation to tidal flooding in saplings of baldcypress subjected to different salinity regimes?

    USGS Publications Warehouse

    Krauss, K.W.; Doyle, T.W.; Howard, R.J.

    2009-01-01

    Plant populations may adapt to environmental conditions over time by developing genetically based morphological or physiological characteristics. For tidal freshwater forested wetlands, we hypothesized that the conditions under which trees developed led to ecotypic difference in response of progeny to hydroperiod. Specifically, we looked for evidence of ecotypic adaptation for tidal flooding at different salinity regimes using growth and ecophysiological characteristics of two tidal and two non-tidal source collections of baldcypress (Taxodium distichum (L.) L.C. Rich) from the southeastern United States. Saplings were subjected to treatments of hydrology (permanent versus tidal flooding) and salinity (0 versus ???2 g l-1) for two and a half growing seasons in a greenhouse environment. Saplings from tidal sources maintained 21-41% lower overall growth and biomass accumulation than saplings from non-tidal sources, while saplings from non-tidal sources maintained 14-19% lower overall rates of net photosynthetic assimilation, leaf transpiration, and stomatal conductance than saplings from tidal sources. However, we found no evidence for growth or physiological enhancement of saplings from tidal sources to tide, or of saplings from non-tidal sources to no tide. All saplings growing under permanent flooding exhibited reduced growth and leaf gas exchange regardless of source, with little evidence for consistent salinity effects across hydroperiods. While we reject our original hypothesis, we suggest that adaptations of coastal baldcypress to broad (rather than narrow) environmental conditions may promote ecophysiological and growth enhancements under a range of global-change-induced stressors, perhaps reflecting a natural resilience to environmental change while precluding adaptations for specific flood regimes.

  8. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory. PMID:24097365

  9. Terpene profile of one-seed juniper saplings explains differential herbivory by small ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted in central New Mexico to examine the relationship between terpene profile and one-seed juniper sapling herbivory by sheep and goats. Fifteen does (47.9 ± 1.1 kg) and four ewes (69.2 ± 0.9 kg) were allotted to 16 paddocks (20 x 30m) for 6 days in summer 2006 and spring 2007. Lea...

  10. How do drought and warming influence survival and wood traits of Picea mariana saplings?

    PubMed Central

    Balducci, Lorena; Deslauriers, Annie; Giovannelli, Alessio; Beaulieu, Marilène; Delzon, Sylvain; Rossi, Sergio; Rathgeber, Cyrille B. K.

    2015-01-01

    Warming and drought will occur with increased frequency and intensity at high latitudes in the future. How heat and water stress can influence tree mortality is incompletely understood. The aim of this study was to evaluate how carbon resources, stem hydraulics, and wood anatomy and density determine the ability of black spruce saplings to survive daytime or night-time warming (+ 6 °C in comparison with control) in combination with a drought period. Plant water relations, the dynamics of non-structural carbohydrates and starch, mortality rate, and wood anatomy and density of saplings were monitored. Warming, in conjunction with 25 d of water deficit, increased sapling mortality (10% and 20% in night-time and daytime warming, respectively) compared with the control conditions (0.8%). Drought substantially decreased gas exchange, and also pre-dawn and mid-day leaf water potential to values close to –3MPa which probably induced xylem embolism (xylem air entry point, P 12, being on average around –3MPa for this species). In addition, the recovery of gas exchange never reached the initial pre-stress levels, suggesting a possible loss of xylem hydraulic conductivity associated with cavitation. Consequently, mortality may be due to xylem hydraulic failure. Warmer temperatures limited the replenishment of starch reserves after their seasonal minimum. Lighter wood was formed during the drought period, reflecting a lower carbon allocation to cell wall formation, preventing the adaptation of the hydraulic system to drought. Saplings of black spruce experienced difficulty in adapting under climate change conditions, which might compromise their survival in the future. PMID:25371502

  11. How do drought and warming influence survival and wood traits of Picea mariana saplings?

    PubMed

    Balducci, Lorena; Deslauriers, Annie; Giovannelli, Alessio; Beaulieu, Marilène; Delzon, Sylvain; Rossi, Sergio; Rathgeber, Cyrille B K

    2015-01-01

    Warming and drought will occur with increased frequency and intensity at high latitudes in the future. How heat and water stress can influence tree mortality is incompletely understood. The aim of this study was to evaluate how carbon resources, stem hydraulics, and wood anatomy and density determine the ability of black spruce saplings to survive daytime or night-time warming (+ 6 °C in comparison with control) in combination with a drought period. Plant water relations, the dynamics of non-structural carbohydrates and starch, mortality rate, and wood anatomy and density of saplings were monitored. Warming, in conjunction with 25 d of water deficit, increased sapling mortality (10% and 20% in night-time and daytime warming, respectively) compared with the control conditions (0.8%). Drought substantially decreased gas exchange, and also pre-dawn and mid-day leaf water potential to values close to -3MPa which probably induced xylem embolism (xylem air entry point, P₁₂, being on average around -3MPa for this species). In addition, the recovery of gas exchange never reached the initial pre-stress levels, suggesting a possible loss of xylem hydraulic conductivity associated with cavitation. Consequently, mortality may be due to xylem hydraulic failure. Warmer temperatures limited the replenishment of starch reserves after their seasonal minimum. Lighter wood was formed during the drought period, reflecting a lower carbon allocation to cell wall formation, preventing the adaptation of the hydraulic system to drought. Saplings of black spruce experienced difficulty in adapting under climate change conditions, which might compromise their survival in the future. PMID:25371502

  12. Acylated Triterpene Saponins from the Stem Bark of Acer nikoense (Aceraceae).

    PubMed

    Kurimoto, Shin-Ichiro; Sasaki, Yu F; Suyama, Yoshihiro; Tanaka, Naonobu; Kashiwada, Yoshiki; Nakamura, Takanori

    2016-01-01

    Three new acylated triterpene saponins, acernikoenosides A-C (1-3), were isolated from the stem bark of Acer nikoense, together with a known sterol glucoside. Their structures were elucidated on the basis of extensive spectroscopic analyses. This study provided the first example of triterpene saponins isolated from this plant. The anti-genotoxic activity of 1, 3 and 4 against ultraviolet irradiation was evaluated by comet assay. PMID:27373647

  13. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    SciTech Connect

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-06-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ((/sup 14/C)p-fluorophenylalanine), were degraded more rapidly than normal ones ((/sup 14/C)phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole.

  14. Uptake of cadmium by hydroponically grown, mature Eucalyptus camaldulensis saplings and the effect of organic ligands.

    PubMed

    Fine, P; Rathod, Paresh H; Beriozkin, A; Mingelgrin, U

    2013-01-01

    The potential suitability of Eucalyptus camaldulensis for Cd phytoextraction was tested in a hydroponic study. Saplings were exposed to 4.5 and 89 microM Cd for one month, with and without EDTA and s,s-EDDS at 0.1, 1, and 5 mM. The saplings' growth was not affected at the 4.5 microM Cd concentration, yet it decreased 3-fold at 89 microM, and almost all the Cd taken up was immobilized in the roots, reaching 360 and 5300 mg Cd kg(-1), respectively (approximately 75% of which was non-washable in acid). The respective Cd root-to-shoot translocation factors were 0.14 and approximately 5*10(-4). At 0.1 mM concentration, EDTA and EDDS had no effect or even a positive effect on the saplings growth. This was reversed at 1 mM, and the chelants became lethal at the 5 mM concentration. At 89 microM Cd in the growth medium, 0.1 mM EDTA increased Cd translocation into the shoots by almost 10-fold, however it strongly reduced Cd content inside the roots. This hydroponic study indicates the feasibility of E. camaldulensis use for cleanup Cd-contaminated soils at environmental concentrations, both for site stabilization (phytostabilization) and gradual remediation (phytoextraction). EDTA was shown to be much more efficient in enhancing Cd translocation than s,s-EDDS. PMID:23819299

  15. Low temperature resistance in saplings and ramets of Polylepis sericea in the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Rada, Fermín; García-Núñez, Carlos; Rangel, Sairo

    2009-09-01

    The frequent occurrence of all year-round below zero temperatures in tropical high mountains constitutes a most stressful climatic factor that plants have to confront. Polylepis forests are found well above the continuous forest line and are distributed throughout the Andean range. These trees require particular traits to overcome functional limitations imposed on them at such altitudes. Considering seedling and sapling stages as filter phases in stressful environments, some functional aspects of the regeneration of Polylepis sericea, a species associated to rock outcrops in the Venezuelan Andes, were studied. We characterized microclimatic conditions within a forest, in a forest gap and surrounding open páramo and determined low temperature resistance mechanisms in seedlings, saplings and ramets. Conditions in the forest understory were more stable compared to the forest gaps and open surrounding páramo. Minimum temperatures close to the ground were 3.6 °C lower in the open páramo compared to the forest understory. Maximum temperatures were 9.0 °C higher in the open páramo. Ice nucleation and injury temperatures occurred between -6 and -8 °C for both ramets and saplings, an evidence of frost avoidance to low nighttime temperatures. In this particular forest, this resistance ability is determinant in their island-like distribution in very specific less severe temperature habitats.

  16. Phylogenetic Analysis of Different Ploidy Saccharum spontaneum Based on rDNA-ITS Sequences

    PubMed Central

    Liu, Xinlong; Li, Xujuan; Liu, Hongbo; Xu, Chaohua; Lin, Xiuqin; Li, Chunjia; Deng, Zuhu

    2016-01-01

    Saccharum spontaneum L. is a crucial wild parent of modern sugarcane cultivars whose ploidy clones have been utilized successfully in improving the stress resistance and yield related traits of sugarcane cultivars. To establish knowledge regarding the genetic variances and evolutional relationships of ploidy clones of Saccharum spontaneum collected in China, the rDNA-ITS sequences of 62 ploidy clones including octaploid clones (2n = 64), nonaploid clones (2n = 72), decaploid clones (2n = 80), and dodecaploid clones (2n = 96), were obtained and analyzed. The rDNA-ITS sequences of four species from Saccharum and Sorghum bicolor selected as controls. The results showed that decaploid clones (2n = 80) possess the most abundant variances with 58 variable sites and 20 parsim-informative sites in ITS sequences, which were then followed by octaploid clones with 43 variable sites and 17 parsim-informative sites. In haplotype diversity, all four population exhibited high diversity, especially nonaploid and decaploid populations. By comparing the genetic distances among four ploidy populations, the dodecaploid population exhibited the closest relationship with the nonaploid population, and then the relationship strength decreased successively for the decaploid population and then for the octaploid population. Population differentiation analysis showed that the phenomena of population differentiation were not found among different ploidy populations, and low coefficient of gene differentiation(Gst) and high gene flow(Nm) occur among these populations possessing close genetic relationship. These results mentioned above will contribute to the understanding of the evolution of different ploidy populations of Saccharum spontaneum and provide vital knowledge for their utilization in sugarcane breeding and innovation. PMID:26986847

  17. [Natural presence of Beauveria bassiana (Balsamo) Vuillemin in the sugar cane (Saccharum sp. hybrid) in Cuba].

    PubMed

    Estrada, María Elena; Romero, Maritza; Rivero, María Julia; Barroso, Francisco

    2004-03-01

    The natural presence of Beauveria bassiana was determined (Balsamo) Vuillemin from insects with mycotic symptoms collected in leaves and in the stalks of sugar cane (Saccharum sp. hybrid) in Pinar del Río, Ciudad de la Habana, Habana, Matanzas, Villa Clara, Cienfuegos and Camagüey. The results obtained demonstrate the natural presence of the entomopathogen fungus in larvae and chrysalises of Diatraea saccharalis (Fabricius) and they suggest the basis for the strategy of biological control against this borer. PMID:15458363

  18. [Optimization of liquid ammonia treatment for enzymatic hydrolysis of Saccharum arundinaceum to fermentable sugars].

    PubMed

    Liu, Jianjun; Peng, Hehuan; Zhao, Xiangjun; Cheng, Cheng; Chen, Feng; Shao, Qianjun

    2013-03-01

    China has abundant available marginal land that can be used for cultivation of lignocellulosic energy plants. Saccharum arundinaceum Retz. is a potential energy crop with both high biomass yield and low soil fertility requirements. It can be planted widely as cellulosic ethanol feedstock in southern China. In the present work Saccharum arundinaceum was pretreated by liquid ammonia treatment (LAT) to overcome biomass recalcitrance, followed by enzymatic hydrolysis. The monosaccharide contents (glucose, xylose, and arabinose) of the enzymatic hydrolysate were determined by high performance liquid chromatography. Experimental results show that the optimal LAT pretreatment conditions were 130 0C, 2:1 (W/W) ammonia to biomass ratio, 80% moisture content (dry weight basis) and 5 min residence time. Approximately 69.34% glucan and 82.60% xylan were converted after 72 h enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase. The yields of glucose and xylose were 573% and 1 056% higher than those of the untreated biomass, and the LAT-pretreated substrates obtained an 8-fold higher of total monosaccharide yield than untreated substrates. LAT pretreatment was an effective to increase the enzymatic digestibility of Saccharum arundinaceum compared to acid impregnated steam explosion and similar to that of acid treatment and ammonia fiber expansion treatment. PMID:23789274

  19. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  20. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    PubMed

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  1. Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings.

    PubMed

    Huang, Weiwei; Hu, Tingxing; Chen, Hong; Wang, Qian; Hu, Hongling; Tu, Lihua; Jing, Liao

    2013-09-01

    A pot experiment was performed to study the impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings. The experimental design scheme was 0 (CK), 40 (A1), 80 (A2) and 120 g pot(-1) (A3) of E. grandis leaves, and changes in the volatile oil chemical composition during litter decomposition were assessed in the present study. The results showed that C. septentrionale leaf litter inhibited the growth of E. grandis saplings, as determined by the height, basal diameter and chlorophyll content, after 69 d (T1). Five months after transplantation (T2), the height growth rate of the E. grandis saplings increased and then gradually reduced (A1: 40 g pot(-1) > A2: 80 g pot(-1) > A3: 120 g pot(-1) > CK: 0 g pot(-1)). After eleven months (T3), the variations in the height and basal diameter were the same as observed at T2, and the inhibition on leaf, branch, root and stem biomass increased with increasing leaf litter content. Gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compound composition. The results indicated that the C. septentrionale original leaf litter (S1) contained thirty-one volatile compounds, but the treated leaf litter S2 (which was mixed with soil for eleven months to simultaneously plant E. grandis saplings) only possessed fourteen volatile compounds, releasing many secondary metabolites in the soil during decomposition. Most of the volatile compounds were alcohols, monoterpenoids, sesquiterpenes, alkanes, alkene, esters and ketones. Most of the allelochemicals of C. septentrionale might be released during the initial decomposing process, inhibiting the growth of other plants, whereas some nutrients might be released later, promoting the height growth of plants. In conclusion, decomposing C. septentrionale leaf litter release of many allelochemicals in the soil that significantly inhibit the growth of E. grandis. PMID:23835358

  2. Identification of freeze tolerant Saccharum spontaneum accessions through a pot-based study for use in sugarcane germplasm enhancement for adaptation to temperate climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold tolerant sugarcane (Saccharum spp.) cultivars are important in sub-tropical production areas because they can extend the growing and harvest seasons, and increase ratooning ability. Improved cold-tolerance in Saccharum species has the potential to expand the range of adaptation of sugarcane, th...

  3. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit

    PubMed Central

    Oberhuber, Walter; Hammerle, Albin; Kofler, Werner

    2015-01-01

    We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L.) Karst.) occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria). Intra-annual dynamics of stem water deficit (ΔW), maximum daily shrinkage (MDS), and radial growth (RG) were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7) and mature adult trees (25 cm/12.7 m; n = 6) during 2014. ΔW, MDS, and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA). Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm) compared to mature trees (0.54 ± 0.14 mm) is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate–growth relationships, which masked missing temporal or significant correlations when the entire study period (April–October) was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests. PMID:26442019

  4. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit.

    PubMed

    Oberhuber, Walter; Hammerle, Albin; Kofler, Werner

    2015-01-01

    We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L.) Karst.) occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria). Intra-annual dynamics of stem water deficit (ΔW), maximum daily shrinkage (MDS), and radial growth (RG) were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7) and mature adult trees (25 cm/12.7 m; n = 6) during 2014. ΔW, MDS, and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA). Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm) compared to mature trees (0.54 ± 0.14 mm) is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate-growth relationships, which masked missing temporal or significant correlations when the entire study period (April-October) was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests. PMID:26442019

  5. Alkaline Ceramidase 2 (ACER2) and Its Product Dihydrosphingosine Mediate the Cytotoxicity of N-(4-Hydroxyphenyl)retinamide in Tumor Cells*

    PubMed Central

    Mao, Zhehao; Sun, Wei; Xu, Ruijuan; Novgorodov, Sergei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Increased generation of dihydrosphingosine (DHS), a bioactive sphingolipid, has been implicated in the cytotoxicity of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) in tumor cells. However, how 4-HPR increases DHS remains unclear. Here we demonstrate that 4-HPR increases the expression of ACER2, which catalyzes the hydrolysis of dihydroceramides to generate DHS, and that ACER2 up-regulation plays a key role in mediating the 4-HPR-induced generation of DHS as well as the cytotoxicity of 4-HPR in tumor cells. Treatment with 4-HPR induced the accumulation of dihydroceramides (DHCs) in tumor cells by inhibiting dihydroceramide desaturase (DES) activity, which catalyzes the conversion of DHCs to ceramides. Treatment with 4-HPR also increased ACER2 expression through a retinoic acid receptor-independent and caspase-dependent manner. Overexpression of ACER2 augmented the 4-HPR-induced generation of DHS as well as 4-HPR cytotoxicity, and 4-HPR-induced death in tumor cells, whereas knocking down ACER2 had the opposite effects. ACER2 overexpression, along with treatment with GT11, another DES inhibitor, markedly increased cellular DHS, leading to tumor cell death, whereas ACER2 overexpression or GT11 treatment alone failed to do so, suggesting that both ACER2 up-regulation and DES inhibition are necessary and sufficient to mediate 4-HPR-induced DHS accumulation, cytotoxicity, and death in tumor cells. Taken together, these results suggest that up-regulation of the ACER2/DHS pathway mediates the cytotoxicity of 4-HPR in tumor cells and that up-regulating or activating ACER2 may improve the anti-cancer activity of 4-HRR and other DHC-inducing agents. PMID:20628055

  6. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity

    PubMed Central

    Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  7. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity.

    PubMed

    Klepsch, Matthias M; Schmitt, Marco; Paul Knox, J; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan-proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  8. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica

    NASA Astrophysics Data System (ADS)

    Schuster, Christina; Kirchner, Manfred; Jakobi, Gert; Menzel, Annette

    2014-05-01

    In mountainous regions, inversion situations with cold-air pools in the valleys occur frequently, especially in fall and winter. With the accumulation of inversion days, trees in lower elevations experience lower temperature sums than those in middle elevations. In a two-year observational study, deciduous trees, such as Acer pseudoplatanus and Fagus sylvatica, on altitudinal transects responded in their fall leaf senescence phenology. Phenological phases were advanced and senescence duration was shortened by the cold temperatures in the valley. This effect was more distinct for late phases than for early phases since they experienced more inversion days. The higher the inversion frequency, the stronger the signal was. Acer pseudoplatanus proved to be more sensitive to cold temperatures compared to Fagus sylvatica. We conclude that cold-air pools have a considerable impact on the vegetation period of deciduous trees. Considering this effect, trees in the mid hillside slopes gain advantages compared to lower elevations. Our findings will help to improve knowledge about ecological drivers and responses in mountainous forest ecosystems.

  9. One-seed juniper sapling use by goats in relation to stocking density and mixed grazing with sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To successfully suppress reinvasion of one-seed juniper (Juniper monosperma [Englem.] Sarg.) with goats, defoliation of newly established saplings must be enhanced to levels that eventually kill or suppress plant growth. We tested the effect of stocking density and mixed grazing with sheep as poten...

  10. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes.

    PubMed

    Lechthaler, Silvia; Robert, Elisabeth M R; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  11. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  12. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings.

    PubMed

    Aganchich, Badia; Wahbi, Said; Loreto, Francesco; Centritto, Mauro

    2009-05-01

    The effect of partial root drying (PRD) irrigation on split-root olive (Olea europaea L. cv Picholine marocaine) saplings was investigated. An irrigated control and two PRD regimes were applied (control: irrigation applied on both sides of the root system to keep the soil water content close to field capacity; PRD(50): irrigation applied at 50% of the control amount on one side of the root system and irrigation withheld from the other side, with irrigation regimes switched between the sides of the root system every 2 weeks; and PRD(100): irrigation applied at 100% of the control amount on one side and irrigation withheld on the other side, with irrigation regimes switched between the sides of the root system every 2 weeks. Only saplings in the PRD(50) regime were subjected to water-deficit irrigation. The PRD treatments significantly affected water relations and vegetative growth throughout the growing season. Predawn leaf water potential and relative water content differed significantly between the PRD(50) and PRD(100) saplings, leading to reduced stomatal conductance, carbon assimilation, shoot length and leaf number in PRD(50) saplings. However, the PRD(50) water-deficit treatment did not affect the capacity of the saplings to assimilate CO(2). Activities of superoxide dismutase, soluble and insoluble peroxidase (POX) and polyphenol oxidase were up-regulated by the PRD(50) and PRD(100) treatments compared with control values. The higher activities of both soluble and insoluble POX observed in PRD(50) saplings may reflect the greater inhibitory effect of this treatment on vegetative growth. Up-regulation of the detoxifying systems in the PRD(100) and PRD(50) saplings may have provided protection mechanisms against irreversible damage to the photosynthetic machinery, thereby allowing the photosynthetic apparatus to function and preventing the development of severe water stress. We also measured CO(2) assimilation rate/internal leaf CO(2) concentration (A

  13. HIQA's CEA of Breast Screening: Pragmatic Policy Recommendations are Welcome, but ACERs Reported as ICERs are Not.

    PubMed

    O'Mahony, James F; Normand, Charles

    2015-12-01

    The Health Information and Quality Authority (HIQA) is Ireland's statutory cost-effectiveness analysis (CEA) agency. It recently published a CEA of screening strategies for women at elevated risk of breast cancer. Although the strategies recommended by HIQA exceed Ireland's cost-effectiveness threshold, they can reasonably be welcomed as a pragmatic response to constraints on disinvestment and are expected to improve screening cost-effectiveness. What is not welcome, however, is HIQA's reporting of average cost-effectiveness ratios (ACERs) as incremental cost-effectiveness ratios (ICERs). The distinction between ACERs and ICERs is well understood in CEA, as is the fact that ICERs not ACERs are the appropriate metric to determine cost-effectiveness. This article critiques HIQA's reporting, considering the implications for the particular case of breast cancer screening and the broader context of consistency of and confidence in CEA as a guide to resource allocation in Ireland. The reporting of ACERs as ICERs is unlikely to be of any great significance in the particular case of screening women at elevated risk of breast cancer, given likely constraints on disinvestment. Despite this, ICERs still need to be reported correctly. If thresholds are exceeded in certain cases, then it is important that decision makers appreciate by how much. More generally, using ACERs in some cases and ICERs in others raises concerns that methods are being applied inconsistently, which risks compromising confidence in CEA in Ireland. As Ireland's statutory CEA authority, HIQA has a special onus of responsibility to ensure established methods are applied correctly. PMID:26686777

  14. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. PMID:26541407

  15. Molecular cloning and functional analysis of an ethylene receptor gene from sugarcane (Saccharum spp.) by hormone and environmental stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene receptor (ethylene response sensor, ERS) is the primary component involving in the ethylene biosynthesis and ethylene signal transduction pathway. In the present study, a GZ-ERS gene encoding ERS was cloned from a sugarcane cv. YL17 (Saccharum spp.) using RT-PCR and ligation-mediated PCR wi...

  16. Biomass yield and quality of new energycane (Saccharum hybrids) genotypes for cellulosic ethanol production in the southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energycane (Saccharum hyb.) is a large perennial grass that is a promising source of biofuel feedstock for the Southeast, as both the free sugars and the lignocellulosic components can be used. Energycanes are early-generation hybrids between sugarcane and its wild relatives. These hybrids are mor...

  17. Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energycane (Saccharum hyb.) is a perennial bioenergy crop derived from sugarcane, but with higher fiber, greater biomass yields, and better cold tolerance than typical sugarcane. Two commercial sugarcanes, two high-sugar (Type I) energycanes, and five high-fiber (Type II) energycanes were planted a...

  18. Harvest date effects on biomass yield and quality of new energycane (Saccharum hybrids) genotypes in the Southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energycane (Saccharum hyb.) is a promising source of bioenergy for the Southeast, as it can be used to produce sugar, lignocellulosic feedstock, or both. Management strategies which maximize energy output and biomass quality need to be developed, and new cultivars need to be evaluated in various en...

  19. Whole-Genome Sequence of Enterobacter sp. Strain SST3, an Endophyte Isolated from Jamaican Sugarcane (Saccharum sp.) Stalk Tissue

    PubMed Central

    Gan, Han Ming; McGroty, Sean E.; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J.; Savka, Michael A.

    2012-01-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter. PMID:23045495

  20. Wood anatomical responses of oak saplings exposed to air warming and soil drought.

    PubMed

    Fonti, P; Heller, O; Cherubini, P; Rigling, A; Arend, M

    2013-01-01

    Water is vital for plant performance and survival. Its scarcity, induced by a seasonal decline in soil water availability or an increase of evaporative demand, can cause failures of the water conducting system. An adequate tolerance to drought and the ability to acclimate to changing hydraulic conditions are important features for the survival of long-lived woody plants in dry environments. In this study we examine secondary growth and xylem anatomical acclimation of 6 year old saplings of three European oak species (Quercus robur, Q. petraea, Q. pubescens) during the third consecutive year of exposure to soil drought and/or air warming (from 2007 to 2009). Intra-annual pinning was applied to mark the development of the formation of the annual ring 2009. Vessel size, parenchyma cell density and fiber size produced at different time of the growing season 2009 were compared between drought and warming treatments and species. Drought reduced secondary growth and induced changes in xylem structure while air warming had little effect on wood anatomical traits. Results indicate that drought-exposed saplings adjust their xylem structure to improve resistance and repairing abilities after cavitation. All species show a significant radial growth reduction, a reduced vessel size with diminished conductivity and a slightly increased density of parenchyma cells. Comparisons between species fostered our understanding of the relationship between the inter-specific xylem hydraulic plasticity and the ecological response to drought. The stronger changes observed for Q. robur and Q. petraea indicate a lower drought tolerance than Q. pubescens. PMID:22612857

  1. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology

    PubMed Central

    Delagrange, Sylvain; Rochon, Pascal

    2011-01-01

    Background and Aims To meet the increasing need for rapid and non-destructive extraction of canopy traits, two methods were used and compared with regard to their accuracy in estimatating 2-D and 3-D parameters of a hybrid poplar sapling. Methods The first method consisted of the analysis of high definition photographs in Tree Analyser (TA) software (PIAF-INRA/Kasetsart University). TA allowed the extraction of individual traits using a space carving approach. The second method utilized 3-D point clouds acquired from terrestrial light detection and ranging (T-LiDAR) scans. T-LiDAR scans were performed on trees without leaves to reconstruct the lignified structure of the sapling. From this skeleton, foliage was added using simple modelling rules extrapolated from field measurements. Validation of the estimated dimension and the accuracy of reconstruction was then achieved by comparison with an empirical data set. Key Results TA was found to be slightly less precise than T-LiDAR for estimating tree height, canopy height and mean canopy diameter, but for 2-D traits both methods were, however, fully satisfactory. TA tended to over-estimate total leaf area (error up to 50 %), but better estimates were obtained by reducing the size of the voxels used for calculations. In contrast, T-LiDAR estimated total leaf area with an error of <6 %. Finally, both methods led to an over-estimation of canopy volume. With respect to this trait, T-LiDAR (14·5 % deviation) greatly surpassed the accuracy of TA (up to 50 % deviation), even if the voxels used were reduced in size. Conclusions Taking into account their magnitude of data acquisition and analysis and their accuracy in trait estimations, both methods showed contrasting potential future uses. Specifically, T-LiDAR is a particularly promising tool for investigating the development of large perennial plants, by itself or in association with plant modelling. PMID:21515607

  2. Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes.

    PubMed

    Valladares, Fernando; Dobarro, Iker; Sánchez-Gómez, David; Pearcy, Robert W

    2005-01-01

    Interacting effects of high light and drought on the performance of sun and shade phenotypes were experimentally undertaken following survival, chlorophyll fluorescence and gas exchange in 2-year-old saplings of four Mediterranean trees (Quercus ilex and Q. coccifera as water-saving species, and Pistacia lentiscus and P. terebinthus as water-spending species). Half of the saplings were grown in full sunlight and the other half in the shade (6% sunlight). Half of each combination of species-phenotype was exposed to high light during a simulated late-summer drought. Light absorptance and gas exchange were scaled up to the whole plant with the 3-D geometrical model, Y-Plant. Quercus species were more plastic and tolerated high light and water stress better than Pistacia species, surviving longer and in drier soils, and exhibiting a less pronounced photoinhibition. There was no evidence of disadvantage for shade phenotypes under high light with increasing drought. By contrast, shade phenotypes survived longer despite larger initial decreases in photochemical efficiency and higher sensitivity to drought than sun phenotypes. The enhanced control of transpiration during drought in water-saving versus water-spending species (and also in shade versus sun phenotypes in three out of the four species) allowed extended survival. Photoinhibition reduced whole crown carbon gain in high light by c. 3% and affected significantly more the shaded leaves of a given plant (reducing their carbon gain by up to 7%) than those exposed to direct sunlight. Despite this apparently minor impact, whole plant carbon gain reduction by photoinhibition negatively correlated with survival and drought tolerance. The implications for succession and forest regeneration in arid environments, particularly under a global change scenario, are discussed. PMID:15569705

  3. Respiratory Response of Acer pseudoplatanus Cells to Pyruvate and 2,4-Dinitrophenol 1

    PubMed Central

    Givan, Curtis V.; Torrey, John G.

    1968-01-01

    The endogenous respiration rate of unstarved cultured cells of Acer pseudo-platanus L. is markedly stimulated by 2,4-dinitrophenol. Pyruvate is also stimulatory but to a lesser degree than dinitrophenol. Exogenously supplied sugars cause no short-term stimulation. Pyruvate does not enhance the elevated rate of O2 uptake in the presence of dinitrophenol but does cause additional CO2 evolution. The endogenous concentration of pyruvate is elevated in the presence of dinitrophenol. These observations suggest that the rate of O2 uptake by the unstarved intact cells is limited by the rate of glycolysis and that rate of glycolysis is regulated by the intracellular concentration of adenine nucleotides or inorganic phosphate. Dinitrophenol stimulation of endogenous respiration is due in part to an indirect acceleration of glycolysis but also to a more direct facilitation of oxidation in the presence of excess mitochondrial substrate. PMID:16656818

  4. Induction of tolerance to desiccation and cryopreservation in silver maple (Acer saccharinum) embryonic axes.

    PubMed

    Beardmore, T; Whittle, C-A

    2005-08-01

    Twenty percent of of the world's flowering plants produce recalcitrant seeds (i.e., seeds that cannot withstand drying or freezing). We investigated whether the embryonic axis from the normally recalcitrant seeds of silver maple (Acer saccharinum L.) can be made tolerant to desiccation (10% water content) and low temperature (-196 degrees C, cryopreservation) by pretreatment with ABA or the compound tetcyclacis, which enhances endogenous ABA concentrations. Pretreatment of axes with both ABA and tetcyclacis increased germination after desiccation and freezing to 55% from a control value of zero. Pretreatment of axes with ABA and tetcyclacis increased the ABA content of the axes, as measured by enzyme-linked immunoassay, and stimulated the synthesis of storage and dehydrin-like proteins, believed to have a role in the desiccation tolerance of orthodox seeds. PMID:15929927

  5. Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest

    USGS Publications Warehouse

    Anderson, J.E.; Ducey, M.J.; Fast, A.; Martin, M.E.; Lepine, L.; Smith, M.-L.; Lee, T.D.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, B.E.; Blair, J.B.

    2011-01-01

    Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA's Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p < 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event. ?? 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum

    DOE PAGESBeta

    Zhang, Jisen; Sharma, Anupma; Yu, Qingyi; Wang, Jianping; Li, Leiting; Zhu, Lin; Zhang, Xingtan; Chen, Youqiang; Ming, Ray

    2016-06-10

    be used for identifying the origin of S. spontaneum and S. officinarum haplotype in Saccharum hybrids. Comparison of exon splitting among the homologous haplotypes suggested that the genome rearrangements in Saccharum hybrids S. officinarum would be sufficient for proper genome assembly of this autopolyploid genome. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence may allow sequencing and assembling the autopolyploid Saccharum genomes and the auto-allopolyploid hybrid genomes using whole genome shotgun sequencing.« less

  7. Biotrophic interaction of Sporisorium scitamineum on a new host--Saccharum spontaneum.

    PubMed

    Jose, Robinson C; Louis, Bengyella; Goyari, Sailendra; Waikhom, Sayanika D; Handique, Pratap J; Talukdar, Narayan C

    2016-02-01

    Sporisorium scitamineum is a biotrophic smut fungus harbored inside the smut gall on the top internodal region of Saccharum spontaneum, a wild relative of sugarcane (Saccharum officinarum). The interactions of spined conidia of S. scitamineum with S. spontaneum were examined during the different stages of plant growth starting from the bud stage to the decaying stage. The spores in the soil from the polyetic inocula grew into confined epidermal cells of the buds and finally sporulated in the topmost internodal region. Hyphae invasion of the plant tissues were restricted to the point of infection. Culms of infected plants in late October sporulated, notably; hyphal sporulation produced shorter hyphal stolons. Remarkably, the nodal regions of infected plants had no spores and fragmented hyphae. On the basis of microscopic analyses, hyphae and spores were absent in all internodes above the ground till the topmost smut gall region. This result indicated that, S. scitamineum undergoes tissue-confined invasion of S. spontaneum. By associating culture medium method with polymerase chain reaction (PCR) on plant portions void of smut gall, S. scitamineum was not detected, indicating that colonization was not systemic. It was observed that the biotrophic interaction resulted in structural reorganization in the restricted region of infection forming erect cylindrical structure, in which the fungus was sandwiched between the central stalk and sheath, and possibly played a key role in preventing inflorescence. Comparatively, a significant difference in the rate of teliospores germination between reference Ustilago esculenta (26.6%, P<0.05) and S. scitamineum (62.9%, P<0.05) at 20° C was observed. This study also provides insights on the effect of different temperature regimes on the germination of S. scitamineum teliospores in vitro. PMID:26642345

  8. Branch Architecture, Light Interception and Crown Development in Saplings of a Plagiotropically Branching Tropical Tree, Polyalthia jenkinsii (Annonaceae)

    PubMed Central

    OSADA, NORIYUKI; TAKEDA, HIROSHI

    2003-01-01

    To investigate crown development patterns, branch architecture, branch‐level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves (‘bare’ branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of ‘leafy’ parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch‐level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first‐order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch‐level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species. PMID:12495920

  9. Oleoresinosis in Grand Fir (Abies grandis) Saplings and Mature Trees (Modulation of this Wound Response by Light and Water Stresses).

    PubMed Central

    Lewinsohn, E.; Gijzen, M.; Muzika, R. M.; Barton, K.; Croteau, R.

    1993-01-01

    The stem content of diterpene resin acids (rosin) increases dramatically following wounding of grand fir (Abies grandis) saplings, but the level of monoterpene olefins (turpentine) in the stem decreases following injury, in spite of a significant increase in monoterpene cyclase (synthase) activity. However, this observation was explained when rapid evaporative losses of the volatile monoterpenes from the wound site was demonstrated by trapping experiments, a finding consistent with a role of turpentine as a solvent for the mobilization and deposition of rosin to seal the injury. Mature forest trees responded to stem wounding by the enhancement of monoterpene cyclization capacity in a manner similar to 2-year-old grand fir saplings raised in the greenhouse. Light and water stresses greatly reduced the constitutive level of monoterpene cyclase activity and abolished the wound-induced response. The diminution in monoterpene biosynthetic capacity was correlated with a dramatic decrease in cyclase protein as demonstrated by immunoblotting. Relief of stress conditions resulted in the restoration of cyclase activity (both constitutive and wound induced) to control levels. The results of these experiments indicate that grand fir saplings are a suitable model for studies of the regulation of defensive oleoresinosis in conifers. PMID:12231755

  10. Branch architecture, light interception and crown development in saplings of a plagiotropically branching tropical tree, Polyalthia jenkinsii (Annonaceae).

    PubMed

    Osada, Noriyuki; Takeda, Hiroshi

    2003-01-01

    To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species. PMID:12495920

  11. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii.

    PubMed

    Royer, Dana L; McElwain, Jennifer C; Adams, Jonathan M; Wilf, Peter

    2008-01-01

    * Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate. PMID:18507771

  12. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding

    USGS Publications Warehouse

    Vann, C.D.; Megonigal, J.P.

    2002-01-01

    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. Effect of Iron Deficiency on the Respiration of Sycamore (Acer pseudoplatanus L.) Cells.

    PubMed Central

    Pascal, N.; Douce, R.

    1993-01-01

    The effects of iron deficiency on cell culture growth, cell respiration, mitochondrial oxidative properties, and the electron transport chain were studied with suspension-cultured sycamore (Acer pseudoplatanus L.) cells. Iron deprivation considerably decreased the initial growth rates and limited the maximum density of the cells. Under these conditions, the cells remained swollen throughout their growth. The absence of iron led to a steady decline in the uncoupled rate of O2 consumption. When the uncoupled rate of O2 uptake closely approximated the respiratory rate, the cells began to collapse. At this stage, the level of all the cytochromes and electron paramagnetic resonance-detectable Fe-S clusters of the mitochondrial inner membrane were dramatically decreased. Nevertheless, it appeared from substrate oxidation measurements that this overall depletion in iron-containing components solely disturbed the functioning of complex II, whereas neither complexes I, III, or IV, nor the machinery involved in ATP synthesis, was apparently impaired in iron-deficient mitochondria. However, our results suggest that the impairment of complex II resulted in a strong reduction of the overall capacity of the mitochondrial electron transport chain, which was responsible for determining the rate of endogenous respiration in sycamore cells. Finally, this situation led to a depletion of various energy metabolites that could contribute to the premature cell death. PMID:12232026

  14. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  15. New Gallotannin and other Phytochemicals from Sycamore Maple (Acer pseudoplatanus) Leaves.

    PubMed

    Zhang, Lu; Tu, Zong-cai; Yuan, Tao; Ma, Hang; Niesen, Daniel B; Wang, Hui; Seeram, Navindra P

    2015-11-01

    The maple (Acer) genus is a reported source of bioactive (poly)phenols, including gallotannins, but several of its members, such as the sycamore maple (A. pseudoplatanus), remain uninvestigated. Herein, thirty-nine compounds, including a new gallotannin, 1,2,3-tri-O-galloyl-6-O-(p-hydroxybenzoyl)-β-D- glucopyranoside (1), and thirty-eight (2-39) known compounds, consisting of four gallotannins, one ellagitannin, thirteen flavonoids, eight hydroxycinnamic acids, ten benzoic acid derivatives, and two sesquiterpenoids, were isolated from sycamore maple leaves. Their structures were determined based on NMR and mass spectral analyses. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Among the isolates, the gallotannins were the most potent α-glucosidase inhibitors with thirteen-fold more potent activity compared with the clinical drug, acarbose (IC50 = 16-31 vs. 218 µM). Similarly, the gallotannins showed the highest antioxidant activities, followed by the other phenolic sub-classes, while the sesquiterpenoids were inactive. PMID:26749841

  16. Proteomic Analysis of Embryogenesis and the Acquisition of Seed Dormancy in Norway Maple (Acer platanoides L.)

    PubMed Central

    Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej

    2014-01-01

    The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association. PMID:24941250

  17. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer).

    PubMed

    Nakadai, Ryosuke; Kawakita, Atsushi

    2016-07-01

    The traditional explanation for the exceptional diversity of herbivorous insects emphasizes host shift as the major driver of speciation. However, phylogenetic studies have often demonstrated widespread host plant conservatism by insect herbivores, calling into question the prevalence of speciation by host shift to distantly related plants. A limitation of previous phylogenetic studies is that host plants were defined at the family or genus level; thus, it was unclear whether host shifts predominate at a finer taxonomic scale. The lack of a statistical approach to test the hypothesis of host-shift-driven speciation also hindered studies at the species level. Here, we analyze the radiation of leaf cone moths (Caloptilia) associated with maples (Acer) using a newly developed, phylogeny-based method that tests the role of host shift in speciation. This method has the advantage of not requiring complete taxon sampling from an entire radiation. Based on 254 host plant records for 14 Caloptilia species collected at 73 sites in Japan, we show that major dietary changes are more concentrated toward the root of the phylogeny, with host shift playing a minor role in recent speciation. We suggest that there may be other roles for host shift in promoting herbivorous insect diversification rather than facilitating speciation per se. PMID:27547326

  18. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer.

    PubMed

    Christman, Mairgareth A; Sperry, John S; Adler, Frederick R

    2009-01-01

    Eudicot angiosperms with greater vulnerability to xylem cavitation tend to have vessels with greater total area of inter-vessel pits, which inspired the 'rare pit' hypothesis: the more pits per vessel, by chance the leakier will be the vessel's single air-seeding pit and the lower the air-seeding threshold for cavitation to spread between vessels. Here, we demonstrate the feasibility of the hypothesis, using probability theory to model the axial propagation of air through air-injected stems. In the presence of rare, leaky pits, air-seeding pressures through short stems with few vessel ends in series should be low; pressures should increase in longer stems as more end-walls must be breached. Measurements on three Acer species conformed closely to model predictions, confirming the rare presence of leaky pits. The model indicated that pits air-seeding at or below the mean cavitation pressure (MCP) occurred at similarly low frequencies in all species. Average end-wall air-seeding pressures predicted by the model closely matched species' MCPs. Differences in species' vulnerability were primarily attributed to differences in frequency of the leakiest pits rather than pit number or area per vessel. Adjustments in membrane properties and extent of pitting per vessel apparently combine to influence cavitation resistance across species. PMID:19434805

  19. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future. PMID:25471717

  20. A Test for Pre-Adapted Phenotypic Plasticity in the Invasive Tree Acer negundo L.

    PubMed Central

    Lamarque, Laurent J.; Porté, Annabel J.; Eymeric, Camille; Lasnier, Jean-Baptiste; Lortie, Christopher J.; Delzon, Sylvain

    2013-01-01

    Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity. PMID:24040212

  1. Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp. and Erianthus arundinaceus

    PubMed Central

    Wang, Ping; Lin, Yanquan; Fu, Cheng; Deng, Zuhu; Wang, Qinnan; Li, Qiwei; Chen, Rukai; Zhang, Muqing

    2015-01-01

    Erianthus arundinaceus (E. arundinaceus) has many desirable agronomic traits for sugarcane improvement, such as high biomass, vigor, rationing ability, tolerance to drought, and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane in the higher generations, intergeneric BC2 and BC3 progeny generated between Saccharum spp. and E. arundinaceus were studied using the genomic in situ hybridization (GISH) technique. The results showed that the BC2 and BC3 generations resulted from n + n chromosome transmission. Furthermore, chromosome translocation occurred at terminal fragments from the E. arundinaceus chromosome in some progeny of Saccharum spp. and E. arundinaceus. Notably, the translocated chromosomes could be stably transmitted to their progeny. This study illustrates the characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and E. arundinaceus. This work could provide more useful molecular cytogenetic information for the germplasm resources of E. arundinaceus, and may promote further understanding of the germplasm resources of E. arundinaceus for sugarcane breeders to accelerate its progress in sugarcane commercial breeding. PMID:26196281

  2. Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp. and Erianthus arundinaceus.

    PubMed

    Huang, Yongji; Wu, Jiayun; Wang, Ping; Lin, Yanquan; Fu, Cheng; Deng, Zuhu; Wang, Qinnan; Li, Qiwei; Chen, Rukai; Zhang, Muqing

    2015-01-01

    Erianthus arundinaceus (E. arundinaceus) has many desirable agronomic traits for sugarcane improvement, such as high biomass, vigor, rationing ability, tolerance to drought, and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane in the higher generations, intergeneric BC2 and BC3 progeny generated between Saccharum spp. and E. arundinaceus were studied using the genomic in situ hybridization (GISH) technique. The results showed that the BC2 and BC3 generations resulted from n + n chromosome transmission. Furthermore, chromosome translocation occurred at terminal fragments from the E. arundinaceus chromosome in some progeny of Saccharum spp. and E. arundinaceus. Notably, the translocated chromosomes could be stably transmitted to their progeny. This study illustrates the characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and E. arundinaceus. This work could provide more useful molecular cytogenetic information for the germplasm resources of E. arundinaceus, and may promote further understanding of the germplasm resources of E. arundinaceus for sugarcane breeders to accelerate its progress in sugarcane commercial breeding. PMID:26196281

  3. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density. PMID:26025573

  4. The Contribution of Carbon and Water in Modulating Wood Formation in Black Spruce Saplings.

    PubMed

    Deslauriers, Annie; Huang, Jian-Guo; Balducci, Lorena; Beaulieu, Marilène; Rossi, Sergio

    2016-04-01

    Nonstructural carbohydrates (NSCs) play a crucial role in xylem formation and represent, with water, the main constraint to plant growth. We assessed the relationships between xylogenesis and NSCs in order to (1) verify the variance explained by NSCs and (2) determine the influence of intrinsic (tissue supplying carbon) and extrinsic (water availability and temperature) factors. During 2 years, wood formation was monitored in saplings of black spruce (Picea mariana) subjected to a dry period of about 1 month in June and exposed to different temperature treatments in a greenhouse. In parallel, NSC concentrations were determined by extracting the sugar compounds from two tissues (cambium and inner xylem), both potentially supplying carbon for wood formation. A mixed-effect model was used to assess and quantify the potential relationships. Total xylem cells, illustrating meristematic activity, were modeled as a function of water, sucrose, and d-pinitol (conditional r(2) of 0.79). Water availability was ranked as the most important factor explaining total xylem cell production, while the contribution of carbon was lower. Cambium stopped dividing under water deficit, probably to limit the number of cells remaining in differentiation without an adequate amount of water. By contrast, carbon factors were ranked as most important in explaining the variation in living cells (conditional r(2) of 0.49), highlighting the functional needs during xylem development, followed by the tissue supplying the NSCs (cambium) and water availability. This study precisely demonstrates the role of carbon and water in structural growth expressed as meristematic activity and tissue formation. PMID:26850274

  5. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery.

    PubMed

    Gallé, Alexander; Feller, Urs

    2007-11-01

    In the context of an increased risk of extreme drought events across Europe during the next decades, the capacity of trees to recover and survive drought periods awaits further attention. In summer 2005, 4-year-old beech (Fagus sylvatica L.) saplings were watered regularly or were kept for 4 weeks without irrigation in the field and then re-watered again. Changes of plant water status, leaf gas exchange and Chl a fluorescence parameters, as well as alterations in leaf pigment composition were followed. During the drought period, stomatal conductance (g(s)) and net photosynthesis (P(n)) decreased in parallel with increased water deficit. After 14 days without irrigation, stomata remained closed and P(n) was almost completely inhibited. Reversible downregulation of PSII photochemistry [the maximum quantum efficiency of PSII (F(v)/F(m))], enhanced thermal dissipation of excess excitation energy and an increased ratio of xanthophyll cycle pigments to chlorophylls (because of a loss of chlorophylls) contributed to an enhanced photo-protection in severely stressed plants. Leaf water potential was restored immediately after re-watering, while g(s), P(n) and F(v)/F(m) recovered only partially during the initial phase, even when high external CO(2) concentrations were applied during the measurements, indicating lasting non-stomatal limitations. Thereafter, P(n) recovered completely within 4 weeks, meanwhile g(s) remained permanently lower in stressed than in control plants, leading to an increased 'intrinsic water use efficiency' (P(n)/g(s)). In conclusion, although severe drought stress adversely affected photosynthetic performance of F. sylvatica (a rather drought-sensitive species), P(n) was completely restored after re-watering, presumably because of physiological and morphological adjustments (e.g. stomatal occlusions). PMID:18251880

  6. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra

    PubMed Central

    Melcher, Peter J.; Zwieniecki, Maciej A.

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔPpit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔPpit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5–10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔPpit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔPpit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally. PMID:24069025

  7. Protective effect of Acer mono Max. sap on water immersion restraint stress-induced gastric ulceration.

    PubMed

    Park, Chul-Hong; Son, Hyung-U; Son, Minsik; Lee, Sang-Han

    2011-09-01

    Acer mono Max. sap (AmMs) is called 'Gol-Li-Su' or 'Go-Lo-Soe' in Korean, which means 'water beneficial to the bones'. It is reported that the sap contains several types of minerals and sugars. In particular, the calcium concentration of the sap is 36.5 times higher than that of commercial mineral water. Apart from its anti-osteoporosis effect, no reports have addressed the biological activities of AmMs against degenerative diseases. In the present study, we investigated whether AmMs alleviates gastric ulcer-related symptoms in a stress-induced mouse model. To assess the effect of AmMs on gastric ulcer-like symptoms, we carried out a water immersion restraint (WIRE) test and found that AmMs has potential in alleviating gastric ulcers in a concentration-dependent manner. These results indicate that the nutritional factors of the sap mitigate the gastric ulcer-related symptoms caused by stress-induced gastric lesions in mice. AmMs-treated mice exhibited a significant decrease in the ulcer index as compared to those treated with omeprazole or L-arginine. To examine one potential mechanism underlying this effect, we performed reverse transcription-polymerase chain reaction to ascertain whether molecular markers were associated with the mitigation of the gastric lesions. Epithelial and/or tissue nitric oxide synthase (NOS) was assessed to determine whether or not the genes were down-regulated dose-dependently by the sap. The levels of these enzymes were found to be lower in the tissue samples treated with AmMs compared with the levels in the control samples. These findings collectively suggest that AmMs significantly protects the gastric mucosa against WIRE stress-induced gastric lesions, at least in part, by alleviating inducible NOS and/or neuronal NOS expression. PMID:22977586

  8. Xyloglucan biosynthesis by Golgi membranes from suspension-cultured sycamore (Acer pseudoplatanus) cells

    SciTech Connect

    White, A.R.; Xin, Yi )

    1990-05-01

    Xyloglucan is a major hemicellulose polysaccharide in plant cell walls. Biosynthesis of such cell wall polysaccharides is closely linked to the process of plant cell growth and development. Xyloglucan polysaccharides consist of a {beta}-1,4 glucan backbone synthesized by xyloglucan synthase and sidechains of xylose, galactose, and fucose added by other transferase enzymes. Most plant Golgi and plasma membranes also contain glucan synthases I II, which make {beta}-1,4 and {beta}-1,3 glucans, respectively. All of these enzymes have very similar activities. Cell walls on suspension-cultured cells from Acer pseudoplatanus (sycamore maple) were enzymatically softened prior to cell disruption by passing through a 30 {mu}m nylon screen. Cell membranes from homogenates were separated by ultracentrifugation on top-loaded or flotation sucrose density gradients. Samples were collected by gradient fractionation and assayed for membrane markers and xyloglucan and glucan synthase activities. Standard marker assays (cyt. c reductase for eR, IDPase UDPase for Golgi, and eosin 5{prime}-malelmide binding for plasma membrane) showed partial separation of these three membrane types. Golgi and plasma membrane markers overlapped in most gradients. Incorporation of {sup 14}C-labeled sugars from UDP-glucose and UDP-xylose was used to detect xyloglucan synthase, glucan synthases I II, and xylosyl transferase in Golgi membrane fractions. These activities overlapped, although distinct peaks of xyloglucan synthase and xylosyl transferase were found. Ca{sup ++} had a stimulatory effect on glucan synthases I II, while Mn{sup ++} had an inhibitory effect on glucan synthase I in the presence of Ca{sup ++}. The similarity of these various synthase activities demonstrates the need for careful structural characterization of newly synthesized polysaccharides.

  9. Spectrochemical analysis of sycamore (Acer pseudoplatanus) leaves for environmental health monitoring.

    PubMed

    Ord, James; Butler, Holly J; McAinsh, Martin R; Martin, Francis L

    2016-05-10

    Terrestrial plants are ideal sentinels of environmental pollution, due to their sedentary nature, abundance and sensitivity to atmospheric changes. However, reliable and sensitive biomarkers of exposure have hitherto been difficult to characterise. Biospectroscopy offers a novel approach to the derivation of biomarkers in the form of discrete molecular alterations detectable within a biochemical fingerprint. We investigated the application of this approach for the identification of biomarkers for pollution exposure using the common sycamore (Acer pseudoplatanus) as a sentinel species. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to interrogate leaf tissue collected from three sites exposed to different levels of vehicle exhaust emissions. Following multivariate analysis of acquired spectra, significant biochemical alterations were detected between comparable leaves from different sites that may constitute putative biomarkers for pollution-induced stress. These included differences in carbohydrate and nucleic acid conformations, which may be indicative of sub-lethal exposure effects. We also observed several corresponding spectral alterations in both the leaves of A. pseudoplatanus exposed to ozone pollution under controlled environmental conditions and in leaves infected with the fungal pathogen Rhytisma acerinum, indicating that some stress-induced changes are conserved between different stress signatures. These similarities may be indicative of stress-induced reactive oxygen species (ROS) generation, although further work is needed to verify the precise identity of infrared biomarkers and to identify those that are specific to pollution exposure. Taken together, our data clearly demonstrate that biospectroscopy presents an effective toolkit for the utilisation of higher plants, such as A. pseudoplatanus, as sentinels of environmental pollution. PMID:27068098

  10. Evolutionary history of a widespread tree species Acer mono in East Asia

    PubMed Central

    Guo, Xi-Di; Wang, Hong-Fang; Bao, Lei; Wang, Tian-Ming; Bai, Wei-Ning; Ye, Jun-Wei; Ge, Jian-Ping

    2014-01-01

    East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad-leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad-leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad-leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could

  11. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    PubMed

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils. PMID:27329476

  12. Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens.

    PubMed

    Awais, Mian Muhammad; Akhtar, Masood; Muhammad, Faqir; ul Haq, Ahsan; Anwar, M Irfan

    2011-06-01

    Present paper reports the effects of aqueous and ethanolic extracts of sugar cane (Saccharum officinarum L.) juice and bagasse, respectively on protective immune responses in industrial broiler chickens against coccidiosis. Immunotherapeutic efficacies of the extracts were measured by evaluating their effect on body weight gain, oocyst shedding, lesion score, anti-coccidial indices, per cent protection and elicited serum antibody responses against coccidiosis. Results revealed a significantly lower (P<0.05) oocyst shedding and mortality in chickens administered with sugar cane extracts as compared to control. Further, significantly higher (P<0.05) body weight gains and antibody responses were detected in chickens administered with sugar cane extracts as compared to chickens of control group. Moreover, ethanolic extract showed higher anti-coccidia index (227.61) as compared to aqueous extract (192.32). The organ body weight ratio of the lymphoid organs of experimental and control groups were statistically non-significant (P>0.01). These results demonstrated that both ethanolic and aqueous extracts of sugar cane possess immune enhancing properties and their administration in chickens augments the protective immunity against coccidiosis. PMID:21354144

  13. Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-Dependent Growth Regulatory Activity.

    PubMed

    Olher, Vanessa G A; Ferreira, Nagela P; Souza, Alan G; Chiavelli, Lucas U R; Teixeira, Aline F; Santos, Wanderley D; Santin, Silvana M O; Ferrarese Filho, Osvaldo; Silva, Cleuza C; Pomini, Armando M

    2016-05-27

    Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control. PMID:27192014

  14. Physiological and Proteomic Analyses of Saccharum spp. Grown under Salt Stress

    PubMed Central

    Murad, Aline Melro; Molinari, Hugo Bruno Correa; Magalhães, Beatriz Simas; Franco, Augusto Cesar; Takahashi, Frederico Scherr Caldeira; de Oliveira-, Nelson Gomes; Franco, Octávio Luiz; Quirino, Betania Ferraz

    2014-01-01

    Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane. PMID:24893295

  15. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo

  16. Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species

    PubMed Central

    Kooyman, Robert M.; Westoby, Mark

    2009-01-01

    Background and Aims Height gain plays an important role in plant life-history strategies and species coexistence. Here main-stem costs of height gain of saplings across species within a rainforest community are compared. Methods Scaling relationships of height to diameter at the sapling stage were compared among 75 woody rainforest plant species in subtropical eastern Australia using standardized major axis regression. Main-stem costs of height gain were then related to other functional traits that reflect aspects of species ecological strategies. Key Results Slopes (β) for the height–diameter (H–D) scaling relationship were close to 1·3, in line with previous reports and with theory. Main-stem volume to achieve 5 m in height varied substantially between species, including between species within groups based on adult height and successional status. The variation was largely independent of other species traits, being uncorrelated with mature plant height (Hmax) and with leaf size, and weakly negatively correlated with wood density and seed size. The relationship between volume to reach 5 m and wood density was too weak to be regarded as a trade-off. Estimated main-stem dry mass to achieve 5 m height varied almost three-fold across species, with wood density and stem volume contributing roughly equally to the variation. Conclusion The wide range in economy of sapling height gain reported here is presumed to be associated with a trade-off between faster growth and higher mortality rates. It is suggested that wide diameters would have a stronger effect in preventing main-stem breakage in the short term, while high wood density would have a stronger effect in sustaining stem strength over time. PMID:19635742

  17. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery.

    PubMed

    Choat, Brendan; Brodersen, Craig R; McElrone, Andrew J

    2015-02-01

    The formation of emboli in xylem conduits can dramatically reduce hydraulic capacity and represents one of the principal mechanisms of drought-induced mortality in woody plants. However, our understanding of embolism formation and repair is constrained by a lack of tools to directly and nondestructively measure these processes at high spatial resolution. Using synchrotron-based microcomputed tomography (microCT), we examined embolism in the xylem of coast redwood (Sequoia sempervirens) saplings that were subjected to cycles of drought and rewatering. Embolism formation was observed occurring by three different mechanisms: as tracheids embolizing in wide tangential bands; as isolated tracheids in seemingly random events; and as functional groups connected to photosynthetic organs. Upon rewatering, stem water potential recovered to predrought stress levels within 24 h; however, no evidence of embolism repair was observed even after a further 2 wk under well-watered conditions. The results indicate that intertracheid air seeding is the primary mechanism by which embolism spreads in the xylem of S. sempervirens, but also show that a small number of tracheids initially become gas-filled via another mechanism. The inability of S. sempervirens saplings to reverse drought-induced embolism is likely to have important ecological impacts on this species. PMID:25385085

  18. The routes and kinetics of trichloroacetic acid uptake and elimination in Sitka spruce ( Picea sitchensis) saplings via atmospheric deposition pathways

    NASA Astrophysics Data System (ADS)

    Heal, M. R.; Dickey, C. A.; Cape, J. N.; Heal, K. V.

    A major flux of trichloroacetic acid (TCA) to forests is via wet deposition, but the transfer of TCA into tree foliage may occur by an above- or below-ground pathway. To investigate the routes and kinetics of TCA uptake, two groups of 10 Sitka spruce saplings (with an equivalent number of controls) were exposed to a single application of 200 μg TCA in solution, either to the soil only, or sprayed as a mist to the foliage only. The needle foliage was subsequently analysed regularly for TCA for 3 months during the growing season. Significant uptake into current year ( C) needles was observed from both routes just a few days after application, providing direct evidence of an above-ground uptake route. Uptake of TCA was also observed in the previous year needle class ( C+1). Kinetic modelling of the data indicated that the half-life for within-needle elimination (during the growing season) was ˜50±30 days. Most of the applied TCA appeared to be degraded before uptake, either in the soil, or externally on the sapling foliage.

  19. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates

    PubMed Central

    Friesen, Patrick C.; Peixoto, Murilo M.; Busch, Florian A.; Johnson, Daniel C.; Sage, Rowan F.

    2014-01-01

    Miscanthus hybrids are leading candidates for bioenergy feedstocks in mid to high latitudes of North America and Eurasia, due to high productivity associated with the C4 photosynthetic pathway and their tolerance of cooler conditions. However, as C4 plants, they may lack tolerance of chilling conditions (0–10 °C) and frost, particularly when compared with candidate C3 crops at high latitudes. In higher latitudes, cold tolerance is particularly important if the feedstock is to utilize fully the long, early-season days of May and June. Here, leaf gas exchange and fluorescence are used to assess chilling tolerance of photosynthesis in five Miscanthus hybrids bred for cold tolerance, a complex Saccharum hybrid (energycane), and an upland sugarcane variety with some chilling tolerance. The chilling treatment consisted of transferring warm-grown plants (25/20 °C day/night growth temperatures) to chilling (12/5 °C) conditions for 1 week, followed by assessing recovery after return to warm temperatures. Chilling tolerance was also evaluated in outdoor, spring-grown Miscanthus genotypes before and after a cold front that was punctuated by a frost event. Miscanthus×giganteus was found to be the most chilling-tolerant genotype based on its ability to maintain a high net CO2 assimilation rate (A) during chilling, and recover A to a greater degree following a return to warm conditions. This was associated with increasing its capacity for short-term dark-reversible photoprotective processes (ΦREG) and the proportion of open photosystem II reaction centres (qL) while minimizing photoinactivation (ΦNF). Similarly, in the field, M.×giganteus exhibited a significantly greater A and pre-dawn F v/F m after the cold front compared with the other chilling-sensitive Miscanthus hybrids. PMID:24642848

  20. Genetic diversity of Sugarcane bacilliform virus isolates infecting Saccharum spp. in India.

    PubMed

    Karuppaiah, R; Viswanathan, R; Kumar, V Ganesh

    2013-06-01

    Sugarcane bacilliform virus (SCBV), which causes leaf freckle in sugarcane, is a member of the genus Badnavirus. Studies were conducted to characterize SCBV in Saccharum officinarum germplasm and cultivated varieties in India by sequencing the complete genomes of five isolates. Genome lengths ranged from 7,553 to 7,884 nucleotides. Duplications in ORF3 and insertions in the RNase H-domain in some of the isolates were found to contribute to the large size of their genomes. The Indian SCBV isolates share identities of 69-85 % for the complete genomic sequence, indicating wide genetic diversity among them, and share 70-82 % identity with Sugarcane bacilliform Ireng Maleng virus (SCBIMV) and Sugarcane bacilliform Morocco virus (SCBMV), as well as 43-46 % identity with Banana streak virus (BSV) and BSV-related SCBV species from Guadeloupe, indicating that the Indian SCBV isolates are distinct from SCBV isolates reported to date. Irrespective of the region compared, SCBV isolates from India, Australia, and Morocco clustered together. BSV and BSV-related SCBV isolates from Guadeloupe formed another cluster. A phylogenetic analysis based on the partial RT/RNase H-sequence separated SCBV and BSV-related SCBV sequences into 11 SCBV groups viz. SCBV-A to -K. Among the 11 groups, the SCBV sequences separated under H, I, J, and K are newly identified in this study, representing three new species and are tentatively named as SCBBBV, SCBBOV, and SCBBRV. Thus, the PASC and phylogenetic analyses evidenced that the symptoms associated with badnaviruses in sugarcane in India are caused by at least three new species, SCBBBV, SCBBOV, and SCBBRV, besides SCBIMV and SCBMV represented by SCBV-BT and SCBV-Iscam, respectively. PMID:23430710

  1. Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)

    PubMed Central

    Dillon, Sally L.; Shapter, Frances M.; Henry, Robert J.; Cordeiro, Giovanni; Izquierdo, Liz; Lee, L. Slade

    2007-01-01

    Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes. PMID:17766842

  2. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum

    PubMed Central

    Grativol, Clícia; Regulski, Michael; Bertalan, Marcelo; McCombie, W. Richard; da Silva, Felipe Rodrigues; Neto, Adhemar Zerlotini; Vicentini, Renato; Farinelli, Laurent; Hemerly, Adriana Silva; Martienssen, Robert A.; Ferreira, Paulo Cavalcanti Gomes

    2015-01-01

    SUMMARY Many economically important crops have large and complex genomes, which hampers sequencing of their genome by standard methods such as WGS. Large tracts of methylated repeats occur at plant genomes interspersed by hypomethylated gene-rich regions. Gene enrichment strategies based on methylation profile offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration (MF) with McrBC digestion to enrich for euchromatic regions of sugarcane genome. To verify the efficiency of MF and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using MF and unfiltered (UF) libraries. The MF allowed the achievement of a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5 times more scaffolds and 1.7 times more assembled Mb compared to unfiltered scaffolds. The coverage of sorghum CDS by MF scaffolds was at least 36% higher than by UF scaffolds. Using MF technology, we increased by 134X the coverage of genic regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds covering all genes at sugarcane BACs, 97.2% of sugarcane ESTs, 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds encoding enzymes of the sucrose/starch pathway discovered 291 SNPs in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes were also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and improvement of sugarcane as a biofuel crop. PMID:24773339

  3. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.

    PubMed

    Grativol, Clícia; Regulski, Michael; Bertalan, Marcelo; McCombie, W Richard; da Silva, Felipe Rodrigues; Zerlotini Neto, Adhemar; Vicentini, Renato; Farinelli, Laurent; Hemerly, Adriana Silva; Martienssen, Robert A; Ferreira, Paulo Cavalcanti Gomes

    2014-07-01

    Many economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene-rich regions. Gene-enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using methyl-filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single-nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop. PMID:24773339

  4. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates.

    PubMed

    Friesen, Patrick C; Peixoto, Murilo M; Busch, Florian A; Johnson, Daniel C; Sage, Rowan F

    2014-07-01

    Miscanthus hybrids are leading candidates for bioenergy feedstocks in mid to high latitudes of North America and Eurasia, due to high productivity associated with the C4 photosynthetic pathway and their tolerance of cooler conditions. However, as C4 plants, they may lack tolerance of chilling conditions (0-10 °C) and frost, particularly when compared with candidate C3 crops at high latitudes. In higher latitudes, cold tolerance is particularly important if the feedstock is to utilize fully the long, early-season days of May and June. Here, leaf gas exchange and fluorescence are used to assess chilling tolerance of photosynthesis in five Miscanthus hybrids bred for cold tolerance, a complex Saccharum hybrid (energycane), and an upland sugarcane variety with some chilling tolerance. The chilling treatment consisted of transferring warm-grown plants (25/20 °C day/night growth temperatures) to chilling (12/5 °C) conditions for 1 week, followed by assessing recovery after return to warm temperatures. Chilling tolerance was also evaluated in outdoor, spring-grown Miscanthus genotypes before and after a cold front that was punctuated by a frost event. Miscanthus×giganteus was found to be the most chilling-tolerant genotype based on its ability to maintain a high net CO2 assimilation rate (A) during chilling, and recover A to a greater degree following a return to warm conditions. This was associated with increasing its capacity for short-term dark-reversible photoprotective processes (ΦREG) and the proportion of open photosystem II reaction centres (qL) while minimizing photoinactivation (ΦNF). Similarly, in the field, M.×giganteus exhibited a significantly greater A and pre-dawn F v/F m after the cold front compared with the other chilling-sensitive Miscanthus hybrids. PMID:24642848

  5. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.).

    PubMed

    Zhu, Bo; Zhou, Qing; Lin, Li; Hu, Chunjin; Shen, Ping; Yang, Litao; An, Qianli; Xie, Guanlin; Li, Yangrui

    2013-07-01

    Five nitrogen-fixing bacterial strains (SP1(T), NN143, NN144, NN208 and HX148) were isolated from stem, root or rhizosphere soil of sugar cane (Saccharum officinarum L.) plants. Cells were Gram-negative, motile, rods with peritrichous flagella. DNA G+C content was 55.0 ± 0.5 mol%. Sequence determinations and phylogenetic analysis of 16S rRNA gene and rpoB indicated that the strains were affiliated with the genus Enterobacter and most closely related to E. radicincitans DSM 16656(T) and E. oryzae LMG 24251(T). Fluorimetric determination of thermal denaturation temperatures after DNA-DNA hybridization, enterobacterial repetitive intergenic consensus PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiated the whole-genome, genotype and protein profiles from those of E. radicincitans and E. oryzae. The strains' cell fatty acid composition differentiated them from E. radicincitans and E. oryzae by containing a higher level of summed feature 2 (C16 : 1ω7c and/or C16 : 1ω6c) and a lower level of C17 : 0 cyclo. Their physiological and biochemical profiles differentiated them from E. radicincitans by being positive for methyl red test, ornithine decarboxylase and utilization of putrescine, D-arabitol, L-fucose and methyl α-D-glucoside and being negative for arginine dihydrolase, and differentiated them from E. oryzae by being positive for aesculin hydrolysis and utilization of putrescine, D-arabitol and L-rhamnose and being negative for arginine dihydrolase, lysine decarboxylase and utilization of mucate. The five strains therefore represent a novel species, for which the name Enterobacter sacchari sp. nov. is proposed, with the type strain SP1(T) ( = CGMCC 1.12102(T) = LMG 26783(T)). PMID:23291881

  6. PHYSIOLOGICAL AND FOLIAR INJURY RESPONSES OF PRUNUS SEROTINA, FRAXINUS AMERICANA, AND ACER RUBRUM SEEDLINGS TO VARYING SOIL MOISTURE AND OZONE. (R825244)

    EPA Science Inventory

    Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings wer...

  7. Evaluation of a single application of Neonicotnoid and multi-application contact insecticides for flatheaded borer management in field grown Acer rubrum L. cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials evaluated insecticides for flatheaded borer (Chrysobothris femorata [Olivier]) control and red maple (Acer rubrum L.) cultivar growth over a 4-year period. Soil-applied systemic insecticides (acephate, imidacloprid, clothianidin, dinotefuran, and thiamethoxam) and trunk-applied contact i...

  8. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intracellular ice formed in rapidly cooled embryonic axes of Acer saccharinum and was not necessarily lethal when ice crystals were small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic a...

  9. The allometry of root production and loss in seedlings of Acer rubrum (aceraceae) and betula papyrifera (Betulacaae): Implications for root dynamics in elevated CO{sub 2}

    SciTech Connect

    Berntson, G.; Bazzaz, F.A.

    1996-05-01

    Total root production ({Sigma}P), total root loss ({Sigma}L), net root production (NP), and biomass production were determined for seedlings of Betula papyrifera and Acer rubrum in ambient and elevated CO{sub 2} environments. {Sigma}P, {Sigma}L, and NP were calculated from sequential, independent observations of root length production through plexiglass windows. Elevated CO{sub 2} increased {Sigma}P, {Sigma}L, and NP in seedlings of Betula papyrifera but not Acer rubrum. Root production and loss were qualitatively similar to whole-plant growth responses to elevated CO{sub 2}. Betula showed enhanced {Sigma}P, {Sigma}L, and biomass with elevated CO{sub 2} but Acer did not. However, the observed effects of CO{sub 2} on root production and loss did not alter the allometric relationship between root production and root loss for either Acer or Betula. Thus, in this experiment, elevated CO{sub 2} did not affect the relationship between root production and root loss. The results of this study have important implications for the potential effects of elevated CO{sub 2} on root dynamics. Elevated CO{sub 2} may lead to increases in root production and in root loss (turnover) where the changes in root turnover are largely a function of the magnitude of root production increases. 56 refs., 4 figs., 4 tabs.

  10. Targeted grazing of one seed juniper saplings with small ruminants: Influence of stocking density and mixed grazing in summer and spring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the potential for targeted grazing of one seed juniper saplings with small ruminants. A 2x2 factorial design was used consisting of targeted grazing application with sheep and goats at two stocking densities in spring and summer. Ten female goats or five goats plus f...

  11. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    PubMed

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future. PMID:26852312

  12. Effect of gender on sap-flux-scaled transpiration in a dominant riparian tree species: Box elder (Acer negundo)

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Bush, S. E.; West, A. G.; Ehleringer, J. R.

    2007-09-01

    Acer negundo is a dioecious riparian tree species with a spatial segregation of the sexes along soil moisture gradients. Females are typically more common in wet sites along streams (typically F/M ≈ 1.6), whereas males are more common in drier sites away from streams (typically F/M ≈ 0.6). Spatial segregation between sexes may develop because of the higher reproductive cost in females compared to males. If so, female Acer negundo trees would be under stronger selection to maximize resource uptake, and would therefore likely occur at greater frequencies in high resources sites (i.e., along streamsides), and increase rates of resource acquisition (i.e., water and nutrients). The spatial segregation of the sexes leads to the hypothesis that male and female individuals have varying influence on ecosystem evapotranspiration. To address this, stem sap flux was measured on mature streamside (≤1 m from stream channel) and nonstreamside (>1 m from stream channel) male and female Acer negundo trees occurring in Red Butte Canyon near Salt Lake City, Utah, during the 2004 growing season. Despite having similar predawn and midday water potentials, sap flux density was 76% higher in streamside female trees than in males (P < 0.0001), while sap flux density was 19% greater in nonstreamside female trees compared to males (P < 0.0001). Mean daily sap flux density of all A. negundo populations was highly correlated with mean daily vapor pressure deficit (P < 0.0001), and was moderately correlated with mean daily photosynthetic active radiation (P = 0.0263). At the watershed scale, nonstreamside male and female A. negundo trees contributed 20 and 21% respectively to the estimated 1.7 mm d-1 transpiration flux from dominant riparian vegetation away from streamsides (estimated from scaled sap flux measurements of all dominant riparian tree species in Red Butte Canyon). Male and female A. negundo trees contributed 31 and 46% respectively of the estimated 8.0 mm d-1 transpiration

  13. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    NASA Astrophysics Data System (ADS)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer

  14. SSR marker-based analysis of genetic relatedness among sugarcane cultivars (Saccharum spp. hybrids) from breeding programs in China and other countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis-based molecular genotyping was conducted on 35 sugarcane cultivars (Saccharum spp. hybrids) and five clones of related wild species with 20 polymorphic SSR DNA markers. A total of 251 alleles were identified with 248 alleles displaying varying degrees of polymorphism and t...

  15. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses. PMID:23382548

  16. Effect of blue/red LED light combination on growth and morphogenesis of saccharum officinarum plantlets in vitro

    NASA Astrophysics Data System (ADS)

    Silva, Marina M. A.; de Oliveira, Arquimedes L. B.; Oliveira-Filho, Ronaldo A.; Gouveia-Neto, Artur S.; Camara, Terezinha J. R.; Willadino, Lilia G.

    2014-03-01

    The effect of blue and red light mixture and white-light (RGB) from monochromatic light-emitting diodes on growth and morphogenesis of sugarcane (Saccharum officinarum) plantlets in vitro, was investigated. Light treatments with blue/red light intensity percentage ratio 70/30, 50/50, 40/60, 30/70, and also white-LED light were applied during a period of 20 days with a photoperiod of 16 h per day. Results indicate that the blue/red light blend ratio of the illumination system plays a major role in fresh weight, length, and shoot multiplication of plantlets cultured in vitro. White-light via blended primary colors monochromatic LEDs illumination of the plantlets culture was also evaluated and compared with blue/red lighting

  17. Genotype × Herbivore Effect on Leaf Litter Decomposition in Betula Pendula Saplings: Ecological and Evolutionary Consequences and the Role of Secondary Metabolites

    PubMed Central

    Silfver, Tarja; Paaso, Ulla; Rasehorn, Mira; Rousi, Matti; Mikola, Juha

    2015-01-01

    Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary

  18. Effects of physical blockage of axial phloem transport on growth of Norway spruce (Picea abies) saplings under drought

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Gruber, Andreas; Winkler, Andrea; Lethaus, Gina; Wieser, Gerhard

    2016-04-01

    Early culmination of maximum radial growth in late spring was found in several coniferous species in a dry inner Alpine environment (Oberhuber et al. 2014). We hypothesized that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. To test this hypothesis we manipulated tree carbon status by physical blockage of phloem transport and soil water availability of Norway spruce saplings (tree height c. 1.5 m) in a common garden experiment to investigate influence of carbon availability and drought on above- and belowground growth. Girdling occurred at different phenological stages during the growing season, i.e., before growth onset, and during earlywood and latewood formation. Non-structural carbohydrates (NSC, soluble sugars and starch) were determined before and after the growing season to evaluate change in tree carbon status. Tree ring analysis revealed that compared to non-girdled controls earlywood width above girdling strikingly increased by c. 170 and 440 %, while latewood width decreased by c. 85 and 55 % in watered and drought stressed trees, respectively. Below girdling no xylem formation was detected. Unexpectedly, preliminary analyses of carbon status revealed striking reduction (c. -80 %) of NSC above and below girdling. Most likely due to reductions in xylem hydraulic conductance, girdling before growth onset reduced leader shoot growth compared to non-girdled controls by c. 45 %, irrespective of water availability. Root dry mass of girdled trees was significantly reduced compared to non-girdled controls (c. 30 % in drought stressed and 45 % in watered trees; p < 0.001). Results suggest that in Norway spruce saplings (1) carbon availability affects radial stem growth, (2) higher basipetal carbon transport occurs under drought supporting our hypothesis of early switch of carbon allocation to belowground when drought stress prevails and (3) minor

  19. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.

    PubMed

    Cerasoli, S; Scartazza, A; Brugnoli, E; Chaves, M M; Pereira, J S

    2004-01-01

    At the end of the growing season in late July, 20-month-old cork oak (Quercus suber L.) saplings were partially defoliated (63% of leaf area) to evaluate their ability to recover leaf area after defoliation. At 18 and 127 days after defoliation, changes in starch and nitrogen pools were determined in leaves and perennial organs, and variations in photosynthetic carbon uptake were investigated. To determine the role of stored nitrogen in regrowth after defoliation, plant nitrogen was labeled in the previous winter by enriching the nutrient solution with 15N. Plants recovered the lost leaf area in 127 days. Although there was remobilization of starch and nitrogen from leaves and perennial organs, the availability of resources for growth in the following spring was not decreased by defoliation. On the contrary, starch concentration in coarse roots was higher in defoliated saplings than in control saplings, presumably as a result of the higher net CO2 exchange rate in newly developed leaves compared with pre-existing leaves. PMID:14652217

  20. Differential stemflow yield from European beech saplings: the role and respective importance of individual canopy structure metrics

    NASA Astrophysics Data System (ADS)

    Levia, Delphis; Michalzik, Beate

    2013-04-01

    Stemflow yield from individual trees varies as a function of both meteorological conditions and canopy structure. The importance and differential effects of various metrics of canopy structure in relation to stemflow yield is inadequately understood and the subject of debate among forest hydrologists. It is possible to evaluate the role and respective importance of individual canopy structure metrics by holding meteorological conditions constant. Twelve isolated experimental European beech (Fagus sylvatica L.) saplings in Jena, Germany were exposed to identical meteorological conditions to examine the effects of canopy structure on stemflow production during the 2012 growing season. The canopy structure metrics being evaluated include: trunk diameter, trunk lean, tree height, projected crown area, branch inclination angle, branch count, and biomass (foliar and woody). Principal components analysis and multiple regression are utilized to determine the relative importance of different canopy structure metrics on stemflow yield. Experimental results will provide insight as to which metrics of canopy structure most strongly govern stemflow production. Ultimately, with a more thorough understanding of the unique contributions of various canopy structural metrics to stemflow yield, a useful conceptual guide of stemflow generation can be formulated on the basis of canopy structure for management purposes. Sponsor note: This research was funded by the Alexander von Humboldt Foundation.

  1. Anagenetic speciation in Ullung Island, Korea: genetic diversity and structure in the island endemic species, Acer takesimense (Sapindaceae).

    PubMed

    Takayama, Koji; Sun, Byung-Yun; Stuessy, Tod F

    2013-05-01

    Anagenetic speciation is an important mode of speciation in oceanic islands; one-fourth of the endemic plants are estimated to have been derived via this process. Few studies, however, have critically examined the genetic consequences of anagenesis in comparison with cladogenesis (involved with adaptive radiation). We hypothesize that endemic species originating via anagenetic speciation in a relatively uniform environment should accumulate genetic variation with limited populational differentiation. We undertook a population genetic analysis using nine nuclear microsatellite loci of Acer takesimense, an anagenetically derived species endemic to Ullung Island, Korea, and its continental progenitor A. pseudosieboldianum on the Korean Peninsula. Microsatellite data reveal a clear genetic distinction between the two species. A high F value in the cluster of A. takesimense was found by Bayesian clustering analysis, suggesting a strong episode of genetic drift during colonization and speciation. In comparison with A. pseudosieboldianum, A. takesimense has slightly lower genetic diversity and possesses less than half the number of private and rare alleles. Consistent with predictions, weak geographical genetic structure within the island was found in A. takesimense. These results imply that anagenetic speciation leads to a different pattern of specific and genetic diversity than often seen with cladogenesis. PMID:23090156

  2. Vine maple (Acer circinatum) clone growth and reproduction in managed and unmanaged coastal Oregon douglas-fir forests

    USGS Publications Warehouse

    O'Dea, Mary E.; Zasada, John C.; Tappeiner, John C., II

    1995-01-01

    Vine maple (Acer circinatum Pursh.) clone development, expansion, and regeneration by seedling establishment were studied in 5-240 yr old managed and unmanaged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands in coastal Oregon. Stem length, number of stems, and crown area were all significantly (P @10 m long and basal sprouts 1-2 m long; some stems had been pinned to the forest floor by fallen trees or branches and had layered. In stands >120 yr in age, clones were often quite complex, composed of several decumbent stems each of which connected the ramets of 1-10 new aerial stems. Vine maple clone expansion occurs by the layering of long aerial stems. Over 95% of the layered stems we observed had been pinned to the forest floor by fallen debris. Unsevered stems that we artificially pinned to the forest floor initiated roots within 1 yr. Thinning may favor clonal expansion because fallen slash from thinning often causes entire clones to layer, not just individual stems. Clonal vine maple seed production and seedling establishment occurred in all stages of stand development except dense, young stands following crown closure. There were more seedlings in thinned stands than in unthinned stands and in unburned clearcuts than in burned clearcuts.

  3. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum).

    PubMed

    González-Sarrías, Antonio; Yuan, Tao; Seeram, Navindra P

    2012-05-01

    Maplexins A-I are a series of structurally related gallotannins recently isolated from the red maple (Acer rubrum) species. They differ in number and location of galloyl derivatives attached to 1,5-anhydro-glucitol. Here, maplexins A-I were evaluated for anticancer effects against human tumorigenic (colon, HCT-116; breast, MCF-7) and non-tumorigenic (colon, CCD-18Co) cell lines. The maplexins which contained two (maplexins C-D) or three (maplexins E-I) galloyl derivatives each, inhibited cancer cell growth while those with only one galloyl group (maplexins A-B) did not. Moreover, maplexins C-D showed greater antiproliferative effects than maplexins E-I (IC(50)=59.8-67.9 and 95.5-108.5 μM vs. 73.7-165.2 and 115.5-182.5 μM against HCT-116 and MCF-7 cells, respectively). Notably, the cancer cells were up to 2.5-fold more sensitive to the maplexins than the normal cells. In further mechanistic studies, maplexins C-D (at 75 μM concentrations) induced apoptosis and arrested cell cycle (in the S-phase) of the cancer cells. These results suggest that the number of galloyl groups attached to the 1,5-anhydro-glucitol moiety in these gallotannins are important for antiproliferative activity. Also, this is the first in vitro anticancer study of maplexins. PMID:22387705

  4. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Derya Sevim; Guller, Bilgin

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors. PMID:17698357

  5. Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.).

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2014-01-01

    The effects of three sugarcane waste-products from an ethanol production plant on the fractionation of Cd and Zn in high Cd and Zn contaminated soil and metal accumulation in sugarcane (Saccharum officinarum L.) were studied, using the BCR sequential extraction and aqua regia extraction procedures. A pot experiment was performed for 4 months with four treatments: no-amendments (control), boiler ash (3% w/w), filter cake (3% w/w) and a combination of boiler ash and vinasse (1.5% + 1.5%, w/w). The results showed that all treatments reduced the most bioavailable concentrations of Cd and Zn (BCR1 + 2) in soils (4.0-9.6% and 5.5-6.3%, respectively) and metal uptake (μg) in the aboveground part of the sugarcane (up to 62% and 54% for Cd and Zn, respectively) as compared to the control. No visual symptoms of metal toxicity and no positive effect on the biomass production of sugarcane were observed. Both Cd and Zn were accumulated mainly in the underground parts of the sugarcane (root > shoot ≥ underground sett > leaf; and root > underground sett > shoot > leaf, respectively) and the translocation factors were below 1, indicating low metal uptake. The results suggested that even though sugarcane waste-products insignificantly promote sugarcane growth, they can be used in agriculture due to the low metal accumulation in sugarcane and the reduction in metal bioavailability in the soil. PMID:24217524

  6. De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00-1037.

    PubMed

    Dharshini, S; Chakravarthi, M; J, Ashwin Narayan; Manoj, V M; Naveenarani, M; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Appunu, C

    2016-08-10

    Saccharum spontaneum L., a wild relative of sugarcane, is known for its adaptability to environmental stresses, particularly cold stress. In the present study, an attempt was made for transcriptome profiling of the low temperature (10°C) tolerant S. spontaneum clone IND 00-1037 collected from high altitude regions of Arunachal Pradesh, North Eastern India. The Illumina Nextseq500 platform yielded a total of 47.63 and 48.18 million reads corresponding to 4.7 and 4.8 gigabase pairs (Gb) of processed reads for control and cold stressed (10°C for 24h) samples, respectively. These reads were de novo assembled into 214,611 unigenes with an average length of 801bp. Further, all unigenes were aligned to GO, KEGG and COG databases in order to identify novel genes and pathways responsive upon low temperature conditions. The differential gene expression analysis revealed that about 2583 genes were upregulated and 3302 genes were down regulated during the stress. This is perhaps the comprehensive transcriptome data of a low temperature tolerant clone of S. spontaneum. This study would aid in identifying novel genes and also in future genomic studies pertaining to sugarcane and its wild relatives. PMID:27269250

  7. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    SciTech Connect

    Kihara, Tasuku; Ichikawa, Saki; Yonezawa, Takayuki; Lee, Ji-Won; Akihisa, Toshihiro; Woo, Je Tae; Michi, Yasuyuki; Amagasa, Teruo; Yamaguchi, Akira

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  8. Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae).

    PubMed

    Chen, Shun-Ying; Chou, Shih-Han; Tsai, Ching-Chu; Hsu, Wen-Yu; Baskin, Carol C; Baskin, Jerry M; Chien, Ching-Te; Kuo-Huang, Ling-Long

    2015-09-01

    Breaking of seed dormancy by moist cold stratification involves complex interactions in cells. To assess the effect of moist cold stratification on dormancy break in seeds of Acer morrisonense, we monitored percentages and rates of germination and changes in plant growth regulators, sugars, amino acids and embryo ultrastructure after various periods of cold stratification. Fresh seeds incubated at 25/15 °C for 24 weeks germinated to 61%, while those cold stratified at 5 °C for 12 weeks germinated to 87% in 1 week. Neither exogenous GA3 nor GA4 pretreatment significantly increased final seed germination percentage. Total ABA content of seeds cold stratified for 12 weeks was reduced about 3.3-fold, to a concentration similar to that in germinated seeds (radicle emergence). Endogenous GA3 and GA7 were detected in 8-week and 12-week cold stratified seeds but not in fresh seeds. Numerous protein and lipid bodies were present in the plumule, first true leaves and cotyledons of fresh seeds. Protein and lipid bodies decreased greatly during cold stratification, and concentrations of total soluble sugars and amino acids increased. The major non-polar sugars in fresh seeds were sucrose and fructose, but sucrose increased and fructose decreased significantly during cold stratification. The major free amino acids were proline and tryptophan in fresh seeds, and proline increased and tryptophan decreased during cold stratification. Thus, as dormancy break occurs during cold stratification seeds of A. morrisonense undergo changes in plant growth regulators, proteins, lipids, sugars, amino acids and cell ultrastructure. PMID:26094157

  9. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release.

    PubMed

    Pawłowski, Tomasz Andrzej; Staszak, Aleksandra Maria

    2016-05-20

    Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance. PMID:26970688

  10. Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides.

    PubMed

    Carón, M M; De Frenne, P; Brunet, J; Chabrerie, O; Cousins, S A O; De Backer, L; Decocq, G; Diekmann, M; Heinken, T; Kolb, A; Naaf, T; Plue, J; Selvi, F; Strimbeck, G R; Wulf, M; Verheyen, K

    2015-01-01

    Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A. platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A. platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A. platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A. pseudoplatanus in the face of climate change. PMID:24750437

  11. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    PubMed Central

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  12. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  13. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait)

    PubMed Central

    2013-01-01

    Background The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. Results This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. Conclusions The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers. PMID:23815794

  14. Potential of two submontane broadleaved species (Acer opalus, Quercus pubescens) to reveal spatiotemporal patterns of rockfall activity

    NASA Astrophysics Data System (ADS)

    Favillier, Adrien; Lopez-Saez, Jérôme; Corona, Christophe; Trappmann, Daniel; Toe, David; Stoffel, Markus; Rovéra, Georges; Berger, Frédéric

    2015-10-01

    Long-term records of rockfalls have proven to be scarce and typically incomplete, especially in increasingly urbanized areas where inventories are largely absent and the risk associated with rockfall events rises proportionally with urbanization. On forested slopes, tree-ring analyses may help to fill this gap, as they have been demonstrated to provide annually-resolved data on past rockfall activity over long periods. Yet, the reconstruction of rockfall chronologies has been hampered in the past by the paucity of studies that include broadleaved tree species, which are, in fact, quite common in various rockfall-prone environments. In this study, we test the sensitivity of two common, yet unstudied, broadleaved species - Quercus pubescens Willd. (Qp) and Acer opalus Mill. (Ao) - to record rockfall impacts. The approach is based on a systematic mapping of trees and the counting of visible scars on the stem surface of both species. Data are presented from a site in the Vercors massif (French Alps) where rocks are frequently detached from Valanginian limestone and marl cliffs. We compare recurrence interval maps obtained from both species and from two different sets of tree structures (i.e., single trees vs. coppice stands) based on Cohen's k coefficient and the mean absolute error. A total of 1230 scars were observed on the stem surface of 847 A. opalus and Q. pubescens trees. Both methods yield comparable results on the spatial distribution of relative rockfall activity with similar downslope decreasing recurrence intervals. Yet recurrence intervals vary significantly according to tree species and tree structure. The recurrence interval observed on the stem surface of Q. pubescens exceeds that of A. opalus by > 20 years in the lower part of the studied plot. Similarly, the recurrence interval map derived from A. opalus coppice stands, dominant at the stand scale, does not exhibit a clear spatial pattern. Differences between species may be explained by the bark

  15. Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland.

    PubMed

    Kowalski, Artur; Frankowski, Marcin

    2016-05-01

    In this paper, we present the results of mercury concentration in soils, buds and leaves of maple (Acer platanoides-Ap) and linden (Tilia platyphyllos-Tp) collected in four periods of the growing season of trees, i.e. in April (IV), June (VI), August (VIII) and November (IX) in 2013, from the area of Poznań city (Poland). The highest average concentration of mercury for 88 samples was determined in soils and it equaled 65.8 ± 41.7 ng g(-1) (range 14.5-238.9 ng g(-1)); lower average concentration was found in Ap samples (n = 66): 55.4 ± 18.1 ng g(-1) (range 26.5-106.9 ng g(-1)); in Tp samples 50.4 ± 15.8 ng g(-1) (range 23.1-88.7 ng g(-1)) and in 22 samples of Tp buds 40.8 ± 22.7 ng g(-1) (range 12.4-98.7 ng g(-1)) and Ap buds 28.2 ± 13.6 ng g(-1) (range 8.0-59.5 ng g(-1)). Based on the obtained results, it was observed that the highest concentration of mercury in soils occurred in the centre of Poznań city (95.5 ± 39.1 ng g(-1)), and it was two times higher than the concentration of mercury in other parts of the city. Similar dependencies were not observed for the leaf samples of Ap and Tp. It was found that mercury concentrations in the soil and leaves of maple and linden were different depending on the period of the growing season (April to November). Mercury content in the examined samples was higher in the first two research periods (April IV, June VI), and then, in the following periods, the accumulation of mercury decreased both in soil and leaf samples of the two tree species. There was no correlation found between mercury concentration in leaves and mercury concentration in soils during the four research periods (April-November). When considering the transfer coefficient, it was observed that the main source of mercury in leaves is the mercury coming from the atmosphere. PMID:26846237

  16. Gene Expressing and sRNA Sequencing Show That Gene Differentiation Associates with a Yellow Acer palmatum Mutant Leaf in Different Light Conditions

    PubMed Central

    Li, Shu-Shun; Li, Qian-Zhong; Rong, Li-Ping; Tang, Ling; Zhang, Bo

    2015-01-01

    Acer palmatum Thunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant “Jingling Huangfeng” turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result in A. palmatum significant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs of A. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms of Acer palmatum leaf coloration. PMID:26788511

  17. Gene Expressing and sRNA Sequencing Show That Gene Differentiation Associates with a Yellow Acer palmatum Mutant Leaf in Different Light Conditions.

    PubMed

    Li, Shu-Shun; Li, Qian-Zhong; Rong, Li-Ping; Tang, Ling; Zhang, Bo

    2015-01-01

    Acer palmatum Thunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant "Jingling Huangfeng" turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result in A. palmatum significant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs of A. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms of Acer palmatum leaf coloration. PMID:26788511

  18. Involvement of dopaminergic and cholinergic pathways in the induction of yawning and genital grooming by the aqueous extract of Saccharum officinarum L. (sugarcane) in rats.

    PubMed

    Gamberini, Maria T; Gamberini, Maria C; Nasello, Antonia G

    2015-01-01

    Yawning, associated with genital grooming, is a physiological response that may be used for elucidating the mechanism of action of drugs. Preliminary analysis showed that aqueous extract (AE) of Saccharum induced yawns in rats. So, we aimed to quantify these behavioral responses and investigate the pharmacological mechanisms involved in these actions. During 120 min, after AE administration, the yawns and the genital grooming were quantified at 10 min intervals. Since dopaminergic and cholinergic pathways are implied in these responses, AE were evaluated in the presence of haloperidol 0.5 mg/kg and atropine 2 mg/kg. AE 0.5 g/kg increased the yawns, effect that was blocked both by haloperidol and atropine. Genital grooming could only be stimulated by AE 0.5 g/kg when dopaminergic receptors were blocked by haloperidol. However, it was inhibited when atropine was previously administered. So, we demonstrated a central action of Saccharum and it was postulated that neural circuits with the participation of dopaminergic and cholinergic pathways are involved. The fact that AE is comprised of innumerous compounds could justify the extract's distinct responses. Also, we cannot disregard the presence of different neural circuits that count on the participation of dopaminergic and cholinergic pathways and could be activated by the same induction agent. PMID:25459296

  19. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress

    PubMed Central

    Park, Jong-Won; Benatti, Thiago R.; Marconi, Thiago; Yu, Qingyi; Solis-Gracia, Nora; Mora, Victoria; da Silva, Jorge A.

    2015-01-01

    Transcriptome analysis of sugarcane hybrid CP72-1210 (cold susceptible) and Saccharum spontaneum TUS05-05 (cold tolerant) using Sugarcane Assembled Sequences (SAS) from SUCEST-FUN Database showed that a total of 35,340 and 34,698 SAS genes, respectively, were expressed before and after chilling stress. The analysis revealed that more than 600 genes are differentially expressed in each genotype after chilling stress. Blast2Go annotation revealed that the major difference in gene expression profiles between CP72-1210 and TUS05-05 after chilling stress are present in the genes related to the transmembrane transporter activity. To further investigate the relevance of transmembrane transporter activity against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major intrinsic protein gene (SspNIP2) was selected for functional analysis, of which expression was induced after chilling stress in the cold tolerant TUS05-05. Quantitative real-time PCR showed that SspNIP2 expression was increased ~2.5 fold at 30 minutes after cold treatment and stayed induced throughout the 24 hours of cold treatment. The amino acid sequence analysis of the cloned SspNIP2 confirmed the presence of six transmembrane domains and two NPA (Asn-Pro-Ala) motifs, signature features of major intrinsic protein families. Amino acid analysis confirmed that four amino acids, comprising the ar/R (aromatic residue/arginine) region responsible for the substrate specificity among MIPs, are conserved among monocot silicon transporters and SspNIP2. Salinity stress test on SspNIP2 transgenic tobacco plants resulted in more vigorous transgenic lines than the non-transgenic tobacco plants, suggesting some degree of tolerance to salt stress conferred by SspNIP2. SspNIP2-transgenic plants, exposed to 2 weeks of water stress without irrigation, developed various degrees of water stress symptom. The water stress test confirmed that the SspNIP2 transgenic lines had lower evapotranspiration rates than non

  20. Estimating broad sense heritability and investigating the mechanism of genetic transmission of cold tolerance using mannitol as a measure of post-freeze juice degradation in sugarcane and energycane (Saccharum spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In approximately 25% of the sugarcane producing countries world-wide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. Resistance to freezing temperatures varies greatly among sugarcane cultivars, but the relationship is not well established for energycane (>14% fiber)...

  1. A first look at the ACER-SST dataset: Mapping the spatio-temporal variability of sea-surface temperatures in the last Glacial and the Holocene

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Laepple, Thomas; Bassinot, Franck; Daniau, Anne-Laure; Desprat, Stéphanie; Kim, Jung-Hyun; Fernanda Sánchez-Goñi, Maria; Harrison, Sandy

    2016-04-01

    Climate in the last Glacial was characterized by abrupt and large-scale changes around cold Heinrich-Events and warm Dansgaard-Oeschger excursions in the Northern high latitudes. The global repercussions of these periods of rapid dynamics are, to date, unconstrained. Here, we present a first statistical analysis of the global multi-proxy ACER (Abrupt Climate Changes and Environmental Responses) sea surface temperature dataset, spanning the last 80 thousand years, to investigate the spatial footprints of glacial climate dynamics. In a first step we evaluate the spatial and temporal variability throughout the Glacial period, and contrast them with that during the Holocene. In a second step we investigate to which extent a temporal synchroneity of extreme events during the Glacial is detectable in the proxy records, and analyze the reversibility of Glacial dynamics.

  2. The emergence densities of annual cicadas (Hemiptera: Cicadidae) increase with sapling density and are greater near edges in a bottomland hardwood forest.

    PubMed

    Chiavacci, Scott J; Bednarz, James C; McKay, Tanja

    2014-08-01

    The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels. PMID:24936981

  3. The importance of wood nutrient storage in tropical forest nitrogen and phosphorus cycles: Insights from a sapling defoliation experiment in Panama

    NASA Astrophysics Data System (ADS)

    Heineman, K.; Dalling, J. W.

    2015-12-01

    The availability of soil nutrients limits productivity and influences tree species distribution in tropical forests. Given the scarcity of soil resources, trees in tropical forests should be under selection to store nutrients for periods when nutrient demand exceeds supply. However, little is known about the capacity of trees to remobilize nutrients from long-lived woody biomass in tropical forests, despite wood sequestering a large proportion of bioavailable nutrients in tropical ecosystems. We evaluated nitrogen (N) and phosphorus (P) remobilization from woody biomass via experimental defoliation of saplings from four widely distributed genera of tropical trees in Panama. Focal saplings were sampled in high and low fertility habitats in both montane and lowland forests to maximize contrast in the availability and identity of limiting nutrients. N and P concentrations of stem wood were measured before defoliation and after subsequent re-foliation response to calculate wood remobilization efficiency. Initial wood P concentrations differed significantly within taxa between low and high fertility habitats, whereas initial wood N differed significantly within taxa between lowland and montane forests, but not among soil fertility habitats. In three of four genera studied, wood P concentrations declined after refoliation at both elevations, and the proportion of wood P remobilized was greater on low fertility compared to high fertility sites. In contrast, significant N remobilization was restricted to the low fertility montane site, where nitrogen is most likely to limit plant growth. These findings provide evidence that a significant fraction of N and P in woody biomass is can be remobilized in response to asymmetry in nutrient supply and demand, as opposed consisting primarily of recalcitrant structural material. Furthermore, variation in remobilization responses of species to defoliation provides additional evidence that multiple nutrient-limitation in tropical

  4. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles

    PubMed Central

    Yazaki, Kenichi; Kuroda, Katsushi; Nakano, Takashi; Kitao, Mitsutoshi; Tobita, Hiroyuki; Ogasa, Mayumi Y.; Ishida, Atsushi

    2015-01-01

    Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc,) Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated drought-irrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the Bonin Islands. PMID

  5. Low among-provenance differences in structural and functional plasticity in response to nutrients in saplings of the circum-Mediterranean tree Arbutus unedo L.

    PubMed

    Santiso, Xabier; Retuerto, Rubén

    2015-10-01

    The Mediterranean region is an area of special interest for conservation where the incidence of multiple drivers of global change is expected to increase. One of the factors predicted to change is soil-nutrient availability, an essential factor for plant growth. Thus, study of the effects of variation in this parameter is especially relevant in species with a circum-Mediterranean distribution, such as Arbutus unedo L., in which the different provenances grow in different habitats, which must differ in nutritional conditions. We aimed to determine the effect of provenance on plasticity, to establish whether structural and morphological traits differ in the level of plasticity and to assess how nutrients affect the photosynthetic light response. In a common garden experiment, we studied seven provenances from the circum-Mediterranean range of A. unedo and established two nutrient treatments (low and high nutrient availability). We measured physiological and structural traits in 1-year-old sapling and determined a phenotypic plasticity index (PPI) to quantify the level of plasticity, whereas the radiation effects were tested by construction and analysis of light response curves. Interestingly, provenance did not explain a significant amount of variance, but the plasticity was four times higher for the structural traits than for the physiological traits. Therefore, the plasticity to nutrient availability will not favour or prevent the expansion or contraction of the range of any of these provenances of A. unedo. Furthermore, the structural plasticity demonstrated the ability of the strawberry tree to optimize resource allocation, whereas the physiology remained stable, thus avoiding extra expenditure. The study findings also suggest that increased availability of nutrients would improve the performance of the species during the Mediterranean summer, characterized by high irradiance. These abilities will be key to the survival of saplings of the species under the future

  6. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    PubMed

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. PMID:20395134

  7. Remote sensing of foliar biochemistry with a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Eitel, J.; Vierling, L. A.; Long, D. S.

    2011-12-01

    Foliar biochemistry provides important information about the physiological status of plants. Several different tools and techniques have been developed to infer plant biochemistry (such as state and change of foliar nitrogen (N) and chlorophyll) using remote sensing. However, few techniques allow accurate mapping of foliar biochemistry in 3-dimensions at a sub-cm level. Scanning laser technology is available that measures the x,y,z location of each reflected laser pulse in addition to the intensity of the reflected laser light within a mm-scale ground instantaneous field of view at a very high sampling rate (up to 50,000 points sec-1 in this study). We examined the ability to quantify foliar N of spring wheat (Triticum aestivum L.) and chlorophyll content of two broadleaf tree species saplings (Quercus macrocarpa and Acer saccharum) using a green (532 nm) terrestrial laser scanner. The return intensity of the reflected green laser light was significantly correlated with foliar N concentration of wheat (r2 = 0.68) and the foliar chlorophyll content (r2 = 0.77) of the broadleaf saplings. The results indicate that laser scanners are useful to obtain spatially explicit estimates of foliar biochemistry.

  8. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in saccharum germplasm collections for energy cane improvement

    SciTech Connect

    Todd, James; Comstock, Jack C.

    2015-11-25

    of the cores and the World Collection are similar to each other genotypically and phenotypically, but the core that was selected using only genotypic data was significantly different phenotypically. This indicates that there is not enough association between the genotypic and phenotypic diversity as to select using only genotypic diversity and get the full phenotypic diversity. Core Collection: Creation and Phenotyping Methods: To evaluate this germplasm for breeding purposes, a representative diversity panel selected from the WCSRG of approximately 300 accessions was planted at Canal Point, FL in three replications. These accessions were measured for stalk height and stalk number multiple times throughout the growing season and Brix and fresh biomass during harvest in 2013 and, stalk height, stalk number, stalk diameter, internode length, Brix and fresh and dry biomass was determined in the ratoon crop harvest in 2014. Results: In correlations of multiple measurements, there were higher correlations for early measurements of stalk number and stalk height with harvest traits like Brix and fresh weight. Hybrids had higher fresh mass and Brix while Saccharum spontaneum had higher stalk number and dry mass. The heritability of hybrid mass traits was lower in the ratoon crop. According to the principal component analysis, the diversity panel was divided into two groups. One group had accessions with high stalk number and high dry biomass like S. spontaneum and the other groups contained accessions with higher Brix and fresh biomass like S. officinarum. Mass traits correlated with each other as expected but hybrids had lower correlations between fresh and dry mass. Stalk number and the mass traits correlated with each other except in S. spontaneum and hybrids in the first ratoon. There were 110 accessions not significantly different in Brix from the commercial sugarcane checks including 10 S. spontaneum accessions. There were 27 dry and 6 fresh mass accessions

  9. Insect Species Damage on Ornamental Plants and Saplings of Bartin Province and Its Vicinity in the Western Black Sea Region of Turkey

    PubMed Central

    Kaygin, Azize Toper; Sönmezyildiz, Hilmi; Ülgentürk, Selma; Özdemir, Işıl

    2008-01-01

    The objectives of this study were to identify harmful insect species, understand their biology, assess their damage potential and target plants and define distribution areas. There are a lot of native or cultured ornamental plants in Bartın and its surrounding (Çaycuma, Zonguldak, Karabük, Mengen, Devrek). These plants are herbaceous and woody species. Specimens were collected from various cultured and non-cultured plants. A total of 34 species belonging to 20 families of 5 orders were identified. The order Hemiptera was represented by the highest number of species (19 species), followed by Coleoptera (8), Lepidoptera (4), Orthoptera (2), and Dermaptera (1). Insect samples were collected from plants by net traps, special insect aspirators, and various insect traps. The identified species have been stored in the collection room of the Forest Entomology and Protection Unit, Bartın Forestry Faculty, Zonguldak Karaelmas University (Z.K.U.), Turkey. This is the first detailed study about insect species causing damage on ornamental plants and saplings of Bartın province and its vicinity, although similar studies of different regions exist. This research makes a very important contribution to the insect fauna of Bartın, its environs and Turkey. Twenty four of the identified species were new for Bartın and its vicinity, while the remainder had been previously recorded in different parts of Bartın. PMID:19325767

  10. Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings.

    PubMed

    Brilli, Federico; Tsonev, Tsonko; Mahmood, Tariq; Velikova, Violeta; Loreto, Francesco; Centritto, Mauro

    2013-01-01

    Water availability is a major limiting factor on plant growth and productivity. Considering that Eucalyptus spp. are among the few plant species able to produce both isoprene and monoterpenes, experiments were designed to investigate the response of isoprene emission and isoprenoid concentrations in Eucalyptus citriodora saplings exposed to decreasing fraction of transpirable soil water (FTSW). In particular, this study aimed to assess: (a) the kinetic of water stress-induced variations in photosynthesis, isoprene emission, and leaf isoprenoid concentrations during progressive soil water shortage as a function of FTSW; (b) the ultradian control of isoprene emission and photosynthesis under limited soil water availability; and (c) the optimum temperature sensitivity of isoprene emission and photosynthesis under severe water stress. The optimum temperature for isoprene emission did not change under progressive soil water deficit. However, water stress induced a reallocation of carbon through the MEP/DOXP pathway resulting in a qualitative change of the stored isoprenoids. The ultradian trend of isoprene emission was also unaffected under water stress, and a similar ultradian trend of stomatal and mesophyll conductances was also observed, highlighting a tight coordination between diffusion limitations to photosynthesis during water stress. The kinetics of photosynthetic parameters and isoprene emission in response to decreasing FTSW in E. citriodora are strikingly similar to those measured in other plant functional types. These findings may be useful to refine the algorithms employed in process-based models aiming to precisely up-scale carbon assimilation and isoprenoid emissions at regional and global scales. PMID:23293347

  11. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. PMID:24835239

  12. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions

    PubMed Central

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  13. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions.

    PubMed

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  14. Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type.

    PubMed

    Hu, Bin; Simon, Judy; Günthardt-Goerg, Madeleine S; Arend, Matthias; Kuster, Thomas M; Rennenberg, Heinz

    2015-01-01

    Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming) during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens) were tested on two different soil types (i.e. acidic and calcareous). Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens) compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity. PMID:25961713

  15. Changes in the Dynamics of Foliar N Metabolites in Oak Saplings by Drought and Air Warming Depend on Species and Soil Type

    PubMed Central

    Hu, Bin; Simon, Judy; Günthardt-Goerg, Madeleine S.; Arend, Matthias; Kuster, Thomas M.; Rennenberg, Heinz

    2015-01-01

    Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming) during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens) were tested on two different soil types (i.e. acidic and calcareous). Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens) compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity. PMID:25961713

  16. Studies of uptake and suppresion of Mn/sup 2 +/ migration in highly vacuolated sycamore (Acer pseudoplatanus L) cells by /sup 31/P NMR

    SciTech Connect

    Roby, C.; Bligny, R.; Douce, R.; Pfeffer, P.E.

    1987-04-01

    Recent /sup 31/P NMR studies have demonstrated that Mn/sup 2 +/ appears to invade the cells of heterogeneous excised tissue of corn root tips sequentially, first entering the cytoplasmic compartment, where it complexes with nucleotides and P/sub i/. Under aerobic conditions, further migration across the tonoplast, followed by vacoule trapping was visualized through paramagnetic broadening of the vacoular P/sub i/ resonance. Cultured cells such as Acer pseudoplatanus L offer better opportunities for studying cellular activity by /sup 31/P NMR because of their homogeneity and uniformly rapid response to various metabolic disturbances. In contrast to excised root tissue, Mn/sup 2 +/ showed no measurable accumulation in the cytoplasmic compartments of these cells under aerobic conditions. However, a rapid crossing of the large tonoplast resulted in immediate vacuolar metal ion sequestration. Anoxia did not foster leakage of Mn/sup 2 +/ from the vacuole to the cytoplasm, while hypoxia completely halted all movement of Mn/sup 2 +/ across the plasmalema. This disparity in terms of cell and tissue morphology, membrane permeability and possible tissue trapping of metal ions will be discussed.

  17. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition.

    PubMed

    Krevš, Alina; Darginavičienė, Jūratė; Gylytė, Brigita; Grigutytė, Reda; Jurkonienė, Sigita; Karitonas, Rolandas; Kučinskienė, Alė; Pakalnis, Romas; Sadauskas, Kazys; Vitkus, Rimantas; Manusadžianas, Levonas

    2013-02-01

    Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of N(tot), ammonium and generating higher BOD(7). Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H(+)-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems. PMID:23202636

  18. Ethyl m-digallate from red maple, Acer rubrum L., as the major resistance factor to forest tent caterpillar, Malacosoma disstria Hbn.

    PubMed

    Abou-Zaid, M M; Helson, B V; Nozzolillo, C; Arnason, J T

    2001-12-01

    An ethanolic extract of red maple (Acer rubrum L.) leaves (RME) applied to trembling aspen (Populus tremuloides Michx.) leaves reduced feeding in choice test assays with forest tent caterpillar larvae (Malacosoma disstria Hbn.) (FTC), whereas a trembling aspen foliage extract, similarly applied, stimulated feeding. Compounds isolated from the RME were gallic acid, methyl gallate, ethyl gallate, m-digallate, ethyl m-digallate, 1-O-galloyl-beta-D-glucose, 1-O-galloyl-alpha-L-rhamnose, kaempferol 3-O-beta-D-glucoside, kaempferol 3-O-beta-D-galactoside, kaempferol 3-O-beta-L-rhamnoside, kaempferol-3-O-rhamnoglucoside, quercetin 3-O-beta-D-glucoside, quercetin 3-O-beta-L-rhamnoside and quercetin 3-O-rhamnoglucoside, (-)-epicatechin. (+)-catechin and ellagic acid. All of the gallates, (-)-epicatechin, and kaempferol 3-O-beta-L-rhamnoside deterred feeding on trembling aspen leaf disks when applied at 0.28 mg/cm2. The two digallates deterred feeding by 90% and were the most effective. HPLC analysis indicated that ethyl m-digallate is present in amounts 10-100 x higher in RME (approximately 2.5-250 mg/g) than any other compound. Thus, ethyl m-digallate appears to be the major compound protecting red maple from feeding by FTC, with a minor contribution from other gallates. PMID:11789956

  19. NatB Domain-Containing CRA-1 Antagonizes Hydrolase ACER-1 Linking Acetyl-CoA Metabolism to the Initiation of Recombination during C. elegans Meiosis

    PubMed Central

    Gao, Jinmin; Kim, Hyun-Min; Elia, Andrew E.; Elledge, Stephen J.; Colaiácovo, Monica P.

    2015-01-01

    The formation of DNA double-strand breaks (DSBs) must take place during meiosis to ensure the formation of crossovers, which are required for accurate chromosome segregation, therefore avoiding aneuploidy. However, DSB formation must be tightly regulated to maintain genomic integrity. How this regulation operates in the context of different chromatin architectures and accessibility, and how it is linked to metabolic pathways, is not understood. We show here that global histone acetylation levels undergo changes throughout meiotic progression. Moreover, perturbations to global histone acetylation levels are accompanied by changes in the frequency of DSB formation in C. elegans. We provide evidence that the regulation of histone acetylation requires CRA-1, a NatB domain-containing protein homologous to human NAA25, which controls the levels of acetyl-Coenzyme A (acetyl-CoA) by antagonizing ACER-1, a previously unknown and conserved acetyl-CoA hydrolase. CRA-1 is in turn negatively regulated by XND-1, an AT-hook containing protein. We propose that this newly defined protein network links acetyl-CoA metabolism to meiotic DSB formation via modulation of global histone acetylation. PMID:25768301

  20. Isolation and Bioactivity Analysis of Ethyl Acetate Extract from Acer tegmentosum Using In Vitro Assay and On-Line Screening HPLC-ABTS+ System

    PubMed Central

    Song, Na-Young; Oh, You Chang; Cho, Won-Kyung; Ma, Jin Yeul

    2014-01-01

    The Acer tegmentosum (3 kg) was extracted using hot water, and the freeze-dried extract powder was partitioned successively using dichloromethane (DCM), ethyl acetate (EA), butyl alcohol (n-BuOH), and water. From the EA extract fraction (1.24 g), five phenolic compounds were isolated by the silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatography. Based on spectroscopic methods such as 1H-NMR, 13C-NMR, and LC/MS the chemical structures of the compounds were confirmed as feniculin (1), avicularin (2), (+)-catechin (3), (−)-epicatechin (4), and 6′-O-galloyl salidroside (5). Moreover, a rapid on-line screening HPLC-ABTS+ system for individual bioactivity of the EA-soluble fraction (five phenolic compounds) was developed. The results indicated that compounds 1 and 2 were first isolated from the A. tegmentosum. The anti-inflammatory activities and on-line screening HPLC-ABTS+ assay method of these compounds in LPS-stimulated murine macrophages were rapid and efficient for the investigation of bioactivity of A. tegmentosum. PMID:25386382

  1. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests. PMID:24038752

  2. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    PubMed

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter < 0.5 mm) and fine (0.5-1 mm) root morphology and physiology in terms of respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. PMID:26263877

  3. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature.

    PubMed

    Cerasoli, Sofia; Wertin, Timothy; McGuire, Mary Anne; Rodrigues, Ana; Aubrey, Doug P; Pereira, João Santos; Teskey, Robert O

    2014-01-01

    Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature. PMID:24876300

  4. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  5. Determination of DNA methylation associated with Acer rubrum (red maple) adaptation to metals: analysis of global DNA modifications and methylation-sensitive amplified polymorphism.

    PubMed

    Kim, Nam-Soo; Im, Min-Ji; Nkongolo, Kabwe

    2016-08-01

    Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal-contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation-sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal-contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal-contaminated site compared to uncontaminated populations. Other genotypes from a different metal-contaminated site within the same region appear to be recalcitrant to metal-induced DNA alterations even ≥30 years of tree life exposure to nickel and copper. MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal-contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed. PMID:27547351

  6. De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes.

    PubMed

    Rong, Liping; Li, Qianzhong; Li, Shushun; Tang, Ling; Wen, Jing

    2016-04-01

    Maple (Acer palmatum) is an important species for landscape planting worldwide. Salt stress affects the normal growth of the Maple leaf directly, leading to loss of esthetic value. However, the limited availability of Maple genomic information has hindered research on the mechanisms underlying this tolerance. In this study, we performed comprehensive analyses of the salt tolerance in two genotypes of Maple using RNA-seq. Approximately 146.4 million paired-end reads, representing 181,769 unigenes, were obtained. The N50 length of the unigenes was 738 bp, and their total length over 102.66 Mb. 14,090 simple sequence repeats and over 500,000 single nucleotide polymorphisms were identified, which represent useful resources for marker development. Importantly, 181,769 genes were detected in at least one library, and 303 differentially expressed genes (DEGs) were identified between salt-sensitive and salt-tolerant genotypes. Among these DEGs, 125 were upregulated and 178 were downregulated genes. Two MYB-related proteins and one LEA protein were detected among the first 10 most downregulated genes. Moreover, a methyltransferase-related gene was detected among the first 10 most upregulated genes. The three most significantly enriched pathways were plant hormone signal transduction, arginine and proline metabolism, and photosynthesis. The transcriptome analysis provided a rich genetic resource for gene discovery related to salt tolerance in Maple, and in closely related species. The data will serve as an important public information platform to further our understanding of the molecular mechanisms involved in salt tolerance in Maple. PMID:26475609

  7. Effects of Elevated [CO2] and Low Soil Moisture on the Physiological Responses of Mountain Maple (Acer spicatum L.) Seedlings to Light

    PubMed Central

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (gs), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (Vcmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (Rd), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and gs did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the Ci/Ca in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable. PMID:24146894

  8. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light.

    PubMed

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable. PMID:24146894

  9. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    PubMed

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. PMID:26628517

  10. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.

    PubMed

    Vicentini, Renato; Felix, Juliana de Maria; Dornelas, Marcelo Carnier; Menossi, Marcelo

    2009-03-01

    The present article reports on the characterization of ScBAK1, a leucine-rich repeat receptor-like kinase from sugarcane (Saccharum spp.), expressed predominantly in bundle-sheath cells of the mature leaf and potentially involved in cellular signaling cascades mediated by high levels of sugar in this organ. In this report, it was shown that the ScBAK1 sequence was similar to the brassinosteroid insensitive1-associated receptor kinase1 (BAK1). The putative cytoplasmatic domain of ScBAK1 contains all the amino acids characteristic of protein kinases, and the extracellular domain contains five leucine-rich repeats and a putative leucine zipper. Transcripts of ScBAK1 were almost undetectable in sugarcane roots or in any other sink tissue, but accumulated abundantly in the mature leaves. The ScBAK1 expression was higher in the higher sugar content individuals from a population segregating for sugar content throughout the growing season. In situ hybridization in sugarcane leaves showed that the ScBAK1 mRNA accumulated at much higher levels in bundle-sheath cells than in mesophyll cells. In addition, using biolistic bombardment of onion epidermal cells, it was shown that ScBAK1-GFP fusions were localized in the plasma membrane as predicted for a receptor kinase. All together, the present data indicate that ScBAK1 might be a receptor involved in the regulation of specific processes in bundle-sheath cells and in sucrose synthesis in mature sugarcane leaves. PMID:19096852

  11. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm

    PubMed Central

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-01-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (−0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. PMID:26628517

  12. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3.

    PubMed

    Chandel, Anuj K; Narasu, M Lakshmi; Chandrasekhar, G; Manikyam, A; Rao, L Venkateswar

    2009-04-01

    Saccharum spontaneum is a wasteland weed consists of 45.10+/-0.35% cellulose and 22.75+/-0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91+/-0.44 g/L (539.10+/-0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85+/-0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85+/-0.07 IU/mL of filter paperase (FPase), 1.25+/-0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56+/-0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28+/-0.5 degrees C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using "in-situ" entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm x 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45+/-0.55 g/L (yield, 0.410+/-0.010 g/g) and 21.66+/-0.62 g/L (yield, 0.434+/-0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85+/-0.44 g/L, yield, 0.45+/-0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation. PMID:19114303

  13. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    PubMed Central

    Wesley-Smith, James; Walters, Christina; Pammenter, N. W.

    2015-01-01

    Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following

  14. ACER Chemistry Test Item Collection. ACER Chemtic Year 12.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The chemistry test item banks contains 225 multiple-choice questions suitable for diagnostic and achievement testing; a three-page teacher's guide; answer key with item facilities; an answer sheet; and a 45-item sample achievement test. Although written for the new grade 12 chemistry course in Victoria, Australia, the items are widely applicable.…

  15. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan.

    PubMed

    Bangash, Asia; Ahmed, Iftikhar; Abbas, Saira; Kudo, Takuji; Shahzad, Armghan; Fujiwara, Toru; Ohkuma, Moriya

    2015-04-01

    The taxonomic position of a Gram-stain negative, moderately halophilic bacterium, designated NCCP-934(T), was investigated using polyphasic taxonomic approach. The strain NCCP-934(T) was isolated from rhizosphere of a plant (Saccharum spontaneum, family Poaceae) growing in salt mines area in the Karak district of Khyber Pakhtunkhwa Province, Pakistan. Cells of strain NCCP-934(T) are rod shaped and motile. The bacterium is strictly aerobic, can grow at a temperature range of 10-40 °C (optimum at 30-33 °C) and in a pH range of 6.0-10.5 (optimum pH 7.0-9.0). The strain can tolerate 1-30 % (w/v) NaCl (optimal growth occurs in the presence of approximately 3-9 % NaCl). The phylogenetic analysis based on the 16S rRNA gene sequence, showed that strain NCCP-934(T) belongs to the genus Kushneria with the highest sequence similarity to K. marisflavi SW32(T) (98.9 %), K. indalinina CG2.1(T) (98.7 %), K. avicenniae MW2a(T) (98.4 %) and less than 97 % similarity with other related species (94.7 % with the type species of the genus, K. aurantia A10(T)). DNA-DNA relatedness between strain NCCP-934(T) and the type strains of the closely related species was lower than 18 %. The chemotaxonomic data (major respiratory quinone, Q9; predominant fatty acids, C18:1 ω7c and C16:0 followed by C12:0 3-OH and Summed features 3 (C16:1 ω7c/iso-C15:0 2-OH); major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanol, phosphatidylserine, phosphatidylinositol and three polar lipid of unknown structure) supported the affiliation of strain NCCP-934(T) within the genus Kushneria. The DNA G+C content of strain NCCP-934(T) was 59.2 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain NCCP-934(T) can be distinguished from the closely related taxa and thus represents a novel species in the genus Kushneria, for which the name Kushneria pakistanensis sp. nov. is proposed, with the type strain NCCP-934(T) (=LMG 28525(T

  16. Comparative water fluxes through leaf litter of tropical plantation trees and the invasive grass Saccharum spontaneum in the Republic of Panama

    NASA Astrophysics Data System (ADS)

    Park, Andrew; Friesen, Patrick; Serrud, Aneth Aracelly Sarmiento

    2010-03-01

    SummaryThe hydrological properties of leaf litter layers remain relatively unexplored, especially in tropical vegetation communities. In this paper we explore the hydrological dynamics of litter samples from reforestation plots of tropical hardwoods and the invasive sugar cane Saccharum spontaneum, which these trees were planted to replace. Water holding capacity (WHC) and drying rates were compared under controlled conditions, and throughfall interception, drainage and calculated evaporation were measured in two field experiments (A and B) conducted with different sets of samples. The WHC of samples varied from 3.4 to 6.5 mm in experiment A, and from 1.6 to 7.1 mm in experiment B. Drainage through the litter samples averaged 78.3 ± 34.4% and 61.2 ± 34.70% TF in experiments A and B, respectively. Daily water storage was 70.8 ± 14.25% of total WHC in experiment A and 78.6 ± 25.35% of total WHC in experiment B. Estimated evaporation averaged 34.8 ± 12.52% of WHC in experiment A and 34.3 ± 14.91% of WHC in experiment B. Although significant interspecific differences in WHC, interception of TF and evaporation were recorded, species rankings tended to be different in experiments A and B. The exception was litter from the leguminous tree Gliricidia sepium, which maintained the lowest WHC and water storage in the field in both experiments, but which evaporated water more rapidly than other species. The depth of throughfall draining through litter samples in the field was similar among all species in both experiments. Comparisons of regression slopes also showed that drainage depth increased with increasing throughfall at similar rates among species. On the other hand, both slopes and slope elevations differed among species when drainage was expressed in l kg -1. Patterns of water storage and drainage in our samples were in broad agreement with those of other studies, although WHC and litter necromass in our young tree plantations fell into the lower end of the range

  17. Quantification of 16S gene and its relation with the CO2 emission and soil properties in areas under management of sugarcane (Saccharum spp.)

    NASA Astrophysics Data System (ADS)

    Moitinho, Mara Regina; da Silva Bicalho, Elton; De Bortoli Teixeira, Daniel; La Scala, Newton, Jr.

    2015-04-01

    A diversity of microorganisms has an essential role in the recycling of soil chemical elements, controlling, for example, the dynamics of carbon de)ion and stabilization, and consequently the patterns of soil CO2 emission. In this sense, the objectives of this study were: (i) to estimate and compare the genetic diversity of microorganisms in soils under different sugarcane (Saccharum spp.) managements using molecular techniques based on metagenomic studies, and (ii) investigate the relationship of soil CO2 emission (FCO2) with microbiological results and soil chemical and physical properties in the evaluated managements. This study was conducted in agricultural areas located in southern Brazil, in which the following sugarcane managements were used: green and burned residues management, a sugarcane area under reform, and a native forest (used as a reference of the original soil condition). FCO2, soil temperature, and soil moisture were measured over 10 days, and at the end of the measurements soil samples were taken in order to determine the physical and chemical soil properties. The determination of the diversity of soil microorganisms was carried out by means of molecular techniques based on 16S rRNA gene sequencing. The highest mean value for FCO2 (3.25 μmol m-2s-1) was observed in the sugarcane area under reform, and the lowest values (1.85 and 1.27 μmol m-2s-1) were observed respectively in the green residue management and native forest areas. This same pattern was also observed when the 16S gene was quantified. In this case, the largest number of copies of this gene was found in the sugarcane area under reform (4.3x1010 copies of 16S rRNA gene per gram of dry soil), and its smallest number of copies was found in the green residues management area (1.7x1010 copies of 16S rRNA gene per gram of dry soil). The largest number of copies of the 16S gene associated to the highest values of FCO2, both observed in the sugarcane area under reform, could be related to

  18. Effects of Long-Term Periodic Submergence on Photosynthesis and Growth of Taxodium distichum and Taxodium ascendens Saplings in the Hydro-Fluctuation Zone of the Three Gorges Reservoir of China.

    PubMed

    Wang, Chaoying; Li, Changxiao; Wei, Hong; Xie, Yingzan; Han, Wenjiao

    2016-01-01

    Responses of bald cypress (Taxodium distichum) and pond cypress (Taxodium ascendens) saplings in photosynthesis and growth to long-term periodic submergence in situ in the hydro-fluctuation zone of the Three Gorges Dam Reservoir (TGDR) were studied. Water treatments of periodic deep submergence (DS) and moderate submergence (MS) in situ were imposed on 2-year-old bald cypress and pond cypress saplings. The effects of periodic submergence on photosynthesis and growth were investigated after 3 years (i.e. 3 cycles) compared to a control (i.e. shallow submergence, abbreviated as SS). Results showed that pond cypress had no significant change in net photosynthetic rate (Pn) in response to periodic moderate and deep submergence in contrast to a significant decrease in Pn of bald cypress under both submergence treatments, when compared to that of SS. Ratios of Chlorophyll a/b and Chlorophylls/Carotenoid of pond cypress were significantly increased in periodic moderate submergence and deep submergence, while bald cypress showed no significant change. Diameter at breast height (DBH) and tree height of both species were significantly reduced along with submergence depth. Relative diameter and height growth rates of the two species were also reduced under deeper submergence. Moreover, bald cypress displayed higher relative diameter growth rate than pond cypress under deep submergence mainly attributed to higher productivity of the larger crown area of bald cypress. When subjected to deep subergence, both species showed significant reduction in primary branch number, while in moderate submergence, bald cypress but not pond cypress showed significant reduction in primary branch number. These results indicate that both bald cypress and pond cypress are suitbale candidates for reforestation in the TGDR region thanks to their submergence tolerance characteristics, but bald cypress can grow better than pond cypress under deep submergence overall. PMID:27618547

  19. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    USGS Publications Warehouse

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  20. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1

    NASA Astrophysics Data System (ADS)

    Kersevan, Borut Paul; Richter-Waş, Elzbieta

    2013-03-01

    The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far. The program itself provides a library of the massive matrix elements (coded by MADGRAPH) and native phase space modules for generation of a set of selected processes. The hard process event can be completed by the initial and the final state radiation, hadronisation and decays through the existing interface with either PYTHIA, HERWIG or ARIADNE event generators and (optionally) TAUOLA and PHOTOS. Interfaces to all these packages are provided in the distribution version. The phase-space generation is based on the multi-channel self-optimising approach using the modified Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space was obtained by using a modified ac-VEGAS algorithm. An additional improvement in the recent versions is the inclusion of the consistent prescription for matching the matrix element calculations with parton showering for a select list of processes. Catalogue identifier: ADQQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3853309 No. of bytes in distributed program, including test data, etc.: 68045728 Distribution format: tar.gz Programming language: FORTRAN 77 with popular extensions (g77, gfortran). Computer: All running Linux. Operating system: Linux. Classification: 11.2, 11.6. External routines: CERNLIB (http://cernlib.web.cern.ch/cernlib/), LHAPDF (http://lhapdf.hepforge.org/) Catalogue identifier of previous version: ADQQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 149(2003)142 Does

  1. Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.).

    PubMed

    Hale, Anna L; Viator, Ryan P; Eggleston, Gillian; Hodnett, George; Stelly, David M; Boykin, Debbie; Miller, Donnie K

    2016-03-01

    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources. PMID:26885566

  2. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in Response to Drought Stress.

    PubMed

    Augustine, Sruthy Maria; Cherian, Anoop V; Syamaladevi, Divya P; Subramonian, N

    2015-12-01

    Plant growth during abiotic stress is a long sought-after trait especially in crop plants in the context of global warming and climate change. Previous studies on leaf epidermal cells have revealed that during normal growth and development, adjacent cells interdigitate anisotropically to form cell morphological patterns known as interlocking marginal lobes (IMLs), involving the cell wall-cell membrane-cortical actin continuum. IMLs are growth-associated cell morphological changes in which auxin-binding protein (ABP), Rho GTPases and actin are known to play important roles. In the present study, we investigated the formation of IMLs under drought stress and found that Erianthus arundinaceus, a drought-tolerant wild relative of sugarcane, develops such growth-related cell morphological patterns under drought stress. Using confocal microscopy, we showed an increasing trend in cortical F-actin intensity in drought-tolerant plants with increasing soil moisture stress. In order to check the role of drought tolerance-related genes in IML formation under soil moisture stress, we adopted a structural data mining strategy and identified indirect connections between the ABPs and heat shock proteins (HSPs). Initial experimental evidence for this connection comes from the high transcript levels of HSP70 observed in drought-stressed Erianthus, which developed anisotropic interdigitation, i.e. IMLs. Subsequently, by overexpressing the E. arundinaceus HSP70 gene (EaHSP70) in sugarcane (Saccharum spp. hybrid), we confirm the role of HSP70 in the formation of anisotropic interdigitation under drought stress. Taken together, our results suggest that EaHSP70 acts as a key regulator in the formation of anisotropic interdigitation in drought-tolerant plants (Erianthus and HSP70 transgenic sugarcane) under moisture stress in an actin-mediated pathway. The possible biological significance of the formation of drought-associated interlocking marginal lobes (DaIMLs) in sugarcane plants upon

  3. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  4. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    ERIC Educational Resources Information Center

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  5. EFFECTS OF SULFURIC ACID RAIN ON TWO MODEL HARDWOOD FORESTS: THROUGHFALL, LITTER LEACHATE, AND SOIL SOLUTION

    EPA Science Inventory

    Simulated sulfuric acid rain (pH 3.0, 3.5, 4.5, and 5.6) was applied to model forests containing either sugar maple (Acer saccharum) or red alder (Alnus rubra). Water samples were collected above and below the canopy, below the litter, and from 20 cm and 1 m below the surface of ...

  6. QUALITY ASSURANCE ASPECTS OF THE JOINT USA-CANADA NORTH AMERICAN SUGAR MAPLE DECLINE PROJECT

    EPA Science Inventory

    The North American Sugar Maple Decline Project was implemented in 1988 in response to concerns about the condition of sugar maple (Acer saccharum Marsh) in the United States and Canada. ata collection for the project involved at least 15 federal, state, and provincial crews from ...

  7. FACTORS INFLUENCING FALL FOLIAGE COLOR EXPRESSION IN SUGAR MAPLE TREES.

    EPA Science Inventory

    Abstract: We evaluated factors influencing red autumn coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrition and carbohydrate concentrations, moisture content, and phenology of color development of leaves from 16 mature open-grown trees on 12 d...

  8. Effects of Harvesting Intensity and Herbivory by White-tailed Deer on Vegetation and Nutrient Uptake in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Yorks, T. E.; Leopold, D. J.; Raynal, D. J.; Murdoch, P. S.; Burns, D. A.

    2003-12-01

    We quantified the response of vegetation and nutrient uptake in a northern hardwood forest in southeastern New York for three to four years after three intensities of harvesting: clearcutting, heavy timber stand improvement (TSI), light TSI (97, 29, and 10% basal area reductions, respectively). We also quantified effects of white-tailed deer (Odocoileus virginianus) herbivory on nutrient retention by vegetation. Total biomass and nutrient accumulation in vegetation was higher after TSI than clearcutting in the first two years but was highest in the fenced clearcut in subsequent years, indicating that TSI or partial harvesting is a viable management tool for harvesting timber while consistently maintaining high rates of nutrient retention. After clearcutting, biomass and nutrient retention were initially dominated by woody stems <1.4 m tall and herbaceous vegetation, but saplings 0.1-5.0 cm DBH became the most important contributors to biomass and nutrient accumulation within four years. However, after both intensities of TSI, trees >5.0 cm DBH continued to account for most biomass and nutrient accumulation whereas understory vegetation accumulated little biomass or nutrients. Heavy TSI resulted in increased regeneration of only two tree species (Acer pensylvanicum, Fagus grandifolia), but clearcutting allowed these two species, mature forest species (A. saccharum, Betula alleghaniensis), and the early successional Prunus pensylvanica to regenerate. Several early successional shrub and herbaceous species were also important to nutrient retention after clearcutting, including Polygonum cilinode, Rubus spp., and Sambucus racemosa. Herbivory by white-tailed deer dramatically reduced biomass and nutrient accumulation by woody stems <5 cm DBH after clearcutting (5.5 vs. 0.7 Mg biomass/ha and 30.4 vs. 6.3 kg N/ha on fenced and unfenced clearcut sites, respectively, after four years), indicating the important influence this herbivore can have on nutrient retention in

  9. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.

    PubMed

    Tschaplinski, Timothy J.; Gebre, G. Michael; Shirshac, Terri L.

    1998-05-01

    Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy

  10. Effect of brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells.

    PubMed Central

    Driouich, A; Zhang, G F; Staehelin, L A

    1993-01-01

    Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and

  11. Probability of tree seedling establishment changes across a forest-old field edge gradient.

    PubMed

    Meiners, Scott J; Pickett, Steward T A; Handel, Steven N

    2002-03-01

    Forest edges affect many aspects of plant communities, causing changes in microclimate, species composition, and community structure. However, the direct role of edges in regulating forest regeneration is relatively unknown. The pattern of tree establishment across a forest-old field edge was experimentally examined to determine the response of three tree species to the edge gradient. We placed 100 1-m(2) plots in a 90 × 90 m grid that began 30 m inside the forest, extended across the edge, and ended at 60 m into the old field. Into each plot, we planted seeds of Acer rubrum, Acer saccharum, and Quercus palustris. Emergence increased with distance into the field for both A. saccharum and Q. palustris. Emergence for A. rubrum increased from forest to field, reaching a maximum near 20 m into the field, and then declined with further distance. Nearly all A. rubrum seedlings died shortly after emergence. Survival of A. saccharum increased with distance into the old field, while survivorship of Q. palustris did not respond to the edge gradient. Establishment probabilities increased with distance into the old field for both A. saccharum and Q. palustris. Growth of Q. palustris and allocation patterns of A. saccharum also varied across the edge gradient. These results suggest that edges have complex, species-specific effects on tree establishment and growth that can influence the spatial pattern and species composition of regenerating forests. PMID:21665643

  12. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  13. Host Plants of Xylosandrus mutilatus in Mississippi

    SciTech Connect

    Stone, W.D.; Nebeker, T.E.; Gerard, P.D.

    2007-03-15

    Host range of Xylosandrus mutilatus (Blandford) in North America is reported here for the first time. Descriptive data such as number of attacks per host, size of stems at point of attacks, and height of attacks above ground are presented. Hosts observed in Mississippi were Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux, and Vitus rotundifolia Michaux. Liquidamber styraciflua had significantly more successful attacks, significantly higher probability of attacks, and significantly higher number of adult beetles per host tree than did Carya spp., A. rubrum, and L. tulipifera. This information is relevant in determining the impact this exotic beetle may have in nurseries, urban areas, and other forestry systems where this beetle becomes established. (author) [Spanish] El rango de hospederos de Xylosandrus mutilatus (Blandford) en America del Norte esta reportado aqui por la primera vez. Se presentan datos descriptivos como el numero de ataques por hospederos, el tamano de los tallos en el punto de ataque y la altura por encima del nivel de tierra de los ataques. Los hospederos observados en el estado de Mississippi fueron Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux y Vitus rotundifolia Michaux. Liquidamber styraciflua tuvo ataques significativamente mas exitosos, una probabilidad significativamente mas alta de ataques y un numero significativamente mayor de adultos de escarabajos por arbol hospedero que Carya spp., A. rubrum y L. tulipifera

  14. Controls on methane emissions from Alnus glutinosa saplings.

    PubMed

    Pangala, Sunitha R; Gowing, David J; Hornibrook, Edward R C; Gauci, Vincent

    2014-02-01

    Recent studies have confirmed significant tree-mediated methane emissions in wetlands; however, conditions and processes controlling such emissions are unclear. Here we identify factors that control the emission of methane from Alnus glutinosa. Methane fluxes from the soil surface, tree stem surfaces, leaf surfaces and whole mesocosms, pore water methane concentrations and physiological factors (assimilation rate, stomatal conductance and transpiration) were measured from 4-yr old A. glutinosa trees grown under two artificially controlled water-table positions. Up to 64% of methane emitted from the high water-table mesocosms was transported to the atmosphere through A. glutinosa. Stem emissions from 2 to 22 cm above the soil surface accounted for up to 42% of total tree-mediated methane emissions. Methane emissions were not detected from leaves and no relationship existed between leaf surface area and rates of tree-mediated methane emissions. Tree stem methane flux strength was controlled by the amount of methane dissolved in pore water and the density of stem lenticels. Our data show that stem surfaces dominate methane egress from A. glutinosa, suggesting that leaf area index is not a suitable approach for scaling tree-mediated methane emissions from all types of forested wetland. PMID:24219654

  15. Aboriginal Students in Victoria. ACER Research Monograph No. 3.

    ERIC Educational Resources Information Center

    de Lemos, Marion M.

    An estimated 80%-90% of all Aboriginal students enrolled in the primary and secondary schools of Victoria, Australia, were tested and surveyed to determine their numbers, distribution, attendance, achievement, attitudes, and school leaving patterns. Most of the 1244 Aboriginals surveyed attended state schools and 75% were schooled in rural areas.…

  16. Interspecific analysis of xylem freezing responses in Acer and Betula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperate woody plants have evolved two methods for coping with seasonal exposure to sub-zero temperatures. Supercooling is a freeze-avoidance strategy where cells are able to resist the freezing of intracellular water below sub-zero temperatures. Non-supercooling is a freeze-tolerance strategy wh...

  17. Conceptual Understanding in Social Education. ACER Research Monograph No. 45.

    ERIC Educational Resources Information Center

    Doig, Brian; And Others

    This report describes the results of a 1992 survey of students' economic, geographical, cultural, historical, and political understandings in the state of Victoria (Australia). The conception of some 2,900 students in Years 5 and 9 in government, Catholic and independent schools are investigated and described. The survey is one of a series of…

  18. Cloning, expression and characterization of sugarcane (Saccharum officinarum L.) transketolase.

    PubMed

    Kalhori, Nahid; Nulit, R; Go, Rusea

    2013-10-01

    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants. PMID:24132392

  19. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. PMID:25588119

  20. [Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains].

    PubMed

    Li, Yan-Li; Yang, Hua; Kang, Xin-Gang; Wang, Yan; Yue, Gang; Shen, Lin

    2014-02-01

    Based on fieldwork on a plot of 60 m x 60 m in the Changbai Mountain area of Northeast China in August 2012, the spatial distribution pattern and heterogeneity of natural regeneration in the spruce-fir mixed broadleaf-conifer forest were analyzed using semi-variograms, fractal dimensions and Kriging interpolation methods. The results showed that Abies nephrolepis and Acer mono were the most common regeneration species, accounting for 87.4% of the total. The regeneration seedlings and saplings presented an aggregate distribution pattern with the biggest radius of 9.93 m. Distinct spatial autocorrelation existed among regeneration seedlings and saplings, with 88.7% of variation coming from structure factors (biological and ecological properties and environmental heterogeneity) and 11.3% from random factors. The spatial distribution of the regeneration seedlings and saplings presented anisotropy, with the smallest fractal dimension and strongest spatial heterogeneity from north to south, and the highest fractal dimension and weakest spatial heterogeneity from northeast to southwest. The spatial heterogeneity of heights of seedlings and saplings was greater than that of root collar diameters. The distance of spatial autocorrelation for tree root collar diameters was 29.97 m, and that for heights was 31.86 m. Random factors and structure factors were found to contribute equally to the spatial heterogeneity. PMID:24830227

  1. Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest.

    PubMed

    Flagel, D G; Belovsky, G E; Beyer, D E

    2016-04-01

    Herbivores can be major drivers of environmental change, altering plant community structure and changing biodiversity through the amount and species of plants consumed. If natural predators can reduce herbivore numbers and/or alter herbivore foraging behavior, then predators may reduce herbivory on sensitive plants, and a trophic cascade will emerge. We have investigated whether gray wolves (Canis lupus) generate such trophic cascades by reducing white-tailed deer (Odocoileus virginianus) herbivory on saplings and rare forbs in a northern mesic forest (Land O' Lakes, WI). Our investigation used an experimental system of deer exclosures in areas of high and low wolf use that allowed us to examine the role that wolf predation may play in reducing deer herbivory through direct reduction in deer numbers or indirectly through changing deer behavior. We found that in areas of high wolf use, deer were 62 % less dense, visit duration was reduced by 82 %, and percentage of time spent foraging was reduced by 43 %; in addition, the proportion of saplings browsed was nearly sevenfold less. Average maple (Acer spp.) sapling height and forb species richness increased 137 and 117 % in areas of high versus low wolf use, respectively. The results of the exclosure experiments revealed that the negative impacts of deer on sapling growth and forb species richness became negligible in high wolf use areas. We conclude that wolves are likely generating trophic cascades which benefit maples and rare forbs through trait-mediated effects on deer herbivory, not through direct predation kills. PMID:26670677

  2. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    PubMed

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude

  3. From buds to litter: seasonal changes in leaf wax concentrations and carbon isotopes and implications for the geologic past

    NASA Astrophysics Data System (ADS)

    Suh, Y. J.; Diefendorf, A. F.

    2014-12-01

    The carbon isotope composition (δ13C) of leaf waxes, such as n-alkanes, have extensively been used in paleoenvironmental studies for reconstruction of the past vegetation, climate and carbon cycling. There is however little information available on the seasonal variation of leaf wax concentration and δ13C in modern plants and when the δ13C signal is set. This lack of information confounds interpretations of leaf wax δ13C in sedimentary archives. To address this gap, this study investigates temporal changes in n-alkane and n-alkanoic acid δ13C values in several species (Acer rubrum, Acer saccharum, Ulmus Americana, Sassafras albidum, and Juniperus virginiana) within a single temperate deciduous forest stand in southern Ohio. We sampled atmospheric air, buds, leaves, leaf litter, and surface soil weekly during leaf flush and biweekly thereafter. In A. rubrum, A. saccharum, and U. Americana, buds had one or two dominant n-alkanes, such as C29 and C31. After leaf flush, the concentrations of shorter n-alkanes (C23~C27) significantly increased relative to the longer chain-lengths. We are currently analyzing remaining samples from the growing season and are analyzing bulk leaf and leaf wax (n-alkanes, n-alkanoic acids) δ13C values. This information will be important for identifying environmental and physiological controls on leaf wax δ13C and will improve interpretations of leaf wax δ13C preserved in the geologic record.

  4. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  5. Chamber and field evaluations of air pollution tolerances of urban trees

    SciTech Connect

    Karnosky, D.F.

    1981-04-01

    Results are presented for a study of the relative air pollution tolerances of 32 urban-tree cultivars as determined by both chamber fumigations and field exposures. Tolerances to ozone and sulfur dioxide, alone and in combination, were determined using short-term, acute doses administered while the plants were inside a plastic fumigation chamber located inside the Cary Arboretum greenhouses. In a follow-up study still underway, representatives of the same cultivars were outplanted at four locations in the greater New York City area. To date, only oxidant-type injury has been observed on trees in the field plots. Cultivars tolerant to all chamber and field exposures were Acer platanoides Cleveland, Crimson King, Emerald Queen, Jade Glen, and Summershade; Acer rubrum Autumn Flame and Red Sunset; Acer saccharum Green Mountain and Temple's Upright; Fagus sylvatica Rotundifolia; Fraxinus pennsylvanica Summit; and Ginkgo biloba Fastigate and Sentry. Cultivars sensitive to ozone as determined by the chamber and field tests and that may serve as bioindicators of the presence of ozone were Gleditsia triacanthos inermis imperial and Platanus acerifolia Bloodgood.

  6. Water Relations and Hydraulic Architecture of a Tropical Tree (Schefflera morototoni) 1

    PubMed Central

    Tyree, Melvin T.; Snyderman, David A.; Wilmot, Timothy R.; Machado, Jose-Luis

    1991-01-01

    The water relations and hydraulic architecture of a tropical tree (Schefflera morototoni) and of two temperate species (Acer saccharum and Thuja occidentalis) are reported. Among the water relations parameters measured were leaf and stem water storage capacity, leaf water potential, transpiration, and vulnerability of stems to cavitation and loss of hydraulic conductivity by embolisms. Among the hydraulic architecture parameters measured were hydraulic conductivity per unit pressure gradient, specific conductivity, leaf-specific conductivity, and Huber value. In terms of vulnerability of stems to cavitation, stem and leaf capacitances, and leaf-specific conductivity, all three species followed the same sequence: Schefflera > Acer > Thuja. It is argued here that the high stem capacitance and high leaf-specific conductivity of Schefflera are necessary to compensate for its high vulnerability to cavitation. Extractable water storage per unit leaf area in Schefflera stems is >100 times that of Acer and may permit the species to survive unusually long, dry seasons in Panama. Although Schefflera frequently grows >20 meters, the biggest resistance to water flow in the shoots resides in the leaves. PMID:16668305

  7. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    PubMed Central

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  8. INFLUENCE OF PLANT MATERIAL HANDLING PROTOCOLS ON TERPENOID PROFILES OF ONE-SEED JUNIPER SAPLINGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimation of one-seed juniper (Juniperus monosperma (Englem). Sarg.) intake by goats and sheep often requires harvesting, transporting, and storing plant material that is later used in pen experiments. Such manipulation could alter terpenoid profiles and modify herbivory levels significant...

  9. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structure and chlorophyll content strongly affect rates of photosynthesis. Rapid, objective, and repeatable methods are needed to measure these vegetative parameters to advance our understanding and modeling of plant ecophysiological processes. Terrestrial scanners (TLS) can be used to measure...

  10. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    NASA Astrophysics Data System (ADS)

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  11. O3, CO2 and chemical fractionation in ponderosa pine saplings

    EPA Science Inventory

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  12. Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains.

    PubMed

    Berry, Z Carter; Hughes, Nicole M; Smith, William K

    2014-02-01

    Cloud immersion can provide a potentially important moisture subsidy to plants in areas of frequent fog including the threatened spruce-fir communities of the southern Appalachian Mountains (USA). These mountaintop communities grow only above ~1,500 m elevation, harbor the endemic Abies fraseri, and have been proposed to exist because of frequent cloud immersion. While several studies have demonstrated the importance of cloud immersion to plant water balance, no study has evaluated the proportion of plant water derived from cloud moisture in this ecosystem. Using the isotopic mixing model, IsoSource, we analyzed the isotopic composition of hydrogen and oxygen for water extracted from ground water, deep soil, shallow soil, fog, and plant xylem at the upper and lower elevational limits both in May (beginning of the growing season) and October (end of the growing season). Cloud-immersion water contributed up to 31% of plant water at the upper elevation sites in May. High-elevation plants of both species also experienced greater cloud immersion and had greater cloud water absorption (14-31%) compared to low-elevation plants (4-17%). Greater cloud water uptake occurred in May compared to October, despite similar rainfall and cloud-immersion frequencies. These results demonstrate the important water subsidy that cloud-immersion water can provide. With a warming climate leading potentially to increases in the ceiling of the cloud base and, thus, less frequent cloud immersion, persistence of these relic mountaintop forests may depend on the magnitude of these changes and the compensating capabilities of other water sources. PMID:24271421

  13. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.

    PubMed

    Berthier, Stephane; Stokes, Alexia

    2006-01-01

    To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants. PMID:16203716

  14. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. PMID:25769339

  15. Is climate an important driver of post-European vegetation change in the Eastern United States?

    PubMed

    Nowacki, Gregory J; Abrams, Marc D

    2015-01-01

    Many ecological phenomena combine to direct vegetation trends over time, with climate and disturbance playing prominent roles. To help decipher their relative importance during Euro-American times, we employed a unique approach whereby tree species/genera were partitioned into temperature, shade tolerance, and pyrogenicity classes and applied to comparative tree-census data. Our megadata analysis of 190 datasets determined the relative impacts of climate vs. altered disturbance regimes for various biomes across the eastern United States. As the Euro-American period (ca. 1500 to today) spans two major climatic periods, from Little Ice Age to the Anthropocene, vegetation changes consistent with warming were expected. In most cases, however, European disturbance overrode regional climate, but in a manner that varied across the Tension Zone Line. To the north, intensive and expansive early European disturbance resulted in the ubiquitous loss of conifers and large increases of Acer, Populus, and Quercus in northern hardwoods, whereas to the south, these disturbances perpetuated the dominance of Quercus in central hardwoods. Acer increases and associated mesophication in Quercus-Pinus systems were delayed until mid 20th century fire suppression. This led to significant warm to cool shifts in temperature class where cool-adapted Acer saccharum increased and temperature neutral changes where warm-adapted Acer rubrum increased. In both cases, these shifts were attributed to fire suppression rather than climate change. Because mesophication is ongoing, eastern US forests formed during the catastrophic disturbance era followed by fire suppression will remain in climate disequilibrium into the foreseeable future. Overall, the results of our study suggest that altered disturbance regimes rather than climate had the greatest influence on vegetation composition and dynamics in the eastern United States over multiple centuries. Land-use change often trumped or negated the impacts

  16. PISA 2003 Australia: ICT Use Familiarity at School and Home. ACER Research Monograph Number 62

    ERIC Educational Resources Information Center

    Thomson, Sue; De Bortoli, Lisa

    2007-01-01

    As countries continue to invest in information and communication technologies (ICT) and they become even more common in the workplace, there is an increasing demand for schools to produce technologically literate students. This report presents results from the "Programme for International Student Assessment" (PISA) 2003, and examines how extensive…

  17. ACER and University of Melbourne Music Evaluation Kit. Handbook and Report.

    ERIC Educational Resources Information Center

    Bryce, Jennifer

    The Melbourne Music Evaluation Kit (MEK) was designed to aid teachers of first-year secondary-school music classes to select appropriate curriculum materials related to the music backgrounds of class members, as indicated by scores on the kit. Tests included in the kit are criterion- referenced and are used as a diagnostic tool to measure…

  18. Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability

    PubMed Central

    Li, Xiuyuan; Rennenberg, Heinz; Simon, Judy

    2015-01-01

    Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, 15N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With inter-specific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to inter-specific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with inter-specific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech. PMID:25983738

  19. S1415CD, Trial Assessing CSF Prescribing Effectiveness and Risk (TrACER)

    ClinicalTrials.gov

    2016-07-21

    Febrile Neutropenia; Stage 0 Breast Cancer; Stage 0 Colorectal Cancer; Stage 0 Non-Small Cell Lung Cancer; Stage I Colorectal Cancer; Stage IA Breast Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Breast Cancer; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Breast Cancer; Stage IIA Colorectal Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Breast Cancer; Stage IIB Colorectal Cancer; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIC Colorectal Cancer; Stage IIIA Breast Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer

  20. Issues of the Eighties: Principals' Perspectives and School Practices. ACER Research Monograph No. 22.

    ERIC Educational Resources Information Center

    Batten, Margaret

    Over recent years there has been an increasing amount of public and political discussion of educational directions and educational accountability in relation to Australian primary and secondary schools. The study reported in this monograph attempted to address these concerns through a four-stage process: a review of literature exploring community…

  1. Knowing How To Teach Well: Teachers Reflect on their Classroom Practice. ACER Research Monograph No. 44.

    ERIC Educational Resources Information Center

    Batten, Margaret; And Others

    This monograph gives an account of three associated studies of the professional craft knowledge of teachers as articulated by 20 teachers in 4 secondary schools in Victoria, Queensland, and New South Wales, Australia. Participants were chosen on the basis of: (1) student identification of their best teachers and (2) equal representation from three…

  2. Is Anyone Listening? Young People Speak about Work and Unemployment. ACER Research Monograph No. 42.

    ERIC Educational Resources Information Center

    Blakers, Catherine

    This report presents the results of an Australian survey investigating the issues raised by unemployment in society, using extensive quotations from the respondents. In 1983 an open-ended questionnaire was sent to a group of about 10,000 young people (aged 18-22) in Australia to determine their opinions about unemployment and the future and to…

  3. Learning from Children: Mathematics from a Classroom Perspective. ACER Research Monograph No. 52.

    ERIC Educational Resources Information Center

    Doig, Brian; Lokan, Jan

    This volume has been assembled to show what can be learned about learning from large groups of children's responses to well-constructed assessment questions. The wide range of information gathered through the Basic Skills Testing Program (BSTP) has been divided into chapters that focus either on key aspects of mathematics or the major concerns of…

  4. The Science Achievement of Year 12 Students in Australia. ACER Research Monograph No. 40.

    ERIC Educational Resources Information Center

    Rosier, Malcolm J.; Long, Michael G.

    This report sets out results for Australia arising from its participation in the Second International Science Study (SISS). The focus is on Year 12 students, including those studying science and those not currently studying science. Most of the results for the science students are presented separately for those specializing in biology, chemistry,…

  5. Development of a National Standards Framework for the Teaching Profession. ACER Policy Briefs. Issue 1

    ERIC Educational Resources Information Center

    Ingvarson, Lawrence

    2002-01-01

    This paper was prepared for the Ministerial Council on Education, Employment and Training Taskforce on Teacher Quality & Educational Leadership. It covers the following broad areas: (1) How can a national definition of "Good Teaching" be developed, and what should it include?; (2) What should a "National Standards Framework" look like, and what…

  6. ACER Physics Unit Tests: Unit Tests, Diagnostic Aids, [and] Teachers Handbook.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Physics Unit Tests are designed to assist in the diagnostic evaluation of students' progress in the study of physics during the last two years of secondary schooling. They consist of a collection of 21 separate tests, each related to a different topic, and 21 diagnostic aids corresponding to the tests. The topics covered are: physical…

  7. Natural aflatoxin uptake by sugarcane (Saccharum officinaurum L.) and its persistence in jaggery.

    PubMed

    Hariprasad, P; Vipin, A V; Karuna, S; Raksha, R K; Venkateswaran, G

    2015-04-01

    The present study focused on aflatoxin (AF) uptake by sugarcanes from contaminated soils, and its persistence in jaggery. Analysis of 25 agricultural soil samples from sugarcane growing fields revealed that 80% were found contaminated with AF ranging from 0.5 to 22 ppb and all samples harbored aflatoxigenic fungi. Forty percent of the juices extracted from sugarcane grown in contaminated soil recorded AF ranging from 1.0 to 9.5 ppb. Conversely, jaggery prepared from those samples was almost free from AF. Further, greenhouse experiment confirms the AF uptake ability of sugarcane plants. Analysis of sugarcane juice and jaggery collected from local vendor showed 21% (0.5 to 6.5 ppb) and 5.6% (0.5-1.0 ppb) of AF contamination, respectively. Aflatoxigenic Aspergillus flavus strain was evaluated for their ability to grow and produce AF on jaggery medium. At 14th day after inoculation, decreased concentration of AF was recorded in jaggery medium ranging from 0 to 120 mg jaggery/ml, above which AF was absent though the fungal growth was noted. From the results, it could be concluded that sugarcane plants have the ability to uptake AF from contaminated soil, but AF was reduced during jaggery preparation. Also, higher concentration of jaggery was inhibitory to AF production. PMID:25408078

  8. Balancing selection contributed to domestication of autopolyploid sugarcane (Saccharum officinarum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is a source of plant sugar and a promising biofuel feedstock. The genetic basis of sugar yield and its components remain unresolved despite numerous genetic linkage and association mapping studies because of its complex polyploid genome. Genome-wide scans to identify genes or regions in th...

  9. The effects of Saccharum officinarium (sugar cane) molasses on cytokine secretion by human blood cultures.

    PubMed

    Rahiman, Farzana; Pool, Edmund John

    2010-01-01

    This study investigated the effects of sugar cane molasses on the immune system, using cytokines as biomarkers. Whole blood cultures, stimulated in vitro with endotoxin or PHA, were incubated with various concentrations of molasses. No cell death occurred in whole blood cultures incubated with molasses samples. The addition of molasses (800 microg/mL) to unstimulated whole blood cultures resulted in increased levels of the biomarker of inflammation, Interleukin-6 (P < 0.001) and also the biomarker of humoral immunity, Interleukin-10 (P < 0.001). Molasses addition (800 microg/mL) to unstimulated whole blood cultures has no effect on the cell mediated immunity biomarker, Interferon gamma secretion. Molasses has no effect on Interleukin-6, Interleukin-10 and Interferon gamma secretion in stimulated whole blood cultures. Immunostimulation by molasses requires further investigation as it may have potential health impacts. PMID:20391026

  10. World Saccharum Collection at the USDA Subtropical Research Station, National Germplasm Repository Miami, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1980, the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), established a genebank, the National Clonal Germplasm Repository (NCGR) in Miami, Florida. This repository is devoted to conservation of subtropical and tropical fruit, sugarcane and related grasses and ornamen...

  11. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  12. Databasing molecular identities of sugarcane (Saccharum spp.)clones constructed with microsatellite (SSR) DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 12-year sugarcane breeding cycle in Louisiana, exchange of parental varieties and their progeny occurs routinely across different breeding stations and geographic locations for crossing and field evaluation purposes. This paper reports the major steps involved in the construction of a sug...

  13. Plant Extracts of Straw from Sugarcane (Saccharum spp.) in the Attenuation of Toxicity by Aluminum

    NASA Astrophysics Data System (ADS)

    Malvestiti, Jacqueline Ap.; Soares, Marcio Roberto; Casagrande, José Carlos

    2014-05-01

    Organic acids from decomposition of sugar cane straw are capable of interacting with elements of the soil solution, attenuating the toxicity by aluminum (Al) and promoting greater movement of cations in the soil profile. This research had as objective to analyze organic acids present in the straw of the sugarcane varieties RB855453, RB966928. The experiment was conducted under laboratory conditions. The experimental design used was the completely randomized, with five repetitions. The results showed that the analysis, chemical characterization and determination of water-soluble organic compounds of plant extracts (malic and acetic acid) was of great importance for the understanding of the development of the root system of sugarcane considering the soil management systems, since they provide information about the ability of the attenuation of the Al, exchangeable acidity of the soil and the mobility of basic cations to the soil sub layers. This study pointed out greater power of exchangeable cations transport throughout the soil profile, and Al neutralization phytotoxic by the vegetable extract of straw of RB867515 variety, because, besides highest content of basic cations and greater electric conductivity, the total concentration of organic acids was higher on the vegetable extract from the straw of this variety.

  14. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation. PMID:25930125

  15. Screening Saccharum barberi and sinense accessions for flood tolerance and biomass production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding programs concentrate on S. spontaneum species to impart tolerance to environmental stresses and S. officinarum for high sugar content. Most programs are interested maximum sugar content. Little work has been done on selecting sugarcane species for biomass production. This study evaluated th...

  16. Growth and physiological responses of tree seedlings to experimental manipulation of light and water

    SciTech Connect

    Huston, M.A.; Holmgren, M.

    1995-06-01

    Seedlings of two tree species with similar tolerance to soil water and nutrient levels, but contrasting tolerance to shade (Acer saccharum and Liriodendron tulipifera) were grown in shade houses under 5 light levels (27%, 17%, 12%, 5%, and 1%) and three soil water regimes (5-9%, 11-15%, and >20%). Soil, light, and water conditions were representative of those in the Walker Branch Throughfall Displacement Experiment, where the same species are being monitored under field conditions. Treatments were maintained from mid-June through October, when all plants were harvested for determination of biomass allocation patterns. The only mortality occurred among the tulip poplars, but there was a significant interaction effect of the treatments on leaf area, total biomass, and allocation patterns. Highest growth rates in both species occurred at 17% light in the highest water treatment, with the 27% treatment showing reduced growth, perhaps due to photoinhibition. Gas exchange measurements indicated that the light compensation point increased under dry conditions.

  17. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  18. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    PubMed Central

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García

    2016-01-01

    Summary Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  19. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions.

    PubMed

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV-vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  20. The influence of moisture content variation on fungal pigment formation in spalted wood.

    PubMed

    Tudor, Daniela; Robinson, Sara C; Cooper, Paul A

    2012-01-01

    Eight fungal species known to produce wood pigmentation were tested for reaction to various moisture contents in two hardwood species. Fungal pigmentation by Trametes versicolor and Xylaria polymorpha was stimulated at low water concentrations in both Acer saccharum (sugar maple) and Fagus grandifolia (American beech), while Inonotus hispidus and Polyporus squamosus were stimulated above 22-28% and 34-38% moisture content in beech and in sugar maple respectively. Fomes fomentarius and Polyporus brumalis produced maximum pigmentation in beech at 26 - 41% and in sugar maple at 59 - 96% moisture content. The pink staining Scytalidium cuboideum pigmented both wood species at above 35% moisture content. This research indicates that controlling the moisture content values of wood substrates can stimulate the intensity of pigmentation of specific fungi when spalting wood for decorative and commercial purpose. PMID:23245292

  1. Developing fungal pigments for "painting" vascular plants.

    PubMed

    Robinson, Sara C

    2012-02-01

    The use of fungal pigments as color additives to wood as a method to increase forest revenue is a relatively new, but quickly developing field. Sugar maple (Acer saccharum) is currently the primary utilized hardwood for spalting and appears to be the best suited North American hardwood for such purposes. The combination of Trametes versicolor and Bjerkandera adusta has been identified in several instances as a strong fungal pairing for zone line production; however, Xylaria polymorpha is capable of creating zone lines without the antagonism of a secondary fungus. Few fungal pigments have been developed for reliable use; Scytalidium cuboideum is capable of producing a penetrating pink/red stain, as well as a blue pigment after extended incubation, and Chlorociboria sp. produces a blue/green pigment if grown on aspen (Populus tremuloides). Several opportunities exist for stimulation of fungal pigments including the use of copper sulfate and changes in wood pH. PMID:22237673

  2. Application of ant colony algorithm in plant leaves classification based on infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Tiantai; Hong, Bo; Kong, Ming; Zhao, Jun

    2014-04-01

    This paper proposes to use ant colony algorithm in the analysis of spectral data of plant leaves to achieve the best classification of different plants within a short time. Intelligent classification is realized according to different components of featured information included in near infrared spectrum data of plants. The near infrared diffusive emission spectrum curves of the leaves of Cinnamomum camphora and Acer saccharum Marsh are acquired, which have 75 leaves respectively, and are divided into two groups. Then, the acquired data are processed using ant colony algorithm and the same kind of leaves can be classified as a class by ant colony clustering algorithm. Finally, the two groups of data are classified into two classes. Experiment results show that the algorithm can distinguish different species up to the percentage of 100%. The classification of plant leaves has important application value in agricultural development, research of species invasion, floriculture etc.

  3. Disturbance-mediated accelerated succession in two Michigan forest types

    USGS Publications Warehouse

    Abrams, Marc D.; Scott, Michael L.

    1989-01-01

    In northern lower Michigan, logging accelerated sugar maple (Acer saccharum) dominance in a northern white cedar (Thuja occidentals) community, and clear-cutting and burning quickly converted certain sites dominated by mature jack pine (Pinus banksiana) to early-succesional hardwoods, including Prunus, Populus, and Quercus. In both forest types the succeeding hardwoods should continue to increase in the future at the expense of the pioneer conifer species. In the cedar example, sugar maple was also increasing a an undisturbed, old-growth stand, but at a much reduced rate than in the logged stand. Traditionally, disturbance was through to set back succession to some earlier stage. However, out study sites and at least several other North American forest communities exhibited accelerated succession following a wide range of disturbances, including logging fire, ice storms, wind-throw, disease, insect attack, and herbicide spraying.

  4. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species.

    PubMed

    Nock, C A; Caspersen, J P; Thomas, S C

    2008-03-01

    The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from approximately 7 to 4 in Acer saccharum, and from approximately 9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests. PMID:18459337

  5. Ecology of red maple swamps in the glaciated northeast: A community profile

    SciTech Connect

    Golet, F.C.; Calhoun, A.J.K.; DeRagon, W.R.; Lowry, D.J.; Gold, A.J.

    1993-06-01

    The report is part of a series of profiles on the ecology of wetland and deepwater habitats. This particular profile addresses red maple swamps in the glaciated northeastern United States. Red maple (Acer rubrum) swamp is a dominant wetland type in most of the region; it reaches the greatest abundance in southern New England and northern New Jersey; where it comprises 60-80% of all inland wetlands. Red maple swamps occur in a wide variety of hydrogeologic settings, from small, isolated basins in till or glaciofluvial deposits to extensive wetland complexes on glacial lake beds, and from hillside seeps to stream floodplains and lake edges. Individual swamps may be seasonally flooded, temporarily flooded, or seasonally saturated, and soils may be mineral or organic. As many as five distinct vegetation layers may occur in these swamps, including trees, saplings, shrubs, herbs, and ground cover plants such as bryophytes and clubmosses.

  6. Climate remains an important driver of post-European vegetation change in the eastern United States

    USGS Publications Warehouse

    Neil Pederson; Anthony W. D’Amato; James M. Dyer; Foster, David R.; Goldblum, David; Hart, Justin L.; Hessl, Amy E.; Iverson, Louis R.; Jackson, Stephen T.; Martin-Benito, Dario; McCarthy, Brian C.; McEwan, Ryan W.; Mladenoff, David J.; Parker, Albert J.; Shuman, Bryan; Williams, John W.

    2014-01-01

    The influence of climate on forest change during the past century in the eastern United States was evaluated in a recent paper (Nowacki & Abrams, 2014) that centers on an increase in ‘highly competitive mesophytic hardwoods’ (Nowacki & Abrams, 2008) and a concomitant decrease in the more xerophytic Quercus species. Nowacki & Abrams (2014) concluded that climate change has not contributed significantly to observed changes in forest composition. However, the authors restrict their focus to a single element of climate: increasing temperature since the end of the Little Ice Age ca. 150 years ago. In their study, species were binned into four classifications (e.g., Acer saccharum – ‘cool-adapted’, Acer rubrum – ‘warm-adapted’) based on average annual temperature within each species range in the United States, reducing the multifaceted character of climate into a single, categorical measure. The broad temperature classes not only veil the many biologically relevant aspects of temperature (e.g., seasonal and extreme temperatures) but they may also mask other influences, both climatic (e.g., moisture sensitivity) and nonclimatic (e.g., competition).

  7. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B; Pastor, John

    2008-03-01

    A greenhouse mesocosm experiment, representing earthworm-free North American Acer-dominated forest floor and soil conditions, was used to examine the individual and combined effects of initial invasion by three European earthworm species (Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris) on the forest floor and upper soil horizons, N and P availability, and the mortality and biomass of four native understory plant species (Acer saccharum, Aquilegia canadensis, Aralia racemosa, and Carex pensylvanica). All the three earthworm species combined caused larger impacts on most variables measured than any single earthworm species. These included loss of O horizon mass, decreased thickness of the O horizon and increased thickness of the A horizon, and higher availability of N and P. The latter finding differs from field reports where nutrients were less available after invasion, and probably represents an initial transient increase in nutrient supply as earthworms consume and incorporate the O horizon into the A horizon. Earthworms also increased mortality of plants and decreased total mesocosm plant biomass, but here the impact of all the three earthworm species was no greater than that of L. terrestris and/or L. rubellus alone. This study corroborates field studies that European earthworm invasions alter North American forest ecosystem processes by initiating a cascade of impacts on plant community composition and soil properties. PMID:18066602

  8. Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential.

    PubMed

    Ma, Hang; Liu, Weixi; Frost, Leslie; Kirschenbaum, Louis J; Dain, Joel A; Seeram, Navindra P

    2016-05-18

    Glucitol-core containing gallotannins (GCGs) are polyphenols containing galloyl groups attached to a 1,5-anhydro-d-glucitol core, which is uncommon among naturally occurring plant gallotannins. GCGs have only been isolated from maple (Acer) species, including the red maple (Acer rubrum), a medicinal plant which along with the sugar maple (Acer saccharum), are the major sources of the natural sweetener, maple syrup. GCGs are reported to show antioxidant, α-glucosidase inhibitory, and antidiabetic effects, but their antiglycating potential is unknown. Herein, the inhibitory effects of five GCGs (containing 1-4 galloyls) on the formation of advanced glycation end-products (AGEs) were evaluated by MALDI-TOF mass spectroscopy, and BSA-fructose, and G.K. peptide-ribose assays. The GCGs showed superior activities compared to the synthetic antiglycating agent, aminoguanidine (IC50 15.8-151.3 vs. >300 μM) at the early, middle, and late stages of glycation. Circular dichroism data revealed that the GCGs were able to protect the secondary structure of BSA protein from glycation. The GCGs did not inhibit AGE formation by the trapping of reactive carbonyl species, namely, methylglyoxal, but showed free radical scavenging activities in the DPPH assay. The free radical quenching properties of the GCGs were further confirmed by electron paramagnetic resonance spectroscopy using ginnalin A (contains 2 galloyls) as a representative GCG. In addition, this GCG chelated ferrous iron, an oxidative catalyst of AGE formation, supported a potential antioxidant mechanism of antiglycating activity for these polyphenols. Therefore, GCGs should be further investigated for their antidiabetic potential given their antioxidant, α-glucosidase inhibitory, and antiglycating properties. PMID:27101975

  9. Indirect effects of pandemic deer overabundance inferred from caterpillar-host relations.

    PubMed

    Wheatall, Laura; Nuttle, Tim; Yerger, Ellen

    2013-10-01

    Externally feeding phytophagous insect larvae (i.e., caterpillars, here, larval Lepidoptera and sawflies, Hymenoptera: Symphyta) are important canopy herbivores and prey resources in temperate deciduous forests. However, composition of forest trees has changed dramatically in the eastern United States since 1900. In particular, browsing by high densities of white-tailed deer (Odocoileus virginianus) has resulted in forests dominated by browse-tolerant species, such as black cherry (Prunus serotina), and greatly reduced relative abundance of other tree species, notably pin cherry (Prunus pensylvanica) and birches (Betula spp.). To quantify effects of these changes on caterpillars, we sampled caterpillars from 960 branch tips of the 8 tree species that comprise 95% of trees in Allegheny hardwood forests: red maple (Acer rubrum), striped maple (Acer pensylvanicum), sugar maple (Acer saccharum), sweet birch (Betula lenta), yellow birch (Betula allegheniensis), American beech (Fagus grandifolia), black cherry, and pin cherry. We collected 547 caterpillar specimens that belonged to 66 Lepidoptera and 10 Hymenoptera species. Caterpillar density, species richness, and community composition differed significantly among tree species sampled. Pin cherry, nearly eliminated at high deer density, had the highest density and diversity of caterpillars. Pin cherry shared a common caterpillar community with black cherry, which was distinct from those of other tree hosts. As high deer density continues to replace diverse forests of cherries, maples, birches, and beech with monodominant stands of black cherry, up to 66% of caterpillar species may be eliminated. Hence, deer-induced changes in forest vegetation are likely to ricochet back up forest food webs and therefore negatively affect species that depend on caterpillars and moths for food and pollination. PMID:23678968

  10. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest

    PubMed Central

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley’s L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  11. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    PubMed

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  12. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using x-ray microtomography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During drought, xylem conduits are susceptible to hydraulic dysfunction caused by cavitation and gas embolism. Embolism formation and spread within xylem is dependent on conduit structure and network connectivity, but detailed spatial analysis has been limited due to a lack of non-destructive method...

  13. Root Allocation and Water Uptake Patterns in Riparian Tree Saplings: responses to irrigation and defoliation in a glasshouse environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Populus is often the focus of restoration efforts in riparian ecosystems. Its reliance on shallow groundwater tables for successful recruitment is well documented. However, under some circumstances mature trees take up a substantial proportion of their water from the unsaturated zone. From...

  14. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests. PMID:17938120

  15. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...

  16. Progress through High School: A Study of Senior Secondary Schooling in New South Wales. ACER Research Monograph No. 43.

    ERIC Educational Resources Information Center

    Ainley, John; Sheret, Michael

    This book provides an overview of a 4-year longitudinal study of senior secondary schooling in the government high schools of New South Wales, Australia. The study followed the progress from year 9 to year 12 of 3,000 students from 22 government secondary schools in 2 metropolitan and 2 nonmetropolitan regions. The book is divided into 10…

  17. Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.).

    PubMed

    Patade, Vikas Yadav; Bhargava, Sujata; Suprasanna, Penna

    2012-10-01

    Seed priming is a well known pre-germination strategy that improves seed performance. However, biochemical and molecular mechanisms underlying priming mediated stress tolerance are little understood. Here, we report results of the study on growth, physiological characteristics and expression of stress responsive genes in salt primed sugarcane cv. Co 86032 plants in response to salt (NaCl, 150 mM) or iso-osmotic (-0.7 MPa) polyethylene glycol-PEG 8000 (20 % w/v) stress exposure for 15 days. Variable growth, osmolyte accumulation and antioxidant capacity was revealed among the primed and non-primed plants. The primed plants showed better tolerance to the salt or PEG stress, as revealed by better growth and lower membrane damage, through better antioxidant capacity as compared to the respective non-primed controls. Further, steady state transcript expression analysis revealed up regulation of sodium proton antiporter (NHX) while, down regulation of sucrose transporter (SUT1), delta ( 1 )-pyrolline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH) in primed plants on exposure to the stress as compared to the non-primed plants. Transcript abundance of catalase (CAT2) decreased by about 25 % in leaves of non-primed stressed plants, however, the expression was maintained in leaves of the stressed primed plants to that of non-stressed controls. Thus, the results indicated priming mediated salt and PEG stress tolerance through altered gene expression leading to improved antioxidant capacity in sugarcane. PMID:22740137

  18. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture.

    PubMed

    Lakshmanan, Prakash; Geijskes, R Jason; Wang, Lifang; Elliott, Adrian; Grof, Christopher P L; Berding, Nils; Smith, Grant R

    2006-10-01

    Rapid and efficient in vitro regeneration methods that minimise somaclonal variation are critical for the genetic transformation and mass propagation of commercial varieties. Using a transverse thin cell layer culture system, we have identified some of the developmental and physiological constraints that limit high-frequency regeneration in sugarcane leaf tissue. Tissue polarity and consequently the orientation of the explant in culture, size and developmental phase of explant, and auxin concentration play a significant role in determining the organogenic potential of leaf tissue in culture. Both adventitious shoot production and somatic embryogenesis occurred on the proximal cut surface of the explant, and a regeneration gradient, decreasing gradually from the basal to the distal end, exists in the leaf roll. Importantly, auxin, when added to the culture medium, reduced this spatial developmental constraint, as well as the effect of genotype on plant regeneration. Transverse sections (1-2 mm thick) obtained from young leaf spindle rolls and orienting explants with its distal end facing the medium (directly in contact with medium) are critical for maximum regeneration. Shoot regeneration was observed as early as 3 weeks on MS medium supplemented with alpha-naphthalenencetic acid (NAA) and 6-benzyladenine, while somatic embryogenesis or both adventitious shoot organogenesis and somatic embryogenesis occurred on medium with NAA and chlorophenoxyacetic acid. Twenty shoots or more could be generated from a single transverse section explant. These shoots regenerated roots and successfully established after transplanted to pots. Large numbers of plantlets can be regenerated directly and rapidly using this system. SmartSett, the registered name for this process and the plants produced, will have significant practical applications for the mass propagation of new cultivars and in genetic modification programs. The SmartSett system has already been used commercially to produce substantial numbers of plants of orange rust-resistant and new cultivars in Australia. PMID:16847629

  19. Sequence-Related Amplified Polymorphism (SRAP) markers for assessing interrelationships and genetic diversity among members of the Saccharum complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of wild germplasm provides essential information on genetic diversity that breeders utilize for crop improvement. The potential of the sequence-related amplified polymorphism (SRAP) technique, which preferentially amplifies gene-rich regions, was evaluated to assess the genetic rela...

  20. Quantification of natural populations of Gluconacetobacter diazotrophicus and Herbaspirillum spp. In sugar cane (Saccharum spp.) Using differente polyclonal antibodies

    PubMed Central

    da Silva-Froufe, Lúcia Gracinda; Boddey, Robert Michael; Reis, Veronica Massena

    2009-01-01

    The species Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and H. rubrisubalbicans are endophytic N2-fixing [diazotrophic] bacteria which colonise not only roots, but also the aerial tissue of sugar cane. However, the technique most commonly used to quantify the populations of these microbes in plants is by culturing serial dilutions of macerates of plant tissues in N free semi-solid media which are only semi-selective for the species/genera [the Most Probable Number (MPN) Technique] and each culture must be further subjected to several tests to identify the isolates at the species level. The use of species-specific polyclonal antibodies with the indirect ELISA (enzyme-linked immunosorbent assay) can be an alternative which is rapid and specific to quantify these populations of bacteria. This study was performed to investigate the viability of adapting the indirect ELISA technique to quantify individually the populations of these three species of diazotroph within the root and shoot tissues of sugarcane. The results showed that species-specific polyclonal antibodies could be obtained by purifying sera in protein-A columns which removed non-specific immuno-globulins. It was possible to quantify the three bacterial species in the Brazilian sugarcane variety SP 70-1143 in numbers above 105 cells per g fresh weight in roots, rhizomes and leaves. The numbers of the different bacterial species evaluated using the ELISA technique were found to be higher than when the same populations were evaluated using the MPN technique, reaching 1400 times greater for G. diazotrophicus and 225 times greater for Herbaspirillum spp. These results constitute the first quantification of Herbaspirillum using immunological techniques. PMID:24031435

  1. Genetic analysis of the sugarcane (Saccharum spp.) cultivar "LCP 85-384".II. identification of QTAs for starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch in sugarcane juice can impede the extraction of sugar during processing and also affect the quality of the refined sugar. The problem has been exacerbated by the widespread adoption of green cane harvesting in sugarcane. More starch is usually present in the leaves and young growing portio...

  2. Use of SSR markers for DNA fingerprinting and diversity analysis of Pakistani sugarcane (Saccharum spp. hybrids) cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...

  3. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.

    PubMed

    Zhao, Yi; Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2015-10-15

    Sugarcane bagasse contains natural compositions that can significantly inhibit food-borne pathogens growth. In the present study, the phenolic content in sugarcane bagasse was detected as higher than 4 mg/g dry bagasse, with 470 mg quercetin/g polyphenol. The sugarcane bagasse extract showed bacteriostatic activity against the growth of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salomonella typhimurium. Additionally, the sugarcane bagasse extract can increase the electric conductivity of bacterial cell suspensions causing cellular leaking of electrolytes. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis suggested the antibacterial mechanism was probably due to the damaged cellular proteins by sugarcane bagasse extract. The results of scanning electron microscopy and transmission electron microscopy showed that the sugarcane bagasse extract might change cell morphology and internal structure. PMID:25952848

  4. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping.

    PubMed

    Singh, Ram K; Banerjee, Nandita; Khan, M S; Yadav, Sonia; Kumar, Sanjeev; Duttamajumder, S K; Lal, Ram Ji; Patel, Jinesh D; Guo, H; Zhang, Dong; Paterson, Andrew H

    2016-06-01

    Red rot is a serious disease of sugarcane caused by the fungus Colletotrichum falcatum that has a colossal damage potential. The fungus, prevalent mainly in the Indian sub-continent, keeps on producing new pathogenic strains leading to breakdown of resistance in newly released varieties and hence the deployment of linked markers for marker-assisted selection for resistance to this disease can fine tune the breeding programme. This study based on a panel of 119 sugarcane genotypes fingerprinted for 944 SSR alleles was undertaken with an aim to identify marker-trait associations (MTAs) for resistance to red rot. Mixed linear model containing population structure and kinship as co-factor detected four MTAs that were able to explain 10-16 % of the trait variation, individually. Among the four MTAs, EST sequences diagnostic of three could be BLAST searched to the sorghum genome with significant sequence homology. Several genes encoding important plant defence related proteins, viz., cytochrome P450, Glycerol-3-phosphate transporter-1, MAP Kinase-4, Serine/threonine-protein kinase, Ring finger domain protein and others were localized to the vicinity of these MTAs. These positional candidate genes are worth of further investigation and possibly these could contribute directly to red rot resistance, and may find a potential application in marker-assisted sugarcane breeding. PMID:26961118

  5. Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid).

    PubMed

    Augustine, Sruthy Maria; Narayan, J Ashwin; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Subramonian, N

    2015-03-01

    Heat shock proteins (HSPs) have a major role in stress tolerance mechanisms in plants. Our studies have shown that the expression of HSP70 is enhanced under water stress in Erianthus arundinaceus. In this paper, we evaluate the effects of overexpression of EaHSP70 driven by Port Ubi 2.3 promoter in sugarcane. The transgenic events exhibit significantly higher gene expression, cell membrane thermostability, relative water content, gas exchange parameters, chlorophyll content and photosynthetic efficiency. The overexpression of EaHSP70 transgenic sugarcane led to the upregulation of stress-related genes. The transformed sugarcane plants had better chlorophyll retention and higher germination ability than control plants under salinity stress. Our results suggest that EaHSP70 plays an important role in sugarcane acclimation to drought and salinity stresses and its potential for genetic engineering of sugarcane for drought and salt tolerance. PMID:25617320

  6. Mineralization and nitrification patterns at eight northeastern USA forested research sites

    USGS Publications Warehouse

    Ross, D.S.; Lawrence, G.B.; Fredriksen, G.

    2004-01-01

    Nitrogen transformation rates in eight northeastern US research sites were measured in soil samples taken in the early season of 2000 and the late season of 2001. Net mineralization and nitrification rates were determined on Oa or A horizon samples by two different sampling methods - intact cores and repeated measurements on composite samples taken from around the cores. Net rates in the composite samples (n=30) showed three different temporal patterns: high net nitrification with minimal NH4+ accumulation, high net nitrification and high NH4+ accumulation, and minimal net nitrification and moderate NH4+ accumulation. The 4-week net rates in intact cores were about half that of the rates from the composite samples but were well related (R2 > 0.70). Composite samples from sites that exhibited high net nitrification were incubated with acetylene and net nitrification was completely stopped, suggesting an autotrophic pathway. Gross mineralization and nitrification (2000 only) rates were estimated using the isotope dilution technique. Gross rates of nitrification and consumption in intact cores were relatively low. Gross rates of mineralization and net rates of nitrification were both related to the soil C/N ratio, with higher rates generally occurring in sites containing Acer saccharum as a dominant or co-dominant species. The comparison of methods suggests that all provide a similar hierarchy of potential rates but that the degree of net nitrification is strongly influenced by the degree of sample disturbance. Differences between sites appear to be related to an interaction of soil (C/N) and vegetation (A. saccharum contribution) characteristics. ?? 2003 Elsevier B.V. All rights reserved.

  7. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    USGS Publications Warehouse

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  8. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA).

    PubMed

    Caputo, Jesse; Beier, Colin M; Sullivan, Timothy J; Lawrence, Gregory B

    2016-09-15

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification - and their implications for the sustainability of SM and its economic and cultural benefits - have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production - although not feasible across the vast areas where acid impairment has occurred - may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern hardwood

  9. Predicting and understanding forest dynamics using a simple tractable model

    PubMed Central

    Purves, Drew W.; Lichstein, Jeremy W.; Strigul, Nikolay; Pacala, Stephen W.

    2008-01-01

    The perfect-plasticity approximation (PPA) is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the eight most common species on each of four soil types in the US Lake states (Michigan, Wisconsin, and Minnesota) by using short-term (≤15-year) inventory data from individual trees. We implemented 100-year PPA simulations given these parameters and compared these predictions to chronosequences of stand development. Predictions for the timing and magnitude of basal area dynamics and ecological succession on each soil were accurate, and predictions for the diameter distribution of 100-year-old stands were correct in form and slope. For a given species, the PPA provides analytical metrics for early-successional performance (H20, height of a 20-year-old open-grown tree) and late-successional performance (Ẑ*, equilibrium canopy height in monoculture). These metrics predicted which species were early or late successional on each soil type. Decomposing Ẑ* showed that (i) succession is driven both by superior understory performance and superior canopy performance of late-successional species, and (ii) performance differences primarily reflect differences in mortality rather than growth. The predicted late-successional dominants matched chronosequences on xeromesic (Quercus rubra) and mesic (codominance by Acer rubrum and Acer saccharum) soil. On hydromesic and hydric soils, the literature reports that the current dominant species in old stands (Thuja occidentalis) is now failing to regenerate. Consistent with this, the PPA predicted that, on these soils, stands are now succeeding to dominance by other late-successional species (e.g., Fraxinus nigra, A. rubrum). PMID:18971335

  10. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple.

    PubMed

    Paquette, Alain; Fontaine, Bastien; Berninger, Frank; Dubois, Karine; Lechowicz, Martin J; Messier, Christian; Posada, Juan M; Valladares, Fernando; Brisson, Jacques

    2012-11-01

    Norway maple (Acer platanoides L), which is among the most invasive tree species in forests of eastern North America, is associated with reduced regeneration of the related native species, sugar maple (Acer saccharum Marsh) and other native flora. To identify traits conferring an advantage to Norway maple, we grew both species through an entire growing season under simulated light regimes mimicking a closed forest understorey vs. a canopy disturbance (gap). Dynamic shade-houses providing a succession of high-intensity direct-light events between longer periods of low, diffuse light were used to simulate the light regimes. We assessed seedling height growth three times in the season, as well as stem diameter, maximum photosynthetic capacity, biomass allocation above- and below-ground, seasonal phenology and phenotypic plasticity. Given the north European provenance of Norway maple, we also investigated the possibility that its growth in North America might be increased by delayed fall senescence. We found that Norway maple had significantly greater photosynthetic capacity in both light regimes and grew larger in stem diameter than sugar maple. The differences in below- and above-ground biomass, stem diameter, height and maximum photosynthesis were especially important in the simulated gap where Norway maple continued extension growth during the late fall. In the gap regime sugar maple had a significantly higher root : shoot ratio that could confer an advantage in the deepest shade of closed understorey and under water stress or browsing pressure. Norway maple is especially invasive following canopy disturbance where the opposite (low root : shoot ratio) could confer a competitive advantage. Considering the effects of global change in extending the potential growing season, we anticipate that the invasiveness of Norway maple will increase in the future. PMID:23076822

  11. Evaluating the ecological impacts of salvage logging: can natural and anthropogenic disturbances promote coexistence?

    PubMed

    Royo, Alejandro A; Peterson, Chris J; Stanovick, John S; Carson, Walter P

    2016-06-01

    Salvage logging following windthrow is common throughout forests worldwide even though the practice is often considered inimical to forest recovery. Because salvaging removes trees, crushes seedlings, and compacts soils, many warn this practice may delay succession, suppress diversity, and alter composition. Here, over 8 yr following windthrow, we experimentally evaluate how salvaging affects tree succession across 11 gaps in Eastern deciduous forests of Pennsylvania, wherein each gap was divided into salvaged and control (unsalvaged) halves. Our gaps vary in size and windthrow severity, and we explicitly account for this variation as well as variation in soil disturbance (i.e., scarification) resulting from salvaging so that our results would be generalizable. Salvage logging had modest and ephemeral impacts on tree succession. Seedling richness and density declined similarly over time in both salvaged and unsalvaged areas as individuals grew into saplings. The primary impact of salvaging on succession occurred where salvaging scarified soils. Here, salvaging caused 41 to 82% declines in sapling abundance, richness, and diversity, but these differences largely disappeared within 5 yr. Additionally, we documented interactions between windthrow severity and scarification. Specifically, low-severity windthrow and scarification combined reinforced dominance by shade-tolerant and browse-tolerant species (Acer pensylvanicum, Fagus grandifolia). In contrast, high windthrow severity and scarification together reduced the density of a fast-growing pioneer tree (Prunus pensylvanica) and non-tree vegetation cover by 75% and 26%, respectively. This reduction enhanced the recruitment of two mid-successional tree species, Acer rubrum and Prunus serotina, by 2 and 3-fold, respectively. Thus, our findings demonstrate that salvaging creates novel microsites and mitigates competing vegetation, thereby enhancing establishment of important hardwoods and promoting tree species

  12. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  13. Growth and survival of tree seedlings in a large-scale rainfall manipulation experiment

    SciTech Connect

    Parikh, N.R.; Holmgren, M.; Huston, M.

    1995-06-01

    Seedlings of three species with different tolerance to shade and drought, Acer saccharum, Liriodendron tulipifera, and Quercus alba, were planted on the hillslope site of the Walker Branch Throughfall Displacement Experiment during the winter of 1993-1994, and their growth measured during the following growing season. Volumetric soil moisture in the upper 35cm of soil was measured twice monthly, and relative light availability above each seedling was measured in August. The most shade tolerant species, sugar maple, leafed out earlier and by the beginning of April had produced 80% of its total leaf area, compared with only 16% for tulip poplar and 39% for white oak. Leaf area and stem growth of sugar maple were positively correlated with soil moisture, but not with light, while stem growth of tulip poplar and white oak were positively correlated with light, but not with soil moisture. Tulip poplar had the highest mortality (15%) followed by sugar maple (3%). Mortality was higher in dry locations, but was not related to growth during the season.

  14. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  15. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    PubMed Central

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-01-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033

  16. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    SciTech Connect

    Darbah, J.N.; Nagy, J.; Jones, W. S.; Burton, A. J.; Kubiske, M. E.

    2011-10-01

    We studied the effect of high ozone (O{sub 3}) concentration (110-490 nmol mol{sup -1}) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O{sub 3} pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O{sub 3} exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O{sub 3} and/or CO{sub 2} for 12 years, were harvested. Acute O{sub 3} damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O{sub 3} damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O{sub 3} damage as it directly controlled O{sub 3} uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O{sub 3} exposure. Moreover, elevated CO{sub 2} did not ameliorate the adverse effects of acute O{sub 3} dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O{sub 3} levels.

  17. Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brooks Watershed in Maine

    SciTech Connect

    Jose Alexander Elvir; Gregory J. White

    2005-06-01

    The foliar chemistry of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) was studied from 1993 to 2003 at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study, with one watershed treated bimonthly since 1989 with ammonium sulfate ((NH4)2SO4) at a rate of 25.2 kg N·ha–1·year–1. Foliar N concentrations were higher in all tree species within the treated watershed compared with trees within the reference watershed. Foliar Ca and Mg concentrations were lower in American beech and red spruce within the treated watershed. There were no significant differences in foliar K concentrations between watersheds. Foliar P and Mn concentration differences between watersheds were inconsistent among years. Differences in foliar N concentrations between watersheds declined over time in sugar maple but not in red spruce or American beech. Differences in foliar Ca and Mg concentrations between the treated and reference watersheds increased over time for American beech and red spruce, primarily because of a consistent decline in concentrations of these nutrients in trees within the treated watershed. No temporal trends in foliar Ca and Mg concentration differences between watersheds were observed for sugar maple.

  18. Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object-Oriented Approach

    PubMed Central

    Voss, Matthew; Sugumaran, Ramanathan

    2008-01-01

    The objective of the current study was to analyze the seasonal effect on differentiating tree species in an urban environment using multi-temporal hyperspectral data, Light Detection And Ranging (LiDAR) data, and a tree species database collected from the field. Two Airborne Imaging Spectrometer for Applications (AISA) hyperspectral images were collected, covering the Summer and Fall seasons. In order to make both datasets spatially and spectrally compatible, several preprocessing steps, including band reduction and a spatial degradation, were performed. An object-oriented classification was performed on both images using training data collected randomly from the tree species database. The seven dominant tree species (Gleditsia triacanthos, Acer saccharum, Tilia Americana, Quercus palustris, Pinus strobus and Picea glauca) were used in the classification. The results from this analysis did not show any major difference in overall accuracy between the two seasons. Overall accuracy was approximately 57% for the Summer dataset and 56% for the Fall dataset. However, the Fall dataset provided more consistent results for all tree species while the Summer dataset had a few higher individual class accuracies. Further, adding LiDAR into the classification improved the results by 19% for both fall and summer. This is mainly due to the removal of shadow effect and the addition of elevation data to separate low and high vegetation.

  19. Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves.

    PubMed

    Bertrand, A; Robitaille, G; Nadeau, P; Boutin, R

    1994-04-01

    In 1991 and 1992, mature maple trees (Acer saccharum Marsh.) were freeze-stressed or drought-stressed by preventing precipitation (snow or rain) from reaching the forest floor under selected trees. Lack of snow cover caused a decrease in soil temperature to well below 0 degrees C from December to April and a lowering of the soil water content to 10%. The abscisic acid (ABA) concentration in the spring sap of deep-soil frost-stressed trees was significantly higher than in control or drought-stressed trees. The increase in ABA concentration in the xylem sap in the spring of 1991 and 1992 preceded symptoms of canopy decline and a decrease in leaf area that were observed during the summers of 1991 and 1992. These results suggest a role for ABA in root-to-shoot communication in response to environmental stress. The largest differences in ABA concentration induced by the treatments was found in sap collected at the end of sap flow. The increase in ABA concentration in spring sap at the end of the sap flow could be used as an early indicator of stress suffered by trees during the winter. Not only did the increase in ABA concentration occur before any visible symptoms of tree decline appeared, but the trees that showed the most evident decline had the highest ABA concentrations in the spring sap. Leaf ABA concentration was not a good indicator of induced stress. PMID:14967696

  20. Effects of tannin source and concentration from tree leaves on two species of tadpoles.

    PubMed

    Earl, Julia E; Semlitsch, Raymond D

    2015-01-01

    Vegetation in and around freshwater ecosystems can affect aquatic organisms through the production of secondary compounds, which are retained in leaves after senescence and are biologically active. Tannins can be toxic to tadpoles, but the plant source of tannins and tannin concentration have been confounded in experimental designs in previous studies. To examine the effects of the concentration and source of tannins (tree species), we examined the effects of 4 factors on tadpole survival, growth, and development: tannin source (red oak [Quercus rubra], white oak [Quercus alba], or sugar maple [Acer saccharum]); tannin concentration (including a control); diet protein level; and tadpole species (American toad [Anaxyrus americanus] and spring peepers [Pseudacris crucifer]). Tannin source and concentration affected spring peeper survival, but American toads had uniformly high survival. Spring peepers had a lower survival rate in high tannin concentrations of oak leachate but a high survival rate in both concentrations of sugar maple leachate. These differences in survival did not correspond with changes in dissolved oxygen, and no effect of dietary protein level on tadpole performance was observed. The presence of plant leachate resulted in increased tadpole growth in both species, but the mechanism for this finding is unclear. The results of the present study show that tannin concentration and source are important factors for tadpole performance, adding further evidence that plant chemistry can affect aquatic organisms. PMID:25319714

  1. AmeriFlux CA-TPD Ontario - Turkey Point Mature Deciduous

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TPD Ontario - Turkey Point Mature Deciduous. Site Description - The forest is approximately 90 years old. Naturally regenerated on sandy terrain and abandoned agricultural land. Predominantly hardwood species with a few scattered conifers. Site has been managed (thinned) in the past. It has a high biodiversity with 573 tree and plant species, 102 bird species, 23 mamal species and 22 reptile and amphibian species (SWALSREP Report, 1999). The dominant tree species is white oak (Quercus alba), with other scattered broadleaf Carolinian species including sugar and red maple (Acer saccharum, A. rubrum), American beech (Fagus grandifolia), black and red oak (Q. velutina, Q. rubra) and white ash (Fraxinus americana) . There are also scattered conifers, mostly white and red pine (Pinus strobes, P. resinosa), comprising about 5% of the trees. Average tree height is 25.7 m with a stand density of 504 ± 18 trees per hectare. Average tree diameter at breast height is 22.3 cm and basal area is 0.06 m2 or approximately 29 square meters per hectare.

  2. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria.

    PubMed

    Panzuto, M; Lorenzetti, F; Mauffette, Y; Albert, P J

    2001-10-01

    We investigated the behavioral feeding preference and the chemoreception of leaf polar extracts from trembling aspen, Populus tremuloides, and from sun and shade sugar maple, Acer saccharum, by larvae of the polyphagous forest tent caterpillar, Malacosoma disstria, a defoliator of deciduous forests in the Northern Hemisphere. Three polar extracts were obtained from each tree species: a total extract, a water fraction, and a methanol fraction. M. disstria larvae were allowed ad libitum access to an artificial diet from eclosion to the fifth instar. Two-choice cafeteria tests were performed comparing the mean (+/-SE) surface area eaten of the total extracts, and the following order of preference was obtained: aspen > sun maple > shade maple. Tests with the other fractions showed that M. disstria larvae preferred the total aspen extract to its water fraction, and the latter to its methanol fraction. The response to sun maple was similar to aspen. However, for the shade maple experiment, there was no difference between the total extract and its water fraction. Electrophysiological recordings for aspen showed that the sugar-sensitive cell elicited more spikes to the water fraction, followed by the total extract, and finally the methanol fraction. Spike activity to stimulations of sun and shade maple extracts revealed a similar trend, where methanol fraction > water fraction > total extract. Our findings are discussed in light of previously known information about this insect's performance on these host plants. PMID:11710605

  3. The effects of ozone-exposed sugar maple seedlings on the biological performance and the feeding preference of the forest tent caterpillar (Malacosoma disstria Hbn.).

    PubMed

    Fortin, M; Mauffette, Y; Albert, P J

    1997-01-01

    The effects of exposure of sugar maple (Acer saccharum Marsh.) to ozone on the entire larval stage of a native insect have not been previously investigated. This study reports the effects of sugar maple seedlings exposed to different ozone concentrations on the relative performance and the feeding preference of the forest tent caterpillar (Malacosoma disstria Hbn.). Three-year-old seedlings were set in nine open-top field chambers in the spring of 1992 and 1993. Three ozone concentrations were generated: charcoal-filtered ambient air (0x), ambient air (1x) and three times ambient air (3x). In 1992, female and male larval development time did not differ among ozone treatments. In 1993, female larvae reared on 3x developed faster than those on 0x and 1x, while male larvae were not affected. Ozone treatments did not influence pupal weights except for males in 1993 where pupae reared on 0x were heavier than 1x but did not differ from 3x. Larval and pupal survival rates were not affected by ozone in either year. Finally, 4th and 5th instar larvae showed a significant feeding preference for 3x foliage in 1993 but not in 1992. The response of the forest tent caterpillar to ozone exposed seedlings varied between years and could be more sensitive to annual climatic variations than ozone. PMID:15093369

  4. Variation in the susceptibility of the forest tent caterpillar (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis variety kurstaki HD-1: effect of the host plant.

    PubMed

    Kouassi, K C; Lorenzetti, F; Guertin, C; Cabana, J; Mauffette, Y

    2001-10-01

    Host-mediated effect on the efficacy of Bacillus thuringiensis Berliner against larvae of the forest tent caterpillar. Malacosoma disstria Hübner, was investigated under controlled conditions. Host plants used in this study were quaking aspen, Populus tremuloides Michx., a preferred host, and sugar maple, Acer saccharum Marsh., a secondary host. Larvae were reared in the laboratory on leaves of these hosts, and upon reaching the third, fourth, and fifth instar, they were fed leaves treated with one of a range of concentrations of B. thuringiensis variety kurstaki HD-1 suspensions. Larvae were tested on the host on which they were feeding before the 4-d bioassays. The estimated LC50s were 100-fold greater on quaking aspen than on sugar maple. Also, there was a decrease in efficacy over the whole ranges of concentrations with larval age on both hosts. LC50s varied approximately two-fold between third and fifth instar. These results indicate that host-mediated effects on B. thuringiensis efficacy warrant more interest. In particular, they strongly indicate that the host plant modifies the interaction between B. thuringiensis and a target insect, and offer the opportunity to investigate the mechanism(s) that may be involved in the enhancement of B. thuringiensis toxicity. PMID:11681676

  5. Impact of host tree on forest tent caterpillar performance and offspring overwintering mortality.

    PubMed

    Trudeau, M; Mauffette, Y; Rochefort, S; Han, E; Bauce, E

    2010-04-01

    One of the most damaging insect pests in deciduous forests of North America is the forest tent caterpillar, Malacosoma disstria Hübner. It can feed on a variety of plants, but trembling aspen (Populus tremuloides Michaux) is its preferred host and sugar maple (Acer saccharum Marshall) serves as a secondary one in the northern part of its distribution. Because host plant characteristics influence insect performance and survival, we evaluated the impact of trembling aspen and sugar maple foliage on M. disstria performance. Host effects on insect cold hardiness and overwintering survival of offspring were also studied. Forest tent caterpillar reared on aspen leaves had a shorter development time, higher pupal weights and fecundity, and superior egg parameters (length and weight) compared with those reared on sugar maple leaves. Larvae from the two food treatments had low glucose levels during diapause, whereas glycerol content of insects reared on maple was significantly higher during diapause than larvae fed on aspen. Lower glycerol content may explain the higher overwinter mortality of pharate larvae from aspen-reared parents even though their supercooling points were as low as -36 degrees C. This study shows the influence of host plant on insect life history and the need to consider overwintering success and offspring performance in studies to understand and predict population growth and cycling. PMID:20388280

  6. Do Woody Plants Operate Near the Point of Catastrophic Xylem Dysfunction Caused by Dynamic Water Stress? 1

    PubMed Central

    Tyree, Melvin T.; Sperry, John S.

    1988-01-01

    We discuss the relationship between the dynamically changing tension gradients required to move water rapidly through the xylem conduits of plants and the proportion of conduits lost through embolism as a result of water tension. We consider the implications of this relationship to the water relations of trees. We have compiled quantitative data on the water relations, hydraulic architecture and vulnerability of embolism of four widely different species: Rhizophora mangle, Cassipourea elliptica, Acer saccharum, and Thuja occidentalis. Using these data, we modeled the dynamics of water flow and xylem blockage for these species. The model is specifically focused on the conditions required to generate `runaway embolism,' whereby the blockage of xylem conduits through embolism leads to reduced hydraulic conductance causing increased tension in the remaining vessels and generating more tension in a vicious circle. The model predicted that all species operate near the point of catastrophic xylem failure due to dynamic water stress. The model supports Zimmermann's plant segmentation hypothesis. Zimmermann suggested that plants are designed hydraulically to sacrifice highly vulnerable minor branches and thus improve the water balance of remaining parts. The model results are discussed in terms of the morphology, hydraulic architecture, eco-physiology, and evolution of woody plants. PMID:16666351

  7. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

    PubMed

    Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

    2015-11-01

    Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests. PMID:26073624

  8. Impacts of Invasive Rusty Crayfish on Stream Ecosystems of the Upper Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Bobeldyk, A. M.; Lamberti, G. A.

    2005-05-01

    Invasive species can have detrimental effects on structural characteristics of freshwater ecosystems, but relatively few studies have assessed ecosystem-level impacts of invasive species in streams. We studied the effects of invasive rusty crayfish (Orconectes rusticus) on detritus processing and invertebrate and fish abundance in northern Wisconsin and Michigan, USA, streams. We hypothesized that rusty crayfish would increase the rate of detritus processing and reduce fish and invertebrate abundance due to their aggressiveness and competitive superiority for food and habitat. We measured sugar maple (Acer saccharum) decomposition rates in three reaches of a stream with differing densities of rusty crayfish, high (5.05/m2), intermediate (2.27/m2), and none (0/m2) using leaf bags excluding crayfish and open bags allowing crayfish access. We found that open bags decayed significantly faster (k=0.143) than crayfish excluded bags at all sites (k=0.079) (p=0.0005). The reach lacking crayfish had significantly higher densities of invertebrates (p=0.005). We also surveyed an additional 7 streams that contained or lacked rusty crayfish and found significantly higher fish abundance (p=0.019) and biomass (p=0.001) in streams lacking rusty crayfish. Rusty crayfish appear to indirectly affect detritus processing via negative effects on benthic invertebrates, and may have larger-scale impacts on fishes across streams.

  9. Multiscale model of a freeze-thaw process for tree sap exudation.

    PubMed

    Graf, Isabell; Ceseri, Maurizio; Stockie, John M

    2015-10-01

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze-thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first mathematical model for exudation, while also introducing several essential modifications to this hypothesis. We derive a multiscale model consisting of a nonlinear system of differential equations governing phase change and transport within wood cells, coupled to a suitably homogenized equation for temperature on the macroscale. Numerical simulations yield stem pressures that are consistent with experiments and provide convincing evidence that a purely physical mechanism is capable of capturing exudation. PMID:26400199

  10. Plant and soil natural abundance delta (15)N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems.

    PubMed

    Templer, Pamela H; Arthur, Mary A; Lovett, Gary M; Weathers, Kathleen C

    2007-08-01

    Watersheds within the Catskill Mountains, New York, receive among the highest rates of nitrogen (N) deposition in the northeastern United States and are beginning to show signs of N saturation. Despite similar amounts of N deposition across watersheds within the Catskill Mountains, rates of soil N cycling and N retention vary significantly among stands of different tree species. We examined the potential use of delta (15)N of plants and soils as an indicator of relative forest soil N cycling rates. We analyzed the delta (15)N of foliage, litterfall, bole wood, surface litter layer, fine roots and organic soil from single-species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine root and organic soil delta (15)N values were highest within sugar maple stands, which correlated significantly with higher rates of net mineralization and nitrification. Results from this study suggest that fine root and organic soil delta (15)N can be used as an indicator of relative rates of soil N cycling. Although not statistically significant, delta (15)N was highest within foliage, wood and litterfall of beech stands, a tree species associated with intermediate levels of soil N cycling rates and forest N retention. Our results show that belowground delta (15)N values are a better indicator of relative rates of soil N cycling than are aboveground delta (15)N values. PMID:17479293

  11. How fresh is maple syrup? Sugar maple trees mobilize carbon stored several years previously during early springtime sap-ascent.

    PubMed

    Muhr, Jan; Messier, Christian; Delagrange, Sylvain; Trumbore, Susan; Xu, Xiaomei; Hartmann, Henrik

    2016-03-01

    While trees store substantial amounts of nonstructural carbon (NSC) for later use, storage regulation and mobilization of stored NSC in long-lived organisms like trees are still not well understood. At two different sites with sugar maple (Acer saccharum), we investigated ascending sap (sugar concentration, δ(13) C, Δ(14) C) as the mobilized component of stored stem NSC during early springtime. Using the bomb-spike radiocarbon approach we were able to estimate the average time elapsed since the mobilized carbon (C) was originally fixed from the atmosphere and to infer the turnover time of stem storage. Sites differed in concentration dynamics and overall δ(13) C, indicating different growing conditions. The absence of temporal trends for δ(13) C and Δ(14) C indicated sugar mobilization from a well-mixed pool with average Δ(14) C consistent with a mean turnover time (TT) of three to five years for this pool, with only minor differences between the sites. Sugar maple trees hence appear well buffered against single or even several years of negative plant C balance from environmental stress such as drought or repeated defoliation by insects. Manipulative investigations (e.g. starvation via girdling) combined with Δ(14) C measurements of this mobilized storage pool will provide further new insights into tree storage regulation and functioning. PMID:26639654

  12. The possible role of air quality in sugar maple decline

    SciTech Connect

    Linzon, S.N. )

    1987-01-01

    The decline of sugar maple (Acer saccharum L.) was first reported to occur in North America in 1913. A review of the literature on the occurrence of sugar maple decline and the associated causal agents was made in 1986 based on 189 reports. No single cause for the decline was identified with a number of diverse factors being reported to be involved. These factors included defoliating insects, drought, nutritional deficiencies, improper woodlot management, secondary root rot organisms, road salt and acidic precipitation. In the Provinces of Quebec and Ontario, Canada, intensive studies into the occurrence and etiology of sugar maple decline commenced in the early 1980s. Maple syrup producers in both provinces complained that sugar maple trees were declining and dying in greater numbers than usual and suspected that air pollution, including acidic precipitation, was involved. This paper describes the symptoms associated with sugar maple decline, the surveys underway in both provinces, and the field and experimental studies being carried out to determine the role of air quality.

  13. Novel Methods of Measuring Hydraulic Conductivity of Tree Root Systems and Interpretation Using AMAIZED (A Maize-Root Dynamic Model for Water and Solute Transport).

    PubMed Central

    Tyree, M. T.; Yang, S.; Cruiziat, P.; Sinclair, B.

    1994-01-01

    Steady-state and dynamic methods were used to measure the conductivity to water flow in large woody root systems. The methods were destructive in that the root must be excised from the shoot but do not require removal of the root from the soil. The methods involve pushing water from the excised base of the root to the apex, causing flow in a direction opposite to that during normal transpiration. Sample data are given for two tropical (Cecropia obtusifolia and Lacistema aggregatum) and two temperate species (Acer saccharum and Juglans regia cv Lara). A hysteresis was observed in the relationship between applied pressure and resulting flow during dynamic measurements. A mathematical model (AMAIZED) was derived for the dynamics of solute and water flow in roots. The model was used to interpret results obtained from steady-state and dynamic measurements. AMAIZED is mathematically identical with the equations that describe Munch pressure flow of solute and water in the phloem of leaves. Results are discussed in terms of the predictions of AMAIZED, and suggestions for the improvement of methods are made. PMID:12232071

  14. Remote sensing of changes in morphology and physiology of trees under stress

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.; Rohde, W. G.; Ward, J. M.

    1970-01-01

    Results of continuing studies of forest trees subjected to varying types of stress are reported. Both greenhouse and field studies are included. Greenhouse work with tree seedlings exposed to varying levels of NaCl and CaCl2 in the soil indicated that, in the initial stages, palisade cells shrink and the amount of air space in the leaf increases. As the severity of damage increases, the cells of the spongy mesophyll shrink and flatten, and the amount of air space in the leaf decreases. Statistical analysis of foliar reflectance and associated moisture content data led to a series of regression equations for predicting foliar moisture content from reflectance data. Equations were calculated for three species, yellow birch (Betula alleghaniensis Britton), sugar maple (Acer saccharum Marsh.) and white ash (Fraxinus americana L.) having multiple correlation coefficients of 0.98, 0.94 and 0.93 respectively. Interpretation of multispectral imagery of the Ann Arbor Forestry Test Site (NASA Site 190) provided evidence that infections of Fomes annosus can be detected in the early stages. Infections of two needle cast diseases were also detected in conifer plantations in the test site. A study of automatic interpretation of multispectral scanner imagery for tree species recognition provided encouraging results.

  15. Nutritional ecology of the formosan subterranean termite (Isoptera: Rhinotermitidae): feeding response to commercial wood species.

    PubMed

    Morales-Ramos, J A; Rojas, M G

    2001-04-01

    The feeding preferences of the Formosan subterranean termite, Coptotermes formosanus Shiraki, were tested in three separate experiments on 28 different wood species. Experiment 1 was a multiple-choice test designed to test relative preferences among 24 wood species commercially available in New Orleans, LA. Experiment 2 was a similar study designed to test relative preferences among 21 wood species shown or reported to be unpalatable to the Formosan subterranean termite. Experiment 3 was a no-choice test to examine the feeding deterrence of the 10 least preferred wood species. Preference was determined by consumption rates. Birch (Betula alleghaniensis Britton), red gum (Liquidambar styraciflua L.), Parana pine [Araucaria angustifolia (Bert.) 1, sugar maple (Acer saccharum Marsh.), pecan (Carya illinoensis Wangenh.), and northern red oak (Quercus rubra L.) were the most preferred species by C. formosanus in order of consumption rate. All of these species were significantly more preferred than southern yellow pine (Pinus taeda L.), widely used for monitoring. Sinker cypress [ = old growth bald cypress, Taxodium distichum (L.)], western red cedar (Thuja plicata Donn), Alaskan yellow cedar (Chamaecyparis nootkatensis D. Don), eastern red cedar (Juniperus virginiana L.), sassafras [Sassafras albidum (Nutt.)], Spanish cedar (Cedrella odorata L.), Honduras mahogany (Swietenia macrophyla King), Indian rosewood (Dalbergia latifolia Roxb.), Honduras rosewood (D. stevensonii Standl.), and morado (Machaerium sp.) induced significant feeding deterrence and mortality to C. formosanus. The last eight species produced 100% mortality after 3 mo. PMID:11332848

  16. Consequences of enriched atmospheric CO{sub 2} and defoliation for foliar chemistry and gypsy moth performance

    SciTech Connect

    Lindroth, R.L.; Kinney, K.K.

    1998-10-01

    Elevated concentrations of atmospheric CO{sub 2} are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant-herbivore interactions. The authors evaluated the independent and interactive effects of enriched CO{sub 2} and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). They grew aspen and maple seedlings in ambient and enriched CO{sub 2} environments at the University of wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50% defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO{sub 2} altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. They found no significant interactions between CO{sub 2} and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO{sub 2} treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance on insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO{sub 2}-enriched world.

  17. Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export.

    PubMed

    Earl, Julia E; Castello, Paula O; Cohagen, Kara E; Semlitsch, Raymond D

    2014-05-01

    Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic-terrestrial linkages. PMID:24399483

  18. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    PubMed

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165

  19. Inhibition of Phenylpropanoid Biosynthesis in Artemisia annua L.: A Novel Approach to Reduce Oxidative Browning in Plant Tissue Culture

    PubMed Central

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165

  20. Carbon content variation in boles of mature sugar maple and giant sequoia.

    PubMed

    Lamlom, Sabah H; Savidge, Rodney A

    2006-04-01

    At present, a carbon (C) content of 50% (w/w) in dry wood is widely accepted as a generic value; however, few wood C measurements have been reported. We used elemental analysis to investigate C content per unit of dry matter and observed that it varied both radially and vertically in boles of two old-growth tree species: sugar maple (Acer saccharum Marsh.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Bucholz). In sugar maple there was considerable variation in tree ring widths among four radii for particular annual layers of xylem, revealing that the annual rate of C assimilation differs around the circumference and from the base of each tree to its top, but the observed variation in C content was unrelated to diameter growth rate and strongly related to the calendar year when the wood was formed. Carbon content in sugar maple wood increased in an approximately linear fashion, from < 50 to 51% from pith to cambium, at both the base and top of the boles. In giant sequoia, C was essentially constant at > 55% across many hundreds of years of heartwood, but it declined abruptly at the sapwood-heartwood boundary and remained lower in all sapwood samples, an indication that heartwood formation involves anabolic metabolism. Factors that may be responsible for the different C contents and trends with age between sugar maple and sequoia trees are considered. Tree-ring data from this study do not support some of the key assumptions made by dendrochronology. PMID:16414925

  1. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  2. Potential tree species for use in the restoration of unsanitary landfills.

    PubMed

    Kim, Kee Dae; Lee, Eun Ju

    2005-07-01

    Given that they represent the most economical option for disposing of refuse, waste landfills are widespread in urban areas. However, landfills generate air and water pollution and require restoration for landscape development. A number of unsanitary waste landfills have caused severe environmental problems in developing countries. This study aimed to investigate the colonization status of different tree species on waste landfills to assess their potential for restoring unsanitary landfills in South Korea. Plot surveys were conducted using 10 x 10-m quadrats at seven waste landfill sites: Bunsuri, Dugiri, Hasanundong, Gomaeri, Kyongseodong, Mojeonri, and Shindaedong. We determined the height, diameter at breast height (DBH), and number of tree species in the plots, and enumerated all saplings < or =1 m high. Because black locust, Robinia pseudoacacia, was the dominant tree species in the waste landfills, we measured the distance from the presumed mother plant (i.e., the tallest black locust in a patch), height, and DBH of all individuals in black locust patches to determine patch structure. Robinia pseudoacacia, Salix koreensis, and Populus sieboldii formed canopy layers in the waste landfills. The basal area of black locust was 1.51 m(2)/ha, and this species had the highest number of saplings among all tree species. The diameter of the black locust patches ranged from 3.71 to 11.29 m. As the patch diameter increased, the number of regenerated saplings also tended to increase, albeit not significantly. Black locust invaded via bud banks and spread clonally in a concentric pattern across the landfills. This species grew well in the dry habitat of the landfills, and its growth rate was very high. Furthermore, black locust has the ability to fix nitrogen symbiotically; it is therefore considered a well-adapted species for waste landfills. Eleven woody species were selected for screening: Acer palmatum, Albizzia julibrissin, Buxus microphylla var. koreana, Ginkgo

  3. Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature.

    PubMed

    Gauthier, Paul P G; Crous, Kristine Y; Ayub, Gohar; Duan, Honglang; Weerasinghe, Lasantha K; Ellsworth, David S; Tjoelker, Mark G; Evans, John R; Tissue, David T; Atkin, Owen K

    2014-12-01

    Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R(dark)), and the short-term T response of R(dark) were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T-response curves of R(dark) measured over the 15-65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of R(dark) measured at T <35 °C and that there was no interactive effect of [CO2], growth T, and drought on T response of R(dark). However, drought increased R(dark) at high leaf T typical of heatwave events (35-45 °C), and increased the measuring T at which maximal rates of R(dark) occurred (Tmax) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q 10 of R(dark) (i.e. proportional rise in R(dark) per 10 °C) over the 15-35 °C range, while drought increased Q 10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2]. PMID:25205579

  4. Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature

    PubMed Central

    Gauthier, Paul P. G.; Crous, Kristine Y.; Ayub, Gohar; Duan, Honglang; Weerasinghe, Lasantha K.; Ellsworth, David S.; Tjoelker, Mark G.; Evans, John R.; Tissue, David T.; Atkin, Owen K.

    2014-01-01

    Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R dark), and the short-term T response of R dark were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T–response curves of R dark measured over the 15–65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of R dark measured at T <35 °C and that there was no interactive effect of [CO2], growth T, and drought on T response of R dark. However, drought increased R dark at high leaf T typical of heatwave events (35–45 °C), and increased the measuring T at which maximal rates of R dark occurred (T max) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q 10 of R dark (i.e. proportional rise in R dark per 10 °C) over the 15–35 °C range, while drought increased Q 10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2]. PMID:25205579

  5. Effect of attract and kill formulations and application rates on trap catches of European pine shoot moth (Lepidoptera: Tortricidae) and shoot damage in Scots pine saplings.

    PubMed

    Sukovata, Lidia; Kolk, Andrzej; Cieślak, Marek

    2004-10-01

    Attract and kill technology was tested for management of European pine shoot moth, Rhyacionia buoliana (Denis & Schiffermüller), in 4-6-yr-old Scots pine, Pinus sylvestris L., plantations managed by Jablonna and Pultusk Forest Districts, Poland. In 2001, two formulations based on ricinoleic acid and hydrocarbon fraction (petroleum jelly) in combination with (E)-9-dodecenyl acetate, the sex pheromone of the pine shoot moth; permethrin as a contact insecticide; and Tinuvin UV absorber were used. In 2002, different formulations and application rates of the attracticide based on petroleum jelly were tested. Significantly reduced trap catches occurred in plots treated with three attracticide formulations [Rhykil-1 (with Tinuvin UV absorber), Rhykil-2 (with a new UV absorber, 3,3'-dihydroxy-2,2'-bipyridyl), and Rhykil-3 (without the insecticide)] at 3,000 droplets per hectare in comparison with those in control plots, suggesting that all formulations were highly effective. Significantly lower catches than in control plots also were observed when Rhykil-1 was applied at 1000, 2,000, and 3,000 droplets per hectare. However, only slight reduction of shoot damage in treated plots was observed in both experiments. The formulation without the insecticide had similar efficacy to that of the formulation combined with the insecticide. In 2003, the Rhykil-2 attracticide was tested at 250, 500, and 1000 droplets per hectare. Although there were no significant differences in trap catches between treated and control plots, shoot damage level was reduced substantially in all treated plots. These results suggest that attract and kill technology may be used at rates lower than 1000 droplets per hectare for management of R. buoliana; however, its "kill" effect should be confirmed in further studies. PMID:15568351

  6. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  7. Programs for At-Risk Youth: A Review of the American, Canadian and British Literature since 1984. ACER Research Monograph No. 47.

    ERIC Educational Resources Information Center

    Withers, Graeme; Batten, Margaret

    All adolescents feel anger, frustration, and a range of temperamental disurbances due to the many physical, emotional and social stresses associated with their developmental stage. This document provides Australian and international perspectives on programs, both in schools and in the wider community, which attempt to prevent and treat the more…

  8. Youth and Society: The Two Transitions. A Review of Australian Research on Young People in Work and Education. ACER Research Monograph No. 38.

    ERIC Educational Resources Information Center

    Blakers, Catherine

    This literature review is part of a project designed to provide an in-depth picture of the experiences and views of long-term unemployed people in Australia. The review outlines what the research shows and says about the situation of young people (15-24 years) in work and education in the changing society of the 1980s in Australia. The book is…

  9. Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain ...

  10. Six Hundred Schools: A Study of Resources in Australian and New Zealand Government Schools. Staffing and Resources Study Report No. 2. ACER Research Monograph No. 17.

    ERIC Educational Resources Information Center

    Ainley, John

    Questionnaire data underlie this analysis of the patterns of personnel availability and utilization in a sample of government schools in Australia and New Zealand. An introduction reviews research and outlines some theoretical issues relevant to school organization and resource allocation. The design and administration of the survey are reported…

  11. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient?

    PubMed

    Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel

    2007-01-01

    The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration. PMID:17404380

  12. Ecology of red swamps in the glaciated northeast: a community profile

    USGS Publications Warehouse

    Golet, Francis C.; Calhoun, Aram J. K.; DeRagon, William R.

    1993-01-01

    This report is part of a series of profiles on the ecology of wetland and deepwater habitats. This particular profile addresses red maple swamps in the glaciated northeastern United States. Red maple (Acer rubrum) swamp is a dominant wetland type in most of the region; it reaches its greatest abundance in southern New England and northern New Jersey, where it comprises 60-800/o of all inland wetlands. Red maple swamps occur in a wide variety of hydrogeologic settings, from small, isolated basins in till or glaciofluvial deposits to extensive wetland complexes on glacial lake beds, and from hillside seeps to stream floodplains and lake edges. Individual swamps may be seasonally flooded, temporarily flooded, or seasonally saturated, and soils may be mineral or organic. As many as five distinct vegetation layers may occur in these swamps, including trees, saplings, shrubs, herbs, and ground cover plants such as bryophytes and clubmosses. On a regional scale, red maple swamps support at least 50 species of trees, more than 90 species of shrubs and vines, and more than 300 species of nonwoody plants. These swamps also provide habitat for a rich faunal community, including several wetland-dependent species. In areas that are becoming urbanized, these wetlands often constitute critical habitat for facultative species as well. Red maple swamps also are important sites for flood storage, water quality improvement, recreation, scenic beauty, and open space.

  13. In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.).

    PubMed

    Rao, Srinath; Ftz, Jabeen

    2013-04-01

    A system for in vitro selection of drought tolerant callus lines in sugarcane was developed. High molecular weight PEG was used as selective agent. Selected callus line grew better than non-selected callus when grown on different concentrations of PEG. The activity of antioxidant enzymes like CAT, POX, APX and SOD were high in selected callus than in non-selected callus. Osmolytes like proline and ascorbic acid were at higher levels in selected callus than in non-selected callus, however at higher concentrations (20-30 %) of PEG, levels of proline and ascorbic acid decreased. The frequency of organogenesis and number of plantlets decreased in selected callus than in non-selected callus. The results can be used for in vitro screening and manipulations of sugarcane for improvement of drought tolerance. PMID:24431494

  14. Stem juice production of the C4 sugarcane (Saccharum officinarum)is enhanced by growth at double-ambient CO2 and high temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars were grown for three months in sunlit greenhouses under [CO2] of 360 (ambient) and 720(doubled) ppm and at temperatures (T) of 1.5 (near ambient) and 6.0C higher than outside ambient T. Leaf area, stem juice, plant biomass, leaf CO2 exchange rate (CER) and activities of PEP ...

  15. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose-phosphate synthase (SPS), soluble acid (SAI) and cell-wall invertase (CWI) are importan...

  16. Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.)

    PubMed Central

    Khan, Mohammad Suhail; Khraiwesh, Basel; Pugalenthi, Ganesan; Gupta, Ram Sagar; Singh, Jyotsnendra; Duttamajumder, Sanjoy Kumar; Kapur, Raman

    2014-01-01

    Sugarcane is an important tropical cash crop meeting 75% of world sugar demand and it is fast becoming an energy crop for the production of bio-fuel ethanol. A considerable area under sugarcane is prone to waterlogging which adversely affects both cane productivity and quality. In an effort to elucidate the genes underlying plant responses to waterlogging, a subtractive cDNA library was prepared from leaf tissue. cDNA clones were sequenced and annotated for their putative functions. Major groups of ESTs were related to stress (15%), catalytic activity (13%), cell growth (10%) and transport related proteins (6%). A few stress-related genes were identified, including senescence-associated protein, dehydration-responsive family protein, and heat shock cognate 70 kDa protein. A bioinformatics search was carried out to discover novel microRNAs (miRNAs) that can be regulated in sugarcane plants subjected to waterlogging stress. Taking advantage of the presence of miRNA precursors in the related sorghum genome, seven candidate mature miRNAs were identified in sugarcane. The application of subtraction technology allowed the identification of differentially expressed sequences and novel miRNAs in sugarcane under waterlogging stress. The comparative global transcript profiling in sugarcane plants undertaken in this study suggests that proteins associated with stress response, signal transduction, metabolic activity and ion transport play important role in conferring waterlogging tolerance in sugarcane. PMID:25009768

  17. Physiological and Morphological Effects of High Water Tables on Early Growth of Giant Reed (Arundo donax), Elephant Grass (Pennisetum purpureum), Energycane and Sugarcane (Saccharum spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demand for renewable energy sources has led to interest in high-biomass crops. Species that have been proposed as well-suited for biofuel production in the Everglades Agricultural Area (EAA) of Florida include Giant Reed (Arundo donax), Elephant Grass (Pennisetum purpureum), Energycane (S...

  18. Sucrose and color profiles in sugarcane (Saccharum sp.) juice analyzed by UFLC-ELSD and Synapt High-Definition Mass Spectrometry during radiation treatment

    NASA Astrophysics Data System (ADS)

    Lima, Roberta B.; de Aguiar, Claudio Lima; Galaverna, Renan; Baptista, Antonio S.; Eberlin, Marcos N.; Arthur, Valter

    2016-04-01

    This work evaluated the effect of electron beam irradiation (E-beam) on sugarcane juice and compared the results with preliminary tests performed on sugarcane juice treated with gamma irradiation. The samples were irradiated at 5, 10 and 20 kGy doses and results were compared wile control samples without irradiation. The results showed a significant increase (p≤0.05) of phenolic compounds in both treatments. We also observed increased contents of reducing sugars (glucose and fructose) for the samples irradiated with gamma rays and E-beam measured by the DNS methods. However, there was no significant difference of sugars content measured by chromatographic analyses performed in the sugarcane juice treated with E-beam. Therefore reducing sugars content could be overestimated by the DNS method because salts in sugarcane juice. The treatments were able to reduce sugarcane juice ICUMSA color intensity in both treatments with irradiation. E-beam reduced sugarcane juice color by roughly 49% compared the control, while gamma irradiation reduced it by 30%.

  19. Genetic analysis of the sugarcane (Saccharum spp.) cultivar LCP 85-384. I. linkage mapping using AFLP, SSR, and TRAP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane hybrids are complex aneu-polyploids (2n = 100 to 130) derived from inter-specific hybridization between ancestral polyploid species, namely S. officinarum L. and S. spontaneum L. Efforts in understanding the sugarcane genome have recently been enhanced through the use of new molecular mark...

  20. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.

    PubMed

    Chandra, A; Verma, P K; Islam, M N; Grisham, M P; Jain, R; Sharma, A; Roopendra, K; Singh, K; Singh, P; Verma, I; Solomon, S

    2015-05-01

    Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose phosphate synthase (SPS), soluble acid (SAI) and cell wall (CWI) invertases are important. Expression of these enzymes was compared in an early (CoJ64) and late (BO91) maturing sugarcane variety using end-point and qRT-PCR. Quantitative RT-PCR at four crop stages revealed high CWI expression in upper internodes of CoJ64, which declined significantly in both top and bottom internodes with maturity. In BO91, CWI expression was high in top and bottom internodes and declined significantly only in top internodes as the crop matured. Overall, CWI expression was higher in CoJ64 than in BO91. During crop growth, there was no significant change in SPS expression in bottom internodes in CoJ64, whereas in BO91 it decreased significantly. Apart from a significant decrease in expression of SuSy in mature bottom internodes of BO91, there was no significant change. Similar SAI expression was observed with both end-point and RT-PCR, except for significantly increased expression in top internodes of CoJ64 with maturity. SAI, being a major sucrose hydrolysing enzyme, was also monitored with end-point PCR expression in internode tissues of CoJ64 and BO91, with higher expression of SAI in BO91 at early crop stages. Enzyme inhibitors, e.g. manganese chloride (Mn(++) ), significantly suppressed expression of SAI in both early- and late-maturing varieties. Present findings enhance understanding of critical sucrose metabolic gene expression in sugarcane varieties differing in content and time of peak sucrose storage. Thus, through employing these genes, improvement of sugarcane sucrose content is possible. PMID:25311688

  1. Use of Simple Sequence Repeat (SSR) markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...

  2. Selection criteria and performance of energycane clones (Saccharum spp. x S. spontaneum) for biomass production under tropical and sub-tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The urgent need to reduce our reliance on oil and at the same time reduce carbon emissions, has triggered the search for alternative energy sources such as biofuels. New technologies have made possible the conversion of cellulose and hemicellulose into sugars that can be fermented to produce ethanol...

  3. Introduction of Pea DNA Helicase 45 Into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability And Upregulation Of Stress-responsive Genes Leads To Abiotic Stress Tolerance.

    PubMed

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-05-01

    DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45. PMID:25875731

  4. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species

    PubMed Central

    Messier, Christian; Kembel, Steven W.

    2016-01-01

    Background The diversity and composition of the microbial community of tree leaves (the phyllosphere) varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling techniques employed for phyllosphere studies include picking leaves from one canopy location to mixing randomly selected leaves from throughout the canopy. In this context, our goal was to characterize the relative importance of intra-individual variation in phyllosphere communities across multiple species, and compare this variation to inter-individual and interspecific variation of phyllosphere epiphytic bacterial communities in a natural temperate forest in Quebec, Canada. Methods We targeted five dominant temperate forest tree species including angiosperms and gymnosperms: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea and Picea glauca. For one randomly selected tree of each species, we sampled microbial communities at six distinct canopy locations: bottom-canopy (1–2 m height), the four cardinal points of mid-canopy (2–4 m height), and the top-canopy (4–6 m height). We also collected bottom-canopy leaves from five additional trees from each species. Results Based on an analysis of bacterial community structure measured via Illumina sequencing of the bacterial 16S gene, we demonstrate that 65% of the intra-individual variation in leaf bacterial community structure could be attributed to the effect of inter-individual and inter-specific differences while the effect of canopy location was not significant. In comparison, host species identity explains 47% of inter-individual and inter-specific variation in leaf bacterial community structure followed by individual identity (32%) and canopy location (6%). Discussion Our results suggest that individual

  5. AmeriFlux US-Bar Bartlett Experimental Forest

    SciTech Connect

    Richardson, Andrew

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bar Bartlett Experimental Forest. Site Description - The Bartlett Experimental Forest (448170 N, 71830 W) is located within the White Mountains National Forest in north-central New Hampshire, USA. The 1050 ha forest extends across an elevational range from 200 to 900 m a.s.l. It was established in 1931 and is managed by the USDA Forest Service Northeastern Research Station in Durham, NH. The climate is humid continental with short, cool summers (mean July temperature, 19.8C) and long, cold winters (mean January temperature, 9.8C). Annual precipitation averages 130 cm and is distributed evenly throughout the year. Soils are developed from glacial till and are predominantly shallow, well-drained spodosols. At lowto mid-elevation, vegetation is dominated by northern hardwoods (American beech, Fagus grandifolia; sugar maple, Acer saccharum; yellow birch, Betula alleghaniensis; with some red maple, Acer rubrum and paper birch, Betula papyrifera). Conifers (eastern hemlock, Tsuga canadensis; eastern white pine, Pinus strobus; red spruce, Picea rubens) are occasionally found intermixed with the more abundant deciduous species but are generally confined to the highest (red spruce) and lowest (hemlock and pine) elevations. In 2003, the site was adopted as a NASA North American Carbon Program (NACP) Tier-2 field research and validation site. A 26.5 m high tower was installed in a low-elevation northern hardwood stand in November, 2003, for the purpose of making eddy covariance measurements of the forest–atmosphere exchange of CO2, H2O and radiant energy. Continuous flux and meteorological measurements began in January, 2004, and are ongoing. Average canopy height in the vicinity of the tower is approximately 20–22 m. In the tower footprint, the forest is predominantly classified into red maple, sugar maple, and American beech forest types. Leaf area index in the vicinity of the tower is 3.6 as measured

  6. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may

  7. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  8. Holocene paleoenviroments of northwest Iowa

    SciTech Connect

    Baker, R.G.; Bettis, E.A. III; Schwert, D.P.

    1996-05-01

    This paper presents the biotic, sedimentary, geomorphic, and climatic history of the upper part of the Roberts Creek Basin, northeastern Iowa for the late-glacial and Holocene, and compares these records with a C-O isotopic sequence from Coldwater Cave, 60 km northwest of Roberts Creek. the biotic record (pollen, vascular plant and bryophyte macrofossils, and insects) is preserved in floodplain alluvium that underlies three constructional surfaces separated by low scarps. Each surface is underlain by a lithologically and temporally distinct alluvial fill. The highest surface is underlain by the Gunder Member of the Deforest Formation, dating from 11,000 to 4000 yr BP; beneath the intermediate level is the Roberts Creek Member, dating from 4000 to 400 yr BP; and the lowest level is underlain by the Camp Creek Member, deposited during the last 380 yr. Pollen and plant macrofossils in the alluvial fill show that a typical late-glacial spruce forest was replaced by Quercus and Ulmus in the early Holocene. This early-to-middle Holocene forest became dominated by medic elements such as Acer saccharum, Tila americana, Ostyra virginiana, and Carpinus caroliniana as late as 5500 yr BP; in contrast, the closest sites to the west and north were at their warmest and driest were covered by prairie vegetation between 6500 and 5500 yr BP. After 5500 yr BP, the forest in the roberts Creek area was replaced by prairie, as indicated by a rich assemblage of plant macrofossils, although only Ambrosia and Poaceae became abundant in the pollen record. The return of Quercus {approx} 3000 BP (while nonarboreal pollen percentages remained relatively high) indicates the oak savanna prevailed with little change until settlement time. 83 refs., 17 figs., 5 tabs.

  9. Tree Nonstructural Carbohydrate Reserves Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2015-12-01

    Understanding the roles, importance, and dynamics of tree non-structural carbohydrates (NSCs) is currently an active area of research. The question of how the relationships between NSCs, growth, and mortality can be used to develop more accurate projections of forest dynamics is central to this research. To begin to address this question, we have asked an even more fundamental question: How much are trees allocating carbon to storage, in the form of NSCs, versus new growth? Ecological theory predicts that there should be trade-offs between different plant life history strategies provided that there are the carbon mass-balance constraints to enforce these trade-offs. Current data on tree NSCs lack the spatial and taxonomic extent required to properly address this question. Therefore, we established a network of forest inventory plots at ten sites across the eastern US and measured growth in adult trees using increment cores and repeat measures of diameter at breast height (DBH). Increment cores were also used to measure sapwood NSCs. We hypothesized that across the eastern US, shade tolerant species, e.g. Sugar Maple (Acer saccharum) have the largest NSC reserves and that shade intolerant species have the lowest reserves. We also hypothesized that NSC reserves increase with temperature and precipitation, as with growth, and that within species NSC reserves increase with growth rate. Initial analyses of tree NSCs indicates that trees of intermediate shade tolerance, e.g. Red Oak (Quercus rubra) have the highest concentrations of sapwood NSCs, and among the highest growth rates. Across the entire study region, NSC concentrations are positively correlated with tree size and growth rate. Within species, NSC concentrations are also positively correlated with growth rate. Across functional groups healthy individuals have significantly higher sapwood NSC concentrations than visibly stressed individuals. There are also significantly lower NSC concentrations in sapwood of

  10. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  11. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

    SciTech Connect

    Lindroth, R.L.; Kinney, K.K.; Platz, C.L. )

    1993-04-01

    Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.

  12. Importance of protein quality versus quantity in alternative host plants for a leaf-feeding insect.

    PubMed

    Barbehenn, Raymond V; Niewiadomski, Julie; Kochmanski, Joseph

    2013-09-01

    The nutritional value of alternative host plants for leaf-feeding insects such as caterpillars is commonly measured in terms of protein quantity. However, nutritional value might also depend on the quality of the foliar protein [i.e., the composition of essential amino acids (EAAs)]. A lack of comparative work on the EAA compositions of herbivores and their host plants has hampered the testing of this hypothesis. We tested the "protein quality hypothesis" using the tree-feeding caterpillars of Lymantria dispar (gypsy moth) and two taxonomically unrelated host plants, red oak (Quercus rubra) and sugar maple (Acer saccharum). Because L. dispar has higher fitness on oak than on maple, support for the hypothesis would be found if protein were of higher quality from oak than from maple. The whole-body EAA composition of L. dispar larvae was measured to estimate its optimum dietary protein composition, which was compared with the EAA compositions of oak and maple leaves. Contrary to the protein quality hypothesis, the EAA compositions of oak and maple were not significantly different in the spring. The growth-limiting EAAs in both tree species were histidine and methionine. Similar results were observed in the summer, with the exception that the histidine composition of oak was between 10 and 15 % greater than in maple leaves. The two main factors that affected the nutritional value of protein from the tree species were the quantities of EAAs, which were consistently higher in oak, and the efficiency of EAA utilization, which decreased from 80 % in May to <50 % in August. We conclude that the relative nutritional value of red oak and sugar maple for L. dispar is more strongly affected by protein quantity than quality. Surveys of many wild herbaceous species also suggest that leaf-feeding insects would be unlikely to specialize on plants based on protein quality. PMID:23297046

  13. Quantifying Age-Related Hydraulic and Biochemical Constraints on Tree Photosynthesis in the Southern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Missik, J.; Benson, M. C.; Oishi, A. C.; Novick, K. A.; Miniat, C.

    2015-12-01

    Forest carbon accumulation generally declines with age, a trend largely attributed to reductions in gross primary production (GPP). However, for many species, uncertainty remains about the specific mechanisms limiting GPP. We examine both tree hydraulic and biochemical parameters affecting carbon uptake across a successional gradient in the southern Appalachian Mountains, utilizing a chronosequence approach with 5-, 10-, and 85-year old forest stands. We conducted measurements on four of the dominant species in the region: Liriodendron tulipifera, Betula lenta, Acer rubrum, and Quercus alba. To assess biochemical photosynthetic capacity, we estimated Vcmax and Jmax from over 140 gas exchange A/Ci curves. We determined that leaf gas exchange measurements performed on excised branches of A. saccharum, L. tulipifera, and Q. alba significantly underestimated assimilation by 35, 26, and 63% on average, respectively. Therefore, A/Ci measurements were performed on in situ canopy branches, using an 18 m boom lift to access the tallest trees. We examine how these photosynthetic parameters vary with age, height, and foliar nitrogen content among tree species and canopy positions. In order to investigate hydraulic factors driving stomatal behavior and therefore carbon uptake, we collected measurements of mid-day and pre-dawn leaf water potential (ψmd and ψpd) and xylem cavitation vulnerability. Preliminary results suggest that ψmd-ψpd decreases with along the chronosequence in anisohydric species, whereas ψmd-ψpd increases or remains stable with age/height in isohydric species. These data will be analyzed together with site- and species-specific hydraulic vulnerability data to assess whether the hydraulic safety margin changes with tree age/height, and explore how these patterns vary among species representing different xylem anatomies and a range of isohydric/anisohydric water management strategies. These results will provide improved estimates of common parameters in

  14. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change.

    PubMed

    Peltier, Drew M P; Ibáñez, Inés

    2015-01-01

    Predicting future forests' structure and functioning is a critical goal for ecologists, thus information on seedling recruitment will be crucial in determining the composition and structure of future forest ecosystems. In particular, seedlings' photosynthetic response to a changing environment will be a key component determining whether particular species establish enough individuals to maintain populations, as growth is a major determinant of survival. We quantified photosynthetic responses of sugar maple (Acer saccharum Marsh.), pignut hickory (Carya glabra Mill.), northern red oak (Quercus rubra L.) and eastern black oak (Quercus velutina Lam.) seedlings to environmental conditions including light habitat, temperature, soil moisture and vapor pressure deficit (VPD) using extensive in situ gas exchange measurements spanning an entire growing season. We estimated the parameters in a hierarchical Bayesian version of the Farquhar model of photosynthesis, additionally informed by soil moisture and VPD, and found that maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) rates showed significant seasonal variation, but not the peaked patterns observed in studies of adult trees. Vapor pressure deficit and soil moisture limited J(max) and V(cmax) for all four species. Predictions indicate large declines in summer carbon assimilation rates under a 3 °C increase in mean annual temperature projected by climate models, while spring and fall assimilation rates may increase. Our model predicts decreases in summer assimilation rates in gap habitats with at least 90% probability, and with 20-99.9% probability in understory habitats depending on species. Predictions also show 70% probability of increases in fall and 52% probability in spring in understory habitats. All species were impacted, but our findings suggest that oak species may be favored in northeastern North America under projected increases in temperature due to superior assimilation rates under

  15. Large-Scale Variations in Lumber Value Recovery of Yellow Birch and Sugar Maple in Quebec, Canada

    PubMed Central

    Hassegawa, Mariana; Havreljuk, Filip; Ouimet, Rock; Auty, David; Pothier, David; Achim, Alexis

    2015-01-01

    Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). For this purpose, lumber value recovery (LVR), an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest. PMID:26313689

  16. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).

    PubMed

    Levesque, K R; Levesque, K R; Fortin, M; Mauffette, Y

    2002-04-01

    Temperature and food quality can both influence growth rates, consumption rates, utilization efficiencies and developmental time of herbivorous insects. Gravimetric analyses were conducted during two consecutive years to assess the effects of temperature and food quality on fourth instar larvae of the forest tent caterpillar Malacosoma disstria Hübner. Larvae were reared in the laboratory at three different temperatures (18, 24 and 30 degrees C) and on two types of diet; leaves of sugar maple trees Acer saccharum Marsh. located at the forest edge (sun-exposed leaves) or within the forest interior (shade-exposed leaves). In general, larvae reared at 18 degrees C had lower growth rates and lower consumption rates than larvae reared at the warmer temperatures (24 and 30 degrees C). Moreover, the duration of the instar decreased significantly with increasing temperatures. Type of diet also affected the growth rates and amount of food ingested by larvae but did not affect the duration of the instar. Larvae fed sun-exposed leaves consumed more food and gained higher biomasses. Values of approximate digestibility and efficiency of conversion of ingested food were also higher when larvae were fed sun-exposed leaves. Higher growth rates with increasing temperatures were primarily the result of the shorter stadium duration. The higher growth rates of larvae fed sun-exposed leaves were possibly the result of stimulatory feeding and consequently greater food intake and also a more efficient use of food ingested. This study suggests that the performance of M. disstria caterpillars could be enhanced by warmer temperatures and higher leaf quality. PMID:12020370

  17. The Role of Forest Tent Caterpillar Defoliations and Partial Harvest in the Decline and Death of Sugar Maple

    PubMed Central

    Hartmann, Henrik; Messier, Christian

    2008-01-01

    Background and Aims Natural and anthropogenic disturbances can act as stresses on tree vigour. According to Manion's conceptual model of tree disease, the initial vigour of trees decreases as a result of predisposing factors that render these trees more vulnerable to severe inciting stresses, stresses that can then cause final vigour decline and subsequent tree death. This tree disease model was tested in sugar maple (Acer saccharum) by assessing the roles of natural and anthropogenic disturbances in tree decline and death. Methods Radial growth data from 377 sugar maple trees that had undergone both defoliations by insects and partial harvest were used to estimate longitudinal survival probabilities as a proxy for tree vigour. Radial growth rates and survival probabilities were compared among trees subjected to different levels of above- and below-ground disturbances, between periods of defoliation and harvest, and between live and dead trees. Key Results Manion's tree disease model correctly accounts for vigour decline and tree death in sugar maple; tree growth and vigour were negatively affected by a first defoliation, predisposing these trees to death later during the study period due to a second insect outbreak that initiated a final vigour decline. This decline was accelerated by the partial harvest disturbance in 1993. Even the most severe anthropogenic disturbances from partial harvest did not cause, unlike insect defoliation, any growth or vigour declines in live sugar maple. Conclusions Natural disturbances acted as predisposing and inciting stresses in tree sugar maple decline and death. Anthropogenic disturbances from a partial harvest at worst accelerated a decline in trees that were already weakened by predisposing and inciting stresses (i.e. repeated insect defoliations). Favourable climatic conditions just before and after the partial harvest may have alleviated possible negative effects on growth resulting from harvesting. PMID:18660493

  18. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  19. Characterization of Transpiration in a Deciduous Forest of the US Midwest

    NASA Astrophysics Data System (ADS)

    Dragoni, D.; Caylor, K. K.; Schmid, H.

    2006-12-01

    The exchange of water between atmosphere and biosphere is an important determinant of climate and the productivity of vegetation, as transpiration involves substantial amounts of energy. Knowing how transpiration changes over seasonal and diurnal cycles can help increase the understanding of how a forest reacts to changes in the biosphere and atmosphere on both short and long time scales. A study was conducted to characterize the daily and seasonal variation of transpiration in sugar maple (Acer Saccharum) at the Morgan-Monroe State Forest (MMSF) AmeriFlux site in Indiana (USA), were this species represent more than 25% of the forest basal area. Transpiration was estimated by up-scaling single point measurements of sap flow density obtained using the heat-pulse technique. To characterize the variability of sap flow density in the deep sapwood of sugar maples, 3 to 4 radial profiles were obtained for each sampled tree at different positions around the trunk. Different approaches were then tested to scale up to whole tree sap flow. Seventeen trees of different diameter were sampled by three roving sap flow systems, taking measurements from each tree for 5-7 contiguous days. Because of the small scale but complex topography in the area and the relatively shallow soil, particular attention was given to the effect of spatial and temporal variability of soil moisture content on transpiration; for this reason, sampled trees were selected along a topographic gradient and soil water content was measured in the proximity of each tree. Meteorological measurements taken at the nearby MMSF AmeriFlux tower were used to explain transpiration variability in terms of vapor pressure deficit, and solar radiation, while eddy- covariance measurements of latent heat flux were related to the up-scaled transpiration of sugar maples in the study area.

  20. Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch.

    PubMed

    Cirelli, Damián; Jagels, Richard; Tyree, Melvin T

    2008-08-01

    Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn-O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for

  1. Changes in Foliar Chemistry Along a Midwestern Air Pollution Gradient: 1988- 2005

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Burton, A. J.; Pregitzer, K. S.

    2008-12-01

    Sugar maple (Acer saccharum) leaf litter has been collected annually for the past two decades from four sites in Michigan along a regional gradient in air pollution. During this time, wet acid deposition at monitoring stations near these sites declined 20-30 % while wet deposition of nitrogen remained virtually unchanged. Given these dynamics, we examined the foliar chemistry of this leaf litter to determine (a) if concentrations of the biologically important elements Ca and Al had responded to the reduction in acid deposition and (b) if foliar N concentrations and δ15N values reflected a trend toward increased N availability resulting from the persistence of high rates of N deposition. During the study period of 1988-2005, the foliar [Ca] declined significantly at three of the four sites and the foliar [Al] declined significantly at all four sites. Together, these changes suggest that amount of these elements removed from exchange sites and put into soil solution has decreased with the decline in acid deposition. Furthermore, the ratio of Ca:Al significantly increased at each site. Changes in the Ca:Al are of particular importance because low Ca to Al ratios in foliar tissue have been strongly implicated in declines in plant growth resulting from acid deposition. The increase in the foliar Ca:Al suggests that rather than causing a lasting depletion of base cations, previous highs in acid deposition had a transient effect from which hardwood forests in this region have largely recovered. In contrast, there were no significant trends in the [N] at any of the four sites and only one site in the middle of the pollution gradient showed a significant trend in δ15N that implies increased N availability. These results suggest that current levels of N deposition are not causing widespread increases in the amount of N available to plants in these ecosystems and do not appear to be quickly pushing the systems toward N saturation.

  2. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  3. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  4. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  5. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    PubMed

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  6. Separating temperature from other factors in phenological measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  7. Cross-scale integration of knowledge for predicting species ranges: a metamodeling framework

    PubMed Central

    Talluto, Matthew V.; Boulangeat, Isabelle; Ameztegui, Aitor; Aubin, Isabelle; Berteaux, Dominique; Butler, Alyssa; Doyon, Frédérik; Drever, C. Ronnie; Fortin, Marie-Josée; Franceschini, Tony; Liénard, Jean; McKenney, Dan; Solarik, Kevin A.; Strigul, Nikolay; Thuiller, Wilfried; Gravel, Dominique

    2016-01-01

    Aim Current interest in forecasting changes to species ranges have resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller-scale processes such as growth, fecundity, and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. Location Eastern North America (as an example). Methods Our framework builds a metamodel that is constrained by the results of multiple sub-models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence-absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. Results For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. Main conclusions We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off-the-shelf software. The framework has wide potential for use in species distribution modelling and can

  8. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.

    PubMed

    Zarco-Tejada, P J; Miller, J R; Mohammed, G H; Noland, T L; Sampson, P H

    2002-01-01

    Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measurements of spectral reflectance at leaf and canopy levels and a modeling study were conducted, demonstrating that effects of chlorophyll fluorescence (CF) can be detected by remote sensing. The coupled FRT and PROSPECT model enabled CF and chlorophyll a + b (Ca + b) content to be estimated by inversion. Laboratory measurements of leaf reflectance (r) and transmittance (t) from leaves with constant Ca + b allowed the study of CF effects on specific fluorescence-sensitive indices calculated in the Photosystem I (PS-I) and Photosystem II (PS-II) optical region, such as the curvature index [CUR; (R675.R690)/R2(683)]. Dark-adapted and steady-state fluorescence measurements, such as the ratio of variable to maximal fluorescence (Fv/Fm), steady state maximal fluorescence (F'm), steady state fluorescence (Ft), and the effective quantum yield (delta F/F'm) are accurately estimated by inverting the FRT-PROSPECT model. A double peak in the derivative reflectance (DR) was related to increased CF and Ca + b concentration. These results were consistent with imagery collected with a compact airborne spectrographic imager (CASI) sensor from sites of sugar maple (Acer saccharum Marshall) of high and low stress conditions, showing a double peak on canopy derivative reflectance in the red-edge spectral region. We developed a derivative chlorophyll index (DCI; calculated as D705/D722), a function of the combined effects of CF and Ca + b content, and used it to detect vegetation stress. PMID:12371159

  9. Contributions of Mycorrhizal Trees to Mg Isotopic Variations in Weathering

    NASA Astrophysics Data System (ADS)

    Bryce, J. G.; Hobbie, E. A.; Blichert-Toft, J.; Colpaert, J.; Hoff, C.; Prado, M. F.; Pettitt, E.; Telouk, P.

    2013-12-01

    Although it is well established that organisms contribute significantly to the weathering process and to the distribution of elements within continental environments, the degree to which biota actively drive weathering versus the degree to which organisms benefit from nutrients released during largely inorganic weathering processes remains shrouded in mystery. Furthermore, the relative influence of different organisms on key emerging isotopic systems, especially Mg, remains poorly understood. To address these questions, we have carried out a series of Mg isotopic investigations on semi-hydroponically cultured trees (pine, Pinus sylvestris and sugar maple, Acer saccharum) grown with appropriate mycorrhizal symbionts (ectomycorrhizal, Suillus, or arbuscular, Glomus, respectively) in different geologic substrates (carbonate and granitic) under low nutrient supply. Plant tissues and eluting solutions across these biogeochemical experiments were studied for elemental abundances and Mg isotopic signatures. Eluting solutions were most distinctive from the abiotic control for those trees grown in granite-bearing cultures, an observation we attribute to biotite weathering. Foliar and root tissues recorded distinctive isotopic compositions (e.g., differences up to 0.6 ‰ δ26/24Mg) in both the pines and sugar maples. Foliar δ26/24Mg varied amongst the trees grown in the different experiments: compared to the substrate, ectomycorrhizal pine had more depleted Mg isotopic signatures in foliage than nonmycorrhizal pine and arbuscular mycorrhizal sugar maple. Taken together our results indicate that ectomycorrhizal symbioses contribute to Mg isotopic variations during weathering and that this effect may be more pronounced in soils forming over biotite-bearing terrains.

  10. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    PubMed

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance. PMID:26318296

  11. Large-Scale Variations in Lumber Value Recovery of Yellow Birch and Sugar Maple in Quebec, Canada.

    PubMed

    Hassegawa, Mariana; Havreljuk, Filip; Ouimet, Rock; Auty, David; Pothier, David; Achim, Alexis

    2015-01-01

    Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). For this purpose, lumber value recovery (LVR), an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest. PMID:26313689

  12. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  13. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models

    PubMed Central

    Moorhead, D. L.; Rinkes, Z. L.; Sinsabaugh, R. L.; Weintraub, M. N.

    2013-01-01

    We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013) conducted 14-day laboratory incubations of sugar maple (Acer saccharum) or white oak (Quercus alba) leaves, mixed with sand (0.4% organic C content) or loam (4.1% organic C). They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG), β-N-acetyl-glucosaminidase (NAG), and acid phosphatase (AP) activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG vs. BG/AP) represent relative microbial investments in C (length), and N and P (angle) acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles >45°). Reductions in vector angles to <45° for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies. PMID:23964272

  14. Litter decomposition over broad spatial and long time scales investigated by advanced solid-state NMR: insight into effects of climate, litter quality, and time

    NASA Astrophysics Data System (ADS)

    Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.

    2012-12-01

    Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.

  15. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  16. Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera: Culicidae).

    PubMed

    Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J

    2015-10-01

    We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species. PMID:26314023

  17. Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matter.

    PubMed

    Maul, Jonathan D; Trimble, Andrew J; Lydy, Michael J

    2008-04-01

    Synthetic pyrethroids readily partition from the aqueous to the solid phase in aquatic systems. Previous work has focused on pyrethroid partitioning to sediment matrices. Within many aquatic systems, however, other carbon-containing materials are present and can be critically important to certain invertebrate species and ecosystem functioning. For example, some invertebrates readily process leaf material, and these processes may represent an additional route of contaminant exposure. To our knowledge, estimates for partitioning of pyrethroids to these nondissolved organic matter matrices and associated toxicity have not been examined. The objectives of the present study were to examine variation in organic carbon (OC)-based partition coefficient (K(OC)) among three size fractions of particulate organic matter from sugar maple (Acer saccharum) leaf litter and sediments for the pyrethroid insecticide bifenthrin and to examine variation in toxicity to Hyalella azteca among bifenthrin-bound organic matter matrices and sediment. Log K(OC) of [(14)C]bifenthrin was greatest within sediment (6.63+/-0.23; mean +/- standard deviation throughout) and lowest in coarse particulate leaf material (4.86+/-0.03). The H. azteca median lethal concentration was 0.07, 0.11, and 0.15 microg/g OC for leaf material, sediment, and a 50% mix of leaf and sediment, respectively. Nonoverlapping 95% confidence intervals occurred between the leaf treatment and the leaf-sediment treatment. This pattern was supported in an additional experiment, and at 0.22 microg/g OC, H. azteca survival was greater in the leaf-sediment mixture than in sediment or in leaf material alone (F=29.5, p<0.0001). In systems that contain sediment and leaf material, both greater partitioning of bifenthrin to the sediment fraction and preferential use of leaf substrates may drive H. azteca survival. PMID:18333691

  18. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    PubMed Central

    2014-01-01

    Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis). CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations

  19. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA.

    PubMed

    Woods, Kerry D

    2014-01-01

    Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962-2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360-450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis). CWD pools measured in 2007 averaged 151 m(3)/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10-50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9-3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations because, (a

  20. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species

    PubMed Central

    Tobner, Cornelia M.; Paquette, Alain; Messier, Christian

    2013-01-01

    Fine roots play an important role in nutrient and water absorption and hence overall tree performance. However, current understanding of the ecological role of belowground traits lags considerably behind those of aboveground traits. In this study, we used data on specific root length (SRL), fine root diameter (D) and branching intensity (BI) of two datasets to examine interspecific trait coordination as well as intraspecific trait variation across ontogenetic stage and soil conditions (i.e., plasticity). The first dataset included saplings of 12 North American temperate tree species grown in monocultures in a common garden experiment to examine interspecific trait coordination. The second dataset included adult and juvenile individuals of four species (present in both datasets) co-occurring in natural forests on contrasting soils (i.e., humid organic, mesic, and xeric podzolic).The three fine root traits investigated were strongly coordinated, with high SRL being related to low D and high BI. Fine root traits and aboveground life-strategies (i.e., relative growth rate) were weakly coordinated and never significant. Intraspecific responses to changes in ontogenetic stage or soil conditions were trait dependent. SRL was significantly higher in juveniles compared to adults for Abies balsamea and Acer rubrum, but did not vary with soil condition. BI did not vary significantly with either ontogeny or soil conditions, while D was generally significantly lower in juveniles and higher in humid organic soils. D also had the least total variability most of which was due to changes in the environment (plasticity). This study brings support for the emerging evidence for interspecific root trait coordination in trees. It also indicates that intraspecific responses to both ontogeny and soil conditions are trait dependent and less concerted. D appears to be a better indicator of environmental change than SRL and BI. PMID:23874347

  1. Impact of interspecific competition and drought on the allocation of new assimilates in trees.

    PubMed

    Hommel, R; Siegwolf, R; Zavadlav, S; Arend, M; Schaub, M; Galiano, L; Haeni, M; Kayler, Z E; Gessler, A

    2016-09-01

    In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of (13) C labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure. PMID:27061772

  2. Mortality of riparian box elder from sediment mobilization and extended inundation

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.

    1999-01-01

    To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions. Copyright ?? 1999 John Wiley & Sons, Ltd.

  3. Social Area Indicators of Educational Need. A Study of the Use of Census Descriptions of School Neighbourhoods in Guiding Decisions Concerning the Allocation of Resources to Educationally Disadvantaged Schools in Australia. ACER Research Monograph No. 20.

    ERIC Educational Resources Information Center

    Ross, Kenneth N.

    The purpose of this study was to develop, validate, and describe indicators of educational disadvantage to be used in Australia to identify schools and students most in need of assistance from the Disadvantaged Schools Program. Initially, a detailed review was prepared of the resource allocation responses which have been made in Australia to the…

  4. Quantifying Foliar Pigment Concentrations of Temperate Forest Species Using Digital Photography and Hyperspectral Reflectance Indices

    NASA Astrophysics Data System (ADS)

    Gagnon, M. T.; Rock, B. N.; Jahnke, L. S.; Lee, T. D.

    2008-12-01

    Determination of leaf chlorophyll content is a common and important procedure for plant scientists. There are many multispectral techniques for non destructive in-vivo, estimation of chlorophyll in foliage. Although much has been done to explore the estimation of foliar pigments using remote sensing, very little work has been done exploring the potential that basic, affordable, digital cameras may have for such analysis. This study utilizes a combination of digital photography, hyperspectral laboratory remote sensing, and chlorophyll extractions to determine if digital photographs can be used to accurately predict foliar chlorophyll concentrations as well to compare this digital approach with several common spectral indices used for estimating foliar chlorophyll content. Foliar materials for this study come from three sources. A large collection of samples were collected (60) from 9 common temperate forest species in July and late September over a 1 kilometer area at the Bartlett Experimental Forest in northern New Hampshire. Secondly, 15 trees were selected in a forested setting near the University of New Hampshire for more intensive phenological analysis. These samples consist of 5 white pine (Pinus strobus), 5 black oak (Quercus velutina) and 5 sugar maple (Acer saccharum). Finally, dozens of samples of white pine utilized in Forest Watch, a successful K-12 science outreach which assesses the impact of tropospheric ozone on forest health in New England, were also analyzed for this study. For all samples in this study, chlorophyll extractions were conducted to determine chlorophyll a, chlorophyll b, and total chlorophyll concentrations. Laboratory spectral analysis was performed using a GER 2600 Spectroradiometer to determine hyperspectral estimates of chlorophyll content using a Red Edge Inflection Point (REIP) approach, as well as a Transformed Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) approach. These

  5. Seeing the Forest through the Trees: Considering Roost-Site Selection at Multiple Spatial Scales.

    PubMed

    Jachowski, David S; Rota, Christopher T; Dobony, Christopher A; Ford, W Mark; Edwards, John W

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007-2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components

  6. Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.; Simic, A.; Noland, T. L.; Nesbitt, N.; Arabian, J.

    2015-04-01

    Accurate modelling of leaf chlorophyll content over a range of spatial and temporal scales is central to monitoring vegetation stress and physiological condition, and vegetation response to different ecological, climatic and anthropogenic drivers. A process-based modelling approach can account for variation in other factors affecting canopy reflectance, providing a more accurate estimate of chlorophyll content across different vegetation species, time-frames, and broader spatial extents. However, physically-based modelling studies usually use hyperspectral data, neglecting a wealth of data from broadband and multispectral sources. In this study, we assessed the potential for using canopy (4-Scale) and leaf radiative transfer (PROSPECT4/5) models to estimate leaf chlorophyll content using canopy Landsat satellite data and simulated Landsat bands from leaf level hyperspectral reflectance data. Over 600 leaf samples were used to test the performance of PROSPECT for different vegetation species, including black spruce (Picea mariana), sugar maple (Acer saccharum), trembling aspen (Populus tremuloides) and jack pine (Pinus banksiana). At the leaf level, hyperspectral and simulated Landsat bands showed very similar results to laboratory measured chlorophyll (R2 = 0.77 and R2 = 0.75, respectively). Comparisons between PROSPECT4 modelled chlorophyll from simulated Landsat and hyperspectral spectra showed a very close correspondence (R2 = 0.97, root mean square error (RMSE) = 3.01 μg/cm2), as did simulated reflectance bands from other broadband and narrowband sensors (MODIS: R2 = 0.99, RMSE = 1.80 μg/cm2; MERIS: R2 = 0.97, RMSE = 2.50 μg/cm2 and SPOT5 HRG: R2 = 0.96, RMSE = 5.38 μg/cm2). Modelled leaf chlorophyll content from Landsat 5 TM canopy reflectance data, acquired from over 40 ground validation sites, demonstrated a strong relationship with measured leaf chlorophyll content (R2 = 0.78, RMSE = 8.73 μg/cm2, p < 0.001), and a high linearity with negligible

  7. Seeing the Forest through the Trees: Considering Roost-Site Selection at Multiple Spatial Scales

    PubMed Central

    Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural

  8. Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.

    PubMed

    Ewers, B E; Mackay, D S; Samanta, S

    2007-01-01

    We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal

  9. Tree mortality, canopy turnover, and woody detritus in old cove forests of the southern Appalachians

    USGS Publications Warehouse

    Busing, R.T.

    2005-01-01

    A long-term study of tree mortality, canopy turnover, and coarse woody detritus inputs was conducted in cove forests of the Great Smoky Mountains, Tennessee, USA. Seven old-growth stands were studied over a 10-yr period using 0.6-1.0 ha plots. Annual mortality of trees >10 cm dbh was 0.5-1.4% among stands (mean 0.7%), The highest mortality rate among canopy trees was exhibited by trees >80 cm dbh. An increase in mortality rate with canopy tree size was evident for two (Tsuga canadensis and Acer saccharum) of the three most abundant species in the forest. The increase in mortality with tree size had implications for canopy turnover and detritus input. Gap disturbance frequency was estimated at 0.008-0.019 forest area/yr, giving a return interval of ???130 yr or less. Standing death was the most common mode of mortality (59%). Annual rates of snag formation were 1.4 snags/ha for trees >10 cm dbh and 0.4 snags/ha for trees >50 cm dbh. The density of large snags (>50 cm dbh) was 5 snags/ha. Snags accounted for 8% of the total standing tree basal area and 23% of the coarse woody detritus mass (total of 48 Mg/ ha). The mean annual rate of coarse woody detritus input was 3.0 Mg/ha. A decay rate constant was estimated at 0.07, yielding a detritus half-life of 10 yr. Although mean mortality rates and canopy turnover in old cove forests were moderate in comparison with other old forests of eastern North America, input and accumulation of coarse woody detritus were high for the region. This resulted, in part, from the relatively large sizes attained by canopy trees and the fact that larger trees tended to suffer higher mortality. In comparison to forests worldwide, rates of mortality, canopy gap formation, and decay of coarse woody detritus were intermediate.

  10. Seedling Growth and Phosphorus Cycling in Northern Forest Soils Amended With Biochar and Wood Ash

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Jones, T.; Fulthorpe, R.; Basiliko, N.

    2015-12-01

    Biochar may be a powerful soil amendment to reduce nutrient depletion in North American forests where long-term nitrogen deposition has led to phosphorus (P) limitation, but many effects of biochar in these ecosystems are still unknown. We performed a 12-week growth chamber experiment in which red pine (Pinus resinosa) and sugar maple (Acer saccharum) seedlings were grown in pots with soil from three Ontario forests and varying amounts of sugar maple biochar. Additionally, biochar effects were compared with the effects of wood ash, a forest biomass bioenergy by-product that may also be a beneficial soil amendment in these ecosystems. We assessed plant biomass, soil microbial biomass and phosphatase activity; additional chemical analyses of plant tissue and soils are ongoing. Biochar effects on seedling growth were not consistent across tree species, soil type, and addition rate. For sugar maple seedlings grown in sand and sandy-loam textured soils, biochar additions of 20 t ha-1 significantly (p = 0.03) decreased root biomass by 25 %, and the root-to-shoot ratio correspondingly declined, but this effect was not observed in a silty soil. For red pine seedlings, the same biochar addition rate slightly increased root biomass. Wood ash effects on biomass were similarly variable. For example, in the sandy soil, sugar maple root biomass was significantly lower after application of 16 t ash ha-1, but unchanged by rates of 4 or 40 t ash ha-1. Microbial biomass and soil phosphatase activity also varied by soil type. Phosphatase activity was significantly lower (p = 0.02) in soils with sugar maple compared to red pine, but there were no consistent biochar or ash effects across all soils and species. However, for red pine seedlings grown in silt, biochar significantly (p = 0.04) reduced the phosphatase activity compared to the control and ash soils. Overall, biochar may lessen P-limitation in forested ecosystems, but the suitability of biochar, and wood ash, for increasing P

  11. Effect of soil frost on growing season nitrogen uptake by fine roots of mature trees in northern hardwood forests of the United States

    NASA Astrophysics Data System (ADS)

    Socci, A. M.; Templer, P. H.

    2010-12-01

    Forests of the northeastern United States are predicted to experience a decrease in the depth and duration of the winter snowpack over the next 100 years. Even when coupled with warmer winter air temperatures, the absence of snow as insulation can increase soil frost during the winter months. Past research has determined that there are species-level effects of soil frost on dominant forest trees. For example, in stands dominated by sugar maple (Acer saccharum), induced soil frost led to increased fine root mortality and soil nitrate leaching. Soil frost also increased fine root mortality in stands dominated by yellow birch (Betula allegheniensis), but there was no significant change in leaching of soil nitrate. We hypothesized that greater nitrogen (N) losses from stands dominated by sugar maple may be due to reduced N uptake by fine roots of this tree species. To determine the impact of increased soil freezing on fine root uptake of N, we established a snow manipulation experiment in mixed sugar maple/American beech (Fagus grandifolia) forests at the Hubbard Brook Experimental Forest in New Hampshire (n=4 paired snow-removal and reference plots; each 13m X 13m). Snow removal occurred during the first six weeks of winter over two years. During each growing season following snow removal, we used the N depletion technique to measure in situ rates of uptake of ammonium and nitrate by fine roots of sugar maple during the early, peak and late growing season. Among all sampling dates and plots, we observed significantly lower uptake of N as nitrate compared to ammonium. During the first growing season, at moderate ammonium availability (35 μM N) we observed significantly less uptake of ammonium by fine roots of sugar maple in the snow removal plots relative to the reference plots during the early growing season (April-May), with no significant differences in uptake of ammonium during the peak (July) and late (September) growing season. We observed no differences in

  12. CO2 and Methane Fluxes in a Northern Hardwood Forest: Surprising Patterns and Clues for Climate Mitigation Management

    NASA Astrophysics Data System (ADS)

    Thomas, S. C.

    2014-12-01

    Northern temperate forests are expected to show: (1) strong carbon sink strength, particularly in regrowing forests managed for timber production; (2) positive responses of productivity to moderate increases in temperature, in particular to spring warming; (3) strong N limitation such that N additions through fertilization or deposition result in increased productivity and C uptake; (4) a low but uniform rate of methane uptake due to methanotroph activity in the soil. Data is synthesized here from eddy covariance measures of CO2 and methane flux in conjunction with large plot measurements and stand-level experimental studies to address each of these predictions - with strong evidence found AGAINST each of them. Eddy covariance measurements from 2010-2012 in a selection-managed forest measured 13-16 years following a partial stand harvest indicate a net CO2 source of from ~1-4 Mg C ha-1 y-1, in large part due to consistently high respiration rates. By far the largest carbon loss occurred in 2010, a year in which spring leaf flush by the dominant tree species Acer saccharum and Fagus grandifolia corresponded with seasonally exceptional temperatures of 31-33°C, and a corresponding decline in leaf-level photosynthesis and leaf area index of the dominant (but not other) tree species. Analyses of spatial variation in forest productivity and direct experimental additions of N and P suggest that the forest is not N limited, but rather co-limited by P and cations (especially Ca and Mg). In contrast to the strong observed CO2 source, the study site is a strong sink for methane, sufficiently strong that predicted climate forcing effects due to methane uptake more than offset those due to CO2 losses. Chamber studies indicate that methane uptake is not uniform, but rather that local depressions and lower slopes can show high methane emissions consistent with hypoxia effects. Current studies are examining methods of enhancing forest climate mitigation through management to

  13. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    NASA Astrophysics Data System (ADS)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  14. Modeling leaf chlorophyll content from ground, airborne and satellite reflectance data

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.; Simic, A.; Noland, T. L.

    2013-12-01

    Leaf chlorophyll content is a paramount ecological variable and plays a central role in plant photosynthesis, can indicate vegetation stress and disturbance and provides inputs to plant productivity and carbon cycle models. However, the retrieval of leaf chlorophyll from remotely sensed data is complex because canopy reflectance in the visible and near-infrared wavelengths is also affected by leaf area index (LAI), canopy architecture, illumination and viewing geometry and understory vegetation. Whilst considerable research has been geared towards developing statistical relationships with spectral indices to predict chlorophyll content, these algorithms are often ecosystem or location specific and have limited reliability for application over large regions and different time scales. In contrast, a process modeling approach uses physical laws to account for the variation of other variables affecting canopy reflectance, which could provide a more accurate estimate of chlorophyll content over multiple vegetation species, time-frames and across broader spatial extents. This research investigates the retrieval of leaf chlorophyll content from different species, leaf structures and canopy architectures using empirical and model inversion approaches. A coupled canopy (4-Scale) and leaf (PROSPECT) model approach investigate the ability of radiative transfer models to estimate foliar chemistry and account for confounding canopy and background variables (LAI, non-photosynethic vegetation, understory) from optical remote sensing data. Canopy reflectance data was acquired from a number of remote sensing platforms (CASI, Landsat 5 TM and MERIS), representing different spectral and spatial resolutions. Over thirty sites were selected in Ontario, Canada representing different dominant vegetation species (Picea mariana, Pinus banksiana, Populus tremuloides and Acer saccharum), and a variety of canopy closures and structures. Ground data collection included LAI, measured using

  15. Rapid Water Uptake and Limited Storage Capacity at Height of Growing Season in Four Temperate Tree Species in a Central Pennsylvania Catchment

    NASA Astrophysics Data System (ADS)

    Gaines, K.; Meinzer, F. C.; Duffy, C.; Thomas, E.; Eissenstat, D. M.

    2014-12-01

    Water uptake and retention by trees affects their ability to cope with drought, as well as influences ground water recharge and stream flow. Historically, water has not often been limiting in Eastern U.S. forests. As a result, very little work has been done to understand the basics of timing of water use by vegetation in these systems. As droughts are projected to increase in length and severity in future decades, this focus is increasingly important, particularly for informing hydrologic models. We used deuterium tracer and sap flux techniques to study tree water transport on a forested ridge top with shallow soil in central Pennsylvania. Three trees of each of the species, Acer saccharum, Carya tomentosa, Quercus prinus, and Quercus rubrum were accessed by tree climbing and scaffolding towers. We hypothesized that contrasting vessel size of the tree species would affect the efficiency of water transport (tracer velocity) and contrasting tree size would affect tracer storage as estimated by tracer residence times. Trees were injected with deuterated water in July 2012. Leaves were sampled 15 times over 35 days, initially daily for the first week, then at regular intervals afterwards. The tracer arrived in the canopy of the study trees between 1 and 7 days after injection, traveling at a velocity of 2 to 19 m d-1. The tracer residence time was between 7 and 33 days. Although there was variation in tracer velocity and residence time in individual trees, there were no significant differences among wood types or species (P>0.05). The general patterns in timing of water use were similar to other studies on angiosperm trees in tropical and arid ecosystems. There was no evidence of longer residence times in the larger trees. Sap flux-based estimates of sap velocity were much lower than tracer estimates, which was consistent with other studies. Levels of sap flux and midday water potential measurements suggested that the trees were water-stressed. We observed relatively

  16. Establishing correspondence in wood: the challenge and some solutions?

    PubMed

    Courtin, Gerard M; Fairgrieve, Scott I

    2013-09-01

    Establishing correspondence between the upper portion of a white birch sapling, a suspected weapon, and a potential source from a stand of trees was posed to one of us (GMC). A bending force shattered the sapling, precluding physical matching. Three white birch saplings were taken from the same stand of trees in a similar manner. Correspondence was achieved by measuring the width of the annual rings along four radii from a disk cut above and below the break. The regression coefficient of the data from the two disks from the same sapling was r(2) = 0.95. Regressing the upper disk against the lower disk of two other saplings resulted in r(2) values of 0.26 and 0.17, respectively. The various characteristics that are confined to a wood stem as part of its normal process of growth can be used to eliminate candidate saplings and establish correspondence between two pieces of wood. PMID:23899411

  17. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and

  18. Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature

    PubMed Central

    McElrone, Andrew J.; Choat, Brendan; Parkinson, Dilworth Y.; MacDowell, Alastair A.; Brodersen, Craig R.

    2013-01-01

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause

  19. Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature.

    PubMed

    McElrone, Andrew J; Choat, Brendan; Parkinson, Dilworth Y; MacDowell, Alastair A; Brodersen, Craig R

    2013-01-01

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause

  20. Soil Warming Alters the Nitrogen Cycle: Ecosystem Implications and Feedbacks to the Climate System

    NASA Astrophysics Data System (ADS)

    Butler, S. M.; Melillo, J. M.; Johnson, J. E.; Mohan, J. E.; Steudler, P. A.; Bowles, F. P.

    2008-12-01

    shown that red maples (Acer rubrum), when grown with high levels of nitrate, have a greater ability to produce this enzyme than many other species common to the region's forests. We have also observed that red maple seedlings and saplings show a higher growth response to soil warming than juvenile plants of other species. Our working hypothesis is that some of this response is linked to the capacity of red maple to use the nitrate produced in the warmed soils. In the long term, warming could lead to red maples becoming a more dominant tree in the forests of southern New England.

  1. Composition of Residue from Sugarcane and Related Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Louisiana, a facility near Jennings will produce cellulosic ethanol from sugarcane (Saccharum spp. hybrids) bagasse and “energy canes”. This study was done to obtain basic information on the composition of the cell wall residue left after expressing the juice in different Saccharum genotypes. Fou...

  2. Energycane cultivar development program for Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of carbon-neutral energy sources has become one of the primary challenges of the twenty-first century. Energycanes are wide crosses of commercial sugarcane (Saccharum spp.) with Saccharum spontaneum clones which produce high-biomass plants with high fiber content and good cold and di...

  3. Energycane crop establishment and flood tolerance in a temperate climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energycane is thought to have more vigor than sugarcane because energycane contains a greater composition of allelles higher percentage of alleles from Saccharum spontaneum relative to Saccharum officinarum. Two studies were conducted to determine the relative difference between energy and sugar can...

  4. Sugar and energy cane date of planting effects on cane, sucrose, and fiber yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy cane is believed to have more vigor than sugar cane because energy cane contains a higher percentage of alleles from Saccharum spontaneum relative to Saccharum officinarum. This research was conducted to determine if planting date affects yields of both sugar and energy canes. Three sugar can...

  5. World Collection of Sugarcane and Related Grasses: Utilizing a Vast Genetic Resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) cultivar improvement programs have not yet systematically utilized most of the genetic sources of yield potential and resistance to biotic and abiotic stresses that may exist in the Saccharum germplasm. Two collections of genetic material potentially useful to sugarcane br...

  6. Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response

    PubMed Central

    Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2016-01-01

    Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039

  7. Class 6 Proficiency in Afghanistan 2013: Outcomes of a Learning Assessment of Mathematical, Reading and Writing Literacy

    ERIC Educational Resources Information Center

    Lumley, Tom; Mendelovits, Juliette; Stanyon, Rachel; Turner, Ross; Walker, Maurice

    2015-01-01

    In 2012, the Ministry of Education, Afghanistan, engaged the Australian Council for Educational Research (ACER) as a partner to support the development of a national learning assessment program in Afghanistan. To achieve this goal, the Learning Assessment unit of the Ministry of Education and ACER have collaborated to design and implement the…

  8. Measuring Learning Growth in a World of Universal Education. International Developments. Volume 5, Article 4

    ERIC Educational Resources Information Center

    Turner, Ross

    2015-01-01

    In 2013, staff at the Australian Council for Educational Research (ACER) Centre for Global Education Monitoring (GEM) identified the need to build measurement tools to monitor learning growth that could be used across different year levels and in different national contexts. One of those projects, under ACER's Monitoring Trends in Educational…

  9. Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization.

    PubMed

    Li, Hong-Liang; Ni, Cui-Xia; Tan, Jing; Zhang, Lin-Ya; Hu, Fu-Liang

    2016-01-01

    Chemosensory proteins (CSPs), a class of small soluble proteins, are thought to be involved in insect chemoreceptive behavior. Here, six CSP genes, AcerCSP1-6 from Apis cerana, were cloned and characterized from worker bees' antennae. Results revealed that the AcerCSPs' amino acid sequences shared high similarity with the homologous genes of Apis mellifera, but low similarity with other insect species. Compared with corresponding CSPs of A. mellifera, AcerCSPs (1, 3, 4, and 6) exhibit quite similar gene expression profiling. On the contrary, AcerCSP2 showed a higher expression level in the forager antennae and legs than CSP2 of A. mellifera. Furthermore, AcerCSP5 was not specifically expressed in larvae, unlike CSP5 of A. mellifera. In a ligand-binding assay, AcerCSP1 and AcerCSP2, which exhibited the highest expression in antennae of A. cerana, had a stronger affinity with candidate floral chemicals and pheromones than AcerCSP4, the results of which was supported by docking analysis, suggesting that the relevance of them with A. cerana olfactory functions. Taken together, these results suggest that despite the quasi-similarity of protein sequences between A. cerana and A. mellifera, differences in tissue expression and functional characteristics between the two species still exist, indicating that homologous proteins potentially perform different tasks even in related species. PMID:26773657

  10. Australian Chemistry Test Item Bank: Years 11 & 12. Volume 1.

    ERIC Educational Resources Information Center

    Commons, C., Ed.; Martin, P., Ed.

    Volume 1 of the Australian Chemistry Test Item Bank, consisting of two volumes, contains nearly 2000 multiple-choice items related to the chemistry taught in Year 11 and Year 12 courses in Australia. Items which were written during 1979 and 1980 were initially published in the "ACER Chemistry Test Item Collection" and in the "ACER Chemistry Test…

  11. Necessity of angiotensin-converting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan

    2014-01-01

    Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.

  12. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure.

    PubMed

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E; Lelliott, Christopher J; Speak, Anneliese O; Lafont, David; Protheroe, Hayley J; Ingvorsen, Camilla; Galli, Antonella; Green, Angela; Gleeson, Diane; Ryder, Ed; Glover, Leanne; Vizcay-Barrena, Gema; Karp, Natasha A; Arends, Mark J; Brenn, Thomas; Spiegel, Sarah; Adams, David J; Watt, Fiona M; van der Weyden, Louise

    2016-07-01

    The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the skin. Acer1-deficient (Acer1(-/-) ) mice showed elevated levels of ceramide in the skin, aberrant hair shaft cuticle formation and cyclic alopecia. We demonstrate that Acer1 is specifically expressed in differentiated interfollicular epidermis, infundibulum and sebaceous glands and consequently Acer1(-/-) mice have significant alterations in infundibulum and sebaceous gland architecture. Acer1(-/-) skin also shows perturbed hair follicle stem cell compartments. These alterations result in Acer1(-/-) mice showing increased transepidermal water loss and a hypermetabolism phenotype with associated reduction of fat content with age. We conclude that Acer1 is indispensable for mammalian skin homeostasis and whole-body energy homeostasis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27126290

  13. Research Highlights

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, 2004

    2004-01-01

    This document is an annual publication documenting developments in the Australian Council for Educational Research (ACER)'s research programs for the previous year. The 2004 edition highlights research on the following themes: (1) Helping international schools measure achievement; (2) Evaluating Australian teachers; (3) Tests of reading…

  14. Alkaline ceramidase 2 regulates β1 integrin maturation and cell adhesion

    PubMed Central

    Sun, Wei; Hu, Wei; Xu, Ruijuan; Jin, Junfei; Szulc, Zdzislaw M.; Zhang, Guofeng; Galadari, Sehamuddin H.; Obeid, Lina M.; Mao, Cungui

    2009-01-01

    The polypeptide core of the integrin β1 subunit (β1) is glycosylated sequentially in the endoplasmic reticulum and the Golgi complex to form β1 precursor and mature β1, respectively. The β1 precursor to mature β1 conversion, termed β1 maturation, regulates the cell surface levels and function of β1-containing integrins, β1 integrins. Here we demonstrate that the human alkaline ceramidase 2 (ACER2), a Golgi enzyme, regulates β1 maturation by controlling the generation of sphingosine. ACER2 overexpression inhibited β1 maturation, thus leading to a decrease in the levels of mature β1 in T-REx HeLa cells, whereas RNA interference-mediated knockdown of ACER2 enhanced β1 maturation in MCF-7 cells. ACER2 overexpression decreased the cell surface levels of β1 integrins, thus inhibiting cell adhesion to fibronectin or collagen, whereas ACER2 knockdown has the opposite effects. Treatment with all-trans retinoic acid (ATRA) increased both the expression of ACER2 and the generation of sphingosine in HeLa cells and inhibited β1 maturation. ACER2 knockdown attenuated the inhibitory effects of ATRA on both β1 maturation and cell adhesion. In contrast, treatment with phorbol myristate acetate (PMA), a protein kinase C activator, decreased the expression of ACER2 and sphingosine in T-REx HeLa cells, thus enhancing β1 maturation. ACER2 overexpression inhibited the stimulatory effects of PMA on both β1 maturation and cell adhesion. These results suggest that the ACER2/sphingosine pathway plays an important role in regulating β1 maturation and cell adhesion mediated by β1 integrins.—Sun, W., Hu, W., Xu, R., Jin, J., Szulc, Z. M., Zhang, G., Galadari, S. H., Obeid, L. M, Mao, C. Alkaline ceramidase 2 regulates β1 integrin maturation and cell adhesion. PMID:18945876

  15. Effects of long-term, elevated ultraviolet-B radiation on phytochemicals in the bark of silver birch (Betula pendula).

    PubMed

    Tegelberg, Riitta; Aphalo, Pedro J; Julkunen-Tiitto, Riitta

    2002-12-01

    Long-term outdoor experiments were conducted to investigate the effects of elevated ultraviolet-B (UV-B, 280-320 nm) radiation on secondary metabolites (phenolics and terpenoids) and the main soluble sugars (sucrose, raffinose and glucose) in the bark of silver birch (Betula pendula Roth) saplings. Saplings were exposed to a constant 50% increase in erythemal UV irradiance (UV-B(CIE); based on the CIE (International Commission on Illumination) erythemal action spectrum) and a small increase in UV-A radiation (320-400 nm) for three growing seasons in an irradiation field in central Finland. Two control groups were used: saplings exposed to ambient radiation and saplings exposed to slightly increased UV-A radiation. Concentrations of sucrose, raffinose and glucose in bark were higher in UV-treated saplings than in saplings grown in ambient radiation, indicating that stem carbohydrate metabolism was changed by long-term elevated UV radiation. Saplings in the elevated UV-A + UV-B radiation treatment and the UV-A radiation control treatment had significantly increased concentrations of certain UV-absorbing phenolics, such as salidroside, 3,4'-dihydroxypropiophenone-3-glucoside, (+)-catechin and (-)-epicatechin compared with saplings in ambient radiation. In contrast, the radiation treatments had no effect on the non-UV-B-absorbing terpenoids, papyriferic acid and deacetylpapyriferic acid. We conclude that plant parts, in addition to leaves, accumulate specific phenolic UV-filters in response to UV radiation exposure. PMID:12464579

  16. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system

    PubMed Central

    Wang, K; Xu, R; Snider, A J; Schrandt, J; Li, Y; Bialkowska, A B; Li, M; Zhou, J; Hannun, Y A; Obeid, L M; Yang, V W; Mao, C

    2016-01-01

    Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C18:1-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C18:1-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C18:1-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C18:1-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C18:1-ceramide, a

  17. PCDD and PCDF Emissions from Simulated Sugarcane Field Burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emissions from simulated sugarcane (Saccharum officinarum) field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass densit...

  18. Application of sequence-independent amplification (SIA) for the identification of RNA viruses in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miscanthus x giganteus, Saccharum spp. (energy cane), and Panicum virgatum (switchgrass) are three potential biomass crops being evaluated for commercial cellulosic ethanol production. Viral diseases are potentially significant threats to these crops. Therefore, identification of viruses infecting t...

  19. 21 CFR 168.130 - Cane sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 168.130 Cane sirup. (a) Cane sirup is the liquid food derived by concentration and heat treatment of the juice of sugarcane (Saccharum officinarum L.) or by solution in water of sugarcane concrete...

  20. 21 CFR 168.130 - Cane sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 168.130 Cane sirup. (a) Cane sirup is the liquid food derived by concentration and heat treatment of the juice of sugarcane (Saccharum officinarum L.) or by solution in water of sugarcane concrete...

  1. 21 CFR 168.130 - Cane sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 168.130 Cane sirup. (a) Cane sirup is the liquid food derived by concentration and heat treatment of the juice of sugarcane (Saccharum officinarum L.) or by solution in water of sugarcane concrete...

  2. Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière.

    PubMed

    Barry, Karen M; Quentin, Audrey; Eyles, Alieta; Pinkard, Elizabeth A

    2012-01-01

    Recovery following defoliation can be modified by co-occurring site resource limitations. The growth response of young Eucalyptus globulus saplings to two defoliation events was examined in an experimental plantation with combinations of low (-) or high (+) water (W) and nitrogen (N) resources. Artificial defoliation was applied at 3 and 9 months of age to remove ~40 and 55% of leaf area in the upper crown, respectively. At 18 months of age, height, stem diameter and leaf area were not significantly different between control and defoliated saplings, across all resource treatments. However, stem volume, bark volume and branch number were significantly increased in defoliated saplings, including a significant interaction with resource treatment. Total above-ground biomass of saplings in response to defoliation was significantly higher (almost double) than controls for the low water (N + W-) treatment only. Significantly increased foliar starch content (and a trend for increased soluble sugars) in the upper crown zone was found in the defoliated saplings of the N + W- treatment compared with the upper zone of control saplings. Foliar total non-structural carbohydrates were significantly correlated to stem biomass regardless of resource treatment or defoliation, and we suggest that foliar resources are most important for stem growth in E. globulus rather than stored carbon (C) from other tissues. After repeated defoliation and several months recovery, E. globulus saplings were generally not C limited in this study. PMID:22174093

  3. Simulated Nitrogen Deposition Reduces the Abundance of Dominant Forest Understory and Groundcover Plants

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Burton, A. J.; Pregitzer, K. S.; Zak, D. R.

    2012-12-01

    Growth in global industrialization is expected to increase the amount of atmospheric N deposition added to terrestrial ecosystems during the next century (Dentener et al. 2006). In North America, northern temperate forests in the eastern half of the U.S. and Canada have received large amounts of N deposition for several decades and there is evidence that these consistent inputs of atmospheric N have increased the availability of N in these forests (Talhelm et al. 2012). Groundcover plants (seedlings, shrubs, and herbaceous plants) are considered to be more sensitive indicators of N deposition impacts than overstory trees (Pardo et al. 2011). Further, these plants are both crucial to forest regeneration following disturbance and, relative to their biomass, disproportionately important within forest ecosystems in terms of species diversity, net primary productivity, nutrient cycling, and litter production (Gillam 2007). In order to understand the effects of chronic N deposition on forests in the north-central United States, we have experimentally added 3 g N m-2 yr--1 in the form of NaNO3 pellets to plots at four northern hardwood forest sites spread across 500 km in Michigan since 1994. From 2005 to 2012, we have made repeated measurements of the abundance of both groundcover plants (< 1.4 m in height) and understory plants (>1.4 m in height, less than 5 cm diameter at 1.4 m). At these sites, sugar maple (Acer saccharum) ) seedlings are highly abundant (up to 200 plants m-2) and the dominant groundcover plant (79% of all woody stems). Hop-hornbeam (Ostrya virginiana) is the dominant understory plant (42% of all stems). Experiment N additions strongly and consistently reduced the abundance of these two plants in these forest strata at the sites where these plants were most abundant. For sugar maple seedlings, there were significant effects at sites A (-49%) and C (-65%, Site × N: P < 0.001), and for understory hop-hornbeam, there were significant reductions at sites

  4. Modelling spatio-temporal variations in leaf chlorophyll content for broadleaf and needle forest canopies

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.; Simic, A.

    2012-04-01

    Foliar chlorophyll content in forested ecosystems plays a fundamental role in plant photosynthesis, determines plant productivity and can indicate vegetation stress and disturbance. Obtaining accurate measurements of leaf chlorophyll content across a range of spatial and temporal scales is crucial for monitoring vegetation productivity and providing inputs to photosynthesis and carbon cycle models. However, leaf chlorophyll retrieval is complicated as canopy reflectance in the visible and near-infrared wavelengths is affected not only by leaf pigment concentration but also by leaf area index (LAI), canopy architecture, illumination and viewing geometry and understory vegetation. Consequently, empirical indices, often developed at leaf-level, are species, site and time specific. In order to investigate the potential of monitoring chlorophyll dynamics over a growing season at the canopy scale, a process modeling approach is needed to account for the variation of other variables affecting canopy reflectance. Canopy radiative transfer models use physical laws to describe the interaction of solar radiation inside the canopy between scattering elements, which could provide a more accurate estimate of chlorophyll content over multiple vegetation species, time-frames and across broader spatial extents. This study used a coupled canopy (4Scale) and leaf (PROSPECT) model approach to investigate the ability of radiative transfer models to estimate foliar chemistry for multiple vegetation types and species (broadleaf and needle) from optical remote sensing data. Canopy reflectance data was acquired from the Medium Resolution Imaging Spectrometer (MERIS), from 390-1040 nm in 15 wavebands at a spatial resolution of 1200 m, and inverted using a look up table (LUT) approach. Twenty sites were selected in Ontario, Canada representing different dominant vegetation species (Picea mariana, Pinus banksiana and Acer saccharum), and a variety of canopy closures and structures. These

  5. Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado

    SciTech Connect

    Yanai, R; McFarlane, K; Lucash, M; Kulpa, S; Wood, D

    2009-10-09

    were indistinguishable in specific root length and diameter distribution, while most of the other ten species had statistically distinct diameter distributions across five diameter classes < 2 mm. Based on specific root length, subalpine fir and Engelmann spruce had significantly coarser roots than red pine (Pinus resinosa Soland), yellow birch (Betula allegheniensis Britt.), sugar maple (Acer saccharum Marsh.), chestnut oak (Quercus prinus L.), black cherry (Prunus serotina Ehrh.), and red spruce (Picea rubens Sarg.). White oak (Quercus alba L.), balsam fir (Abies balsamea (L.) Mill.), American beech (Fagus grandifolia Ehrh.) and loblolly pine (Pinus taeda L.) were intermediate in SRL (indistinguishable from Engelmann spruce and subalpine fir by ANOVA). Species that differ more in physiology and morphology than the two species we compared would likely show dissimilar uptake characteristics even at the same site.

  6. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  7. Fluorescence parameters of leaves of trees and shrubs during period of adverse weather conditions in Krasnoyarsk

    NASA Astrophysics Data System (ADS)

    Zavorueva, E. N.; Zavoruev, V. V.

    2015-11-01

    The effect of adverse weather conditions (AWC) on the fluorescence parameters of leaves Prinsepia sinensis, Amelanchier florida, Crataegus chlorocarca is obtained. However, significant changes in the fluorescence of the leaves of Acer negundo, Betula pendula under AWC were not observed.

  8. [Maples at the sub-Alpine vegetation belt: a long history].

    PubMed

    David, F; Barbero, M

    2001-02-01

    Pollen analysis was carried out on lacustrine sediment of a small hollow (15 m x 25 m) at the treeless sub-Alpine belt (202 m) of the inner Maurienne valley in the northern French Alps. A 2,500-year-long maple settlement was demonstrared. Three AMS dates of terrestrial plant macroremains support the chronology. First, Betula and Salix spread prior to 9,000 C14 BP. The first pollen grains of Acer, Abies and Pinus cembra are quoted at 8,600 C14 BP. High frequencies of Alnus glutinosa/incana (20%) and Acer (10%) show that mixed communities of Acer and Alnus persisted above the mountainous Abies forest between 7,490 and 5,850 C14 BP. After 5,850 C14 BP, the decrease in Acer stands could be attributed to fire as suggested by the strong increase in Betula and by the delayed expansion of Pinus cembra. PMID:11280048

  9. 21 CFR 168.140 - Maple sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of the sap of the maple tree (Acer) or by solution in water of maple sugar (mapel concrete) made...

  10. 21 CFR 168.140 - Maple sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of the sap of the maple tree (Acer) or by solution in water of maple sugar (mapel concrete) made...

  11. 21 CFR 168.140 - Maple sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of the sap of the maple tree (Acer) or by solution in water of maple sugar (mapel concrete) made...

  12. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering.

    PubMed

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon. PMID:27252725

  13. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering

    PubMed Central

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5′ flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1–9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1–4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon. PMID:27252725

  14. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  15. MEASUREMENT OF BIOGENIC EMISSION FROM CORN

    EPA Science Inventory

    A pilot study was conducted to determine whether techniques for measuring biogenic emissions from tree saplings, branches, and leaves could be adapted to the measurement of biogenic emissions from individual plants of agricultural species. easurements were then made to determine ...

  16. A faster infection assay for Armillaria using Herbaceous plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Armillaria (honey fungus) is a virulent necrotrophic pathogen that causes Armillaria root disease. Conventional Armillaria inoculation assays use young saplings as hosts and consequently are cumbersome, frequently conducted outdoors and take many years from establishment to analysis of infection. We...

  17. NEEDLE ANATOMY CHANGES WITH INCREASING TREE AGE IN DOUGLAS FIR

    EPA Science Inventory

    Morphological differences between old growth and sapling (Pseudotsuga menziesii, (Mirb.) Franco) Douglas fir trees may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross-sections of previous year...

  18. Status of precommercial-sized softwoods in Louisiana, 1991. Forest Service research paper

    SciTech Connect

    Rosson, J.F.

    1994-01-01

    Data on precommercial-sized softwoods in seedling- and sapling-sized stands are presented and discussed. Inadequate levels of softwood stocking in NIPF (Nonindustrial private forest) lands could diminish long-term supplies of softwood in the State.

  19. Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest

    NASA Astrophysics Data System (ADS)

    Torres, Romina C.; Renison, Daniel

    2016-01-01

    In seasonally dry forests direct facilitation by woody species due to amelioration of harsh abiotic conditions could be important during germination and early establishment of tree seedlings, and under some species but not others. Recent research suggests that at later stages facilitation by woody species may be indirect due to protection of saplings from herbivores, implying that under absence of herbivores reforestation programs may plant saplings in unprotected open sites. We used the native tree Lithraea molleoides from central Argentina as a model species to test this hypothesis. We performed a seeding and planting experiment simulating early and late establishment respectively, which included 234 study plots situated in herbaceous, shrub and tree patches of differing species composition and under two herbivore treatments (grazed and ungrazed) and replicated at three sites. Seedling counts averaged 0.82% of the sown seeds after 6 months, were highest under shrubs and lowest in open patches, and were influenced by woody species composition only in tree patches (all P values < 0.05). At seedling stages we detected no influence of herbivory (P = 0.4) nor of indirect facilitation due to herbivory (herbivory × patch type P = 0.7). Survival of planted saplings was 53% after 3 years and over winter dieback affected 76% of the saplings. At sapling stages we found an increasing importance of indirect facilitation through protection from herbivores, as we recorded the highest sapling survival and growth at tree and shrub patches and the lowest in open patches (all P values < 0.001), and a negative effect of livestock (P < 0.001) mainly on the open patches (herbivory × patch type P = 0.07 and P = 0.001 for survival and growth, respectively). We found no significant influence of woody species composition on sapling survival and growth (all P values > 0.05). We conclude that direct facilitation is involved at all studied stages while indirect facilitation becomes

  20. Feasibility of Subxiphoid Anatomic Pulmonary Lobectomy in a Canine Model.

    PubMed

    Hsieh, Ming-Ju; Yen-Chu; Wu, Yi-Cheng; Yeh, Chi-Ju; Liu, Chieng-Ying; Liu, Chia-Chuan; Ko, Po-Jen; Liu, Yun-Hen

    2016-06-01

    Purpose Transthoracic thoracoscopic approach is the gold standard in surgical treatment for thoracic disease. However, it is associated with significant chronic postoperative wound discomfort. Currently, limited data are available regarding the subxiphoid approach to the thoracic cavity. The present study is aimed to evaluate the performance of a subxiphoid anatomic pulmonary lobectomy (SAPL) in a canine model. Methods The SAPL procedure was performed in 10 beagle dogs using a 3-cm incision over the xiphoid process. After thoracic exploration, SAPL was performed under flexible bronchoscopy guidance. The pulmonary vessel was divided with Ligasure and secured with a suture ligature. The bronchus was divided with endostapler. Surgical outcomes were evaluated by the success of SAPL and operative complications. Results SAPL was successfully completed in 9 animals. One animal required conventional thoracotomy to resuture the pulmonary artery stump. Another animal encountered small middle lobe laceration after SAPL and died at 8 days postoperation due to respiratory distress. Conclusion Subxiphoid anatomic pulmonary lobectomy is technically feasible. Refinement of endoscopic instruments combined with more research evidences may facilitate the development of subxiphoid platform in thoracic surgery. PMID:26546368

  1. Needle anatomy changes with increasing tree age in Douglas-fir.

    PubMed

    Apple, Martha; Tiekotter, Ken; Snow, Michael; Young, James; Soeldner, Al; Phillips, Donald; Tingey, David; Bond, Barbara J

    2002-02-01

    Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees. PMID:11830409

  2. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate

    PubMed Central

    Mao, Cungui; Obeid, Lina M.

    2008-01-01

    Summary Ceramidases catalyze hydrolysis of ceramides to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). Ceramide, SPH, and S1P are bioactive lipids that mediate cell proliferation, differentiation, apoptosis, adhesion, and migration, likely by controlling hydrolysis of ceramides and generation of SPH and S1P. Presently, 5 human ceramidases encoded by 5 distinct genes have been cloned: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). Each human ceramidase has a mouse counterpart. AC, NC, and ACER1–3 have maximal activities in acidic, neutral, and alkaline environments, respectively. ACER1–3 have similar protein sequences but no homology to AC and NC. AC and NC also have distinct protein sequences. The human AC (hAC) was implicated in Farber disease, and hAC may be important for cell survival. The mouse AC (mAC) is needed for early embryo survival. NC is protective against inflammatory cytokines, and the mouse NC (mNC) is required for the catabolism of ceramides in the digestive tract. ACER1 is critical in mediating cell differentiation by controlling the generation of SPH and S1P and that ACER2’s role in cell proliferation and survival depends on its expression or the cell type in which it is found. Here, we discuss the role of each ceramidase in regulating cellular responses mediated by ceramides, SPH, and S1P. PMID:18619555

  3. Dioecy Impacts on Plant Water Fluxes in Riparian Ecosystems

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Bush, S. E.; West, A. G.; Ehleringer, J. R.

    2005-12-01

    Dioecious plants are frequently associated with different spatial distributions of the two sexes across resource gradients. Segregation between sexes might be expected to occur if the cost of reproduction is greater in females than in males. If so, females would be under stronger selection to increase rates of resource uptake. Acer negundo is a dioecious riparian tree species that show spatial segregation among sexes: females are typically more common along streamside (high resource) environments than males. The spatial segregation of the sexes leads to the hypothesis that male and female individuals have varying influence on ecohydrological processes. To address this, we measured sap flux, water relations and hydraulic architecture of mature streamside (less than 1 m from stream channel) male and female Acer negundo trees occurring near Salt Lake City, Utah, USA during the 2004 growing season. Despite similar predawn and midday leaf water potentials, sap flux density ( Js) was 40 percent higher in female trees than in male trees during the 2004 growing season (n = 42 days, F = 73.56, P < 0.0001). Both genders showed a similar relationship between conducting sapwood area to stem diameter ratio suggesting that differences in Js scale to the whole tree level. Sap flux data from Acer negundo trees was compared to five other co-occurring riparian tree species. Female Acer negundo trees showed the highest Js among all species while Js in male Acer negundo trees was lower than all other species except one ( Acer grandidentatum). These data demonstrate that individual female Acer negundo trees have the capacity remove water at higher rates than males in high resource environments. The spatial segregation of the sexes along streamside environments may therefore have profound impacts on ecohydrological processes such as stream discharge, groundwater recharge, and nutrient cycling.

  4. Hydraulic architecture and photoinhibition influence spatial distribution of the arborescent palm Euterpe edulis in subtropical forests.

    PubMed

    Gatti, M Genoveva; Campanello, Paula I; Villagra, Mariana; Montti, Lía; Goldstein, Guillermo

    2014-06-01

    Physiological characteristics of saplings can be considered one of the most basic constraints on species distribution. The shade-tolerant arborescent palm Euterpe edulis Mart. is endemic to the Atlantic Forest of Argentina, Brazil and Paraguay. At a local scale, saplings of this species growing in native forests are absent in gaps. We tested the hypothesis whether sensitivity to photoinhibition or hydraulic architecture constrains the distribution of E. edulis saplings in sun-exposed forest environments. Using shade houses and field studies, we evaluated growth, survival, hydraulic traits and the susceptibility of Photosystem II to photoinhibition in E. edulis saplings under different growth irradiances. Survival rates in exposed sites in the field were very low (a median of 7%). All saplings exhibited photoinhibition when exposed to high radiation levels, but acclimation to a high radiation environment increased the rate of recovery. Petiole hydraulic conductivity was similar across treatments regardless of whether it was expressed per petiole cross-sectional area or per leaf area. At the plant level, investment in conductive tissues relative to leaf area (Huber values) increased with increasing irradiance. Under high irradiance conditions, plants experienced leaf water potentials close to the turgor-loss point, and leaf hydraulic conductance decreased by 79% relative to its maximum value. Euterpe edulis saplings were able to adjust their photosynthetic traits to different irradiance conditions, whereas hydraulic characteristics at the leaf level did not change across irradiance treatments. Our results indicate that uncoupling between water demand and supply to leaves apparently associated with high resistances to water flow at leaf insertion points, in addition to small stems with low water storage capacity, weak stomatal control and high vulnerability of leaves to hydraulic dysfunction, are the main ecophysiological constraints that prevent the growth and

  5. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  6. A parallel measurement programme in high temperature dielectric property measurement: An update

    SciTech Connect

    Batt, J.; Sutton, W.H.; Binner, J.G.P.; Cross, T.E.

    1995-12-31

    Following the Materials Research Society Symposium on Microwave Processing of Materials held in San Francisco during April 1992 a Parallel Measurement Programme for high temperature dielectric properties was established. Initial results of this programme were presented at the ACerS symposium in Cincinnati in 1993 and preliminary results of the second stage at the MRS meeting in San Francisco in 1994. This paper will review the results obtained in the second stage of the programme since 1993 and give an inter-comparison of the applicability of the different measurement techniques.

  7. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  8. Reclamation and reuse of an unlined landfill

    SciTech Connect

    Fry, F.F.

    1995-09-01

    The YCSWRA retained Acer Engineers & Consultants, Inc. (Acer) to develop a preliminary waste removal and reuse plan. The focus of this plan was the removal of waste from the unlined areas of the landfill and reuse of the reclaimed areas for an ash fill and an 18-hole public golf course. The scope included staffing and equipment recommendations, development of a detailed schedule, preparation of a health and safety plan, and preparation of a closure and postclosure plan. Reclaimed waste will be co-combusted with municipal waste.

  9. Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings

    SciTech Connect

    Laurence, J.A.; Kohut, R.J.; Amundson, R.G. )

    1993-08-01

    TREGRO, a model developed to simulate the growth of sapling red spruce (Picea rubens Sarg.), was parameterized to grow 2- to 3-yr-old seedlings. Results of the simulation compared favorably to actual growth of seedlings used in a field study of the effects of ozone and acidic precipitation on tree physiology and development. Furthermore, a 10-yr simulation produced a modeled tree that corresponded to saplings used in another field experiment. Additional simulations were conducted to compare predicted effects of ozone on seedling growth to those measured in controlled experiments. Based on the performance of the model, we believe TREGRO can be used effectively to simulate both seedling and sapling red spruce growth, and the potential effects of ozone on the development of the trees. 11 refs., 6 figs., 3 tabs.

  10. Forest stand development patterns in the southern Appalachians

    SciTech Connect

    Copenheaver, C.A.; Matthews, J.M.; Showalter, J.M.; Auch, W.E.

    2006-07-01

    Composition of southern Appalachian forests are influenced by disturbance and topography. This study examined six stands in southwestern Virginia. Within each stand, a 0.3-ha plot was established, and all trees and saplings were measured and aged. Burned stands had lower densities of saplings and small trees, but appeared to have greater Quercus regeneration. Ice damage from the 1994 ice storm was most evident in Pinus strobus saplings. A stand on old coal-mine slag appeared to be experiencing a slower rate of succession than other sites. A variety of stand development patterns were observed, but one common pattern was that oak-hickory overstories had different species in their understory, which may indicate future changes in species composition.

  11. Surface-active phospholipid: a Pandora's box of clinical applications. Part II. Barrier and lubricating properties.

    PubMed

    Hills, B A

    2002-01-01

    In Part I, it was described how their configuration renders phospholipid molecules surface active and capable of acting at interfaces in addition to the liquid-air interface to which conventional theory has hitherto confined the study of 'surfactant' in the lung. Surface-active phospholipid (SAPL) appears no different to comparable surfactants studied in the physical sciences for the highly desirable properties that their adsorption (reversible binding) can impart to solid surfaces. In Part II, these properties are considered in sites where there is no air. Highly desirable properties include boundary lubrication (lubricity), release (antistick) and the ability of the strongly adsorbed and strongly cohesive SAPL linings to act as barriers against abrasion, corrosion and, possibly, against invasion by microorganisms. As the 'sealant', it could be the true barrier rather than the cells providing its mechanical support. Evidence is reviewed for SAPL providing the gastric mucosal barrier to acid in the stomach and preventing the digestion of Helicobacter pylori until that barrier is broken by bile in the duodenum, where H. pylori cause ulcers. The concept that SAPL provides effortless sliding of many tissues, including pleura, pericardium and peritoneum is reviewed. Particular attention is paid to the load-bearing joints, where a deficiency has been associated with osteoarthritis. The ability of the same SAPL lining to perform multiple roles is discussed in relation to the peritoneum, where it could provide the lubricant/release agent preventing surgical adhesions, while imparting semipermeability to 'the membrane' vital for peritoneal dialysis. In each site, the prophylactic use of exogenous SAPL is discussed for its potential clinical applications. PMID:12036223

  12. Role of surfactant in peritoneal dialysis.

    PubMed

    Hills, B A

    2000-01-01

    Evidence is reviewed that demonstrates how the mesothelial cell in the normal peritoneum and comparable serosal cavities secretes surface-active phospholipid (SAPL) as a means of protecting itself and the membrane it forms with its neighbors. It is shown how SAPL, if adsorbed (reversibly bound) to mesothelium, can impart excellent lubricity, antiwear and release (antistick) properties, while impeding surgical adhesion formation. More-speculative benefits include acting as a deterrent to fibrosis and as a barrier to both protein leakage and pathogen invasion by spanning cell junctions. Such spanning would also "pin down" cell corners, impeding peeling as the first step in exfoliation encountered in prolonged continuous ambulatory peritoneal dialysis (CAPD). The molecular mechanism underlying each of these possible functions is adsorption. Morphological and hydrophobicity studies are discussed as validation for such an adsorbed lining and how it can be fortified by administering exogenous SAPL. Any role for SAPL in ultrafiltration is much more controversial. However, a surfactant lining can explain the very high permeability of the membrane to lipid-soluble drugs, implying that it is a barrier to water-soluble solutes. The clinical and animal evidence is conflicting but would seem to be best explained by a role for the barrier in promoting semipermeability, and hence the osmotic driving force for water transmission. Thus, adsorption of exogenous SAPL in CAPD patients with low ultrafiltration seems to restore this barrier function. The future direction for surfactant in CAPD would seem to rest with the physical chemists in producing formulations that optimize adsorption, probably involving a compromise between water solubility and surface activity of the phospholipids selected. It might even warrant using the interdialytic interval for readsorbing SAPL without the problem of dilution by a large volume of dialysate. PMID:11117241

  13. Tree recruitment in an empty forest.

    PubMed

    Terborgh, John; Nuñez-Iturri, Gabriela; Pitman, Nigel C A; Valverde, Fernando H Cornejo; Alvarez, Patricia; Swamy, Varun; Pringle, Elizabeth G; Paine, C E Timothy

    2008-06-01

    To assess how the decimation of large vertebrates by hunting alters recruitment processes in a tropical forest, we compared the sapling cohorts of two structurally and compositionally similar forests in the Rio Manu floodplain in southeastern Peru. Large vertebrates were severely depleted at one site, Boca Manu (BM), whereas the other, Cocha Cashu Biological Station (CC), supported an intact fauna. At both sites we sampled small (> or =1 m tall, <1 cm dbh) and large (> or =1 cm and <10 cm dbh) saplings in the central portion of 4-ha plots within which all trees > or =10 cm dbh were mapped and identified. This design ensured that all conspecific adults within at least 50 m (BM) or 55 m (CC) of any sapling would have known locations. We used the Janzen-Connell model to make five predictions about the sapling cohorts at BM with respect to CC: (1) reduced overall sapling recruitment, (2) increased recruitment of species dispersed by abiotic means, (3) altered relative abundances of species, (4) prominence of large-seeded species among those showing depressed recruitment, and (5) little or no tendency for saplings to cluster closer to adults at BM. Our results affirmed each of these predictions. Interpreted at face value, the evidence suggests that few species are demographically stable at BM and that up to 28% are increasing and 72% decreasing. Loss of dispersal function allows species dispersed abiotically and by small birds and mammals to substitute for those dispersed by large birds and mammals. Although we regard these conclusions as preliminary, over the long run, the observed type of directional change in tree composition is likely to result in biodiversity loss and negative feedbacks on both the animal and plant communities. Our results suggest that the best, and perhaps only, way to prevent compositional change and probable loss of diversity in tropical tree communities is to prohibit hunting. PMID:18589539

  14. Response of Louisiana ratoon sugarcane to phosphorus fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of phosphorus fertilizer on sugarcane (interspecific hybrids of Saccharum Spp. cv. 'LCP 85-384') yield components and soil properties were evaluated at seven locations in Louisiana. Five rates of phosphorus fertilizer (0 - 84 kg P2O5 ha-1) were applied to first-, second- and third-ratoo...

  15. Influence of nonoptimal ripener applications and postharvest residue retention on sugarcane second ratoon yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue and certain types of glyphosate ripener applications have independently been shown to reduce yields of the subsequent ratoon crop. The objective of this experiment was to determine the combined effects of post-har...

  16. Two-year growth cycle sugarcane crop parameter attributes and their application in modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum officinarum L.) production in Hawaii has declined since the 1970s due to a number of factors that include low prices, high labor costs, competition from artificial sweeteners and low-cost production from such countries as Mexico, Brazil, India, and China. Recently, competition ...

  17. Sugarcane Response to Nitrogen Fertilization on a Histosol with shallow Water Table and Periodic Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) is routinely exposed to periodic floods and shallow water tables on Histosols in the Everglades Agricultural Area (EAA) of Florida. Through microbial oxidation, these soils provide excess N for sugarcane, but it is not known if supplemental N would improve yields when micr...

  18. Carbon accumulation in a two year sugarcane rotation in Hawai’i, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane has been examined as a bioenergy feedstock for producing aviation fuel in the Pacific Basin. Hawaii has been a major producer of sugarcane (Saccharum officinarum L.) in the Pacific, with its typical two-year production cycle having some of the highest reported rates of sugar production in...

  19. Application of RAD LongRead sequencing for SNP discovery in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane (hybrid Saccharum spp.) genome presents a difficult challenge for SNP discovery and analysis due to its complex polyploid nature. This is compounded further due to the absence of a reference genome sequence. We report the discovery of SNPs in sugarcane through reductive sequencing and ...

  20. EFFECT OF TRANSIENT TEMPERATURE CHANGE ON SUCROSE METABOLISM IN SUGARCANE INTERNODES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was previously observed that a decrease in total soluble solids concentration in sugarcane (Saccharum sp. hybrids) juice was proportional to the magnitude of the change of temperature during the week prior to harvest (Eggleston and Vinyard, 1999. J. Am. Soc. Sugar Cane Technol. 19:62-63). I teste...