Sample records for acetaminophen hepatotoxicity compared

  1. Exacerbation of Acetaminophen Hepatotoxicity by the Anthelmentic Drug Fenbendazole

    PubMed Central

    Gardner, Carol R.; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8–12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole. PMID

  2. Exacerbation of acetaminophen hepatotoxicity by the anthelmentic drug fenbendazole.

    PubMed

    Gardner, Carol R; Mishin, Vladimir; Laskin, Jeffrey D; Laskin, Debra L

    2012-02-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8-12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole.

  3. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats.

    PubMed

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-12-01

    Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. The treatment with Arctium lappa extract reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in the acetaminophen group when compared with the control group. DNA fragments in the acetaminophen-injected group were also significantly increased (P < 0.05). The comet assay revealed increased detaching tail length and DNA concentration during the hepatic toxicity in the acetaminophen group. The malondialdehyde content was inhibited by Arctium lappa treatment (12.97±0.89 nmol/mg) when compared with the acetaminophen-treated-only group (12.97±0.89 nmol/mg). Histopathologic examination revealed that acetaminophen administration produced hepatic cell necrosis, infiltrate of lymphocytes, and vacuolation that were associated with the acetaminophen-treated animal group, but the degree of acetaminophen-induced hepatotoxicity was mediated by treatment with Arctium lappa extract. Arctium lappa can prevent most of the hepatic tissue damage caused by acetaminophen overdose in rats.

  4. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats

    PubMed Central

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-01-01

    Background Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. Objective To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Methods Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. Results The treatment with Arctium lappa extract reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in the acetaminophen group when compared with the control group. DNA fragments in the acetaminophen-injected group were also significantly increased (P < 0.05). The comet assay revealed increased detaching tail length and DNA concentration during the hepatic toxicity in the acetaminophen group. The malondialdehyde content was inhibited by Arctium lappa treatment (12.97±0.89 nmol/mg) when compared with the acetaminophen-treated-only group (12.97±0.89 nmol/mg). Histopathologic examination revealed that acetaminophen administration produced hepatic cell necrosis, infiltrate of lymphocytes, and vacuolation that were associated with the acetaminophen-treated animal group, but the degree of acetaminophen-induced hepatotoxicity was mediated by treatment with Arctium lappa extract. Conclusions Arctium lappa can prevent most of the hepatic tissue damage caused by acetaminophen overdose in rats. PMID:26543508

  5. 6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Sabina, Evan Prince; Pragasam, Samuel Joshua; Kumar, Suresh; Rasool, Mahaboobkhan

    2011-11-01

    To investigate the hepatoprotective efficacy of 6-gingerol against acetaminophen-induced hepatotoxicity in mice. Mice were injected with a single dose of acetaminophen (900 mg/kg) to induce hepatotoxicity, while 6-gingerol (30 mg/kg) or the standard drug silymarin (25 mg/kg) was given 30 min after the acetaminophen administration. The mice were sacrificed 4 h after acetaminophen injection to determine the activities of liver marker enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), total bilirubin in serum, and lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase and glutathione) in liver homogenate. The treatment of 6-gingerol and silymarin to acetaminophen-induced hepatotoxicity showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, and ALP) and total bilirubin in serum (P<0.05). In addition, 6-gingerol and silymarin treatment prevented the elevation of hepatic malondialdehyde formation and the depletion of antioxidant status in the liver of acetaminophen-intoxicated mice (P<0.05). The results evidently demonstrate that 6-gingerol has promising hepatoprotective effect which is comparable to the standard drug silymarin.

  6. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type

    PubMed Central

    Kane, Alice E.; Mitchell, Sarah J.; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G.; de Cabo, Rafael; Hilmer, Sarah N.

    2018-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  7. Acetaminophen hepatotoxicity and sterile inflammation: The mechanism of protection of Chlorogenic acid.

    PubMed

    Jaeschke, Hartmut

    2016-01-05

    Acetaminophen hepatotoxicity is characterized by extensive necrotic cell death and a sterile inflammatory response. A recent report suggested that a therapeutic intervention with chlorogenic acid, a dietary polyphenolic compound, protects against acetaminophen-induced liver injury by inhibiting the inflammatory injury. The purpose of this letter is to discuss a number of reasons why the protective mechanism of chlorogenic acid against acetaminophen hepatotoxicity does not involve an anti-inflammatory effect and provides an alternative explanation for the observed protection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi

    PubMed Central

    Henderson, Colin J.; Wolf, C. Roland; Kitteringham, Neil; Powell, Helen; Otto, Diana; Park, B. Kevin

    2000-01-01

    Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in part by the glutathione S-transferases (GST), such as GST Pi. To assess the role of GST in acetaminophen hepatotoxicity, we examined acetaminophen metabolism and liver damage in mice nulled for GstP (GstP1/P2(−/−)). Contrary to our expectations, instead of being more sensitive, GstP null mice were highly resistant to the hepatotoxic effects of this compound. No significant differences between wild-type (GstP1/P2(+/+)) mice and GstP1/P2(−/−) nulls in either the rate or route of metabolism, particularly to glutathione conjugates, or in the levels of covalent binding of acetaminophen-reactive metabolites to cellular protein were observed. However, although a similar rapid depletion of hepatic reduced glutathione (GSH) was found in both GstP1/P2(+/+) and GstP1/P2(−/−) mice, GSH levels only recovered in the GstP1/P2(−/−) mice. These data demonstrate that GstP does not contribute in vivo to the formation of glutathione conjugates of acetaminophen but plays a novel and unexpected role in the toxicity of this compound. This study identifies new ways in which GST can modulate cellular sensitivity to toxic effects and suggests that the level of GST Pi may be an important and contributing factor in the sensitivity of patients with acetaminophen-induced hepatotoxicity. PMID:11058152

  9. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.

    PubMed

    Ajith, T A; Hema, U; Aswathy, M S

    2007-11-01

    A large number of xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents - proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (p<0.01) elevated in the acetaminophen alone treated animals. Antioxidant status in liver such as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase and glutathione-S-transferase (GST), a phase II enzyme, and levels of reduced glutathione (GSH) were declined significantly (p<0.01) in the acetaminophen alone treated animals (control group). Hepatic lipid peroxidation was enhanced significantly (p<0.01) in the control group. Administration of single dose of aqueous extract of Z. officinale (200 and 400mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

  10. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity.

    PubMed

    Maes, Michaël; McGill, Mitchell R; da Silva, Tereza Cristina; Abels, Chloé; Lebofsky, Margitta; Weemhoff, James L; Tiburcio, Taynã; Veloso Alves Pereira, Isabel; Willebrords, Joost; Crespo Yanguas, Sara; Farhood, Anwar; Beschin, Alain; Van Ginderachter, Jo A; Penuela, Silvia; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-05-01

    Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10 Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10 Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.

  11. Inhibition of Carbamyl Phosphate Synthetase-I and Glutamine Synthetase by Hepatotoxic Doses of Acetaminophen in Mice

    PubMed Central

    Gupta, Sanjiv; Rogers, Lynette K.; Taylor, Sarah K.; Smith, Charles V.

    2016-01-01

    The primary mechanisms proposed for acetaminophen-induced hepatic necrosis should deplete protein thiols, either by covalent binding and thioether formation or by oxidative reactions such as S-thiolations. However, in previous studies we did not detect significant losses of protein thiol contents in response to administration of hepatotoxic doses of acetaminophen in vivo. In the present study we employed derivatization with the thiol-specific agent monobromobimane and separation of proteins by SDS–PAGE to investigate the possible loss of specific protein thiols during the course of acetaminophen-induced hepatic necrosis. Fasted adult male mice were given acetaminophen, and protein thiol status was examined subsequently in subcellular fractions isolated by differential centrifugation. No decreases in protein thiol contents were indicated, with the exception of a marked decrease in the fluorescent intensity, but not of protein content, as indicated by staining with Coomassie blue, of a single band of approximately 130 kDa in the mitochondrial fractions of acetaminophen-treated mice. This protein was identified by isolation and N-terminal sequence analysis as carbamyl phosphate synthetase-I (CPS-I) (EC 6.3.4.16). Hepatic CPS-I activities were decreased in mice given hepatotoxic doses of acetaminophen. In addition, hepatic glutamine synthetase activities were lower, and plasma ammonia levels were elevated in mice given hepatotoxic doses of acetaminophen. The observed hyperammonemia may contribute to the adverse effects of toxic doses of acetaminophen, and elucidation of the specific mechanisms responsible for the hyperammonemia may prove to be useful clinically. However, the preferential depletion of protein thiol content of a mitochondrial protein by chemically reactive metabolites generated in the endoplasmic reticulum presents a challenging and potentially informative mechanistic question. PMID:9344900

  12. A Novel Resolvin-Based Strategy for Limiting Acetaminophen Hepatotoxicity

    PubMed Central

    Patel, Suraj J; Luther, Jay; Bohr, Stefan; Iracheta-Vellve, Arvin; Li, Matthew; King, Kevin R; Chung, Raymond T; Yarmush, Martin L

    2016-01-01

    Objectives: Acetaminophen (APAP)-induced hepatotoxicity is a major cause of morbidity and mortality. The current pharmacologic treatment for APAP hepatotoxicity, N-acetyl cysteine (NAC), targets the initial metabolite-driven injury but does not directly affect the host inflammatory response. Because of this, NAC is less effective if given at later stages in the disease course. Resolvins, a novel group of lipid mediators shown to attenuate host inflammation, may be a therapeutic intervention for APAP hepatotoxicity. Methods: The temporal patterns of liver injury and neutrophil activation were investigated in a murine model of APAP hepatotoxicity. In addition, the effect of neutrophil depletion and resolvin administration on the severity of liver injury induced by APAP was studied. In vitro studies to investigate the mechanism of resolvin effect on hepatocyte injury and neutrophil adhesion were performed. Results: We demonstrate that hepatic neutrophil activation occurs secondary to the initial liver injury induced directly by APAP. We also show that neutrophil depletion attenuates APAP-induced liver injury, and administration of resolvins hours after APAP challenge not only attenuates liver injury, but also extends the therapeutic window eightfold compared to NAC. Mechanistic in vitro analysis highlights resolvins' ability to inhibit neutrophil attachment to endothelial cells in the presence of the reactive metabolite of APAP. Conclusions: This study highlights the ability of resolvins to protect against APAP-induced liver injury and extend the therapeutic window compared to NAC. Although the mechanism for resolvin-mediated hepatoprotection is likely multifactorial, inhibition of neutrophil infiltration and activation appears to play an important role. PMID:26986653

  13. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats.

    PubMed

    Hwang, Jinah; Chang, Yun-Hee; Park, Jung Hwa; Kim, Soo Yeon; Chung, Haeyon; Shim, Eugene; Hwang, Hye Jin

    2011-10-20

    Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  14. Effect of Ranitidine on Acetaminophen-Induced Hepatotoxicity in Dogs

    PubMed Central

    Panella, C.; Makowka, L.; Barone, M.; Polimeno, L.; Rizzi, S.; Demetris, J.; Bell, S.; Guglielmi, F. W.; Prelich, J. G.; Van Thiel, D. H.; Starzl, T. E.; Francavilla, A.

    2010-01-01

    The effect of ranitidine administration upon the hepatotoxic effect produced by a multidose acetaminophen administration regimen was examined. Seventy-two dogs received three subcutaneous injections of acetaminophen (750, 200, 200 mg/kg body wt) in DMSO (600 mg/ml) at time zero, 9 hr later, and 24 hr after the first dose. Ten control animals (group I) were not given ranitidine, the remaining 62 dogs received an intramuscular injection of ranitidine 30 min before each acetaminophen dose. Three different doses of ranitidine were used (mg/kg body wt): 50 mg, group II (33 dogs); 75 mg, group III (14 dogs); 120 mg, group IV (15 dogs). Ranitidine reduced the expected acetaminophen-induced hepatoxicity in a dose–response manner. Moreover, a significant correlation was found between the ranitidine dose and the survival rate, as evidenced by transaminase levels in the serum and histology of the liver. This model of fulminant hepatic failure induced by acetaminophen and its modulation with ranitidine provides clinical investigators with a research tool that will be useful in the future investigation of putative medical and surgical therapies being investigated for use in the clinical management of fulminant hepatic failure. Because of the size of the animal used in this model, frequent and serial analyses of blood and liver were available for study to determine the effect of therapy within a given animal as opposed to within groups of animals. PMID:2307085

  15. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    PubMed Central

    2011-01-01

    Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity. PMID:22011590

  16. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs{sup +/−} or Cth{sup +/−}) and homozygous (Cth{sup −/−}) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alaninemore » aminotransferase levels were highly elevated in Cth{sup −/−} mice at 150 mg/kg dose, and also in Cbs{sup +/−} or Cth{sup +/−} mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth{sup −/−} mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth{sup −/−} mice with lower K{sub m} values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth{sup −/−} mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs{sup +/−}, Cth{sup +/

  17. Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo.

    PubMed

    Brillant, Nathalie; Elmasry, Mohamed; Burton, Neal C; Rodriguez, Josep Monne; Sharkey, Jack W; Fenwick, Stephen; Poptani, Harish; Kitteringham, Neil R; Goldring, Christopher E; Kipar, Anja; Park, B Kevin; Antoine, Daniel J

    2017-10-01

    The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration. Copyright © 2017

  18. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Lin, Chun-Ching

    2007-04-20

    Tu-Si-Zi, the seeds of Cuscuta chinensis Lam. (Convolvulaceae), is a traditional Chinese medicine that is commonly used to nourish and improve the liver and kidney conditions in China and other Asian countries. As oxidative stress promotes the development of acetaminophen (APAP)-induced hepatotoxicity, the aim of the present study was to evaluate and compare the hepatoprotective effect and antioxidant activities of the aqueous and ethanolic extracts of C chinensis on APAP-induced hepatotoxicity in rats. The C chinensis ethanolic extract at an oral dose of both 125 and 250mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), and alkaline phosphatase (ALP). In addition, the same ethanolic extract prevented the hepatotoxicity induced by APAP-intoxicated treatment as observed when assessing the liver histopathology. Regarding the antioxidant activity, C chinensis ethanolic extract exhibited a significant effect (P<0.05) by increasing levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and by reducing malondialdehyde (MDA) levels. In contrast, the same doses of the aqueous extract of C chinensis did not present any hepatoprotective effect as seen in the ethanolic extract, and resulted in further liver deterioration. In conclusion, these data suggest that the ethanolic extract of Cuscuta chinensis can prevent hepatic injuries from APAP-induced hepatotoxicity in rats and this is likely mediated through its antioxidant activities.

  19. Dietary α-Mangostin Provides Protective Effects against Acetaminophen-Induced Hepatotoxicity in Mice via Akt/mTOR-Mediated Inhibition of Autophagy and Apoptosis.

    PubMed

    Yan, Xiao-Tong; Sun, Yin-Shi; Ren, Shen; Zhao, Li-Chun; Liu, Wen-Cong; Chen, Chen; Wang, Zi; Li, Wei

    2018-05-01

    Acetaminophen overdose-induced hepatotoxicity is the most common cause of acute liver failure in many countries. Previously, alpha-mangostin (α-MG) has been confirmed to exert protective effects on a variety of liver injuries, but the protective effect on acetaminophen-induced acute liver injury (ALI) remains largely unknown. This work investigated the regulatory effect and underlying cellular mechanisms of α-MG action to attenuate acetaminophen-induced hepatotoxicity in mice. The increased serum aminotransferase levels and glutathione (GSH) content and reduced malondialdehyde (MDA) demonstrated the protective effect of α-MG against acetaminophen-induced hepatotoxicity. In addition, α-MG pretreatment inhibited increases in tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) caused by exposure of mice to acetaminophen. In liver tissues, α-MG inhibited the protein expression of autophagy-related microtubule-associated protein light chain 3 (LC3) and BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3). Western blotting analysis of liver tissues also proved evidence that α-MG partially inhibited the activation of apoptotic signaling pathways via increasing the expression of Bcl-2 and decreasing Bax and cleaved caspase 3 proteins. In addition, α-MG could in part downregulate the increase in p62 level and upregulate the decrease in p-mTOR, p-AKT and LC3 II /LC3 I ratio in autophagy signaling pathways in the mouse liver. Taken together, our findings proved novel perspectives that detoxification effect of α-MG on acetaminophen-induced ALI might be due to the alterations in Akt/mTOR pathway in the liver.

  20. Amelioration of acetaminophen induced hepatotoxicity by methanolic extract of pomegranate peels in rats.

    PubMed

    Ahmad, Nadia; Tahir, Mohammad; Lone, Khalid Perwez

    2016-07-01

    To observe the ameliorating effect by methanolic extract of pomegranate peel in acetaminophen-induced hepatotoxicity. The randomised controlled study was conducted from July 2013 to June 2014 at the University of Health Sciences, Lahore, Pakistan, and comprised rats that were randomly divided into three equal groups. Control group A was given normal saline (5ml/kg), whereas group B and C were given 750mg/kg acetaminophen intraperitoneally dissolved in normal saline (5ml/kg) on 1st day of experiment. From Day 2 till day 14, group A and B were given distilled water (5ml/kg), while group C was given 50mg/kg methanolic extract of pomegranate peel dissolved in distilled water (5ml/kg) orally. On day 15, blood was collected through cardiac puncture, and livers were removed and processed for histological examination. There were 24 rats weighing 175±25gm each. Each group had 8(33.3%) rats. Mean liver aspartate aminotransferase at the end of the experiment in groups A, B and C were 97.88±19.45, 148.25±16.48 and 96.13±17.95U/L, while alanine transaminase levels were 51.50±15.38, 96.75±10.91 and 49.63±12.08 U/L (p<0.05 each) On histological examination of group B, the normal hepatic architecture was distorted with loss of classically arranged hepatic cords. Vascular congestion was present with centrilobular necrosis, marked by pyknotic nuclei and vacuoles. Acetaminophen is hepatotoxic and methanolic extract of pomegranate peel ameliorated the hepatic picture probably because of its antioxidant properties.

  1. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    PubMed

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  2. Altered Protein S-Glutathionylation Identifies a Potential Mechanism of Resistance to Acetaminophen-Induced Hepatotoxicity

    PubMed Central

    McGarry, David J.; Chakravarty, Probir; Wolf, C. Roland

    2015-01-01

    Acetaminophen (APAP) is the most commonly used over-the-counter analgesic. However, hepatotoxicity induced by APAP is a major clinical issue, and the factors that define sensitivity to APAP remain unclear. We have previously demonstrated that mice nulled for glutathione S-transferase Pi (GSTP) are resistant to APAP-induced hepatotoxicity. This study aims to exploit this difference to delineate pathways of importance in APAP toxicity. We used mice nulled for GSTP and heme oxygenase-1 oxidative stress reporter mice, together with a novel nanoflow liquid chromatography–tandem mass spectrometry methodology to investigate the role of oxidative stress, cell signaling, and protein S-glutathionylation in APAP hepatotoxicity. We provide evidence that the sensitivity difference between wild-type and Gstp1/2−/− mice is unrelated to the ability of APAP to induce oxidative stress, despite observing significant increases in c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation in wild-type mice. The major difference in response to APAP was in the levels of protein S-glutathionylation: Gstp1/2−/− mice exhibited a significant increase in the number of S-glutathionylated proteins compared with wild-type animals. Remarkably, these S-glutathionylated proteins are involved in oxidative phosphorylation, respiratory complexes, drug metabolism, and mitochondrial apoptosis. Furthermore, we found that S-glutathionylation of the rate-limiting glutathione-synthesizing enzyme, glutamate cysteine ligase, was markedly increased in Gstp1/2−/− mice in response to APAP. The data demonstrate that S-glutathionylation provides an adaptive response to APAP and, as a consequence, suggest that this is an important determinant in APAP hepatotoxicity. This work identifies potential novel avenues associated with cell survival for the treatment of chemical-induced hepatotoxicity. PMID:26311813

  3. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice.

    PubMed

    Bektur, Nuriye Ezgi; Sahin, Erhan; Baycu, Cengiz; Unver, Gonul

    2016-04-01

    This study was designed to estimate protective effects of silymarin on acetaminophen (N-acetyl-p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman's capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injection for 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects. © The Author(s) 2013.

  4. Mechanistic Biomarkers in Acetaminophen-induced Hepatotoxicity and Acute Liver Failure: From Preclinical Models to Patients

    PubMed Central

    McGill, Mitchell R.; Jaeschke, Hartmut

    2015-01-01

    SUMMARY Introduction Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models to humans. Areas covered We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermdiates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. Expert Opinion Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis, and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets. PMID:24836926

  5. Secretory phospholipase A{sub 2}-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Vishakha S.; Donthamsetty, Shashikiran; Latendresse, John R.

    2011-03-15

    We have previously reported that among the other death proteins, hepatic secretory phospholipase A{sub 2} (sPLA{sub 2}) is a leading mediator of progression of liver injury initiated by CCl{sub 4} in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA{sub 2} released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting highermore » susceptibility of COX-2 KO mice to sPLA{sub 2}-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound {sup 14}C-APAP in the livers of KO mice. Hepatic sPLA{sub 2} activity and plasma TNF-{alpha} were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE{sub 2} and lower compensatory liver regeneration and repair ({sup 3}H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA{sub 2}-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA{sub 2} in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.« less

  6. Chronic acetaminophen overdosing in children: risk assessment and management.

    PubMed

    Sztajnkrycer, M J; Bond, G R

    2001-04-01

    Acetaminophen is currently the pediatric analgesic and antipyretic of choice. Although children appear to tolerate single, high-dose ingestions well, the literature is replete with reports of significant morbidity and mortality after repeated supra-therapeutic dosing. Proposed risk factors for injury with chronic use include age, total dose, duration, presence of intercurrent febrile illness, starvation, co-administration of cytochrome P450-inducing drugs, underlying hepatic disease, and unique genetic makeup. Evaluation of these children should include serum acetaminophen concentration, prothrombin time, and serum bilirubin and transaminase concentrations. The Rumack-Mathew nomogram should not be used to estimate the risk of hepatotoxicity in cases of chronic ingestion. Based on history, clinical examination, and laboratory findings, patients may be placed in three categories: those without hepatic injury and with no residual acetaminophen to be metabolized, those without injury but with some acetaminophen to be metabolized, and those with hepatotoxicity. Those without injury and no residual acetaminophen need not be treated or followed. Patients with hepatotoxicity or potential for hepatotoxicity based on residual acetaminophen should be treated with N-acetylcysteine. Most importantly, because so many parents are unaware of the potential risk of inappropriate dosing, education is the key to preventing future cases.

  7. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  8. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com; Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368; Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes weremore » also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct

  9. Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection is Associated with Induction of Flavin-containing Monooxygenase-3 (FMO3) in Hepatocytes

    EPA Science Inventory

    Acetaminophen (APAP) pretreatment with a low hepatotoxic dose in mice results in resistance to a second, higher dose of APAP (APAP autoprotection). Recent microarray work by our group showed a drastic induction of liver flavin containing monooxygenase-3 (Fmo3) mRNA expression in...

  10. Unexpected paracetamol (acetaminophen) hepatotoxicity at standard dosage in two older patients: time to rethink 1 g four times daily?

    PubMed

    Ging, Patricia; Mikulich, Olga; O'Reilly, Katherine M A

    2016-07-01

    We present two cases of acute hepatotoxicity associated with elevated paracetamol (acetaminophen) levels in older patients. Both patients were receiving a standard European dose of oral paracetamol (2 × 500 mg QDS) with no risk factors for slowed metabolism (weight <50 kg, interacting medications, hepatic enzyme inducers, history of liver disease). Significantly, both patients had recently had a dose escalation from 'as needed' dosing to 4 g daily, and the medication was being administered by nursing staff. Our experience shows that even when prescribed appropriately at the usual therapeutic dosage, paracetamol can be hepatotoxic. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Adrenergic modulation of hepatotoxicity.

    PubMed

    Roberts, S M; DeMott, R P; James, R C

    1997-01-01

    Summaries of the interactions caused by altering adrenoreceptor activity in conjunction with the administration of selected hepatotoxicants are provided in Table 2 and Fig. 1. These hepatotoxicants can be divided into two groups, one whose toxicity is increased by adrenergic agonist drugs (group I) and the other whose toxicity is decreased by adrenergic antagonists (group II). Group I includes carbon tetrachloride, acetaminophen, and methylphenidate. Perhaps the most remarkable aspect these chemicals have in common is the striking potentiation that occurs with cotreatment with certain adrenergic agonist drugs. For each of these, cotreatment with the appropriate adrenergic agent can result in massive hepatocellular necrosis from an otherwise nontoxic dose. In terms of the specific adrenoreceptors involved and mechanisms of potentiation, however, they have little in common. Potentiation of carbon tetrachloride hepatotoxicity appears to be mediated by alpha(2)-adrenoceptor stimulation, acetaminophen is potentiated by alpha(1)-adrenoreceptor agonists, and methylphenidate responds to beta(2)-adrenoreceptor stimulation. Studies of the potentiation of carbon tetrachloride and acetaminophen agree that the timing of adrenergic stimulation relative to the hepatotoxicant dose is critically important to the interaction but markedly different for these two toxicants. Acetaminophen was potentiated only when the adrenergic drug was administered as a 3-h pretreatment. This is apparently a consequence of a mechanism of potentiation that involves adrenergic depression of hepatic glutathione content and a requirement that peak effects on glutathione of both the adrenergic agent and acetaminophen be coincident. The mechanism of potentiation of carbon tetrachloride hepatotoxicity is uncertain but clearly does not involve hepatic glutathione content. In contrast to acetaminophen, adrenergic effects must occur within a time window a few hours after the carbon tetrachloride dose for

  12. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis.

    PubMed

    Ward, Jeanine; Kanchagar, Chitra; Veksler-Lublinsky, Isana; Lee, Rosalind C; McGill, Mitchell R; Jaeschke, Hartmut; Curry, Steven C; Ambros, Victor R

    2014-08-19

    We have identified, by quantitative real-time PCR, hundreds of miRNAs that are dramatically elevated in the plasma or serum of acetaminophen (APAP) overdose patients. Most of these circulating microRNAs decrease toward normal levels during treatment with N-acetyl cysteine (NAC). We identified a set of 11 miRNAs whose profiles and dynamics in the circulation during NAC treatment can discriminate APAP hepatotoxicity from ischemic hepatitis. The elevation of certain miRNAs can precede the dramatic rise in the standard biomarker, alanine aminotransferase (ALT), and these miRNAs also respond more rapidly than ALT to successful treatment. Our results suggest that miRNAs can serve as sensitive diagnostic and prognostic clinical tools for severe liver injury and could be useful for monitoring drug-induced liver injury during drug discovery.

  13. Acetaminophen-induced acute liver injury in HCV transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wildmore » type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.« less

  14. Role of nicotinamide (vitamin B3) in acetaminophen-induced changes in rat liver: Nicotinamide effect in acetaminophen-damged liver.

    PubMed

    Mahmoud, Yomna I; Mahmoud, Asmaa A

    2016-06-01

    Acetaminophen is a widely used analgesic and antipyretic agent, which is safe at therapeutic doses. However, overdoses of acetaminophen induce severe oxidative stress, which leads to acute liver failure. Nicotinamide has proven effective in ameliorating many pathological conditions that occur due to oxidative stress. This study verifies the prophylactic and therapeutic effects of nicotinamide against the hepatic pathophysiological and ultrastructural alterations induced by acetaminophen. Wistar rats intoxicated with an acute overdose of acetaminophen (5g/kg b.wt) were given a single dose of nicotinamide (500mg/kg b.wt) either before or after intoxication. Acetaminophen caused significant elevation in the liver functions and lipid peroxidation marker, and decline in the activities of the hepatic antioxidant enzymes. This oxidative injury was associated with hepatic centrilobular necrosis, hemorrage, vacuolar degeneration, lipid accumulation and mitochondrial alterations. Treating intoxicated rats with nicotinamide (500mg/kg) significantly ameliorated acetaminophen-induced biochemical changes and pathological injuries. However, administering the same dose of nicotinamide to healthy animals or prior to acetaminophen-intoxication induced hepatotoxicity. Caution should be taken when administering high doses of NAM because of its possible hepatotoxicity. Considering the wide use of nicotinamide, there is an important need for monitoring nicotinamide tolerance, safety and efficacy in healthy and diseased subjects. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Detection of Acetaminophen-Protein Adducts in Decedents with Suspected Opioid-Acetaminophen Combination Product Overdose.

    PubMed

    Thomas, Karen C; Wilkins, Diana G; Curry, Steven C; Grey, Todd C; Andrenyak, David M; McGill, Lawrence D; Rollins, Douglas E

    2016-09-01

    Acetaminophen overdose is a leading cause of drug-induced liver failure in the United States. Acetaminophen-protein adducts have been suggested as a biomarker of hepatotoxicity. The purpose of this study was to determine whether protein-derived acetaminophen-protein adducts are quantifiable in postmortem samples. Heart blood, femoral blood, and liver tissue were collected at autopsy from 22 decedents suspected of opioid-acetaminophen overdose. Samples were assayed for protein-derived acetaminophen-protein adducts, acetaminophen, and selected opioids found in combination products containing acetaminophen. Protein-derived APAP-CYS was detected in 17 of 22 decedents and was measurable in blood that was not degraded or hemolyzed. Heart blood concentrations ranged from 11 ng/mL (0.1 μM) to 7817 ng/mL (28.9 μM). Protein-derived acetaminophen-protein adducts were detectable in liver tissue for 20 of 22 decedents. Liver histology was also performed for all decedents, and no evidence of centrilobular hepatic necrosis was observed. © 2016 American Academy of Forensic Sciences.

  16. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching

    2008-05-01

    Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.

  17. Recent Updates on Acetaminophen Hepatotoxicity: The Role of Nrf2 in Hepatoprotection

    PubMed Central

    Gum, Sang Il

    2013-01-01

    Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection. PMID:24386516

  18. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A

    2017-01-01

    The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.

  19. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    PubMed

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.

  20. Inhibition of acetaminophen-induced hepatotoxicity in mice by exogenous thymosinβ4 treatment.

    PubMed

    Wang, Lei; Li, Xiankui; Chen, Cai

    2018-05-21

    To study the effects of exogenous thymosinβ4 (Tβ4) treatment in acetaminophen (APAP)-induced hepatotoxicity. Liver injury was induced in mice by a single intraperitoneal injection of APAP (500 mg/kg). Exogenous Tβ4 was intraperitoneally administrated at 0 h, 2 h and 4 h after APAP injection. Chloroquine (CQ) (60 mg/kg) was intraperitoneally injected 2 h before APAP administration to inhibit autophagy. Six hours after APAP injection liver injury was evaluated by histological examinations, biochemical measurements and enzyme linked immunosorbent assay (ELISAs). Western blots were performed to detect proteins expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly increased 6 h after APAP administration, but were significantly reduced by co-administration of Tβ4. Histological examinations demonstrated that Tβ4 reduced necrosis and inflammation induced by APAP. Immunofluorescence showed that Tβ4 suppressed APAP-induced translocation of high mobility group box-1 protein (HMGB1) from the nucleus to cytosol and intercellular space. Hepatic glutathione (GSH) depletion, malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) activities induced by APAP were all attenuated by Tβ4. APAP-induced increases in hepatic nuclear factor-κB (NF-κB) p65 protein expression and inflammatory cytokines production including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were reduced by Tβ4 treatment. Increased LC3 and p62 proteins in the liver tissues of APAP-treated mice were decreased by Tβ4 treatment, which indicated the enhancement of autophagy flux by Tβ4. Furthermore, inhibiting autophagy by CQ abrogated the protective effects of Tβ4 against APAP hepatotoxicity. Exogenous Tβ4 treatment exerts protective effects against APAP-induced hepatotoxicity in mice. The underneath molecular mechanisms may involve autophagy enhancement and inhibition of oxidative stress by Tβ4

  1. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cover, Cathleen; Liu Jie; Farhood, Anwar

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-{alpha}, interleukin-1{beta} and macrophage inflammatory protein-2)more » was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose.« less

  2. Acetaminophen-induced hepatotoxicity is associated with early changes in NF-kB and NF-IL6 DNA binding activity.

    PubMed

    Blazka, M E; Germolec, D R; Simeonova, P; Bruccoleri, A; Pennypacker, K R; Luster, M I

    Nuclear transcription factors, such as NF-kB and NF-IL6, are believed to play an important role in regulating the expression of genes that encode for products involved in tissue damage and inflammation and, thus, may represent early biomarkers for chemical toxicities. In the present study changes in DNA binding activity of these factors were examined in livers of mice administered hepatotoxic doses of acetaminophen (APAP). NF-kB and NF-IL6 DNA binding occurred constitutively in control mouse liver. However, within 4 hr following administration of hepatotoxic doses of APAP, their binding activities were transiently lost and is in contrast to AP-1 transcription factor where activation occurs under similar conditions. These changes corresponded with increased release of inflammatory mediators (IL-6, serum amyloid A) and increased levels of enzymatic markers of hepatocyte damage. Similarly, treatment of mice with gadolinium chloride, an inhibitor of Kupffer cell activation and known to protect against APAP-induced hepatotoxicity, reduced the observed pathophysiological response in the liver while altering the APAP-associated changes in NF-kB DNA binding activity. NF-kB was found predominantly in parenchymal and endothelial cells and was composed primarily of relatively inactive p50 homodimer subunits in control liver. Taken together, these studies suggest that hepatotoxicity is associated with early and complex changes in DNA binding activities of specific transcription factors. In particular, NF-kB and NF-IL6 may serve as negative regulators of hepatocyte-derived inflammatory mediators and is analogous to that previously observed in certain other cell systems such as B lymphocytes.

  3. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans

    PubMed Central

    McGill, Mitchell R.; Cao, Mengde; Svetlov, Archie; Sharpe, Matthew R.; Williams, C. David; Curry, Steven C.; Farhood, Anwar; Jaeschke, Hartmut; Svetlov, Stanislav I.

    2014-01-01

    Context New biomarkers are needed in acetaminophen (APAP) hepatotoxicity. Plasma argininosuccinate synthetase (ASS) is a promising candidate. Objective Characterize ASS in APAP hepatotoxicity. Methods ASS was measured in plasma from rodents and humans with APAP hepatotoxicity. Results In mice, ASS increased before injury, peaked before ALT, and decreased rapidly. Fischer rats had a greater increase in ASS relative to ALT. Patients with abnormal liver test results had very high ASS compared to controls. ASS appeared to increase early in some patients, and declined rapidly in all. Conclusions : ASS may be a useful biomarker of acute cell death in APAP hepatotoxicity. PMID:24597531

  4. Patient perception and knowledge of acetaminophen in a large family medicine service.

    PubMed

    Herndon, Christopher M; Dankenbring, Dawn M

    2014-06-01

    The use of acetaminophen is currently under increased scrutiny by the US Food and Drug Administration (FDA) due to the risk of intentional and more concerning, unintentional overdose-related hepatotoxicity. Acetaminophen is responsible for an estimated 48% of all acute liver failure diagnoses. The purpose of this study is to evaluate patient perception and knowledge of the safe use and potential toxicity of acetaminophen-containing products. The authors conducted a descriptive, 2-week study using a convenience sample from a large family medicine clinic waiting room. Survey questions assessed ability to identify acetaminophen, knowledge of the current recommended maximum daily dose, respondent acetaminophen use patterns, common adverse effects associated with acetaminophen, and respondent self-reported alcohol consumption. Acetaminophen safety information was provided to all persons regardless of participation in the study. Of the 102 patients who chose to participate, 79% recognized acetaminophen as a synonym of Tylenol, whereas only 9% identified APAP as a frequently used abbreviation. One third of respondents thought acetaminophen was synonymous with ibuprofen and naproxen. Approximately one fourth of patients correctly identified the then maximum recommended daily acetaminophen dose of 4 g. Seventy-eight percent of patients correctly identified hepatotoxicity as the most common serious adverse effect. We conclude that patient deficiencies in knowledge of acetaminophen recognition, dosing, and toxicity warrant public education by health professionals at all levels of interaction. Current initiatives are promising; however, further efforts are required.

  5. Hepatoprotective effects of ethanol extracts from Folium Syringae against acetaminophen-induced hepatotoxicity in vitro and in vivo.

    PubMed

    Shi, Chen-Xi; Lin, Yue-Xia; Liu, Fang-Ping; Chang, Yi-Cong; Li, Rui; Li, Chang-Wen; Li, Ying; He, Jing-Shan; Ma, Xin; Li, Zhi

    2017-10-01

    The leaves of Folium Syringae (FS) have been long used as a traditional Chinese folk medicine for their anti-inflammatory effect, utilized as an antibacterial and antiviral treatment. The purpose of this study was to investigate the potential hepatoprotective effects of FS on acetaminophen-induced hepatic injury in primary hepatocytes and mice. Hepatocytes obtained by the inverse perfusion method were divided randomly into five groups. Prior to acetaminophen exposure, 3 different doses of FS ethanol extracts were given to hepatocytes and mice, respectively. Thereafter, transaminases, glutathione S-transferase A1 (GSTA1) and some hepatic indices were determined. FS ethanol extracts (200 μg/mL) pretreatment prevented all of the alterations, returning their levels to nearly those levels observed in the control group in vitro. Treatment with FS ethanol extracts (200 mg/kg) significantly reduced the toxicity induced by acetaminophen in vivo, which manifested as a decrease in transaminases, and the hepatoprotective effects of FS were similar to Silymarin (positive group). GSTA1 represented the same change trend as transaminases and hepatic indices, and at a dose of 100 μg/mL FS ethanol extracts in vitro and 100 mg/kg in vivo, GSTA1 content changed significantly (p < 0.01), but transaminases were insignificant (p > 0.05). The results of our investigation suggested that FS ethanol extracts possess significant protective effects against hepatotoxicity induced by acetaminophen both in vitro and in vivo. In addition, GSTA1 could be used as an indicator assessing the extents of hepatic injury, which is more sensitive than transaminases. Copyright © 2017. Published by Elsevier Taiwan LLC.

  6. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPAR{alpha} with clofibrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.

    2008-08-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPAR{alpha} via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. {sup 14}C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAPmore » hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by {sup 3}H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPAR{alpha} was tested. PPAR{alpha} was downregulated in NASH. To investigate whether downregulation of PPAR{alpha} in NASH is the critical mechanism of compromised liver tissue repair, PPAR{alpha} was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPAR{alpha} expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity.« less

  7. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    PubMed

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  8. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling.

    PubMed

    Liu, Aiming; Tanaka, Naoki; Sun, Lu; Guo, Bin; Kim, Jung-Hwan; Krausz, Kristopher W; Fang, Zhongze; Jiang, Changtao; Yang, Julin; Gonzalez, Frank J

    2014-11-05

    Overdose of acetaminophen (APAP) can cause acute liver injury that is sometimes fatal, requiring efficient pharmacological intervention. The traditional Chinese herb Bupleurum falcatum has been widely used for the treatment of several liver diseases in eastern Asian countries, and saikosaponin d (SSd) is one of its major pharmacologically-active components. However, the efficacy of Bupleurum falcatum or SSd on APAP toxicity remains unclear. C57/BL6 mice were administered SSd intraperitoneally once daily for 5days, followed by APAP challenge. Biochemical and pathological analysis revealed that mice treated with SSd were protected against APAP-induced hepatotoxicity. SSd markedly suppressed phosphorylation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and reversed the APAP-induced increases in the target genes of NF-κB, such as pro-inflammatory cytokine Il6 and Ccl2, and those of STAT3, such as Socs3, Fga, Fgb and Fgg. SSd also enhanced the expression of the anti-inflammatory cytokine Il10 mRNA. Collectively, these results demonstrate that SSd protects mice from APAP-induced hepatotoxicity mainly through down-regulating NF-κB- and STAT3-mediated inflammatory signaling. This study unveils one of the possible mechanisms of hepatoprotection caused by Bupleurum falcatum and/or SSd. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans.

    PubMed

    Yu, Dianke; Wu, Leihong; Gill, Pritmohinder; Tolleson, William H; Chen, Si; Sun, Jinchun; Knox, Bridgett; Jin, Yaqiong; Xiao, Wenming; Hong, Huixiao; Wang, Yong; Ren, Zhen; Guo, Lei; Mei, Nan; Guo, Yongli; Yang, Xi; Shi, Leming; Chen, Yinting; Zeng, Linjuan; Dreval, Kostiantyn; Tryndyak, Volodymyr; Pogribny, Igor; Fang, Hong; Shi, Tieliu; McCullough, Sandra; Bhattacharyya, Sudeepa; Schnackenberg, Laura; Mattes, William; Beger, Richard D; James, Laura; Tong, Weida; Ning, Baitang

    2018-02-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.

  10. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

    PubMed Central

    Choi, Yoon-Hee; Lee, Hyun Sook; Chung, Cha-Kwon

    2017-01-01

    BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes. PMID:28386382

  11. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice.

    PubMed

    Gong, Shenhai; Lan, Tian; Zeng, Liyan; Luo, Haihua; Yang, Xiaoyu; Li, Na; Chen, Xiaojiao; Liu, Zhanguo; Li, Rui; Win, Sanda; Liu, Shuwen; Zhou, Hongwei; Schnabl, Bernd; Jiang, Yong; Kaplowitz, Neil; Chen, Peng

    2018-07-01

    Acetaminophen (APAP) induced hepatotoxicity is a leading cause of acute liver failure worldwide. It is well established that the liver damage induced by acetaminophen exhibits diurnal variation. However, the detailed mechanism for the hepatotoxic variation is not clear. Herein, we aimed to determine the relative contributions of gut microbiota in modulating the diurnal variation of hepatotoxicity induced by APAP. Male Balb/C mice were treated with or without antibiotics and a single dose of orally administered APAP (300 mg/kg) at ZT0 (when the light is on-start of resting period) and ZT12 (when the light is off-start of active period). In agreement with previous findings, hepatic injury was markedly enhanced at ZT12 compared with ZT0. Interestingly, upon antibiotic treatment, ZT12 displayed a protective effect against APAP hepatotoxicity similar to ZT0. Moreover, mice that received the cecal content from ZT12 showed more severe liver damage than mice that received the cecal content from ZT0. 16S sequencing data revealed significant differences in the cecal content between ZT0 and ZT12 in the compositional level. Furthermore, metabolomic analysis showed that the gut microbial metabolites were also different between ZT0 and ZT12. Specifically, the level of 1-phenyl-1,2-propanedione (PPD) was significantly higher at ZT12 than ZT0. Treatment with PPD alone did not cause obvious liver damage. However, PPD synergistically enhanced APAP-induced hepatic injury in vivo and in vitro. Finally, we found Saccharomyces cerevisiae, which could reduce intestinal PPD levels, was able to markedly alleviate APAP-induced liver damage at ZT12. The gut microbial metabolite PPD was responsible, at least in part, for the diurnal variation of hepatotoxicity induced by APAP by decreasing glutathione levels. Acetaminophen (APAP) induced acute liver failure because of over dose is a leading public health problem. APAP-induced liver injury exhibits diurnal variation, specifically APAP causes

  12. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice.

    PubMed

    Wang, Zi; Hu, Jun-Nan; Yan, Meng-Han; Xing, Jing-Jing; Liu, Wen-Cong; Li, Wei

    2017-10-25

    Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against

  13. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury

    PubMed Central

    Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A.; Sun, Jinchun; Chen, Si; Beger, Richard D.; Davis, Kelly; Salminen, William F.; Song, Byoung-Joon; Mendrick, Donna L.; Yu, Li-Rong

    2017-01-01

    Purpose Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Experimental design Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Results Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. Conclusions and clinical relevance This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. PMID:27634590

  14. A single-arm clinical trial of a 48-hour intravenous N-acetylcysteine protocol for treatment of acetaminophen poisoning.

    PubMed

    Heard, K; Rumack, B H; Green, J L; Bucher-Bartelson, B; Heard, S; Bronstein, A C; Dart, R C

    2014-06-01

    Acetylcysteine prevents hepatic injury when administered soon after acetaminophen overdose. The most commonly used treatment protocols are a 72-hour oral and a 21-hour intravenous (IV) protocol. Between 1984 and 1994, 409 patients were enrolled in a study to describe the outcomes of patients who were treated using a 48-hour IV protocol. In 1991, an interim analysis reported the first 223 patients. The objective of this manuscript is to report the rates of hepatotoxicity and adverse events occurring during a 48-hour IV acetylcysteine protocol in the entire 409 patient cohort. This was a multicenter, single-arm, open-label clinical trial enrolling patients who presented with a toxic serum acetaminophen concentration within 24 h of acute acetaminophen ingestion. Patients were treated with 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses. Serum aminotransferase activities were measured every 8 h during the protocol, and adverse events were recorded. The primary outcome was the percentage of subjects who developed hepatotoxicity defined as a peak serum aminotransferase greater than 1000 IU/L. Four hundred and nine patients were enrolled, and 309 met inclusion for the outcome analysis. The overall percentage of patients developing hepatotoxicity was 18.1%, and 3.4% of patients treated within 10 h developed hepatotoxicity. One acetaminophen-related death occurred in a patient treated at 22 h. Adverse events occurred in 28.9% of enrolled subjects; the most common adverse events were nausea, vomiting, and flushing, and no events were rated as serious by the investigator. Acetaminophen-overdosed patients treated with IV acetylcysteine administered as 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses had a low rate of hepatotoxicity and few adverse events. This protocol delivers a higher dose of acetylcysteine which may be useful in selected cases involving very large overdoses.

  15. PROTECTIVE EFFECT OF MORINGA PEREGRINA LEAVES EXTRACT ON ACETAMINOPHEN -INDUCED LIVER TOXICITY IN ALBINO RATS.

    PubMed

    Azim, Samy Abdelfatah Abdel; Abdelrahem, Mohamed Taha; Said, Mostafa Mohamed; Khattab, Alshaimaa

    2017-01-01

    Acetaminophen is a common antipyretic drug but at overdose can cause severe hepatotoxicity that may further develop into liver failure and hepatic centrilobular necrosis in experimental animals and humans. This study was undertaken to assess the ameliorative role of Moringa peregrina leaves extract against acetaminophen toxicity in rats. Induction of hepatotoxicity was done by chronic oral administration of acetaminophen (750 mg/kg bwt) for 4 weeks. To study the possible hepatoprotective effect, Moringa peregrina leaves extract (200 mg/kg bwt) or Silymarin (50 mg/kg bwt) was administered orally, for 4 weeks, along with acetaminophen. acetaminophen significantly increased serum liver enzymes and caused oxidative stress, evidenced by significantly increased tissue malondialdehyde, glutathione peroxidase, hepatic DNA fragmentation, and significant decrease of glutathione and antioxidant enzymes in liver, blood and brain. On the other hand, administration of Moringa peregrina leaves extract reversed acetaminophen-related toxic effects through: powerful malondialdehyde suppression, glutathione peroxidase normalization and stimulation of the cellular antioxidants synthesis represented by significant increase of glutathione, catalase and superoxide dismutase in liver, blood and brain, besides, DNA fragmentation was significantly decreased in the liver tissue. acetaminophen induced oxidative damage can be improved by Moringa peregrina leaves extract-treatment, due to its antioxidant potential.

  16. PROTECTIVE EFFECT OF MORINGA PEREGRINA LEAVES EXTRACT ON ACETAMINOPHEN -INDUCED LIVER TOXICITY IN ALBINO RATS

    PubMed Central

    Azim, Samy Abdelfatah Abdel; Abdelrahem, Mohamed Taha; Said, Mostafa Mohamed; khattab, Alshaimaa

    2017-01-01

    Background: Acetaminophen is a common antipyretic drug but at overdose can cause severe hepatotoxicity that may further develop into liver failure and hepatic centrilobular necrosis in experimental animals and humans. This study was undertaken to assess the ameliorative role of Moringa peregrina leaves extract against acetaminophen toxicity in rats. Materials and methods: Induction of hepatotoxicity was done by chronic oral administration of acetaminophen (750 mg/kg bwt) for 4 weeks. To study the possible hepatoprotective effect, Moringa peregrina leaves extract (200 mg/kg bwt) or Silymarin (50 mg/kg bwt) was administered orally, for 4 weeks, along with acetaminophen. Results: acetaminophen significantly increased serum liver enzymes and caused oxidative stress, evidenced by significantly increased tissue malondialdehyde, glutathione peroxidase, hepatic DNA fragmentation, and significant decrease of glutathione and antioxidant enzymes in liver, blood and brain. On the other hand, administration of Moringa peregrina leaves extract reversed acetaminophen-related toxic effects through: powerful malondialdehyde suppression, glutathione peroxidase normalization and stimulation of the cellular antioxidants synthesis represented by significant increase of glutathione, catalase and superoxide dismutase in liver, blood and brain, besides, DNA fragmentation was significantly decreased in the liver tissue. Conclusion: acetaminophen induced oxidative damage can be improved by Moringa peregrina leaves extract-treatment, due to its antioxidant potential. PMID:28573237

  17. BENZYL ALCOHOL PROTECTS AGAINST ACETAMINOPHEN HEPATOTOXICITY BY INHIBITING CYTOCHROME P450 ENZYMES BUT CAUSES MITOCHONDRIAL DYSFUNCTION AND CELL DEATH AT HIGHER DOSES

    PubMed Central

    Du, Kuo; McGill, Mitchell R.; Xie, Yuchao; Jaeschke, Hartmut

    2015-01-01

    Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400mg/kg APAP and/or 270mg/kg BA. APAP alone caused extensive liver injury at 6h and 24h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient. PMID:26522885

  18. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study.

    PubMed

    Cook, Sarah F; King, Amber D; van den Anker, John N; Wilkins, Diana G

    2015-12-15

    Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples

  19. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    PubMed Central

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  20. Distinct roles of NF-{kappa}B p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambach, Donna M.; Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543; Durham, Stephen K.

    2006-03-01

    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-{kappa}B, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-{kappa}B in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF{alpha}), macrophage chemotactic protein-1 (MCP-1), andmore » KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNF{alpha}, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-{beta} (TGF{beta}). No effects were observed on IL-1{beta} or MCP-1 expression. To determine if NF-{kappa}B plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-{kappa}B p50. As observed with NAC pretreatment, the loss of NF-{kappa}B p50 was associated with decreased ability of APAP to upregulate TNF{alpha}, KC/gro, and IL-10 expression and increased expression of IL-4 and TGF{beta}. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-{kappa}B. However, NF-{kappa}B p50

  1. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetten, Marlon J.A.; Gaj, Stan; Ruiz-Aracama, Ainhoa

    2012-03-15

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome humanmore » miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques

  2. Molecular forms of HMGB1 and Keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity

    PubMed Central

    Antoine, Daniel J; Jenkins, Rosalind E; Dear, James W; Williams, Dominic P; McGill, Mitchell R; Sharpe, Matthew R; Craig, Darren G; Simpson, Kenneth J; Jaeschke, Hartmut; Park, B. Kevin

    2014-01-01

    Background & Aims Full length keratin-18 (FL-K18) and High Mobility Group Box-1 (HMGB1) represent circulating indicators of necrosis during acetaminophen (APAP) hepatotoxicity in vivo. In addition, the caspase-cleaved fragment of K18 (cK18) and hyper-acetylated HMGB1 represent serum indicators of apoptosis and immune cell activation respectively. The study aim was to assess their mechanistic utility to establish the balance between apoptosis, necrosis and immune cell activation throughout the time course of clinical APAP hepatotoxicity. Methods HMGB1 (total, acetylated) and K18 (apoptotic, necrotic) were identified and quantified by novel LC-MS/MS assays in APAP overdose patients (n=78). Results HMGB1 (total; 15.4±1.9ng/ml, p<0.01, acetylated; 5.4±2.6ng/ml, p<0.001), cK18 (5649.8±721.0U/l, p<0.01) and FL-K18 (54770.2±6717.0U/l, p<0.005) were elevated in the sera of APAP overdose patients with liver injury compared to overdose patients without liver injury and healthy volunteers. HMGB1 and FL-K18 correlated with alanine aminotransferase (ALT) activity (R2=0.60 and 0.58 respectively, p<0.0001) and prothrombin time (R2=0.62 and 0.71 respectively, p<0.0001). Increased total and acetylated HMGB1 and FL-K18 were associated with worse prognosis (King’s College Criteria) or patients that died/required liver transplant compared to spontaneous survivors (all p<0.05-0.001), a finding not reflected by ALT and supported by ROC analysis. Acetylated HMGB1 was a better predictor of outcome than the other markers of cell death. Conclusion K18 and HMGB1 represent blood-based tools to investigate the cell death balance clinical APAP hepatotoxicity. Activation of the immune response was seen later in the time course as shown by the distinct profile of acetylated HMGB1 and was associated with worse outcome. PMID:22266604

  3. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury.

    PubMed

    Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A; Sun, Jinchun; Chen, Si; Beger, Richard D; Davis, Kelly; Salminen, William F; Song, Byoung-Joon; Mendrick, Donna L; Yu, Li-Rong

    2017-01-01

    Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Regulation of Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication by Stem Cell-Derived Tyrosine Kinase

    PubMed Central

    Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 hr of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK−/− mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK −/− mice. Whereas F4/80+ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK−/− mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK−/− mice treated with acetaminophen. These data

  5. Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ekong, Udeme; Zeng, Shan; Dun, Hao; Feirt, Nikki; Guo, Jiancheng; Ippagunta, Nikalesh; Guarrera, James V; Lu, Yan; Weinberg, Alan; Qu, Wu; Ramasamy, Ravichandran; Schmidt, Ann Marie; Emond, Jean C

    2006-04-01

    Severe injury to the liver, such as that induced by toxic doses of acetaminophen, triggers a cascade of events leading to hepatocyte death. It is hypothesized that activation of the receptor for advanced glycation end products (RAGE) might contribute to acetaminophen-induced liver toxicity by virtue of its ability to generate reactive oxygen species, at least in part via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and thereby activate downstream signaling pathways leading to cellular injury. A model was employed in which toxic doses of acetaminophen (1125 mg/kg) were administered to C57BL/6 mice. To block RAGE, mice received murine soluble (s) RAGE, the extracellular ligand binding domain of the receptor that acts as a decoy to interrupt ligand-RAGE signaling. Animals treated with sRAGE displayed increased survival compared with vehicle treatment, and markedly decreased hepatic necrosis. Consistent with an important role for RAGE-triggered oxidant stress in acetaminophen-induced injury, a significant reduction of nitrotyrosine protein adducts was observed in hepatic tissue in sRAGE-treated versus vehicle-treated mice receiving acetaminophen, in parallel with significantly increased levels of glutathione. In addition, pro-regenerative cytokines tumor necrosis factor-alpha and interleukin-6 were increased in sRAGE-treated versus vehicle-treated mice. These findings implicate RAGE-dependent mechanisms in acetaminophen-induced liver damage and suggest that blockade of this pathway may impart beneficial effects in toxin-induced liver injury.

  6. Acetaminophen structure-toxicity studies: In vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, S.A.; Price, V.F.; Jollow, D.J.

    1990-09-01

    High doses of 3-hydroxyacetanilide (3HAA), a structural isomer of acetaminophen, do not produce hepatocellular necrosis in normal male hamsters or in those sensitized to acetaminophen-induced liver damage by pretreatment with a combination of 3-methylcholanthrene, borneol, and diethyl maleate. Although 3HAA was not hepatotoxic, the administration of acetyl-labeled (3H or 14C)3HAA (400 mg/kg, ip) produced levels of covalently bound radiolabel that were similar to those observed after an equimolar, hepatotoxic dose of (G-3H)acetaminophen. The covalent nature of 3HAA binding was demonstrated by retention of the binding after repetitive organic solvent extraction following protease digestion. Hepatic and renal covalent binding after 3HAAmore » was approximately linear with both dose and time. In addition, 3HAA produced only a modest depletion of hepatic glutathione, suggesting the lack of a glutathione threshold. 3-Methylcholanthrene pretreatment increased and pretreatment with cobalt chloride and piperonyl butoxide decreased the hepatic covalent binding of 3HAA, indicating the involvement of cytochrome P450 in the formation of the 3HAA reactive metabolite. The administration of multiple doses or a single dose of (ring-3H)3HAA to hamsters pretreated with a combination of 3-methylcholanthrene, borneol, and diethyl maleate produced hepatic levels of 3HAA covalent binding that were in excess of those observed after a single, hepatotoxic acetaminophen dose. These data suggest that the nature and/or the intracellular processing of the reactive metabolites of acetaminophen and 3HAA are different. These data also demonstrate that absolute levels of covalently bound xenobiotic metabolites cannot be utilized as absolute predictors of cytotoxic potential.« less

  7. METABOLISM AND DISPOSITION OF ACETAMINOPHEN: RECENT ADVANCES IN RELATION TO HEPATOTOXICITY AND DIAGNOSIS

    PubMed Central

    McGill, Mitchell R.; Jaeschke, Hartmut

    2013-01-01

    Acetaminophen (APAP) is one of the most widely used drugs. Though safe at therapeutic doses, overdose causes mitochondrial dysfunction and centrilobular necrosis in the liver. The first studies of APAP metabolism and activation were published more than forty years ago. Most of the drug is eliminated by glucuronidation and sulfation. These reactions are catalyzed by UDP-glucuronosyltransferases (UGT1A1 and 1A6) and sulfotransferases (SULT1A1, 1A3/4, and 1E1), respectively. However, some is converted by CYP2E1 and other cytochrome P450 enzymes to a reactive intermediate that can bind to sulfhydryl groups. The metabolite can deplete liver glutathione (GSH) and modify cellular proteins. GSH binding occurs spontaneously, but may also involve GSH-S-transferases. Protein binding leads to oxidative stress and mitochondrial damage. The glucuronide, sulfate, and GSH conjugates are excreted by transporters in the canalicular (Mrp2 and Bcrp) and basolateral (Mrp3 and Mrp4) hepatocyte membranes. Conditions that interfere with metabolism and metabolic activation can alter the hepatotoxicity of the drug. Recent data providing novel insights into these processes, particularly in humans, are reviewed in the context of earlier work, and the effects of altered metabolism and reactive metabolite formation are discussed. Recent advances in the diagnostic use of serum adducts are covered. PMID:23462933

  8. Massive acetaminophen overdose: effect of hemodialysis on acetaminophen and acetylcysteine kinetics.

    PubMed

    Ghannoum, Marc; Kazim, Sara; Grunbaum, Ami M; Villeneuve, Eric; Gosselin, Sophie

    2016-07-01

    Early onset acidosis from mitochondrial toxicity can be observed in massive acetaminophen poisoning prior to the development of hepatotoxicity. In this context, the efficacy of acetylcysteine to reverse mitochondrial toxicity remains unclear and hemodialysis may offer prompt correction of acidosis. Unfortunately, toxicokinetics of acetaminophen and acetylcysteine during extracorporeal treatments hemodialysis have seldom been described. An 18-year-old woman presented to the emergency department 60 minutes after ingestion of 100 g of acetaminophen, and unknown amounts of ibuprofen and ethanol. Initial assessment revealed an agitated patient. Her mental status worsened and she required intubation for airway protection. Investigations showed metabolic acidosis with lactate peaking at 8.6 mmol/L. Liver and coagulation profiles remained normal. Acetaminophen concentration peaked at 981 μg/ml (6496 μmol/L). Pending hemodialysis, the patient received 100 g of activated charcoal and an acetylcysteine infusion at 150 mg/kg over 1 hour, followed by 12.5 mg/kg/h for 4 hours. During hemodialysis, the infusion was maintained at 12.5 mg/kg/h to compensate for expected removal before it was decreased to 6.25 mg/kg for 20 hours after hemodialysis. The patient rapidly improved during hemodialysis and was discharged 48 hours post-admission. The acetaminophen elimination half-life was 5.2 hours prior to hemodialysis, 1.9-hours during hemodialysis and 3.6 hours post hemodialysis. The acetaminophen and acetylcysteine clearances by A-V gradient during hemodialysis were 160.4 ml/min and 190.3 ml/min, respectively. Hemodialysis removed a total of 20.6 g of acetaminophen and 17.9 g of acetylcysteine. This study confirms the high dialyzability of both acetaminophen and acetylcysteine. Hemodialysis appears to be a beneficial therapeutic option in cases of massive acetaminophen ingestion with coma and lactic acidosis. Additionally, these results

  9. Acetaminophen-Induced Hepatotoxicity in Mice Occurs with Inhibition of Activity and Nitration of Mitochondrial Manganese Superoxide Dismutase

    PubMed Central

    Agarwal, Rakhee; MacMillan-Crow, Lee Ann; Rafferty, Tonya M.; Saba, Hamida; Roberts, Dean W.; Fifer, E. Kim; James, Laura P.

    2011-01-01

    In overdose the analgesic/antipyretic acetaminophen (APAP) is hepatotoxic. Toxicity is mediated by initial hepatic metabolism to N-acetyl-p-benzoquinone imine (NAPQI). After low doses NAPQI is efficiently detoxified by GSH. However, in overdose GSH is depleted, NAPQI covalently binds to proteins as APAP adducts, and oxygen/nitrogen stress occurs. Toxicity is believed to occur by mitochondrial dysfunction. Manganese superoxide dismutase (MnSOD) inactivation by protein nitration has been reported to occur during other oxidant stress-mediated diseases. MnSOD is a critical mitochondrial antioxidant enzyme that prevents peroxynitrite formation within the mitochondria. To examine the role of MnSOD in APAP toxicity, mice were treated with 300 mg/kg APAP. GSH was significantly reduced by 65% at 0.5 h and remained reduced from 1 to 4 h. Serum alanine aminotransferase did not significantly increase until 4 h and was 2290 IU/liter at 6 h. MnSOD activity was significantly reduced by 50% at 1 and 2 h. At 1 h, GSH was significantly depleted by 62 and 80% at nontoxic doses of 50 and 100 mg/kg, respectively. No further GSH depletion occurred with hepatotoxic doses of 200 and 300 mg/kg APAP. A dose response decrease in MnSOD activity was observed for APAP at 100, 200, and 300 mg/kg. Immunoprecipitation of MnSOD from livers of APAP-treated mice followed by Western blot analysis revealed nitrated MnSOD. APAP-MnSOD adducts were not detected. Treatment of recombinant MnSOD with NAPQI did not produce APAP protein adducts. The data indicate that MnSOD inactivation by nitration is an early event in APAP-induced hepatic toxicity. PMID:21205919

  10. Cuscuta arvensis Beyr "Dodder": In Vivo Hepatoprotective Effects Against Acetaminophen-Induced Hepatotoxicity in Rats.

    PubMed

    Koca-Caliskan, Ufuk; Yilmaz, Ismet; Taslidere, Asli; Yalcin, Funda N; Aka, Ceylan; Sekeroglu, Nazim

    2018-05-02

    Cuscuta arvensis Beyr. is a parasitic plant, and commonly known as "dodder" in Europe, in the United States, and "tu si zi shu" in China. It is one of the preferred spices used in sweet and savory dishes. Also, it is used as a folk medicine for the treatment particularly of liver problems, knee pains, and physiological hepatitis, which occur notably in newborns and their mothers in the southeastern part of Turkey. The purpose of this study was to investigate the hepatoprotective effects and antioxidant activities of aqueous and methanolic extracts of C. arvensis Beyr. on acetaminophen (APAP)-induced acute hepatotoxicity in rats. The results were supported by subsequent histopathological studies. The hepatoprotective activity of both the aqueous and methanolic extracts at an oral dose of 125 and 250 mg/kg was investigated by observing the reduction levels or the activity of alkaline phosphatase, alkaline transaminase, aspartate aminotransferase, blood urine nitrogen, and total bilirubin content. In vivo antioxidant activity was determined by analyzing the serum superoxide dismutase, malondialdehyde, glutathione, and catalase levels. Chromatographic methods were used to isolate biologically active compounds from the extract, and spectroscopic methods were used for structure elucidation. Both the methanolic and aqueous extracts exerted noticable hepatoprotective and antioxidant effects supporting the folkloric usage of dodder. One of the bioactive compounds was kaempferol-3-O-rhamnoside, isolated and identified from the methanolic extract.

  11. Comparative Analgesic Efficacy of Oxycodone/Acetaminophen Versus Hydrocodone/Acetaminophen for Short-term Pain Management in Adults Following ED Discharge.

    PubMed

    Chang, Andrew K; Bijur, Polly E; Holden, Lynne; Gallagher, E John

    2015-11-01

    The objective was to test the hypothesis that oxycodone/acetaminophen provides superior analgesia to hydrocodone/acetaminophen for the treatment of acute extremity pain following emergency department (ED) discharge. This was a prospective, randomized, double-blind clinical trial of nonelderly adult ED patients with acute musculoskeletal extremity pain, randomly allocated at discharge to receive oxycodone/acetaminophen (5 mg/325 mg) or hydrocodone/acetaminophen (5 mg/325 mg). The primary outcome was the between-group difference in improvement in numerical rating scale (NRS) pain scores over a 2-hour period following the most recent ingestion of study drug, obtained during telephone contact 24 hours after ED discharge. Secondary outcomes included proportionate decrease in pain, comparative side-effect profiles, and patient satisfaction. A total of 240 patients were enrolled. The final sample consisted of 220 patients, 107 randomly allocated to oxycodone/acetaminophen and 113 to hydrocodone/acetaminophen. At 24 hours after ED discharge, the mean NRS pain scores prior to the most recent dose of outpatient pain medication were 7.8 and 7.9 in the oxycodone/acetaminophen and hydrocodone/acetaminophen groups, respectively. The mean decreases in pain scores over 2 hours were 4.4 NRS units in the oxycodone/acetaminophen group versus 4.0 NRS units in the hydrocodone/acetaminophen group, for a difference of 0.4 NRS units (95% confidence interval = -0.2 to 1.1 NRS units). Satisfaction with the analgesics was similar. This study design could not detect a clinically or statistically significant difference in analgesic efficacy between oxycodone/acetaminophen (5 mg/325 mg) and hydrocodone/acetaminophen (5 mg/325 mg) for treatment of acute musculoskeletal extremity pain in adults following ED discharge. Both opioids reduced pain scores by approximately 50%. © 2015 by the Society for Academic Emergency Medicine.

  12. Spondias mombin L. (Anacardiaceae) enhances detoxification of hepatic and macromolecular oxidants in acetaminophen-intoxicated rats.

    PubMed

    Saheed, Sabiu; Taofik, Sunmonu Olatunde; Oladipo, Ajani Emmanuel; Tom, Ashafa Anofi Omotayo

    2017-11-01

    Oxidative stress is a common pathological condition associated with drug-induced hepatotoxicity. This study investigated Spondias mombin L. aqueous leaf extract on reactive oxygen species and acetaminophen-mediated oxidative onslaught in rats' hepatocytes. Hepatotoxic rats were orally administered with the extract and vitamin C for 4 weeks. The extract dose-dependently scavenged DPPH, hydrogen peroxide and hydroxyl radicals, with IC 50 values of 0.13, 0.66, and 0.64 mg/mL, and corresponding % inhibitions of 89, 80, and 90%, respectively at 1.0 mg/mL. Ferric ion was also significantly reduced. The marked (p<0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase were reduced following treatment with the extract. The extract also significantly (p<0.05) induced the activities of antioxidant enzymes. These inductions reversed the acetaminophen-enhanced reduction in the specific activities of these enzymes as well as attenuated the observed elevated concentrations of autooxidized products and rived DNA in the acetaminophen-intoxicated animals. The observed effects competed with those of vitamin C and are suggestive of hepatoprotective and antioxidative attributes of the extract. Overall, the data from the present findings suggest that S. Mombin aqueous leaf extract is capable of ameliorating acetaminophen-mediated oxidative hepatic damage via enhancement of antioxidant defense systems.

  13. Acetaminophen-induced Acute Liver Failure Is More Common and More Severe in Women.

    PubMed

    Rubin, Jessica B; Hameed, Bilal; Gottfried, Michelle; Lee, William M; Sarkar, Monika

    2018-06-01

    Acetaminophen overdose is the leading cause of acute liver injury (ALI) and acute liver failure (ALF) in the developed world. Sex differences in acetaminophen-induced hepatotoxicity have not been described. We collected data from the Acute Liver Failure Study Group cohort, a national registry of 32 academic medical centers in North America of adults with ALI or ALF, including 1162 patients with acetaminophen-induced ALI (n = 250) or acetaminophen-induced ALF (n = 912) from January 2000 through September 2016. We analyzed data on patient presentation, disease course, demographics, medical and psychiatric history, medication use, substance use, and details of acetaminophen ingestion. Sex differences in continuous and categorical variables were evaluated by Wilcoxon rank-sum and χ 2 analysis or the Fisher exact test. Our primary aim was to evaluate sex differences in the presentation and clinical course of acetaminophen-induced acute liver injury or liver failure, and our secondary goal was to compare overall and transplant-free survival between sexes. Most patients with acetaminophen-induced ALI (68%) or ALF (76%) were women. Higher proportions of women than men had psychiatric disease (60% of women vs 48% of men, P < .01) and had co-ingestion with sedating agents (70% of women vs 52% of men, P < .01)-more than half of which were opioids. Higher proportions of women had severe hepatic encephalopathy (HE) (68% of women vs 58% of men), and required intubation (67% of women vs 59% of men, P values <.03). Higher proportions of women used vasopressors (26% of women vs 19% of men, P = .04) or mannitol (13% of women vs 6% of men, P < .01); proportions of male vs female patients with transplant-free survival were similar (68%). On adjusted analysis, women had higher risk of severe HE (adjusted odds ratio [AOR], 1.66; 95% CI, 1.17-2.35). We found a significant interaction between sex and co-ingestion of sedating agents (P < .01); co-ingestion increased odds of

  14. Protective effects from Houttuynia cordata aqueous extract against acetaminophen-induced liver injury.

    PubMed

    Chen, Wei-Ting; Yang, Chieh-Ling; Yin, Mei-Chin

    2014-01-01

    Protective effects of Houttuynia cordata aqueous extract (HCAE) against acetaminophen-induced hepatotoxicity in Balb/cA mice were examined. HCAE, at 1 or 2 g/L, was added into the drinking water for 4 weeks. Acute liver injury was induced by acetaminophen treatment intraperitoneally (350 mg/kg body weight). Acetaminophen treatment significantly depleted hepatic glutathione (GSH) content, increased hepatic malonyldialdehyde (MDA), reactive oxygen species (ROS) and oxidized glutathione (GSSG) levels, and decreased hepatic activity of glutathione peroxidase (GPX), catalase and superoxide dismutase (SOD) ( p <0.05). The pre-intake of HCAE alleviated acetaminophen-induced oxidative stress by retaining GSH content, decreasing MDA, ROS and GSSG production, and maintaining activity of GPX, catalase and SOD in liver ( p <0.05). The pre-intake of HCAE also significantly lowered acetaminophen-induced increase in cytochrome P450 2E1 activity ( p <0.05). Acetaminophen treatment increased hepatic release of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein-1 ( p <0.05). HCAE intake significantly diminished acetaminophen-induced elevation of these cytokines ( p <0.05). These results support that HCAE could provide hepato-protection.

  15. The Prescription Pattern of Acetaminophen and Non-Steroidal Anti-Inflammatory Drugs in Patients with Liver Cirrhosis.

    PubMed

    Hong, Young Mi; Yoon, Ki Tae; Heo, Jeong; Woo, Hyun Young; Lim, Won; An, Dae Seong; Han, Jun Hee; Cho, Mong

    2016-10-01

    Analgesics, known to be hepatotoxic drugs, are frequently prescribed to patients with liver cirrhosis who are prone to drug-induced liver injury. No guidelines are available regarding the prescription of analgesics in these patients. Therefore, we aimed to evaluate the prescription pattern of most frequently used analgesics in patients with cirrhosis. We assessed the prescription pattern of acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs) in patients with liver cirrhosis registered in Health Insurance Review Assessment Service database between January 1, 2012 and December 31, 2012. A total of 125,505 patients with liver cirrhosis were registered from January 1, 2012 to December 31, 2012. Of that group, 50,798 (40.5%) patients claimed reimbursement for at least one prescription for acetaminophen or NSAIDs during the one year follow-up period. Overall, NSAIDs (82.7%) were more prescribed than acetaminophen (64.5%). NSAIDs were more prescribed than acetaminophen even in decompensated cirrhosis compared with compensated cirrhosis (71.5% vs. 68.8%, P value < 0.001). There was a marked difference in prescription preference between acetaminophen and NSAIDs among physicians. Internists more frequently prescribed acetaminophen than NSAIDs compared to other physicians (50.9% vs. 76.2%, P < 0.001). Gastroenterologists more frequently prescribed acetaminophen over NSAIDs compared to other internists (80.9% vs. 51.2%, P < 0.001). Analgesics were prescribed in 40.5% of patients with cirrhosis. NSAIDs were more frequently prescribed although they should be avoided. The prescription pattern of analgesics were different significantly among physicians in patients with liver cirrhosis. The harmful effects of NSAIDs in patients with cirrhosis should be reminded to all physicians prescribing analgesics.

  16. Risk prediction of hepatotoxicity in paracetamol poisoning.

    PubMed

    Wong, Anselm; Graudins, Andis

    2017-09-01

    Paracetamol (acetaminophen) poisoning is the most common cause of acute liver failure in the developed world. A paracetamol treatment nomogram has been used for over four decades to help determine whether patients will develop hepatotoxicity without acetylcysteine treatment, and thus indicates those needing treatment. Despite this, a small proportion of patients still develop hepatotoxicity. More accurate risk predictors would be useful to increase the early detection of patients with the potential to develop hepatotoxicity despite acetylcysteine treatment. Similarly, there would be benefit in early identification of those with a low likelihood of developing hepatotoxicity, as this group may be safely treated with an abbreviated acetylcysteine regimen. To review the current literature related to risk prediction tools that can be used to identify patients at increased risk of hepatotoxicity. A systematic literature review was conducted using the search terms: "paracetamol" OR "acetaminophen" AND "overdose" OR "toxicity" OR "risk prediction rules" OR "hepatotoxicity" OR "psi parameter" OR "multiplication product" OR "half-life" OR "prothrombin time" OR "AST/ALT (aspartate transaminase/alanine transaminase)" OR "dose" OR "biomarkers" OR "nomogram". The search was limited to human studies without language restrictions, of Medline (1946 to May 2016), PubMed and EMBASE. Original articles pertaining to the theme were identified from January 1974 to May 2016. Of the 13,975 articles identified, 60 were relevant to the review. Paracetamol treatment nomograms: Paracetamol treatment nomograms have been used for decades to help decide the need for acetylcysteine, but rarely used to determine the risk of hepatotoxicity with treatment. Reported paracetamol dose and concentration: A dose ingestion >12 g or serum paracetamol concentration above the treatment thresholds on the paracetamol nomogram are associated with a greater risk of hepatotoxicity. Paracetamol elimination half

  17. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Bajt, Mary Lynn; Sharpe, Matthew R.

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determinationmore » of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not

  18. Quantitative Method for Simultaneous Analysis of Acetaminophen and 6 Metabolites.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Pistorius, Marcel C M; Romijn, Johannes A; Mathôt, Ron A A

    2017-04-01

    Hepatotoxicity after ingestion of high-dose acetaminophen [N-acetyl-para-aminophenol (APAP)] is caused by the metabolites of the drug. To gain more insight into factors influencing susceptibility to APAP hepatotoxicity, quantification of APAP and metabolites is important. A few methods have been developed to simultaneously quantify APAP and its most important metabolites. However, these methods require a comprehensive sample preparation and long run times. The aim of this study was to develop and validate a simplified, but sensitive method for the simultaneous quantification of acetaminophen, the main metabolites acetaminophen glucuronide and acetaminophen sulfate, and 4 Cytochrome P450-mediated metabolites by using liquid chromatography with mass spectrometric (LC-MS) detection. The method was developed and validated for the human plasma, and it entailed a single method for sample preparation, enabling quick processing of the samples followed by an LC-MS method with a chromatographic run time of 9 minutes. The method was validated for selectivity, linearity, accuracy, imprecision, dilution integrity, recovery, process efficiency, ionization efficiency, and carryover effect. The method showed good selectivity without matrix interferences. For all analytes, the mean process efficiency was >86%, and the mean ionization efficiency was >94%. Furthermore, the accuracy was between 90.3% and 112% for all analytes, and the within- and between-run imprecision were <20% for the lower limit of quantification and <14.3% for the middle level and upper limit of quantification. The method presented here enables the simultaneous quantification of APAP and 6 of its metabolites. It is less time consuming than previously reported methods because it requires only a single and simple method for the sample preparation followed by an LC-MS method with a short run time. Therefore, this analytical method provides a useful method for both clinical and research purposes.

  19. Free cholesterol accumulation in liver sinusoidal endothelial cells exacerbates acetaminophen hepatotoxicity via TLR9 signaling.

    PubMed

    Teratani, Toshiaki; Tomita, Kengo; Suzuki, Takahiro; Furuhashi, Hirotaka; Irie, Rie; Hida, Shigeaki; Okada, Yoshikiyo; Kurihara, Chie; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Saito, Hidetsugu; Hibi, Toshifumi; Miura, Soichiro; Hokari, Ryota; Kanai, Takanori

    2017-10-01

    Although obesity is a risk factor for acute liver failure, the pathogenic mechanisms are not yet fully understood. High cholesterol (HC) intake, which often underlies obesity, is suggested to play a role in the mechanism. We aimed to elucidate the effect of a HC diet on acetaminophen-induced acute liver injury, the most frequent cause of acute liver failure in the USA. C57BL/6 Toll-like receptor 9 (TLR9) knockout (Tlr9 -/- ) mice and their Tlr9 +/+ littermates were fed an HC diet for fourweeks and then treated with acetaminophen. Liver sinusoidal endothelial cells (LSECs) were isolated from the mice for in vivo and in vitro analyses. The HC diet exacerbated acetaminophen-induced acute liver injury in a TLR9/inflammasome pathway-dependent manner. LSECs played a major role in the cholesterol loading-induced exacerbation. The accumulation of free cholesterol in the endolysosomes in LSECs enhanced TLR9-mediated signaling, thereby exacerbating the pathology of acetaminophen-induced liver injury through the activation of the TLR9/inflammasome pathway. The accumulation of free cholesterol in LSEC endolysosomes induced a dysfunction of the Rab7 membrane trafficking recycling mechanism, thus disrupting the transport of TLR9 from late endosomes to the lysosomes. Consequently, the level of active TLR9 in the late endosomes increased, thereby enhancing TLR9 signaling in LSECs. HC intake exaggerated acetaminophen-induced acute liver injury via free cholesterol accumulation in LSECs, demonstrating a novel role of free cholesterol as a metabolic factor in TLR9 signal regulation and pathologies of acetaminophen-induced liver injury. Therapeutic approaches may target this pathway. Lay summary: High cholesterol intake exacerbated acetaminophen-induced acute liver injury via the accumulation of free cholesterol in the endolysosomes of liver sinusoidal endothelial cells. This accumulation enhanced Toll-like receptor 9 signaling via impairment of its membrane trafficking mechanism

  20. Quantitative analysis of the scientific literature on acetaminophen in medicine and biology: a 2003-2005 study.

    PubMed

    Robert, Claude; Saenz-Feijoo, Rosa; Gaudy, Jean-François; Arreto, Charles-Daniel

    2009-04-01

    This study quantifies the utilization of acetaminophen in life sciences and clinical medicine using bibliometric indicators. A total of 1626 documents involving acetaminophen published by 74 countries during 2003-2005 in the Thompson-Scientific Life sciences and Clinical Medicine collections were identified and analyzed. The USA leads in the number of publications followed by the UK, and industrialized countries, including France, Japan and Germany; the presence of countries such as China, India and Turkey among the top 15 countries deserves to be noticed. The European Union stands as a comparable contributor to the USA, both in terms of number of publications and in terms of profile of papers distributed among subcategories of Life Sciences and Clinical Medicine disciplines. All documents were published in 539 different journals. The most prolific journals were related to pharmacology and/or pharmaceutics. All aspects of acetaminophen (chemistry, pharmacokinetics, metabolism, etc.) were studied with primary interest for therapeutic use (42%) and adverse effects (28%) comprising a large part of publications focusing on acetaminophen hepatotoxicity. This quantitative overview provides as to the interest of the scientific community in this analgesic and completes the various review documents that regularly appear in the scientific literature.

  1. The effect of sulforaphane on oxidative stress and inflammation in rats with toxic hepatitis induced by acetaminophene.

    PubMed

    Dokumacioglu, E; Iskender, H; Aktas, M S; Hanedan, B; Dokumacioglu, A; Sen, T M; Musmul, A

    2017-01-01

    The aim of the present study was to reveal the possible effect of sulforaphane on oxidative stress and inflammation in rats liver with toxic hepatitis induced by acetaminophene. Sulforaphane is a compound with high antioxidant properties. Acetaminophen, which is a para-aminophenol derivative, can lead to fatal hepatic necrosis with direct hepatotoxic effects at high doses. Thirty six male Sprague-Dawley rats were randomly divided into four groups. Control group (n = 9) was fed with standard rat chow and water for 3 days. Group APAP (n = 9) received a single dose acetaminophen 1 g/kg by oral gavage in addition to standard chow and water. Group SFN (n = 9) received sulforaphane 500 μg/kg by oral gavage in addition to standard chow and water for 3 days. Group APAP+SFN (n = 9) received sulforaphane 500 μg/kg and a single dose acetaminophen 1 g/kg by oral gavage in addition to standard chow and water. Acetaminophen was administered three hours after SFN administration. Neopterin, MDA, AST, ALT and CRP levels of group APAP were significantly increased compared to control group. GSH level of group APAP was significantly lower than in the control group. Sulforaphane is a protective agent against acetaminophen-induced liver damage and it can be added in the treatment protocol (Tab. 1, Fig. 5, Ref. 51).

  2. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice.

    PubMed

    Bandeira, Ana Carla Balthar; da Silva, Rafaella Cecília; Rossoni, Joamyr Victor; Figueiredo, Vivian Paulino; Talvani, André; Cangussú, Silvia Dantas; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Acetaminophen (APAP) is an antipyretic and analgesic drug that, in high doses, leads to severe liver injury and potentially death. Oxidative stress is an important event in APAP overdose. Researchers are looking for natural antioxidants with the potential to mitigate the harmful effects of reactive oxygen species in different models. Lycopene has been widely studied for its antioxidant properties. The aim of this study was to evaluate the antioxidant potential of lycopene pretreatment in APAP-induced liver injury in C57BL/6 mice. C57BL/6 male mice were divided into the following groups: control (C); sunflower oil (CO); acetaminophen 500mg/kg (APAP); acetaminophen 500mg/kg+lycopene 10mg/kg (APAP+L10), and acetaminophen 500mg/kg+lycopene 100mg/kg (APAP+L100). Mice were pretreated with lycopene for 14 consecutive days prior to APAP overdose. Analyses of blood serum and livers were performed. Lycopene was able to improve redox imbalance, decrease thiobarbituric acid reactive species level, and increase CAT and GSH levels. In addition, it decreased the IL-1β expression and the activity of MMP-2. This study revealed that preventive lycopene consumption in C57BL/6 mice can attenuate the effects of APAP-induced liver injury. Furthermore, by improving the redox state, and thus indicating its potential antioxidant effect, lycopene was also shown to have an influence on inflammatory events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Trends in rates of acetaminophen-related adverse events in the United States

    PubMed Central

    Major, Jacqueline M.; Zhou, Esther H.; Wong, Hui-Lee; Trinidad, James P.; Pham, Tracy M.; Mehta, Hina; Ding, Yulan; Staffa, Judy A.; Iyasu, Solomon; Wang, Cunlin; Willy, Mary E.

    2017-01-01

    Purpose The goal of this study is to summarize trends in rates of adverse events attributable to acetaminophen use, including hepatotoxicity and mortality. Methods A comprehensive analysis of data from three national surveillance systems estimated rates of acetaminophen-related events identified in different settings, including calls to poison centers (2008–2012), emergency department visits (2004–2012), and inpatient hospitalizations (1998–2011). Rates of acetaminophen-related events were calculated per setting, census population, and distributed drug units. Results Rates of poison center calls with acetaminophen-related exposures decreased from 49.5/1000 calls in 2009 to 43.5/1000 calls in 2012. Rates of emergency department visits for unintentional acetaminophen-related adverse events decreased from 58.0/1000 emergency department visits for adverse drug events in 2009 to 50.2/1000 emergency department visits in 2012. Rates of hospital inpatient discharges with acetaminophen-related poisoning decreased from 119.8/100 000 hospitalizations in 2009 to 108.6/100 000 hospitalizations in 2011. After 2009, population rates of acetaminophen-related events per 1million census population decreased for poison center calls and hospitalizations, while emergency department visit rates remained stable. However, when accounting for drug sales, the rate of acetaminophen-related events (per 1 million distributed drug units) increased after 2009. Prior to 2009, the rates of acetaminophen-related hospitalizations had been slowly increasing (p-trend = 0.001). Conclusions Acetaminophen-related adverse events continue to be a public health burden. Future studies with additional time points are necessary to confirm trends and determine whether recent risk mitigation efforts had a beneficial impact on acetaminophen-related adverse events. PMID:26530380

  4. Formononetin protects against acetaminophen-induced hepatotoxicity through enhanced NRF2 activity.

    PubMed

    Jin, Fen; Wan, Chunpeng; Li, Weifang; Yao, Liangliang; Zhao, Hongqian; Zou, Yuan; Peng, Dewei; Huang, Weifeng

    2017-01-01

    To examine the effects of formononetin (FMN) on Acetaminophen (APAP)-induced liver injury in vitro and in vivo. Human non-tumor hepatic cells LO2 were pretreated with either vehicle or FMN (20, 40 μM), for 6 h, followed by incubation with or without APAP (10 mM) for 24 h. In an in vivo assay, male BALB/c mice were randomly divided into four groups: (1) control group; (2) APAP group; (3) APAP + FMN (50 mg/Kg); (4) APAP + FMN (100 mg/Kg). The mice in the control and APAP groups were pre-treated with vehicle; the other two groups were pretreated daily with FMN (50, 100 mg/Kg) orally for 7 consecutive days. After the final treatment, acute liver injury was induced in all groups, except the control group, by intraperitoneal (i.p.) injection of 300 mg/Kg APAP. In LO2 cells, APAP exposure decreased the cell viability and glutathione (GSH) content, which were both greatly restored by FMN pretreatment. Overdose of APAP increased hepatic malondialdehyde (MDA) content, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity in experimental mice. Supplementation with 100 mg/Kg FMN significantly reduced APAP-induced elevated levels of MDA (1.97 ± 0.27 vs 0.55 ± 0.14 nmol/mg protein, p < 0.001), ALT (955.80 ± 209.40 vs 46.90 ± 20.40 IU/L, p < 0.001) and AST (1533.80 ± 244.80 vs 56.70 ± 28.80 IU/L, p < 0.001), and hepatic GSH level (5.54 ± 0.93 vs 8.91 ± 1.11 μmol/mg protein, p < 0.001) was significantly increased. These results were further validated by histopathology and TdT-mediated biotin-dUTP nick-endlabeling (TUNEL) staining, pretreatment with 100 mg/Kg FMN significant decreased APAP-induced hepatocellular damage and cell apoptosis (36.55 ± 3.82 vs 2.58 ± 1.80%, p < 0.001). Concomitantly, FMN stimulated the expression of Nrf2 and antioxidant gene expression in the presence of APAP. These data provide an experimental basis for the use of FMN in the treatment of patients with APAP-induced hepatotoxicity.

  5. Formononetin protects against acetaminophen-induced hepatotoxicity through enhanced NRF2 activity

    PubMed Central

    Li, Weifang; Yao, Liangliang; Zhao, Hongqian; Zou, Yuan; Peng, Dewei; Huang, Weifeng

    2017-01-01

    To examine the effects of formononetin (FMN) on Acetaminophen (APAP)-induced liver injury in vitro and in vivo. Human non-tumor hepatic cells LO2 were pretreated with either vehicle or FMN (20, 40 μM), for 6 h, followed by incubation with or without APAP (10 mM) for 24 h. In an in vivo assay, male BALB/c mice were randomly divided into four groups: (1) control group; (2) APAP group; (3) APAP + FMN (50 mg/Kg); (4) APAP + FMN (100 mg/Kg). The mice in the control and APAP groups were pre-treated with vehicle; the other two groups were pretreated daily with FMN (50, 100 mg/Kg) orally for 7 consecutive days. After the final treatment, acute liver injury was induced in all groups, except the control group, by intraperitoneal (i.p.) injection of 300 mg/Kg APAP. In LO2 cells, APAP exposure decreased the cell viability and glutathione (GSH) content, which were both greatly restored by FMN pretreatment. Overdose of APAP increased hepatic malondialdehyde (MDA) content, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity in experimental mice. Supplementation with 100 mg/Kg FMN significantly reduced APAP-induced elevated levels of MDA (1.97 ± 0.27 vs 0.55 ± 0.14 nmol/mg protein, p < 0.001), ALT (955.80 ± 209.40 vs 46.90 ± 20.40 IU/L, p < 0.001) and AST (1533.80 ± 244.80 vs 56.70 ± 28.80 IU/L, p < 0.001), and hepatic GSH level (5.54 ± 0.93 vs 8.91 ± 1.11 μmol/mg protein, p < 0.001) was significantly increased. These results were further validated by histopathology and TdT-mediated biotin-dUTP nick-endlabeling (TUNEL) staining, pretreatment with 100 mg/Kg FMN significant decreased APAP-induced hepatocellular damage and cell apoptosis (36.55 ± 3.82 vs 2.58 ± 1.80%, p < 0.001). Concomitantly, FMN stimulated the expression of Nrf2 and antioxidant gene expression in the presence of APAP. These data provide an experimental basis for the use of FMN in the treatment of patients with APAP-induced hepatotoxicity. PMID:28234915

  6. Comparative Analgesic Efficacy of Oxycodone/Acetaminophen vs Codeine/Acetaminophen for Short-Term Pain Management Following ED Discharge.

    PubMed

    Chang, Andrew K; Bijur, Polly E; Lupow, Jason B; Gallagher, E John

    2015-12-01

    To test the hypothesis that oxycodone/acetaminophen provides analgesia superior to codeine/acetaminophen following emergency department (ED) discharge. Prospective, randomized, double-blind, trial. Adult inner city ED. ED patients with acute extremity pain who were discharged home. Patients randomized to oxycodone/acetaminophen (5 mg/325 mg) or codeine/acetaminophen (30 mg/300 mg). The primary outcome, obtained via telephone one day after ED discharge, was the between-group difference in improvement in numerical rating scale (NRS) pain scores over a 2-hour period following the most recent ingestion of study drug. Secondary outcomes included proportion of patients with >50% pain reduction, side-effect profile, and patient satisfaction. Two hundred and forty patients were enrolled. Mean baseline NRS scores were 7.9 in both groups. Mean decrease over 2 hours was 4.5 NRS units in the oxycodone/acetaminophen group vs 4.2 NRS units in the codeine/acetaminophen group, for a clinically and statistically nonsignificant difference of 0.2 NRS units (95% CI -0.4-0.9 NRS units). Similarly, 66% vs 61% achieved >50% pain relief for a nonsignificant difference of 5% (95% CI -8% to 17%). Side-effect profile and patient satisfaction were similar. Our hypothesis that oxycodone/acetaminophen provides analgesia superior to codeine/acetaminophen was rejected. Although pain within each group was reduced by more than half, the between-group difference was not significant. Pending independent validation, these unexpected findings suggest that codeine/acetaminophen, a Schedule III agent, may be a clinically reasonable outpatient opioid alternative to oxycodone/acetaminophen, a more tightly restricted Schedule II agent thought to be more prone to misuse. Wiley Periodicals, Inc.

  7. A randomized controlled trial comparing acetaminophen plus ibuprofen versus acetaminophen plus codeine plus caffeine after outpatient general surgery.

    PubMed

    Mitchell, Alex; van Zanten, Sander Veldhuyzen; Inglis, Karen; Porter, Geoffrey

    2008-03-01

    Narcotics are used extensively in outpatient general surgery but are often poorly tolerated with variable efficacy. Acetaminophen combined with NSAIDs is a possible alternative. The objective of this study was to compare the efficacy of acetaminophen, codeine, and caffeine (Tylenol No. 3) with acetaminophen and ibuprofen for management of pain after outpatient general surgery procedures. A double-blind randomized controlled trial was performed in patients undergoing outpatient inguinal/umbilical/ventral hernia repair or laparoscopic cholecystectomy. Patients were randomized to receive acetaminophen plus codeine plus caffeine (Tylenol No. 3) or acetaminophen plus ibuprofen (AcIBU) 4 times daily for 7 days or until pain-free. Pain intensity, measured four times daily by visual analogue scale, was the primary outcome. Secondary end points included incidence of side effects, patient satisfaction, number of days until patient was pain-free, and use of alternative analgesia. One hundred forty-six patients were randomized (74 Tylenol No. 3 and 72 AcIBU), and 139 (95%) patients completed the study. No significant differences in mean or maximum daily visual analogue scale scores were identified between the 2 groups, except on postoperative day 2, when pain was improved in AcIBU patients (p = 0.025). During the entire week, mean visual analogue scale score was modestly lower in AcIBU patients (p = 0.018). More patients in the AcIBU group, compared with Tylenol No. 3, were satisfied with their analgesia (83% versus 64%, respectively; p = 0.02). There were more side effects with Tylenol No. 3 (57% versus 41%, p = 0.045), and the discontinuation rate was also higher in Tylenol No. 3-treated patients (11% versus 3%, p = 0.044). When compared with Tylenol No. 3, AcIBU was not an inferior analgesic and was associated with fewer side effects and higher patient satisfaction. AcIBU is an effective, low-cost, and safe alternative to codeine-based narcotic analgesia for outpatient

  8. Hepatotoxicity due to red bush tea consumption: a case report.

    PubMed

    Reddy, Shamantha; Mishra, Pragnyadipta; Qureshi, Sana; Nair, Singh; Straker, Tracey

    2016-12-01

    Many conventional drugs used today, including isoniazid, dapsone, and acetaminophen, are well recognized culprits of hepatotoxicity. With increasing use of complementary and alternative medical therapies, several herbal medicines, such as Ma-Huang, kava, and chaparral leaf, have been implicated as hepatotoxins. Hepatotoxicity may be the most frequent adverse reaction to these herbal remedies when taken in excessive quantities. A myriad of liver dysfunctions may occur including transient liver enzyme abnormalities due to acute and chronic hepatitis. These herbal products are often overlooked as the causal etiologic agent during the evaluation of a patient with elevated liver function tests. We describe a case of hepatotoxicity due to ingestion of red bush tea diagnosed during preoperative assessment of a patient scheduled for laparoscopic appendectomy. Elevated liver enzymes and thrombocytopenia detected in the patient's laboratory work up confounded the initial diagnosis of acute appendicitis and additional investigations were required to rule out cholecystitis and other causes of hepatitis. Open appendectomy was done uneventfully under spinal anesthesia without any further deterioration of hepatic function. Copyright © 2016. Published by Elsevier Inc.

  9. Confusion: acetaminophen dosing changes based on NO evidence in adults.

    PubMed

    Krenzelok, Edward P; Royal, Mike A

    2012-06-01

    Acetaminophen (paracetamol) plays a vital role in American health care, with in excess of 25 billion doses being used annually as a nonprescription medication. Over 200 million acetaminophen-containing prescriptions, usually in combination with an opioid, are dispensed annually. While acetaminophen is recognized as a safe and effective analgesic and antipyretic, it is also associated with significant morbidity and mortality (hepatotoxicity) if doses in excess of the therapeutic amount are ingested inappropriately. The maximum daily therapeutic dose of 3900-4000 mg was established in separate actions in 1977 and 1988, respectively, via the Food and Drug Administration (FDA) monograph process for nonprescription medications. The FDA has conducted multiple advisory committee meetings to evaluate acetaminophen and its safety profile, and has suggested (but not mandated) a reduction in the maximum daily dosage from 3900-4000 mg to 3000-3250 mg. In 2011, McNeil, the producer of the Tylenol® brand of acetaminophen, voluntarily reduced the maximum daily dose of its 500 mg tablet product to 3000 mg/day, and it has pledged to change the labeling of its 325 mg/tablet product to reflect a maximum of 3250 mg/day. Generic manufacturers have not changed their dosing regimens and they have remained consistent with the established monograph dose. Therefore, confusion will be inevitable as both consumers and health care professionals try to determine the proper therapeutic dose of acetaminophen. Which is the correct dose of acetaminophen: 3000 mg if 500 mg tablets are used, 3250 mg with 325 mg tablets, or 3900 mg when 650 mg arthritis-strength products are used?

  10. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  11. Knowledge of appropriate acetaminophen use: A survey of college-age women.

    PubMed

    Stumpf, Janice L; Liao, Allison C; Nguyen, Stacy; Skyles, Amy J; Alaniz, Cesar

    To evaluate college-age women's knowledge of appropriate doses and potential toxicities of acetaminophen, competency in interpreting Drug Facts label dosing information, and ability to recognize products containing acetaminophen. In this cross-sectional prospective study, a 20-item written survey was provided to female college students at a University of Michigan fundraising event in March 2015. A total of 203 female college students, 18-24 years of age, participated in the study. Pain was experienced on a daily or weekly basis by 22% of the subjects over the previous 6 months, and 83% reported taking acetaminophen. The maximum 3-gram daily dose of extra-strength acetaminophen was correctly identified by 64 participants; an additional 51 subjects indicated the generally accepted 4 grams daily as the maximum dose. When provided with the Tylenol Drug Facts label, 68.5% correctly identified the maximum amount of regular-strength acetaminophen recommended for a healthy adult. Hepatotoxicity was associated with high acetaminophen doses by 63.6% of participants, significantly more than those who selected distracter responses (P < 0.001). Knowledge of liver damage as a potential toxicity was correlated with age 20 years and older (P < 0.001) but was independent from race and ethnicity and level of alcohol consumption. Although more than one-half of the subjects (58.6%) recognized that Tylenol contained acetaminophen, fewer than one-fourth correctly identified other acetaminophen-containing products. Despite ongoing educational campaigns, a large proportion of the college-age women who participated in our study did not know and could not interpret the maximum recommended daily dose from Drug Facts labeling, did not know that liver damage was a potential toxicity of acetaminophen, and could not recognize acetaminophen-containing products. These data suggest a continued role for pharmacists in educational efforts targeted to college-age women. Copyright © 2018 American

  12. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. Thismore » faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are

  13. Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury

    PubMed Central

    Wancket, Lyn M.; Meng, Xiaomei; Rogers, Lynette K.; Liu, Yusen

    2012-01-01

    c-Jun N-terminal kinase (JNK) activation promotes hepatocyte death during acetaminophen overdose, a common cause of drug-induced liver failure. While mitogen-activated protein kinase (MAPK) phosphatase (Mkp)-1 is a critical negative regulator of JNK MAPK, little is known about the role of Mkp-1 during hepatotoxicity. In this study, we evaluated the role of Mkp-1 during acute acetaminophen toxicity. Mkp-1+/+ and Mkp-1−/− mice were dosed ip with vehicle or acetaminophen at 300 mg/kg (for mechanistic studies) or 400 mg/kg (for survival studies). Tissues were collected 1–6 hr post 300 mg/kg dosing to assess glutathione levels, organ damage, and MAPK activation. Mkp-1−/− mice exhibited more rapid plasma clearance of acetaminophen than did Mkp-1+/+ mice, indicated by a quicker decline of plasma acetaminophen level. Moreover, Mkp-1−/− mice suffered more severe liver injury, indicated by higher plasma alanine transaminase activity and more extensive centrilobular apoptosis and necrosis. Hepatic JNK activity in Mkp-1−/− mice was higher than in Mkp-1+/+ mice. Finally, Mkp-1−/− mice displayed a lower overall survival rate and shorter median survival time after dosing with 400 mg/kg acetaminophen. The more severe phenotype exhibited by Mkp-1−/− mice indicates that Mkp-1 plays a protective role during acute acetaminophen overdose, potentially through regulation of JNK. PMID:22623522

  14. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen

    PubMed Central

    Zhao, Yanli; Harmatz, Jerold S; Epstein, Carol R; Nakagawa, Yukako; Kurosaki, Chie; Nakamura, Tetsuro; Kadota, Takumi; Giesing, Dennis; Court, Michael H; Greenblatt, David J

    2015-01-01

    Aims The antiviral agent favipiravir is likely to be co-prescribed with acetaminophen (paracetamol). The present study evaluated the possiblility of a pharmacokinetic interaction between favipiravir and acetaminophen, in vitro and in vivo. Methods The effect of favipivir on the transformation of acetaminophen to its glucuronide and sulfate metabolites was studied using a pooled human hepatic S9 fraction in vitro. The effect of acute and extended adminstration of favipiravir on the pharmacokinetics of acetaminophen and metabolites was evaluated in human volunteers. Results Favipiravir inhibited the in vitro formation of acetaminophen sulfate, but not acetaminophen glucuronide. In human volunteers, both acute (1 day) and extended (6 days) administration of favipiravir slightly but significantly increased (by about 20 %) systemic exposure to acetaminophen (total AUC), whereas Cmax was not significantly changed. AUC for acetaminophen glucuronide was increased by 23 to 35 % above control by favipiravir, while AUC for acetaminophen sulfate was reduced by about 20 % compared to control. Urinary excretion of acetaminophen sulfate was likewise reduced to 44 to 65 % of control values during favipiravir co-administration, while excretion of acetaminophen glucuronide increased to 17 to 32 % above control. Conclusion Favipiravir inhibits acetaminophen sulfate formation in vitro and in vivo. However the increase in systemic exposure to acetaminophen due to favipiravir co-administration, though statistically significant, is small in magnitude and unlikely to be of clinical importance. PMID:25808818

  15. CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisman, Scott A.; Buckley, David B.; Tanaka, Yuji

    CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced livermore » injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.« less

  16. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Koerner, Michael R., E-mail: mkoern2@illinois.edu; Lampe, Jed N.

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice.more » The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for

  17. p-Aminophenol-induced liver toxicity: tentative evidence of a role for acetaminophen.

    PubMed

    Song, H; Chen, T S

    2001-01-01

    p-Aminophenol (PAP) is a widely used industrial chemical and a metabolite of analgesics, such as acetaminophen (APAP). It was found recently that PAP, a known nephrotoxicant, could cause acute hepatotoxicity in mice but not in rats. The mechanism of hepatotoxicity is not known. The aim of this study was to investigate the role of N-acetylation of PAP to APAP in PAP-induced toxicity. Male C57BL/6 mice injected intraperitoneally (i.p.) with various doses of PAP were sacrificed at 12 hours for measurement of serum glutamic-pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) levels and determination of the extent of hepatic nonprotein sulfhydryl (NPSH) and glutathione (GSH) depletion. Plasma levels of APAP and its metabolites were measured by HPLC after PAP administration. p-Aminophenol depleted NPSH in a dose- and time-dependent manner. Depletion of NPSH in mouse liver occurred at PAP doses above 400 mg/kg. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, potentiated the PAP-induced hepatotoxicity. Ascorbate, a reducing agent, did not affect PAP-induced hepatotoxicity and NPSH depletion. After PAP treatment, APAP and its sulfate and glucuronide conjugates as well as GSH conjugates (APAP-cysteine and APAP-mercapturate) were detected in the plasma. The results suggest the roles of GSH and N-acetylation of PAP to APAP in PAP-induced hepatotoxicity.

  18. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice.

    PubMed

    Maes, Michaël; Crespo Yanguas, Sara; Willebrords, Joost; Weemhoff, James L; da Silva, Tereza Cristina; Decrock, Elke; Lebofsky, Margitta; Pereira, Isabel Veloso Alves; Leybaert, Luc; Farhood, Anwar; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-08-15

    Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  20. Potential Role of Activated Nonparenchymal Cells in Acetaminophen-Induced Potentiation of Hepatotoxicity

    DTIC Science & Technology

    1991-06-14

    ALT is either being degraded or the activity is inhibited by something in the 133 media. AST activity in cocultures of NPCs and hepatocytes was... Paracetamol Hepatotoxicity: IN VITRO Studies in Isolated Mouse Hepatocytes. Toxicology Letters. 2229: 37-48. Casini, A. M., P. A. Ferrali and M...Acute Liver Necrosis Following Overdose of Paracetamol . British Medical Journal. 2: 497-499. Decker, T., M. L. Lohmann-Matthes, U. Karck, T. Peters

  1. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    PubMed

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Protective effect of rutin in comparison to silymarin against induced hepatotoxicity in rats.

    PubMed

    Reddy, M Kasi; Reddy, A Gopala; Kumar, B Kala; Madhuri, D; Boobalan, G; Reddy, M Anudeep

    2017-01-01

    The aim of this study is to evaluate the hepatoprotective effect of rutin (RTN) in comparison to silymarin (SLM) against acetaminophen (APAP)-induced hepatotoxicity in rats. Male Wistar albino rats (n=24) of 3 months age were equally divided into four groups. Group 1 served as normal control. Hepatotoxicity was induced in the remaining three groups with administration of 500 mg/kg po APAP from day 1-3. Groups 2, 3, and 4 were subsequently administered orally with distilled water, 25 mg/kg of SLM, and 20 mg/kg of RTN, respectively, for 11 days. The mean body weights and biomarkers of hepatotoxicity were estimated on day 0, 4 (confirmation of toxicity), and 15 (at the end of treatment). Hematological parameters were evaluated on day 4 and 15. Antioxidant profile and adenosine triphosphatases (ATPases) were assessed at the end of the experiment. Liver tissues were subjected to histopathology and transmission electron microscopy after the sacrifice on day 15. Antioxidant profile, ATPases, and hematological and sero-biochemical parameters were significantly altered, and histopathological changes were noticed in the liver of toxic control group. These changes were reversed in groups 3 and 4 that were administered with SLM and RTN, respectively. The results of the present investigation enunciated that SLM has potent hepatoprotective activity though the RTN was found superior in restoring the pathological alterations in paracetamol-induced hepatotoxicity in Wistar albino rats.

  3. [3D evaluation model for drug hepatotoxicity testing on HepG2 cells and its application in drug safety evaluation].

    PubMed

    Li, Dan-Dan; Tang, Xiang-Lin; Tan, Hong-Ling; Liang, Qian-de; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Gao, Yue

    2016-04-01

    3D in vitro toxicity testing model was developed by magnetic levitation method for culture of the human hepatoma cell line HepG2 and applied to evaluate the drug hepatotoxicity. After formation of stable 3D structure for HepG2 cells, their glycogen storage capacity under 2D and 3D culture conditions were detected by immunohistochemistry technology, and the mRNA expression levels of phase Ⅰ and Ⅱ drug metabolism enzymes, drug transporters, nuclear receptors and liver-specific marker albumin(ALB) were compared between 2D and 3D culture conditions by using RT-PCR method. Immunohistochemistry results showed that HepG2 cells had abundant glycogen storage capacity under 3D culture conditions, which was similar to human liver tissues. The mRNA expression levels of major drug metabolism enzymes, drug transporters, nuclear receptors and ALB in HepG2 cells under 3D culture conditions were up-regulated as compared with 2D culture conditions. For drug hepatotoxicity evaluation, the typical hepatotoxic drug acetaminophen(APAP), and most reported drugs Polygonum multiflorum Thunb.(Chinese name He-shou-wu) and Psoraleae corylifolia L.(Chinese name Bu-gu-zhi) were selected for single dose and repeated dose(7 d) exposure. In the repeated dose exposure test, 3D HepG2 cells showed higher sensitivity. This established 3D HepG2 cells model with magnetic levitation 3D culture techniques was more close to the human liver tissues both in morphology and functions, so it was a better 3D hepatotoxicity evaluation model. Copyright© by the Chinese Pharmaceutical Association.

  4. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.

    PubMed

    Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G

    2000-06-01

    Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.

  5. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  6. Comparative Hepatotoxicity of Fluconazole, Ketoconazole, Itraconazole, Terbinafine, and Griseofulvin in Rats.

    PubMed

    Khoza, Star; Moyo, Ishmael; Ncube, Denver

    2017-01-01

    Oral ketoconazole was recently the subject of regulatory safety warnings because of its association with increased risk of inducing hepatic injury. However, the relative hepatotoxicity of antifungal agents has not been clearly established. The aim of this study was to compare the hepatotoxicity induced by five commonly prescribed oral antifungal agents. Rats were treated with therapeutic oral doses of griseofulvin, fluconazole, itraconazole, ketoconazole, and terbinafine. After 14 days, only ketoconazole had significantly higher ALT levels ( p = 0.0017) and AST levels ( p = 0.0008) than the control group. After 28 days, ALT levels were highest in the rats treated with ketoconazole followed by itraconazole, fluconazole, griseofulvin, and terbinafine, respectively. The AST levels were highest in the rats treated with ketoconazole followed by itraconazole, fluconazole, terbinafine, and griseofulvin, respectively. All drugs significantly elevated ALP levels after 14 days and 28 days of treatment ( p < 0.0001). The liver enzyme levels suggested that ketoconazole had the highest risk in causing liver injury followed by itraconazole, fluconazole, terbinafine, and griseofulvin. However, histopathological changes revealed that fluconazole was the most hepatotoxic, followed by ketoconazole, itraconazole, terbinafine, and griseofulvin, respectively. Given the poor correlation between liver enzymes and the extent of liver injury, it is important to confirm liver injury through histological examination.

  7. Acetaminophen for patent ductus arteriosus.

    PubMed

    Le, Jennifer; Gales, Mark A; Gales, Barry J

    2015-02-01

    To evaluate the literature describing acetaminophen use in treatment of patent ductus arteriosus (PDA). Searches were conducted in MEDLINE with full text (EBSCOhost; 1946 to September 2014) using the search terms acetaminophen, paracetamol, and patent ductus arteriosus. The references of identified articles were reviewed to identify other relevant articles. Human clinical trials and case reports limited to the English language were reviewed. In all, 12 case reports and 2 randomized, controlled clinical trials explored the use of acetaminophen in treating PDA. The case reports described the use of oral or intravenous acetaminophen in patients with contraindications to or who had previously failed nonsteroidal anti-inflammatory drug therapy for PDA. More than 76% of patients achieved successful PDA closure in reported cases. The clinical trials compared the efficacy of oral acetaminophen versus oral ibuprofen in preterm infants. Acetaminophen was noninferior to ibuprofen, with closure rates from 72.5% to 81.2%. The acetaminophen dose used in most case series and trials was 15 mg/kg dose every 6 hours for 3 days. Acetaminophen therapy was well tolerated, with only a few incidents of elevated liver enzymes being reported. Oral acetaminophen is an alternative to PDA therapy in preterm infants when indomethacin/ibuprofen is not effective or is contraindicated, and it may be considered before surgical ligation. © The Author(s) 2014.

  8. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms.

    PubMed

    Mahmoud, Bahaa G; Khairy, Mohamed; Rashwan, Farouk A; Banks, Craig E

    2017-02-07

    To overcome the recent outbreaks of hepatotoxicity-related drugs, a new analytical tool for the continuously determination of these drugs in human fluids is required. Electrochemical-based analytical methods offer an effective, rapid, and simple tool for on-site determination of various organic and inorganic species. However, the design of a sensitive, selective, stable, and reproducible sensor is still a major challenge. In the present manuscript, a facile, one-pot hydrothermal synthesis of bismuth oxide (Bi 2 O 2.33 ) nanostructures (nanorods) was developed. These BiO nanorods were cast onto mass disposable graphite screen-printed electrodes (BiO-SPEs), allowing the ultrasensitive determination of acetaminophen (APAP) in the presence of its common interference isoniazid (INH), which are both found in drug samples. The simultaneous electroanalytical sensing using BiO-SPEs exhibited strong electrocatalytic activity toward the sensing of APAP and INH with an enhanced analytical signal (voltammetric peak) over that achievable at unmodified (bare) SPEs. The electroanalytical sensing of APAP and INH are possible with accessible linear ranges from 0.5 to 1250 μM and 5 to 1760 μM with limits of detection (3σ) of 30 nM and 1.85 μM, respectively. The stability, reproducibility, and repeatability of BiO-SPE were also investigated. The BiO-SPEs were evaluated toward the sensing of APAP and INH in human serum, urine, saliva, and tablet samples. The results presented in this paper demonstrate that BiO-SPEs sensing platforms provide a potential candidate for the accurate determination of APAP and INH within human fluids and pharmaceutical formulations.

  9. Randomized Prospective Trial Comparing the Use of Intravenous versus Oral Acetaminophen in Total Joint Arthroplasty.

    PubMed

    Politi, Joel R; Davis, Richard L; Matrka, Alexis K

    2017-04-01

    Multimodal pain management has had a significant effect on improving total joint arthroplasty recovery and patient satisfaction. There is literature supporting that intravenous (IV) acetaminophen reduces postoperative pain and narcotic use in the total joint population. However, there are no studies comparing the effectiveness of IV vs oral (PO) acetaminophen as part of a standard multimodal perioperative pain regimen. One hundred twenty patients undergoing hip and knee arthroplasty surgeries performed by one joint arthroplasty surgeon were prospectively randomized into 2 groups. Group 1 (63 patients) received IV and group 2 (57 patients) received PO acetaminophen in addition to a standard multimodal perioperative pain regimen. Each group received 1 gram of acetaminophen preoperatively and then every 6 hours for 24 hours. Total narcotic use and visual analog scale (VAS) scores were collected every 4 hours postoperatively. The 24-hour average hydromorphone equivalents given were not different between groups (3.71 vs 3.48) at 24 hours (P = .76), or at any of the individual 4-hour intervals. The 24-hour average visual analog scale scores in group 1 (IV) was 3.00 and in group 2 (PO) was 3.40 (P = .06). None of the 4-hour intervals were significantly different except the first interval (0-4 hour postoperatively), which favored the IV group (P = .03). The use of IV acetaminophen may have a role when given intraoperatively to reduce the immediate pain after surgery. Following that, it does not provide a significant benefit in reducing pain or narcotic use when compared with the much less expensive PO form. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation.

    PubMed

    Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-24

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.

  11. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital

    PubMed Central

    Antoine, Daniel J; Dear, James W; Lewis, Philip Starkey; Platt, Vivien; Coyle, Judy; Masson, Moyra; Thanacoody, Ruben H; Gray, Alasdair J; Webb, David J; Moggs, Jonathan G; Bateman, D Nicholas; Goldring, Christopher E; Park, B Kevin

    2013-01-01

    Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient-individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen-induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA-122 (miR-122; high liver specificity), high mobility group box-1 (HMGB1; marker of necrosis), full-length and caspase-cleaved keratin-18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR-122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. Conclusion: Elevations in plasma miR-122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision-making, both in the treatment of ALI and the design/execution of patient-individualized treatment strategies. PMID

  12. A randomized, double-blind, placebo-controlled study of acetaminophen 1000 mg versus acetaminophen 650 mg for the treatment of postsurgical dental pain.

    PubMed

    Qi, Daniel S; May, Lisa G; Zimmerman, Brenda; Peng, Penny; Atillasoy, Evren; Brown, Jean D; Cooper, Stephen A

    2012-12-01

    Although acetaminophen is one of the oldest and most widely used of all analgesic drugs, the incremental benefit of the 1000-mg dose compared with the 650-mg dose has been questioned. The aim of this study was to assess the relative efficacy of acetaminophen 1000 mg versus acetaminophen 650 mg over a 6-hour period in patients experiencing at least moderate postsurgical dental pain. This single-center, randomized, double-blind, placebo-controlled, single-dose study enrolled patients aged 16 to 50 years who experienced at least moderate pain after surgical removal of impacted third molars. Each patient received either acetaminophen 1000 mg (n = 239), acetaminophen 650 mg (n = 241), or placebo (n = 60) when they had at least moderate pain and a score ≥50 on the 100-mm Visual Analog Scale (VAS) postsurgically. Pain intensity and pain relief were measured over 6 hours (VAS 0-100 mm). All 540 patients (52% female; age range, 16-30 years; 95% white) were included in the efficacy analysis. For the primary efficacy endpoint (weighted sum of the pain intensity difference from baseline [PID] and pain relief [PAR] scores over 6 hours [SPRID6]), acetaminophen 1000 mg demonstrated a 24% improvement compared with acetaminophen 650 mg (529.4 vs 427.3; P = 0.001). In addition, acetaminophen 650 mg was significantly superior compared with placebo (P < 0.001). The weighted sum of PID over 6 hours (SPID6), the weighted total pain relief over 6 hours (TOTPAR6), and the percentage of patients with >50% of the maximum possible TOTPAR6 score were significantly greater for patients treated with acetaminophen 1000 mg compared with those receiving acetaminophen 650 mg (P ≤ 0.006) or placebo (P < 0.001) and for patients treated with acetaminophen 650 mg compared with placebo (P < 0.001). Time to rescue, rescue rates through 4 and 6 hours, and patient global assessment demonstrated similar findings. Patients treated with acetaminophen 1000 mg or 650 mg had a significantly different

  13. Lower Susceptibility of Female Mice to Acetaminophen Hepatotoxicity: Role of Mitochondrial Glutathione, Oxidant Stress and c-Jun N-Terminal Kinase

    PubMed Central

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69-77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in mitochondria at 4h, and 2.5 and 3.3 fold higher in the total liver at 4h and 6h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4h post-APAP, it was 3.1 fold lower at 6h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. PMID:25218290

  14. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Chieko; Lemasters, John J.; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT releasemore » and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.« less

  15. Knowledge about acetaminophen toxicity among emergency department visitors.

    PubMed

    Chen, Lee; Schneider, Sandra; Wax, Paul

    2002-12-01

    Overdoses of acetaminophen are an increasingly common cause of acute liver failure. This study examines knowledge about acetaminophen therapeutic usage and toxicity among emergency department visitors. Adult visitors in an urban/suburban emergency department waiting room was surveyed with a questionnaire; 103/138 (75%) approached completed the questionnaire. 18% of the subjects believed the maximum daily acetaminophen dose is > or = 5 g. When asked to identify acetaminophen-containing products, only 13% chose Percocet and 6% Vicodin Motrin was the medication respondents most frequently believed to contain acetaminophen. 52% did not know acetaminophen toxicity causes liver damage. No statistically significant differences existed with regard to sex, race and age; more female subjects routinely inform doctors about their acetaminophen use compared to males (64% vs 30%). Some study subjects have very limited knowledge regarding therapeutic use of acetaminophen and its toxicity.

  16. Chemical composition and hepatoprotective activity of ethanolic root extract of Taraxacum Syriacum Boiss against acetaminophen intoxication in rats.

    PubMed

    Nazari, A; Fanaei, H; Dehpour, A R; Hassanzadeh, G; Jafari, M; Salehi, M; Mohammadi, M

    2015-01-01

    In the present study, the role of ethanol extract of root of Taraxacum Syriacum Boiss (TSBE) against hepatotoxicity caused by acetaminophen (APAP) was studied. The chemical composition of roots of Taraxacum Syriacum Boiss was analyzed by SPME-GC/MS method. Hepatocellular injuries induced by acetaminophen (APAP) were assessed by liver histology, serum aminotransferase activities, antioxidant enzymes activity and lipid peroxidation in liver tissue. TSBE was observed to exhibit hepatoprotective effect as demonstrated by significant decrease in serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and alkaline phosphatase (ALP) concentration, and by preventing liver histopathologic changes in rats with APAP hepatotoxicity. Administration of APAP, significantly increased, lactate dehydrogenase (LDH) and catalase (CAT) activity in liver tissue and pretreatment with TSBE returned these parameters to control group, moreover TSBE reduces APAP-induced hepatic Glutathione (GSH) depletion. Carvacrol (6.7 %) was the main polyphenolic compound of plant sample. Our results demonstrated hepatoprotective activity of TSBE in rat in vivo. We believe that the mechanism by which the extract was able to protect the liver from the oxidative stress generated by APAP is due to its antioxidant activity. These phenolic compounds of the extract act as antioxidants and free radical scavengers and reduce or inhibit the oxidative stress induced by APAP administration (Tab. 3, Fig. 3, Ref. 39).

  17. Acetaminophen

    MedlinePlus

    ... understand.If you are giving acetaminophen to your child, read the package label carefully to make sure ... the right product for the age of the child. Do not give children acetaminophen products that are ...

  18. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    PubMed

    Abdel-Daim, Mohamed; Abushouk, Abdelrahman Ibrahim; Reggi, Raffaella; Yarla, Nagendra Sastry; Palmery, Maura; Peluso, Ilaria

    2018-04-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Copyright © 2017. Published by Elsevier B.V.

  19. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    PubMed

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Investigation of Drug-Induced Hepatotoxicity and Its Remediation Pathway with Reaction-Based Fluorescent Probes.

    PubMed

    Cheng, Dan; Xu, Wang; Yuan, Lin; Zhang, Xiaobing

    2017-07-18

    Drug-induced liver injury (DILI) is considered a serious problem related to public health, due to its unpredictability and acute response. The level of peroxynitrite (ONOO - ) generated in liver has long been regarded as a biomarker for the prediction and measurement of DILI. Herein we present two reaction-based fluorescent probes (Naph-ONOO - and Rhod-ONOO - ) for ONOO - through a novel and universally applicable mechanism: ONOO - -mediated deprotection of α-keto caged fluorophores. Among them, Rhod-ONOO - can selectively accumulate and react in mitochondria, one of the main sources of ONOO - , with a substantial lower nanomolar sensitivity of 43 nM. The superior selectivity and sensitivity of two probes enable real-time imaging of peroxynitrite generation in lipopolysaccharide-stimulated live cells, with a remarkable difference from cells doped with other interfering reactive oxygen species, in either one- or two-photon imaging modes. More importantly, we elucidated the drug-induced hepatotoxicity pathway with Rhod-ONOO - and revealed that CYP450/CYP2E1-mediated enzymatic metabolism of acetaminophen leads to ONOO - generation in liver cells. This is the first time to showcase the drug-induced hepatotoxicity pathways by use of a small-molecule fluorescent probe. We hence conclude that fluorescent probes can engender a deeper understanding of reactive species and their pathological revelations. The reaction-based fluorescent probes will be a potentially useful chemical tool to assay drug-induced hepatotoxicity.

  1. "Protective premedication": a comparative study of acetaminophen, gabapentin and combination of acetaminophen with gabapentin for post-operative analgesia.

    PubMed

    Syal, Kartik; Goma, Mandeep; Dogra, Ravi K; Ohri, Anil; Gupta, Ashok K; Goel, Ashok

    2010-10-01

    We carried out a study to evaluate the effects of protective premedication with Acetaminophen, Gabapentin and combination of Acetaminophen with Gabapentin on post-operative analgesia in patients undergoing open cholecys-tectomy under general anesthesia. PATIENTS #ENTITYSTARTX00026; The study was conducted in a double-blind randomized and controlled manner in 120 consenting patients of either sex belonging to ASA physical status grade I and II, between the age groups of 20 to 50 years, weighing between 40 to 65 kg and undergoing elective surgery (open cholecystectomy) under general anesthesia. The patients were divided into 4 groups: 1: placebo, 2: Acetaminophen 1000 mg, 3: 1200 mg Gabapentin, 4: Acetaminphen 1000 mg plus 1200 mg Gabapentin. The drugs were given two hours before induction. Time, number and total amount of rescue analgesic (tramadol) and VAS score at rest and on movement. Side effects like any episode of nausea/vomiting and level of sedation were noted. Premedication with antihyperalgesic and analgesic agents helps to decrease postoperative pain scores. Gabapentin premedication is effective for providing better postoperative pain relief with lower and delayed requirements of rescue analgesics, but causes more episodes of nausea and vomiting and higher levels of sedation.

  2. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    PubMed Central

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  3. Protective Effect of Sundarban Honey against Acetaminophen-Induced Acute Hepatonephrotoxicity in Rats

    PubMed Central

    Tanvir, E. M.; Gan, Siew Hua; Parvez, Mashud; Aminul Islam, Md.; Khalil, Md. Ibrahim

    2014-01-01

    Honey, a supersaturated natural product of honey bees, contains complex compounds with antioxidant properties and therefore has a wide a range of applications in both traditional and modern medicine. In the present study, the protective effects of Sundarban honey from Bangladesh against acetaminophen- (APAP-) induced hepatotoxicity and nephrotoxicity in experimental rats were investigated. Adult male Wistar rats were pretreated with honey (5 g/kg) for 4 weeks, followed by the induction of hepatotoxicity and nephrotoxicity via the oral administration of a single dose of APAP (2 g/kg). Organ damage was confirmed by measuring the elevation of serum alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total protein (TP), total bilirubin (TB), urea, creatinine, and malondialdehyde (MDA). Histopathological alterations observed in the livers and the kidneys further confirmed oxidative damage to these tissues. Animals pretreated with Sundarban honey showed significantly markedly reduced levels of all of the investigated parameters. In addition, Sundarban honey ameliorated the altered hepatic and renal morphology in APAP-treated rats. Overall, our findings indicate that Sundarban honey protects against APAP-induced acute hepatic and renal damage, which could be attributed to the honey's antioxidant properties. PMID:25530774

  4. Acetaminophen and Codeine

    MedlinePlus

    The combination of acetaminophen and codeine is used to relieve mild to moderate pain. Acetaminophen is in a class of medications called analgesics ( ... The combination of acetaminophen and codeine comes as a tablet, capsule, and liquid to take by mouth. It usually is taken every 4 ...

  5. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    PubMed Central

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

  6. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey.

    PubMed

    Yu, Hong; Barrass, Nigel; Gales, Sonya; Lenz, Eva; Parry, Tony; Powell, Helen; Thurman, Dale; Hutchison, Michael; Wilson, Ian D; Bi, Luke; Qiao, Junwen; Qin, Qiuping; Ren, Jin

    2015-03-01

    1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.

  7. Acetaminophen Reduces acute and persistent incisional pain after hysterectomy.

    PubMed

    Koyuncu, Onur; Hakimoglu, Sedat; Ugur, Mustafa; Akkurt, Cagla; Turhanoglu, Selim; Sessler, Daniel; Turan, Alparslan

    2018-05-15

    Acetaminophen is effective for acute surgical pain, but whether it reduces persistent incision pain remains unknown. We tested the primary hypothesis that patients given perioperative acetaminophen have less incisional pain three months after surgery. Our secondary hypotheses were that patients randomized to acetaminophen have less postoperative pain and analgesic consumption, and better functional recovery at three months. 140 patients having abdominal hysterectomy were randomly assigned to: 1)intravenous acetaminophen (4 g/day for 72 postoperative hours); or, 2) saline placebo. The primary outcome was incisional pain visual analog scale (VAS) at three months after surgery. The secondary outcomes were (1, 2) postoperative VAS scores while laying and sitting and (3) total patient-controlled intravenous tramadol consumption during the initial 24 hours, (4) DN4 questionnaires and (5) SF-12 at three months after surgery. The persistent incisional pain scores at three months were significantly lower in acetaminophen (median [Q1, Q3]: 0 [0, 0]) as compared with saline group (0 [0, 1]) (P = 0.002). Specifically, 89%, 9%, and 2% of acetaminophen patients with VAS pain score at three months of 0, 1, and 2 or more, as compared with 66%, 23%, and 10% in the saline group (odds ratio: 2.19 (95% CI: 1.33, 3.59), P = 0.002). Secondly, postoperative pain scores both laying and sitting were significantly lower in the acetaminophen group. Acetaminophen group had significantly better DN4 score and mental health related but not physical health related quality of life. Our results suggest that acetaminophen reduces the risk and intensity of persistent incisional pain. However, there are other mechanisms by which acetaminophen might reduce persistent pain. Anesthesia, acetaminophen, Persistent surgical pain, Postoperative acute pain.

  8. “Protective Premedication”: A Comparative Study of Acetaminophen, Gabapentin and Combination of Acetaminophen with Gabapentin for Post-Operative Analgesia

    PubMed Central

    Syal, Kartik; Goma, Mandeep; Dogra, Ravi K; Ohri, Anil; Gupta, Ashok K; Goel, Ashok

    2010-01-01

    Background: We carried out a study to evaluate the effects of protective premedication with Acetaminophen, Gabapentin and combination of Acetaminophen with Gabapentin on post-operative analgesia in patients undergoing open cholecys-tectomy under general anesthesia. Patients & Methods: The study was conducted in a double-blind randomized and controlled manner in 120 consenting patients of either sex belonging to ASA physical status grade I and II, between the age groups of 20 to 50 years, weighing between 40 to 65 kg and undergoing elective surgery (open cholecystectomy) under general anesthesia. The patients were divided into 4 groups: 1: placebo, 2: Acetaminophen 1000 mg, 3: 1200 mg Gabapentin, 4: Acetaminphen 1000 mg plus 1200 mg Gabapentin. The drugs were given two hours before induction. Time, number and total amount of rescue analgesic (tramadol) and VAS score at rest and on movement. Side effects like any episode of nausea/vomiting and level of sedation were noted. Results: Premedication with antihyperalgesic and analgesic agents helps to decrease postoperative pain scores. Gabapentin premedication is effective for providing better postoperative pain relief with lower and delayed requirements of rescue analgesics, but causes more episodes of nausea and vomiting and higher levels of sedation. PMID:21547185

  9. Use of a fixed combination of acetylsalicylic acid, acetaminophen and caffeine compared with acetaminophen alone in episodic tension-type headache: meta-analysis of four randomized, double-blind, placebo-controlled, crossover studies.

    PubMed

    Diener, Hans-Christoph; Gold, Morris; Hagen, Martina

    2014-11-19

    Most patients with episodic tension-type headache treat headache episodes with over-the-counter medication. Combination analgesics containing caffeine may be more effective and as well tolerated as monotherapy. The aim of this study was to evaluate the efficacy of the combination of acetylsalicylic acid, acetaminophen (paracetamol) and caffeine in episodic tension-type headache using recently recommended endpoints. Four randomized, controlled trials of identical design in 1,900 patients with episodic tension-type headache comparing acetylsalicylic acid, acetaminophen and caffeine vs. acetaminophen or placebo were pooled. Analysis populations were 'all headache episodes' and those with 'severe pain at baseline'. Post-hoc defined primary endpoint: headache episodes pain-free at 2 h. Secondary endpoints: headache episodes pain-free at 1 h, headache response at 2 h (mild or no pain), degree of interference with daily activities. 6,861 headache episodes were treated, including 2,215 severe headache episodes. The proportion of headache episodes pain-free at 2 h was significantly higher with the triple combination (28.5%) vs. acetaminophen (21.0%) and placebo (18.0%) (p < 0.0001), and similarly for those severe at baseline (20.2% vs. 12.1% and 10.8%; p ≤ 0.0003). A similar pattern of superiority was observed for secondary endpoints. The triple combination was generally well tolerated. The combination of acetylsalicylic acid, acetaminophen and caffeine is effective and well tolerated in episodic tension-type headache, and significantly superior to acetaminophen with regard to being pain-free at 2 h, headache response at 2 h and ability to return to daily activities, even in those with pain rated severe at baseline.

  10. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells.

    PubMed

    Parikh, Harita; Pandita, Nancy; Khanna, Aparna

    2015-07-01

    Indian mustard [Brassica juncea (L.) Czern. & Coss. (Brassicaceae)] is reported to possess diverse pharmacological properties. However, limited information is available concerning its hepatoprotective activity and mechanism of action. To study the protective mechanism of mustard seed extract against acetaminophen (APAP) toxicity in a hepatocellular carcinoma (HepG2) cell line. Hepatotoxicity models were established using APAP (2.5-22.5 mM) based on the cytotoxicity profile. An antioxidant-rich fraction from mustard seeds was extracted and evaluated for its hepatoprotective potential. The mechanism of action was elucidated using various in vitro antioxidant assays, the detection of intracellular generation of reactive oxygen species (ROS), and cell cycle analysis. The phytoconstituents isolated via HPLC-DAD were also evaluated for hepatoprotective activity. Hydromethanolic seed extract exhibited hepatoprotective activity in post- and pre-treatment models of 20 mM APAP toxicity and restored the elevated levels of liver indices to normal values (p < 0.05). Post-treatment suppressed the generation of ROS by 58.37% and pre-treatment effectively prevented the generation of ROS by 90.5%. The mechanism of ROS suppression was further supported by antioxidant activity (IC50) data from DPPH (103.37 ± 4.2 µg AAE/mg), FRAP (83.26 ± 1.1 µg AAE/mg), ORAC (1115 µM GAE/ml), ABTS (83.05 µg GAE/ml), and superoxide (345.22 ± 5.15 µg AAE/mg) scavenging assays and by the restoration of cell cycle alterations. HPLC-DAD analysis revealed the presence quercetin, vitamin E, and catechin, which exhibited hepatoprotective activity. A phytoextract of mustard seeds acts by suppressing the generation of ROS in response to APAP toxicity.

  11. Randomized clinical trial of hydrocodone/acetaminophen versus codeine/acetaminophen in the treatment of acute extremity pain after emergency department discharge.

    PubMed

    Chang, Andrew K; Bijur, Polly E; Munjal, Kevin G; John Gallagher, E

    2014-03-01

    The objective was to test the hypothesis that hydrocodone/acetaminophen (Vicodin [5/500]) provides more efficacious analgesia than codeine/acetaminophen (Tylenol #3 [30/300]) in patients discharged from the emergency department (ED). Both are currently Drug Enforcement Administration (DEA) Schedule III narcotics. This was a prospective, randomized, double-blind, clinical trial of patients with acute extremity pain who were discharged home from the ED, comparing a 3-day supply of oral hydrocodone/acetaminophen (5 mg/500 mg) to oral codeine/acetaminophen (30 mg/300 mg). Pain was measured on a valid and reproducible verbal numeric rating scale (NRS) ranging from 0 to 10, and patients were contacted by telephone approximately 24 hours after being discharged. The primary outcome was the between-group difference in improvement in pain at 2 hours following the most recent ingestion of the study drug, relative to the time of phone contact after ED discharge. Secondary outcomes compared side-effect profiles and patient satisfaction. The median time from ED discharge to follow-up was 26 hours (interquartile range [IQR] = 24 to 39 hours). The mean NRS pain score before the most recent dose of pain medication after ED discharge was 7.6 NRS units for both groups. The mean decrease in pain scores 2 hours after pain medications were taken were 3.9 NRS units in the hydrocodone/acetaminophen group versus 3.5 NRS units in the codeine/acetaminophen group, for a difference of 0.4 NRS units (95% confidence interval [CI] = -0.3 to 1.2 NRS units). No differences were found in side effects or patient satisfaction. Both medications decreased NRS pain scores by approximately 50%. However, the oral hydrocodone/acetaminophen failed to provide clinically or statistically superior pain relief compared to oral codeine/acetaminophen when prescribed to patients discharged from the ED with acute extremity pain. Similarly, there were no clinically or statistically important differences in side

  12. Acetaminophen Injection

    MedlinePlus

    ... narcotic) medications to relieve moderate to severe pain. Acetaminophen is in a class of medications called analgesics (pain ... Ask your pharmacist any questions you have about acetaminophen injection.It is important for you to keep a written list ...

  13. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning

    PubMed Central

    Shah, Anoop D; Wood, David M; Dargan, Paul I

    2011-01-01

    Paracetamol (acetaminophen) is one of the most commonly taken drugs in overdose in many areas of the world, and the most common cause of acute liver failure in both the UK and USA. Paracetamol poisoning can result in lactic acidosis in two different scenarios. First, early in the course of poisoning and before the onset of hepatotoxicity in patients with massive ingestion; a lactic acidosis is usually associated with coma. Experimental evidence from studies in whole animals, perfused liver slices and cell cultures has shown that the toxic metabolite of paracetamol, N-acetyl-p-benzo-quinone imine, inhibits electron transfer in the mitochondrial respiratory chain and thus inhibits aerobic respiration. This occurs only at very high concentrations of paracetamol, and precedes cellular injury by several hours. The second scenario in which lactic acidosis can occur is later in the course of paracetamol poisoning as a consequence of established liver failure. In these patients lactate is elevated primarily because of reduced hepatic clearance, but in shocked patients there may also be a contribution of peripheral anaerobic respiration because of tissue hypoperfusion. In patients admitted to a liver unit with paracetamol hepatotoxicity, the post-resuscitation arterial lactate concentration has been shown to be a strong predictor of mortality, and is included in the modified King's College criteria for consideration of liver transplantation. We would therefore recommend that post-resuscitation lactate is measured in all patients with a severe paracetamol overdose resulting in either reduced conscious level or hepatic failure. PMID:21143497

  14. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning.

    PubMed

    Shah, Anoop D; Wood, David M; Dargan, Paul I

    2011-01-01

    Paracetamol (acetaminophen) is one of the most commonly taken drugs in overdose in many areas of the world, and the most common cause of acute liver failure in both the UK and USA. Paracetamol poisoning can result in lactic acidosis in two different scenarios. First, early in the course of poisoning and before the onset of hepatotoxicity in patients with massive ingestion; a lactic acidosis is usually associated with coma. Experimental evidence from studies in whole animals, perfused liver slices and cell cultures has shown that the toxic metabolite of paracetamol, N-acetyl-p-benzo-quinone imine, inhibits electron transfer in the mitochondrial respiratory chain and thus inhibits aerobic respiration. This occurs only at very high concentrations of paracetamol, and precedes cellular injury by several hours. The second scenario in which lactic acidosis can occur is later in the course of paracetamol poisoning as a consequence of established liver failure. In these patients lactate is elevated primarily because of reduced hepatic clearance, but in shocked patients there may also be a contribution of peripheral anaerobic respiration because of tissue hypoperfusion. In patients admitted to a liver unit with paracetamol hepatotoxicity, the post-resuscitation arterial lactate concentration has been shown to be a strong predictor of mortality, and is included in the modified King's College criteria for consideration of liver transplantation. We would therefore recommend that post-resuscitation lactate is measured in all patients with a severe paracetamol overdose resulting in either reduced conscious level or hepatic failure. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  15. How to Safely Give Acetaminophen

    MedlinePlus

    ... Educators Search English Español How to Safely Give Acetaminophen KidsHealth / For Parents / How to Safely Give Acetaminophen ... without getting a doctor's OK first. What Is Acetaminophen Also Called? Acetaminophen is the generic name of ...

  16. A Systematic Strategy for Screening and Application of Specific Biomarkers in Hepatotoxicity Using Metabolomics Combined With ROC Curves and SVMs.

    PubMed

    Li, Yubo; Wang, Lei; Ju, Liang; Deng, Haoyue; Zhang, Zhenzhu; Hou, Zhiguo; Xie, Jiabin; Wang, Yuming; Zhang, Yanjun

    2016-04-01

    Current studies that evaluate toxicity based on metabolomics have primarily focused on the screening of biomarkers while largely neglecting further verification and biomarker applications. For this reason, we used drug-induced hepatotoxicity as an example to establish a systematic strategy for screening specific biomarkers and applied these biomarkers to evaluate whether the drugs have potential hepatotoxicity toxicity. Carbon tetrachloride (5 ml/kg), acetaminophen (1500 mg/kg), and atorvastatin (5 mg/kg) are established as rat hepatotoxicity models. Fifteen common biomarkers were screened by multivariate statistical analysis and integration analysis-based metabolomics data. The receiver operating characteristic curve was used to evaluate the sensitivity and specificity of the biomarkers. We obtained 10 specific biomarker candidates with an area under the curve greater than 0.7. Then, a support vector machine model was established by extracting specific biomarker candidate data from the hepatotoxic drugs and nonhepatotoxic drugs; the accuracy of the model was 94.90% (92.86% sensitivity and 92.59% specificity) and the results demonstrated that those ten biomarkers are specific. 6 drugs were used to predict the hepatotoxicity by the support vector machines model; the prediction results were consistent with the biochemical and histopathological results, demonstrating that the model was reliable. Thus, this support vector machine model can be applied to discriminate the between the hepatic or nonhepatic toxicity of drugs. This approach not only presents a new strategy for screening-specific biomarkers with greater diagnostic significance but also provides a new evaluation pattern for hepatotoxicity, and it will be a highly useful tool in toxicity estimation and disease diagnoses. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice.

    PubMed

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C; Torbenson, Michael S; Polotsky, Vsevolod Y

    2009-02-01

    Obstructive sleep apnoea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. Obstructive sleep apnoea has been associated with liver injury. Acetaminophen (APAP; known as paracetamol outside the USA) is one of the most commonly used drugs which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. Adult C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg kg(-1)) or normal saline daily. A combination of CIH and APAP caused liver injury, with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma-glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. Acetaminophen alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a fivefold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. Acetaminophen or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA.

  18. Zea mays, Stigma maydis prevents and extenuates acetaminophen-perturbed oxidative onslaughts in rat hepatocytes.

    PubMed

    Saheed, Sabiu; Frans Hendrik, O'Neill; Tom, Ashafa Anofi Omotayo

    2016-11-01

    Zea mays L. (Poaceae) Stigma maydis is an underutilized product of corn cultivation finding therapeutic applications in oxidative stress-related disorders. This study investigated its aqueous extract against acetaminophen (APAP)-perturbed oxidative insults in rat hepatocytes. Hepatotoxic rats were orally pre- and post-treated with the extract (at 200 and 400 mg/kg body weight) and vitamin C (200 mg/kg body weight), respectively, for 14 days. Liver function, antioxidative and histological analyses were thereafter evaluated. The APAP-induced marked (p < 0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and the concentrations of bilirubin, oxidized glutathione, protein carbonyls, malondialdehyde, conjugated dienes, lipid hydroperoxides and fragmented DNA were dose-dependently extenuated in the extract-treated animals. The extract also significantly (p < 0.05) improved the reduced activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase as well as total protein, albumin and glutathione concentrations in the hepatotoxic rats. These improvements may be attributed to the bioactive constituents as revealed by the gas chromatography-mass spectrometric chromatogram of the extract. The observed effects compared favourably with vitamin C and are informative of hepatoprotective and antioxidative attributes of the extract and were further supported by the histological analysis. The data from the present findings suggest that Stigma maydis aqueous extract is capable of preventing and ameliorating APAP-mediated oxidative hepatic damage via enhancement of antioxidant defence systems.

  19. TRPM2 channels mediate acetaminophen-induced liver damage

    PubMed Central

    Kheradpezhouh, Ehsan; Ma, Linlin; Morphett, Arthur; Barritt, Greg J.; Rychkov, Grigori Y.

    2014-01-01

    Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca2+ homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca2+ concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca2+ rise. Here we report that the channel responsible for Ca2+ entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death. PMID:24569808

  20. Is acetaminophen safe in pregnancy?

    PubMed

    Toda, Katsuhiro

    2017-10-01

    Acetaminophen is thought to be the safest analgesic and antipyretic medicine for pregnant women, and it is widely used all over the world. However, prenatal acetaminophen was reported to be associated with asthma, lower performance intelligence quotient (IQ), shorter male infant anogenital distance (predicting poor male reproductive potential), autism spectrum disorder, neurodevelopmental problems (gross motor development, communication), attention-deficit/hyperactivity disorder, poorer attention and executive function, and behavioral problems in childhood. Each article has poor power to show risks of acetaminophen, however, the integration of the articles that showed adverse effects of acetaminophen may have power to show them. Acetaminophen use in childhood was associated with autism spectrum disorder, asthma symptoms, wheezing, and allergic disease. Acetaminophen is the safest medicine as analgesics for nociceptive pain and antipyretics in childhood and pregnancy. There is no alternative medication of acetaminophen. Acetaminophen should not be withheld from children or pregnant women for fears it might develop adverse effects. Acetaminophen should be used at the lowest effective dosage and for the shortest time. When we know the possible, rare but serious complications, we should use acetaminophen in pregnancy only when needed and no safer option for pain or fever relief is available. Health care providers should help inform the general lay public about this difficult dilemma. Copyright © 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.

    PubMed

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin

    2018-03-15

    The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  2. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions

    PubMed Central

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin

    2018-01-01

    The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions. PMID:29543727

  3. Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity.

    PubMed

    Verstraelen, Sandra; Peers, Bernard; Maho, Walid; Hollanders, Karen; Remy, Sylvie; Berckmans, Pascale; Covaci, Adrian; Witters, Hilda

    2016-09-01

    Zebrafish phenotypic assays have shown promise to assess human hepatotoxicity, though scoring of liver morphology remains subjective and difficult to standardize. Liver toxicity in zebrafish larvae at 5 days was assessed using gene expression as the biomarker approach, complementary to phenotypic analysis and analytical data on compound uptake. This approach aimed to contribute to improved hepatotoxicity prediction, with the goal of identifying biomarker(s) as a step towards the development of transgenic models for prioritization. Morphological effects of hepatotoxic compounds (acetaminophen, amiodarone, coumarin, methapyrilene and myclobutanil) and saccharin as the negative control were assessed after exposure in zebrafish larvae. The hepatotoxic compounds induced the expected zebrafish liver degeneration or changes in size, whereas saccharin did not have any phenotypic adverse effect. Analytical methods based on liquid chromatography-mass spectrometry were optimized to measure stability of selected compounds in exposure medium and internal concentration in larvae. All compounds were stable, except amiodarone for which precipitation was observed. There was a wide variation between the levels of compound in the zebrafish larvae with a higher uptake of amiodarone, methapyrilene and myclobutanil. Detection of hepatocyte markers (CP, CYP3A65, GC and TF) was accomplished by in situ hybridization of larvae to coumarin and myclobutanil and confirmed by real-time reverse transcription-quantitative polymerase chain reaction. Experiments showed decreased expression of all markers. Next, other liver-specific biomarkers (i.e. FABP10a and NR1H4) and apoptosis (i.e. CASP-3 A and TP53) or cytochrome P450-related (CYP2K19) and oxidoreductase activity-related (ZGC163022) genes, were screened. Links between basic mechanisms of liver injury and results of biomarker responses are described. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Comparative Analysis of Length of Stay and Inpatient Costs for Orthopedic Surgery Patients Treated with IV Acetaminophen and IV Opioids vs. IV Opioids Alone for Post-Operative Pain.

    PubMed

    Hansen, Ryan N; Pham, An; Strassels, Scott A; Balaban, Stela; Wan, George J

    2016-09-01

    Recovery from orthopedic surgery is oriented towards restoring functional health outcomes while reducing hospital length of stay (LOS) and medical expenditures. Optimal pain management is a key to reaching these objectives. We sought to compare orthopedic surgery patients who received combination intravenous (IV) acetaminophen and IV opioid analgesia to those who received IV opioids alone and compared the two groups on LOS and hospitalization costs. We performed a retrospective analysis of the Premier Database (Premier, Inc.; between January 2009 and June 2015) comparing orthopedic surgery patients who received post-operative pain management with combination IV acetaminophen and IV opioids to those who received only IV opioids starting on the day of surgery and continuing up to the second post-operative day. The quarterly rate of IV acetaminophen use for all hospitalizations by hospital served as the instrumental variable in two-stage least squares regressions controlling for patient and hospital covariates to compare the LOS and hospitalization costs of IV acetaminophen recipients to opioid monotherapy patients. We identified 4,85,895 orthopedic surgery patients with 1,74,805 (36%) who had received IV acetaminophen. Study subjects averaged 64 years of age and were predominantly non-Hispanic Caucasians (78%) and female (58%). The mean unadjusted LOS for IV acetaminophen patients was 3.2 days [standard deviation (SD) 2.6] compared to 3.9 days (SD 3.9) with only IV opioids (P < 0.0001). Average unadjusted hospitalization costs were $19,024.9 (SD $13,113.7) for IV acetaminophen patients and $19,927.6 (SD $19,578.8) for IV opioid patients (P < 0.0001). These differences remained statistically significant in our instrumental variable models, with IV acetaminophen associated with 0.51 days shorter hospitalization [95% confidence interval (CI) -0.58 to -0.44, P < 0.0001] and $634.8 lower hospitalization costs (95% CI -$1032.5 to -$237.1, P = 0.0018). Compared

  5. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Silva-Comar, Francielli Maria de Souza; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase ( γ GT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γ GT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  6. Opioid use in knee arthroplasty after receiving intravenous acetaminophen.

    PubMed

    Kelly, Jennifer S; Opsha, Yekaterina; Costello, Jennifer; Schiller, Daryl; Hola, Eric T

    2014-12-01

    Intravenous (IV) acetaminophen may be an effective component of multimodal postoperative pain management. The primary objective of this study was to evaluate the impact of IV acetaminophen on total opioid use in postoperative patients. The secondary objective was to evaluate the effect of IV acetaminophen on hospital length of stay. This retrospective, case-control study evaluated the impact of IV acetaminophen on total opioid use in surgical patients. Patients were included if they received at least one perioperative dose of IV acetaminophen and underwent a surgical knee procedure. Controls were matched and randomly selected based on procedure type, age, and severity of illness. Postoperative opioids were converted into oral morphine equivalents, and overall use was compared between groups. One hundred patients were enrolled, with 25 patients receiving IV acetaminophen and 75 matched controls. A total of 135 mg versus 112.5 mg oral morphine equivalents were used in the IV acetaminophen group and control group, respectively (p=0.987). There were 45 mg/day oral morphine equivalents used in the IV acetaminophen group versus 37.5 mg in the control group (p=0.845). The median hospital length of stay in both groups was 3 days (p=0.799). IV acetaminophen did not significantly decrease postoperative opioid use in patients who underwent surgical knee procedures. In addition, there was a nonsignificant trend toward increased opioid use in the IV acetaminophen group. There was no significant difference in hospital length of stay between the IV acetaminophen group and the control group. These findings require further study in larger patient populations and in other orthopedic procedures that typically require longer hospital stays. © 2014 Pharmacotherapy Publications, Inc.

  7. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaut, Anaïs; Le Guillou, Dounia; Moreau, Caroline

    Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations ofmore » insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2

  8. Taste of Clindamycin and Acetaminophen.

    PubMed

    Hashiba, Kimberlee A; Wo, Shane R; Yamamoto, Loren G

    2017-02-01

    This study evaluated the taste palatability of liquid clindamycin and acetaminophen products on the market. Subjects rated the palatability of 3 clindamycin suspensions, 1 amoxicillin suspension (tasted twice), an acetaminophen elixir, and an acetaminophen suspension in a randomized blinded fashion on a 0 to 5 scale. Forty-six adults aged 20 to 82 years volunteered for this study. Means (and 95% confidence intervals) were as follows: amoxicillin-first taste 3.6 (3.3-3.9), amoxicillin-second taste 3.5 (3.2-3.7). Clindamycin Rising, Perrigo, Greenstone; 2.0 (1.6-2.5), 3.0 (2.7-3.3), and 2.2 (1.8-2.6), respectively. Acetaminophen elixir 0.6 (0.4-0.8) and acetaminophen suspension 3.4 (3.1-3.6). One clindamycin tasted significantly better than the others. Additionally, although 2 acetaminophen formulations are currently available over-the-counter, the suspension is more palatable and less costly. Medicaid drug programs that perpetuate the use of elixir should change their coverage to save money and provide patients access to better tasting acetaminophen.

  9. Reliability of history of acetaminophen ingestion in intentional drug overdose patients.

    PubMed

    Bentur, Yedidia; Lurie, Yael; Tamir, Ada; Keyes, Daniel C; Basis, Fuad

    2011-01-01

    The objective of this study was to determine the reliability of denial of acetaminophen ingestion in intentional drug overdose patients. All intentional drug overdose patients admitted to an emergency department who were able to provide a history were included. A detailed history was obtained on names, timing and number of medications ingested, and serum acetaminophen was assayed. Multidrug ingestion was defined as the reporting of ≥2 medications. Patients were considered 'reliable' if they reported acetaminophen ingestion and had detectable acetaminophen levels or the other way around. Validity parameters of acetaminophen history were assessed by sensitivity, specificity and positive and negative predictive values. A total of 154 patients were included. History was significantly more reliable in patients who denied ingestion of acetaminophen (n = 107) compared with patients who reported it (n = 47; 95.3% vs 65.9%, respectively; p < 0.0001, 95% CI of the difference 17.5%-41.2%). No suicidal patient who denied both acetaminophen and multidrug ingestions had a detectable acetaminophen level (negative predictive value 1, 95% CI 0.93-1.0). It is suggested that denial of both acetaminophen and multidrug ingestions by intentional drug overdose patients after a thorough history taking can be considered reliable for acetaminophen history. In facilities with limited resources, these patients may not require routine acetaminophen screening.

  10. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure.

    PubMed

    Court, Michael H; Peter, Inga; Hazarika, Suwagmani; Vasiadi, Magdalini; Greenblatt, David J; Lee, William M

    2014-01-01

    Acetaminophen is a leading cause of acute liver failure (ALF). Genetic differences might predispose some individuals to develop ALF. In this exploratory study, we evaluated genotype frequency differences among patients enrolled by the ALF Study Group who had developed ALF either intentionally from a single-time-point overdose of acetaminophen (n = 78), unintentionally after chronic high doses of acetaminophen (n = 79), or from causes other than acetaminophen (n = 103). The polymorphisms evaluated included those in genes encoding putative acetaminophen-metabolizing enzymes (UGT1A1, UGT1A6, UGT1A9, UGT2B15, SULT1A1, CYP2E1, and CYP3A5) as well as CD44 and BHMT1. Individuals carrying the CYP3A5 rs776746 A allele were overrepresented among ALF patients who had intentionally overdosed with acetaminophen, with an odds ratio of 2.3 (95% confidence interval, 1.1-4.9; P = 0.034) compared with all other ALF patients. This finding is consistent with the enhanced bioactivation of acetaminophen by the CYP3A5 enzyme. Persons homozygous for the CD44 rs1467558 A allele were also overrepresented among patients who had unintentionally developed ALF from chronic acetaminophen use, with an odds ratio of 4.0 (1.0-17.2, P = 0.045) compared with all other ALF subjects. This finding confirms a prior study that found elevated serum liver enzyme levels in healthy volunteers with the CD44 rs1467558 AA genotype who had consumed high doses of acetaminophen for up to 2 weeks. However, both genetic associations were considered relatively weak, and they were not statistically significant after adjustment for multiple comparisons testing. Nevertheless, both CYP3A5 rs776746 and CD44 rs1467558 warrant further investigation as potential genomic markers of enhanced risk of acetaminophen-induced ALF.

  11. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    PubMed

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  12. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    PubMed Central

    Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Bersani-Amado, Ciomar Aparecida

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP. PMID:28717379

  13. Acetaminophen (paracetamol) for the common cold in adults.

    PubMed

    Li, Siyuan; Yue, Jirong; Dong, Bi Rong; Yang, Ming; Lin, Xiufang; Wu, Taixiang

    2013-07-01

    Acetaminophen is frequently prescribed for treating patients with the common cold, but there is little evidence as to whether it is effective. To determine the efficacy and safety of acetaminophen in the treatment of the common cold in adults. We searched CENTRAL 2013, Issue 1, Ovid MEDLINE (1950 to January week 5, 2013), EMBASE (1980 to February 2013), CINAHL (1982 to February 2013) and LILACS (1985 to February 2013). We included randomised controlled trials (RCTs) comparing acetaminophen to placebo or no treatment in adults with the common cold. Studies were included if the trials used acetaminophen as one ingredient of a combination therapy. We excluded studies in which the participants had complications. Primary outcomes included subjective symptom score and duration of common cold symptoms. Secondary outcomes were overall well being, adverse events and financial costs. Two review authors independently screened studies for inclusion, assessed risk of bias and extracted data. We performed standard statistical analyses. We included four RCTs involving 758 participants. We did not pool data because of heterogeneity in study designs, outcomes and time points. The studies provided sparse information about effects longer than a few hours, as three of four included studies were short trials of only four to six hours. Participants treated with acetaminophen had significant improvements in nasal obstruction in two of the four studies. One study showed that acetaminophen was superior to placebo in decreasing rhinorrhoea severity, but was not superior for treating sneezing and coughing. Acetaminophen did not improve sore throat or malaise in two of the four studies. Results were inconsistent for some symptoms. Two studies showed that headache and achiness improved more in the acetaminophen group than in the placebo group, while one study showed no difference between the acetaminophen and placebo group. None of the included studies reported the duration of common cold

  14. Intravenous Acetaminophen for Postoperative Pain Management in Patients Undergoing Living Laparoscopic Living-Donor Nephrectomy.

    PubMed

    Vu, Van; Baker, William L; Tencza, Elizabeth M; Rochon, Caroline; Sheiner, Patricia A; Martin, Spencer T

    2017-01-01

    Postoperative pain is a common complication of laparoscopic living-donor nephrectomies (LLDNs). To determine whether intravenous (IV) acetaminophen administration post-LLDN influenced length of stay (LOS) when used for pain management. This single-center, retrospective study compared patients undergoing LLDN who had received IV acetaminophen for pain control versus those who did not between June 1, 2011, and November 30, 2015. Patient LOS, 30-day readmissions, frequency of pain assessments, patient-reported pain scores, and opioid administration were assessed. A total of 90 patients were included in the analysis (IV acetaminophen, n = 48; non-IV acetaminophen, n = 42). Patients who did not receive IV acetaminophen were more often older (48.8 ± 12.1 vs 39.3 ± 12.1 years; P = 0.012) and female (71.4% vs 47.9%; P < 0.001). The average LOS was similar between the 2 groups (median = 3.0; interquartile range = [3, 4] vs 3.5 [3, 4]; P = 0.737). The 30-day readmissions were higher in the IV acetaminophen group (16.7%) compared with the group not receiving IV acetaminophen (2.4%; P = 0.033). After the first postoperative day, the frequencies of pain assessments performed were similar among the 2 groups. There was no difference in average pain scores between the groups at any time after LLDN. Patients receiving IV acetaminophen were found to have no improvements in hospital LOS, average pain score, or opioid requirements compared with patients not receiving IV acetaminophen. Patients who received IV acetaminophen were also found to have a higher 30-day readmission rate.

  15. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury.

    PubMed

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2017-01-01

    Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15-60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.

  16. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    PubMed

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p < 0.05). On average, T c decreased by 0.42 ± 0.13 °C from baseline after 120 min of cold exposure (range 0.16-0.57 °C), whereas there was no change in the placebo group (0.01 ± 0.1 °C). T sk , heart rate, thermal sensation, and mean arterial pressure were not different between conditions (p > 0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable

  17. Comparative Analysis of Inpatient Costs for Obstetrics and Gynecology Surgery Patients Treated With IV Acetaminophen and IV Opioids Versus IV Opioid-only Analgesia for Postoperative Pain.

    PubMed

    Hansen, Ryan N; Pham, An T; Lovelace, Belinda; Balaban, Stela; Wan, George J

    2017-10-01

    Recovery from obstetrics and gynecology (OB/GYN) surgery, including hysterectomy and cesarean section delivery, aims to restore function while minimizing hospital length of stay (LOS) and medical expenditures. Our analyses compare OB/GYN surgery patients who received combination intravenous (IV) acetaminophen and IV opioid analgesia with those who received IV opioid-only analgesia and estimate differences in LOS, hospitalization costs, and opioid consumption. We performed a retrospective analysis of the Premier Database between January 2009 and June 2015, comparing OB/GYN surgery patients who received postoperative pain management with combination IV acetaminophen and IV opioids with those who received only IV opioids starting on the day of surgery and continuing up to the second postoperative day. We performed instrumental variable 2-stage least-squares regressions controlling for patient and hospital covariates to compare the LOS, hospitalization costs, and daily opioid doses (morphine equivalent dose) of IV acetaminophen recipients with that of opioid-only analgesia patients. We identified 225 142 OB/GYN surgery patients who were eligible for our study of whom 89 568 (40%) had been managed with IV acetaminophen and opioids. Participants averaged 36 years of age and were predominantly non-Hispanic Caucasians (60%). Multivariable regression models estimated statistically significant differences in hospitalization cost and opioid use with IV acetaminophen associated with $484.4 lower total hospitalization costs (95% CI = -$760.4 to -$208.4; P = 0.0006) and 8.2 mg lower daily opioid use (95% CI = -10.0 to -6.4), whereas the difference in LOS was not significant, at -0.09 days (95% CI = -0.19 to 0.01; P = 0.07). Compared with IV opioid-only analgesia, managing post-OB/GYN surgery pain with the addition of IV acetaminophen is associated with decreased hospitalization costs and reduced opioid use.

  18. Prenatal Use of Acetaminophen and Child IQ: A Danish Cohort Study.

    PubMed

    Liew, Zeyan; Ritz, Beate; Virk, Jasveer; Arah, Onyebuchi A; Olsen, Jørn

    2016-11-01

    Acetaminophen (paracetamol) is the most commonly used pain and fever medication during pregnancy, and recently has been linked to hyperactivity and behavioral problems in children. We examine whether prenatal use of acetaminophen affects children's intelligence quotient (IQ). We studied 1,491 mothers and children enrolled in the Danish National Birth Cohort (DNBC; 1996-2002). Acetaminophen use in pregnancy was prospectively recorded in three telephone interviews. Child IQ was assessed at age 5 with the Wechsler Primary and Preschool Scales of Intelligence-Revised (WPPSI-R) administered by trained psychologists. We employed linear regression analysis, adjusting for maternal IQ and other confounding factors, and assessed interactions between acetaminophen and indications for use. Both maternal fever in pregnancy and acetaminophen use were associated with child IQ. Children born to mothers using acetaminophen without reporting fever scored on average 3.4 points lower (95% confidence interval [CI]: 0.30 to 6.6 points) on performance IQ compared with offspring of mothers who neither experienced fever nor took acetaminophen. Estimated effects for acetaminophen were stronger for first or second trimester use. Children born to mothers reporting fever without using acetaminophen also scored lower on verbal (2.7 points, 95% CI: -0.19, 5.6) and performance IQ (4.3 points, 95% CI: 0.30, 8.3); IQ scores were not affected if mothers with fever used acetaminophen. Maternal acetaminophen use during pregnancy was associated with lower performance IQ in 5-year olds. However, acetaminophen treatment of maternal fever in pregnancy showed an apparent compensatory association with child IQ scores. (See video abstract at http://links.lww.com/EDE/B87.).

  19. A randomized, controlled trial comparing acetaminophen plus ibuprofen versus acetaminophen plus codeine plus caffeine (Tylenol 3) after outpatient breast surgery.

    PubMed

    Mitchell, Alex; McCrea, Patrick; Inglis, Karen; Porter, Geoffrey

    2012-11-01

    The combination of acetaminophen, codeine, and caffeine (Tylenol 3, T3) is a standard postoperative analgesia after breast surgery despite the adverse effects and variable efficacy of narcotics. This study compared the efficacy of a nonnarcotic approach (acetaminophen and ibuprofen; AcIBU) to T3 after outpatient breast surgery. This double-blind randomized equivalence trial involved patients undergoing outpatient breast surgery. Patients were randomized (stratified by procedure type) to receive AcIBU or T3 four times daily for 7 days, or until free of pain. Pain intensity, measured four times daily by the visual analog scale, was the primary outcome; secondary outcomes were pain relief with analgesic, days until freedom from pain, adverse effects, discontinuation of drug as a result of adverse effects, and patient satisfaction. There were 71 patients randomized to AcIBU and 70 patients to T3. Repeated measures analysis showed no significant difference in average pain intensity over 7 days (AcIBU 19.9 mm vs. T3 20.6 mm; P = 0.78). Similarly, there was no significant difference in pain relief with analgesic (P = 0.46). Although no difference in the incidence of adverse effects was observed (P = 0.94), discontinuation of the study drug as a result of adverse effects was more common with T3 (19 % vs. 6 %; P = 0.018). No significant differences were identified in days until freedom from pain or patient satisfaction; 92 % of AcIBU and 89 % of T3 patients were satisfied with their pain control (P = 0.55). AcIBU is a safe, effective method of pain control after outpatient breast surgery. Compared to T3, it provides at least equivalent analgesia and has a more tolerable adverse effect profile.

  20. Acetaminophen and codeine overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002562.htm Acetaminophen and codeine overdose To use the sharing features on this page, please enable JavaScript. Acetaminophen (Tylenol) and codeine is a prescription pain medicine. ...

  1. Hydrazine inhalation hepatotoxicity.

    PubMed

    Kao, Yung Hsiang; Chong, C H; Ng, W T; Lim, D

    2007-10-01

    Abstract Hydrazine is a hazardous chemical commonly used as a reactant in rocket and jet fuel cells. Animal studies have demonstrated hepatic changes after hydrazine inhalation. Human case reports of hydrazine inhalation hepatotoxicity are rare. We report a case of mild hepatotoxicity following brief hydrazine vapour inhalation in a healthy young man, which resolved completely on expectant management.

  2. Hydrocodone and acetaminophen overdose

    MedlinePlus

    ... medlineplus.gov/ency/article/002670.htm Hydrocodone and acetaminophen overdose To use the sharing features on this ... painkiller in the opioid family (related to morphine). Acetaminophen is an over-the-counter medicine used to ...

  3. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.

    PubMed

    Colle, Dirleise; Arantes, Leticia Priscilla; Gubert, Priscila; da Luz, Sônia Cristina Almeida; Athayde, Margareth Linde; Teixeira Rocha, João Batista; Soares, Félix Alexandre Antunes

    2012-06-01

    Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.

  4. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms.

    PubMed

    Ouellet, M; Percival, M D

    2001-03-15

    Acetaminophen has similar analgesic and antipyretic properties to nonsteroidal antiinflammatory drugs (NSAIDs), which act via inhibition of cyclooxygenase enzymes. However, unlike NSAIDs, acetaminophen is at best weakly antiinflammatory. The mechanism by which acetaminophen exerts its therapeutic action has yet to be fully determined, as under most circumstances, acetaminophen is a very weak cyclooxygenase inhibitor. The potency of acetaminophen against both purified ovine cyclooxygenase-1 (oCOX-1) and human cyclooxygenase-2 (hCOX-2) was increased approximately 30-fold by the presence of glutathione peroxidase and glutathione to give IC50 values of 33 microM and 980 microM, respectively. Acetaminophen was found to be a good reducing agent of both oCOX-1 and hCOX-2. The results are consistent with a mechanism of inhibition of acetaminophen in which it acts to reduce the active oxidized form of COX to the resting form. Inhibition would therefore be more effective under conditions of low peroxide concentration, consistent with the known tissue selectivity of acetaminophen.

  5. Acetaminophen dosing for children

    MedlinePlus

    Tylenol ... Acetaminophen is used to help: Reduce aches, pain, sore throat, and fever in children with a cold ... Children's acetaminophen can be taken as liquid or chewable tablet. If your child is under 2 years old, check ...

  6. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae.

    PubMed

    Reuter, Isabel; Knaup, Sabine; Romanos, Marcel; Lesch, Klaus-Peter; Drepper, Carsten; Lillesaar, Christina

    2016-08-01

    First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans.

  7. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites amore » reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats

  8. Therapeutic potential of alpha-ketoglutarate against acetaminophen-induced hepatotoxicity in rats

    PubMed Central

    Mehra, Lalita; Hasija, Yasha; Mittal, Gaurav

    2016-01-01

    Objective: Alpha-ketoglutarate (α-KG) is a cellular intermediary metabolite of Krebs cycle, involved in energy metabolism, amino acid synthesis, and nitrogen transport. It is available over-the-counter and marketed as a nutritional supplement. There is a growing body of evidence to suggest that dietary α-KG has the potential to maintain cellular redox status and thus can protect various oxidative stress induced disease states. The aim of the present study was to investigate the hepatoprotective role of α-KG in acetaminophen (APAP) induced toxicity in rats. Materials and Methods: Animals were divided into three groups of six animals each. Group I (Vehicle control): Normal Saline, Group II (APAP): A single intraperitoneal injection of 0.6 g/kg, Group III (APAP + α-KG): APAP as in Group II with α-KG treatment at a dose of 2 g/kg, orally for 5 days. Then the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) with oxidative stress markers including malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and histopathology were analyzed. Results: The results indicate that APAP caused significant elevations in ALT, AST, ALP, and MDA levels, while GSH, SOD, and CAT were significantly depleted while co-administration of α-KG showed a significant (P < 0.05) reduction in the severity of these damages. Histologically, the liver showed inflammation and necrosis after APAP treatment, which were significantly restored with co-administration of α-KG. Conclusion: These results indicate the possible therapeutic potential of α-KG in protecting liver damage by APAP in rats. PMID:28216953

  9. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Mili, E-mail: milimandal@gmail.com

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressingmore » high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen

  10. Acetaminophen, Butalbital, and Caffeine

    MedlinePlus

    The combination of acetaminophen, Butalbital, Caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 hours ... explain any part you do not understand. Take acetaminophen, Butalbital, Caffeine exactly as directed. Do not take ...

  11. Overdose pattern and outcome in paracetamol-induced acute severe hepatotoxicity

    PubMed Central

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2011-01-01

    AIMS Paracetamol (acetaminophen) hepatotoxicity is the commonest cause of acute liver failure (ALF) in the UK. Conflicting data regarding the outcomes of paracetamol-induced ALF resulting from different overdose patterns are reported. METHODS Using prospectively defined criteria, we have analysed the impact of overdose pattern upon outcome in a cohort of 938 acute severe liver injury patients admitted to the Scottish Liver Transplantation Unit. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced acute severe liver injury. Of these patients, 500 (75.4%) had taken an intentional paracetamol overdose, whilst 110 (16.6%) had taken an unintentional overdose. No clear overdose pattern could be determined in 53 (8.0%). Unintentional overdose patients were significantly older, more likely to abuse alcohol, and more commonly overdosed on compound narcotic/paracetamol analgesics compared with intentional overdose patients. Unintentional overdoses had significantly lower admission paracetamol and alanine aminotransferase concentrations compared with intentional overdoses. However, unintentional overdoses had greater organ dysfunction at admission, and subsequently higher mortality (unintentional 42/110 (38.2%), intentional 128/500 (25.6%), P < 0.001). The King's College poor prognostic criteria had reduced sensitivity in unintentional overdoses (77.8%, 95% confidence intervals (CI) 62.9, 88.8) compared with intentional overdoses (89.9%, 95% CI 83.4, 94.5). Unintentional overdose was independently predictive of death or liver transplantation on multivariate analysis (odds ratio 1.91 (95% CI 1.07, 3.43), P= 0.032). CONCLUSIONS Unintentional paracetamol overdose is associated with increased mortality compared with intentional paracetamol overdose, despite lower admission paracetamol concentrations. Alternative prognostic criteria may be required for unintentional paracetamol overdoses. PMID:21219409

  12. Silencing Glycogen Synthase Kinase-3β Inhibits Acetaminophen Hepatotoxicity and Attenuates JNK Activation and Loss of Glutamate Cysteine Ligase and Myeloid Cell Leukemia Sequence 1*

    PubMed Central

    Shinohara, Mie; Ybanez, Maria D.; Win, Sanda; Than, Tin Aung; Jain, Shilpa; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2010-01-01

    Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver. PMID:20061376

  13. Limited Knowledge of Acetaminophen in Patients with Liver Disease.

    PubMed

    Saab, Sammy; Konyn, Peter G; Viramontes, Matthew R; Jimenez, Melissa A; Grotts, Jonathan F; Hamidzadah, Wally; Dang, Veronica P; Esmailzadeh, Negin L; Choi, Gina; Durazo, Francisco A; El-Kabany, Mohamed M; Han, Steven-Huy B; Tong, Myron J

    2016-12-28

    Background and Aims: Unintentional acetaminophen overdose remains the leading cause of acute liver failure in the United States. Patients with underlying liver disease are at higher risk of poor outcomes from acetaminophen overdose. Limited knowledge of acetaminophen may be a preventable contributor to elevated rates of overdose and thus acute liver failure. The purpose of this study is to assess knowledge of acetaminophen dosing and presence of acetaminophen in common combination products in patients with liver disease. Methods: We performed a cross-sectional study of patients with liver disease at the Pfleger Liver Institute at the University of California, Los Angeles between June 2015 and August 2016. Patients completed a demographic questionnaire and an acetaminophen knowledge survey. Additional information was obtained from the medical record. Results: Of 401 patients with liver disease, 30 (15.7%) were able to correctly identify that people without liver disease can safely take up to 4 g/day of acetaminophen. The majority of patients (79.9%-86.8%) did not know that Norco® (hydrocone/acetaminophen), Vicodin® (hydrocone/acetaminophen) and Percocet® (oxycodone/acetaminophen) contained acetaminophen. Only 45.3% of the patients knew that Tylenol® #3 contained acetaminophen. Conclusions: We conclude that patients with liver disease have critically low levels of knowledge of acetaminophen, putting them at risk both of acetaminophen overdose, as well as undermedication, and inadequate management of chronic pain. We recommend an increase in education efforts regarding acetaminophen dosage and its safety in the setting of liver disease. Increasing education for those at risk of low acetaminophen knowledge is essential to minimizing acetaminophen overdose rates and optimizing pain management.

  14. Limited Knowledge of Acetaminophen in Patients with Liver Disease

    PubMed Central

    Saab, Sammy; Konyn, Peter G.; Viramontes, Matthew R.; Jimenez, Melissa A.; Grotts, Jonathan F.; Hamidzadah, Wally; Dang, Veronica P.; Esmailzadeh, Negin L.; Choi, Gina; Durazo, Francisco A.; El-Kabany, Mohamed M.; Han, Steven-Huy B.; Tong, Myron J.

    2016-01-01

    Abstract Background and Aims: Unintentional acetaminophen overdose remains the leading cause of acute liver failure in the United States. Patients with underlying liver disease are at higher risk of poor outcomes from acetaminophen overdose. Limited knowledge of acetaminophen may be a preventable contributor to elevated rates of overdose and thus acute liver failure. The purpose of this study is to assess knowledge of acetaminophen dosing and presence of acetaminophen in common combination products in patients with liver disease. Methods: We performed a cross-sectional study of patients with liver disease at the Pfleger Liver Institute at the University of California, Los Angeles between June 2015 and August 2016. Patients completed a demographic questionnaire and an acetaminophen knowledge survey. Additional information was obtained from the medical record. Results: Of 401 patients with liver disease, 30 (15.7%) were able to correctly identify that people without liver disease can safely take up to 4 g/day of acetaminophen. The majority of patients (79.9%–86.8%) did not know that Norco® (hydrocone/acetaminophen), Vicodin® (hydrocone/acetaminophen) and Percocet® (oxycodone/acetaminophen) contained acetaminophen. Only 45.3% of the patients knew that Tylenol® #3 contained acetaminophen. Conclusions: We conclude that patients with liver disease have critically low levels of knowledge of acetaminophen, putting them at risk both of acetaminophen overdose, as well as undermedication, and inadequate management of chronic pain. We recommend an increase in education efforts regarding acetaminophen dosage and its safety in the setting of liver disease. Increasing education for those at risk of low acetaminophen knowledge is essential to minimizing acetaminophen overdose rates and optimizing pain management. PMID:28097095

  15. Dental pain as a risk factor for accidental acetaminophen overdose: a case-control study.

    PubMed

    Vogel, Jody; Heard, Kennon J; Carlson, Catherine; Lange, Chad; Mitchell, Garrett

    2011-11-01

    Patients frequent take acetaminophen to treat dental pain. One previous study found a high rate of overuse of nonprescription analgesics in an emergency dental clinic. The purpose of this study is to determine if patients with dental pain are more likely to be treated for accidental acetaminophen poisoning than patients with other types of pain. We conducted a case-control study at 2 urban hospitals. Cases were identified by chart review of patients who required treatment for accidental acetaminophen poisoning. Controls were self-reported acetaminophen users taking therapeutic doses identified during a survey of emergency department patients. For our primary analysis, the reason for taking acetaminophen was categorized as dental pain or not dental pain. Our primary outcome was the odds ratio of accidental overdose to therapeutic users after adjustment for age, sex, alcoholism, and use of combination products using logistic regression. We identified 73 cases of accidental acetaminophen poisoning and 201 therapeutic users. Fourteen accidental overdose patients and 4 therapeutic users reported using acetaminophen for dental pain. The adjusted odds ratio for accidental overdose due to dental pain compared with other reasons for use was 12.8 (95% confidence interval, 4.2-47.6). We found that patients with dental pain are at increased risk to accidentally overdose on acetaminophen compared with patients taking acetaminophen for other reasons. Emergency physicians should carefully question patients with dental pain about overuse of analgesics. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and livermore » injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1

  17. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  18. Acetaminophen use and asthma in children.

    PubMed

    Sakulchit, Teeranai; Goldman, Ran D

    2017-03-01

    Question A child with a history of asthma came to my clinic with acute fever. I have heard that acetaminophen might be associated with exacerbation of asthma. Is it safe if I recommend acetaminophen for this child? Answer Most studies suggest an association between acetaminophen use in children and development of asthma later in childhood. However, several confounding factors in study design might contribute to this positive correlation, and without a prospective controlled trial, confirming this finding is challenging. If children have a known history of asthma, it is likely safe to administer a single dose of acetaminophen without concern of precipitating adverse respiratory symptoms. Regular use of acetaminophen to relieve fever or pain does not seem to exacerbate asthma in children more than ibuprofen does. Copyright© the College of Family Physicians of Canada.

  19. Withaferin-A Reduces Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Jadeja, Ravirajsinh N; Urrunaga, Nathalie H; Dash, Suchismita; Khurana, Sandeep; Saxena, Neeraj Kumar

    2015-09-01

    Withaferin-A (WA) has anti-oxidant activities however, its therapeutic potential in acetaminophen (APAP) hepatotoxicity is unknown. We performed a proof-of-concept study to assess the therapeutic potential of WA in a mouse model that mimics APAP-induced liver injury (AILI) in humans. Overnight fasted C57BL/6NTac (5-6 wk. old) male mice received 200 mg/kg APAP intraperitoneally (i.p.). After 1 h mice were treated with 40 mg/kg WA or vehicle i.p., and euthanized 4 and 16 h later; their livers were harvested and serum collected for analysis. At 4 h, compared to vehicle-treated mice, WA-treated mice had reduced serum ALT levels, hepatocyte necrosis and intrahepatic hemorrhage. All APAP-treated mice had reduced hepatic glutathione (GSH) levels however, reduction in GSH was lower in WA-treated when compared to vehicle-treated mice. Compared to vehicle-treated mice, livers from WA-treated mice had reduced APAP-induced JNK activation, mitochondrial Bax translocation, and nitrotyrosine generation. Compared to vehicle-treated mice, WA-treated mice had increased hepatic up-regulation of Nrf2, Gclc and Nqo1, and down-regulation of Il-6 and Il-1β. The hepatoprotective effect of WA persisted at 16 h. Compared to vehicle-treated mice, WA-treated mice had reduced hepatocyte necrosis and hepatic expression of Il-6, Tnf-α and Il-1β, increased hepatic Gclc and Nqo1 expression and GSH levels, and reduced lipid peroxidation. Finally, in AML12 hepatocytes, WA reduced H₂O₂-induced oxidative stress and necrosis by preventing GSH depletion. Collectively, these data show mechanisms whereby WA reduces necrotic hepatocyte injury, and demonstrate that WA has therapeutic potential in AILI. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The Social Side Effects of Acetaminophen

    NASA Astrophysics Data System (ADS)

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical

  1. Tobramycin-induced hepatotoxicity.

    PubMed

    Nisly, Sarah A; Ray, Shaunta' M; Moye, Robert A

    2007-12-01

    To report a case of tobramycin-induced hepatotoxicity. A 20-year-old female was hospitalized for treatment of Pseudomonas aeruginosa bacteremia and osteomyelitis. Empiric intravenous antibiotic therapy with piperacillin/tazobactam, vancomycin, and ciprofloxacin was started, and based on the results of culture and sensitivity testing, was changed to intravenous ceftazidime and tobramycin 70 mg every 8 hours on hospital day 3. Liver enzyme levels then increased over days 3-6. Tests for hepatitis A, B, and C were all nonreactive, and HIV testing was negative. On day 8, therapy was changed from ceftazidime to piperacillin/tazobactam and the tobramycin dose was increased to 100 mg every 8 hours. Due to a continued increase in total bilirubin, aspartate aminotransferase, and alanine aminotransferase, piperacillin/tazobactam was discontinued and aztreonam was started on day 10. All antibiotics were stopped on day 12 and the elevated liver parameters began to decrease. Aztreonam and ciprofloxacin were restarted on day 16, and most laboratory test results returned to baseline levels by day 19; total bilirubin and alkaline phosphatase decreased to lower than baseline values. This case illustrates a possible occurrence of tobramycin-induced hepatotoxicity. Liver enzymes rose when tobramycin therapy was initiated, markedly increased when the tobramycin dose was increased, then resolved upon discontinuation of therapy. Other medication-related causes were ruled out by temporal relationship or rechallenge (aztreonam). Use of the Naranjo probability scale indicated a possible relationship between hepatotoxicity and tobramycin therapy. Other adverse reaction scales specific for evaluation of drug-induced liver disease were also used. Both the Council for International Organizations of Medical Sciences and Maria and Victorino scales indicated a probable likelihood of tobramycin-induced hepatotoxicity. This patient was not rechallenged with tobramycin due to the highly suggestive

  2. Acetaminophen attenuates error evaluation in cortex.

    PubMed

    Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C

    2016-06-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Botanicals and Hepatotoxicity.

    PubMed

    Roytman, Marina M; Poerzgen, Peter; Navarro, Victor

    2018-06-19

    The use of botanicals, often in the form of multi-ingredient herbal dietary supplements (HDS), has grown tremendously in the past three decades despite their unproven efficacy. This is paralleled by an increase in dietary supplement-related health complications, notably hepatotoxicity. This article reviews the demographics and motivations of dietary supplement (DS) consumers and the regulatory framework for DS in the US and other developed countries. It examines in detail three groups of multi-ingredient HDS associated with hepatotoxicity: OxyElite Pro (two formulations), green tea extract-based DS, and "designer anabolic steroids." These examples illustrate the difficulties in identifying and adjudicating causality of suspect compound(s) of multi-ingredient HDS-associated liver injury in the clinical setting. The article outlines future directions for further study of HDS-associated hepatotoxicity as well as measures to safeguard the consumer against it. © 2018, The American Society for Clinical Pharmacology and Therapeutics.

  4. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  5. IL-1RN and IL-1β Polymorphism and ARV-Associated Hepatotoxicity

    PubMed Central

    Samani, Dharmesh; Nema, Vijay; Gangakhedkar, R. R.

    2018-01-01

    The severity of hepatic injury depends upon cytokines. Previous studies associated IL-1RN allele 2 with IL-1β production. Hence, we examined the association of IL-1 RN and IL-1β polymorphisms with ARV-associated hepatotoxicity. Genotyping of IL-1RN (VNTR), IL-1β (-511C/T) polymorphisms was done in 162 HIV-infected patients, 34 with ARV hepatotoxicity, 128 without hepatotoxicity, and 152 healthy controls using PCR and PCR-RFLP method. The haplotypes 1T and 2C enhanced the risk for severe hepatotoxicity (OR = 1.41, P = 0.25; OR = 1.67, P = 0.31). IL-1β-511TT genotype significantly represented among tobacco using HIV-infected individuals compared to nonusers (OR = 3.74, P = 0.05). IL-1β-511TT genotype among alcohol users increased the risk for hepatotoxicity (OR = 1.80, P = 0.90). IL-1β-511CT and -511TT genotypes overrepresented in alcohol using HIV-infected individuals (OR = 2.29, P = 0.27; OR = 2.64, P = 0.19). IL-RN 2/2 and 1/3 genotypes represented higher in nevirapine using hepatotoxicity patients (OR = 1.42, P = 0.64, OR = 8.79, P = 0.09). IL-1β-511CT and -511 TT genotypes among nevirapine users enhanced the risk for severe hepatotoxicity (OR = 4.29, P = 0.20; OR = 1.95, P = 0.56). IL-1β-511CT and -511TT genotypes were overrepresented in combined nevirapine and alcohol using HIV-infected individuals as compared to nevirapine users and alcohol nonusers (OR = 2.56, P = 0.26; OR = 2.84, P = 0.24). IL-1β-511TT genotype with tobacco, alcohol, and nevirapine usage revealed a trend of risk for the development of ARV-associated hepatotoxicity and its severity.

  6. Warfarin-acetaminophen drug interaction revisited.

    PubMed

    Shek, K L; Chan, L N; Nutescu, E

    1999-10-01

    Physicians and pharmacists routinely advise patients receiving warfarin to take acetaminophen for pain or fever because of its relative safety; however, a recent study questioned the safety of such practice. A comprehensive search of MEDLINE and IPA for human studies and case reports from 1966-1999 revealed evidence that acetaminophen may potentiate the effect of warfarin by a mechanism that has yet to be elucidated. Due to lack of a safer alternative, acetaminophen still should be the analgesic and antipyretic of choice in patients taking warfarin, as long as excessive amounts and prolonged administration (> 1.3 g acetaminophen/day for > 2 wks) are avoided. With the high degree of interpatient variability and the unpredictability of various drug-drug interactions with warfarin, close and frequent monitoring of international normalized ratios is the key for safe oral anticoagulation therapy.

  7. A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations

    PubMed Central

    Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars

    2017-01-01

    Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932

  8. Acetaminophen-induced liver injury is attenuated in transgenic fat-1 mice endogenously synthesizing long-chain n-3 fatty acids.

    PubMed

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-induced hepatotoxicity is the most commonly cause of drug-induced liver failure characterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFA) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Apocynum venetum Attenuates Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Xie, Wenyan; Chen, Chen; Jiang, Zhihui; Wang, Jian; Melzig, Matthias F; Zhang, Xiaoying

    2015-01-01

    Apocynum venetum L. (A. venetum) has long been used in oriental folk medicine for the treatment of some liver diseases; however, the underlying mechanisms remain to be fully elucidated. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. In this study, we investigated the potential protective effect of A. venetum leaf extract (ALE) against APAP-induced hepatotoxicity. Mice were intragastrically administered with ALE once daily for 3 consecutive days prior to receiving a single intraperitoneal injection of APAP. The APAP group showed severe liver injury characterized by the noticeable fluctuations in the following parameters: serum aminotransferases; hepatic malondialdehyde (MDA), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione (GSH). These liver damages induced by APAP were significantly attenuated by ALE pretreatments. A collective analysis of histopathological examination, DNA laddering and western blot for caspase-3 and cytochrome c indicated that the ALE is also capable of preventing APAP-induced hepatocyte death. Hyperoside, isoquercitrin and their derivatives have been identified as the major components of ALE using HPLC-MS/MS. Taken together, the A. venetum possesses hepatoprotective effects partially due to its anti-oxidant action.

  10. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    PubMed Central

    2011-01-01

    Background Acetaminophen-cysteine adducts (APAP-CYS) are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from non-acetaminophen hepatotoxins have not been well characterized. The objective of this study is to describe APAP-CYS concentrations in these clinical settings as well as to further characterize the concentrations observed following acetaminophen overdose. Methods Samples were collected during three clinical trials in which subjects received 4 g/day of acetaminophen and during an observational study of acetaminophen overdose patients. Trial 1 consisted of non-drinkers who received APAP for 10 days, Trial 2 consisted of moderate drinkers dosed for 10 days and Trial 3 included subjects who chronically abuse alcohol dosed for 5 days. Patients in the observational study were categorized by type of acetaminophen exposure (single or repeated). Serum APAP-CYS was measured using high pressure liquid chromatography with electrochemical detection. Results Trial 1 included 144 samples from 24 subjects; Trial 2 included 182 samples from 91 subjects and Trial 3 included 200 samples from 40 subjects. In addition, we collected samples from 19 subjects with acute acetaminophen ingestion, 7 subjects with repeated acetaminophen exposure and 4 subjects who ingested another hepatotoxin. The mean (SD) peak APAP-CYS concentrations for the Trials were: Trial 1- 0.4 (0.20) nmol/ml, Trial 2- 0.1 (0.09) nmol/ml and Trial 3- 0.3 (0.12) nmol/ml. APAP-CYS concentrations varied substantially among the patients with acetaminophen toxicity (0.10 to 27.3 nmol/ml). No subject had detectable APAP-CYS following exposure to

  11. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte

    2012-03-15

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treatedmore » biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.« less

  12. Recurrent Pyroglutamic Acidosis Related to Therapeutic Acetaminophen.

    PubMed

    Alhourani, Hazem M; Kumar, Aneel; George, Lekha K; Sarwar, Tahira; Wall, Barry M

    2018-04-01

    Pyroglutamic acid, an intermediate in glutathione metabolism, can lead to elevated anion gap metabolic acidosis as rare complication of acetaminophen therapy in adults. Acquired pyroglutamic acidosis has been observed primarily in settings associated with glutathione deficiency. Risk factors for glutathione deficiency include critical illness, chronic liver or kidney disease, advanced age, female gender, alcohol abuse, malnutrition, pregnancy, antiepileptic drugs, and chronic acetaminophen use. Diagnosis of pyroglutamic acidosis requires both the exclusion of common etiologies of increased anion gap metabolic acidosis and a high index of suspicion. Treatment involves discontinuation of acetaminophen, supportive care, and addressing risk factors for glutathione deficiency. The current report describes an ambulatory patient with multiple risk factors for glutathione deficiency, who developed recurrent pyroglutamic acidosis due to acetaminophen use with therapeutic blood levels of acetaminophen. Published by Elsevier Inc.

  13. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies.

    PubMed

    Cao, Lei; Kwara, Awewura; Greenblatt, David J

    2017-12-01

    Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC 50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. Inhibition of human CYP activity by luteolin and quercetin occurred with IC 50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity. © 2017 Royal Pharmaceutical Society.

  14. Prenatal Exposure to Acetaminophen and Risk of ADHD.

    PubMed

    Ystrom, Eivind; Gustavson, Kristin; Brandlistuen, Ragnhild Eek; Knudsen, Gun Peggy; Magnus, Per; Susser, Ezra; Davey Smith, George; Stoltenberg, Camilla; Surén, Pål; Håberg, Siri E; Hornig, Mady; Lipkin, W Ian; Nordeng, Hedvig; Reichborn-Kjennerud, Ted

    2017-11-01

    To estimate the association between maternal use of acetaminophen during pregnancy and of paternal use before pregnancy with attention-deficit/hyperactivity disorder (ADHD) in offspring while adjusting for familial risk for ADHD and indications of acetaminophen use. Diagnoses were obtained from the Norwegian Patient Registry for 112 973 offspring from the Norwegian Mother and Child Cohort Study, including 2246 with ADHD. We estimated hazard ratios (HRs) for an ADHD diagnosis by using Cox proportional hazard models. After adjusting for maternal use of acetaminophen before pregnancy, familial risk for ADHD, and indications of acetaminophen use, we observed a modest association between any prenatal maternal use of acetaminophen in 1 (HR = 1.07; 95% confidence interval [CI] 0.96-1.19), 2 (HR = 1.22; 95% CI 1.07-1.38), and 3 trimesters (HR = 1.27; 95% CI 0.99-1.63). The HR for more than 29 days of maternal acetaminophen use was 2.20 (95% CI 1.50-3.24). Use for <8 days was negatively associated with ADHD (HR = 0.90; 95% CI 0.81-1.00). Acetaminophen use for fever and infections for 22 to 28 days was associated with ADHD (HR = 6.15; 95% CI 1.71-22.05). Paternal and maternal use of acetaminophen were similarly associated with ADHD. Short-term maternal use of acetaminophen during pregnancy was negatively associated with ADHD in offspring. Long-term maternal use of acetaminophen during pregnancy was substantially associated with ADHD even after adjusting for indications of use, familial risk of ADHD, and other potential confounders. Copyright © 2017 by the American Academy of Pediatrics.

  15. Protection afforded by pre- or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice.

    PubMed

    Shimizu, Daisuke; Ishitsuka, Yoichi; Miyata, Keishi; Tomishima, Yoshiro; Kondo, Yuki; Irikura, Mitsuru; Iwawaki, Takao; Oike, Yuichi; Irie, Tetsumi

    2014-09-01

    Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is a widely used analgesic/antipyretic drug with few adverse effects at therapeutic doses; suicidal or unintentional overdose of APAP frequently induces severe hepatotoxicity. To explore a new and effective antidote for APAP hepatotoxicity, this study examined the effects of sodium 4-phenylbutyrate (4-PBA) on liver injury induced by APAP overdose in mice. Liver injury was induced in C57BL/6 male mice by intraperitoneal injection of APAP (400mg/kg). The effects of 4-PBA (100-200mg/kg) treatment at 1h before the APAP injection were evaluated with serum alanine aminotransferase (ALT) and blood ammonia levels, hepatic pathological changes, including histopathology, DNA damage, nitrotyrosine formation, and mRNA or protein expression involved in the development of hepatotoxicity, such as X-box binding protein-1 (XBP1), c-Jun N-terminal kinase (JNK), C/EBP homologous protein (CHOP) and B-cell lymphoma 2 interacting mediator of cell death (Bim). In addition, glutathione depletion and CYP2E1 protein expression, which are measures of the metabolic conversion of APAP to a toxic metabolite, were examined. Furthermore, we examined the effects of post-treatment with 4-PBA against APAP-induced hepatotoxicity in mice. When administered at 1h before APAP injection, 4-PBA significantly prevented the increase in serum ALT and blood ammonia levels, centrilobular necrosis of hepatocytes, DNA fragmentation, and nitrotyrosine formation induced by APAP in mice. 4-PBA also inhibited hepatic Xbp1 mRNA splicing and JNK phosphorylation induced by APAP, but did not suppress CHOP and Bim mRNA and protein expression. In addition, 4-PBA had little effect on hepatic glutathione depletion and CYP2E1 expression, parameters of toxic APAP metabolite production. Post-treatment with 4-PBA administration at 1 or 2h after APAP injection also attenuated the increase in serum ALT and blood ammonia levels and hepatic pathological changes in APAP

  16. Comparison of antipyretic effectiveness of equal doses of rectal and oral acetaminophen in children.

    PubMed

    Karbasi, Sedigha Akhavan; Modares-Mosadegh, Moneyreh; Golestan, Motahhareh

    2010-01-01

    To compare a dose of oral and rectal acetaminophen and to evaluate acceptability of rectal acetaminophen, since oral and rectal acetaminophen is widely used as an antipyretic agent in febrile children and the comparative effectiveness of these two preparations is not well established. In this prospective parallel group designed study, 60 children who presented to the emergency department or outpatient pediatric clinic at a tertiary hospital and aged from 6 months to 6 years with rectal temperature over 39 degrees C were enrolled. Patients were randomly assigned to two equal-sized groups. Group 1 received 15 mg/kg acetaminophen rectally and group 2 received the same dose orally. Temperature was recorded at baseline and 1 and 3 hours after drug administration. In the first group, mean decrease in temperature, 1 and 3 hours after administration of acetaminophen was 1.07+/-0.16 (p < 0.001) and 1.74+/-0.25 degrees C (p < 0.001), respectively, and in the second group it was 1.98+/-0.19 (p < 0.001) and 1.70+/-0.14 degrees C (p < 0.001), respectively (p > 0.05). Rectal and oral acetaminophen preparations have equal antipyretic effectiveness in children. The rectal route proved to be as acceptable as the oral one among parents.

  17. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*.

    PubMed

    Possamai, Lucia A; McPhail, Mark J W; Quaglia, Alberto; Zingarelli, Valentina; Abeles, R Daniel; Tidswell, Robert; Puthucheary, Zudin; Rawal, Jakirty; Karvellas, Constantine J; Leslie, Elaine M; Hughes, Robin D; Ma, Yun; Jassem, Wayel; Shawcross, Debbie L; Bernal, William; Dharwan, Anil; Heaton, Nigel D; Thursz, Mark; Wendon, Julia A; Mitry, Ragai R; Antoniades, Charalambos G

    2013-11-01

    To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. A prospective observational study in two tertiary liver transplant units. Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. Hepatocellular apoptosis occurs

  18. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats.

    PubMed

    Folarin, Rachael O; Omirinde, Jamiu O; Bejide, Ronald; Isola, Tajudeen O; Usende, Levi I; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for 7 days and then intoxicated as in Group 2 on the 8th day. Groups 5 and 6 received similar oral doses of Cuscuta australis stem extracts for 7 days and then intoxicated as in Groups 3 and 4. Group 2 rats showed severe periportal hepatic necrosis, significantly elevated serum hepatic injury markers, markedly increased lipid peroxidation, and decreased hepatic antioxidant enzymes activities. Remarkably, Cuscuta australis (seed and stem) extract pretreatments in Groups 3, 4, 5, and 6, most especially, the stem extract pretreatment in Groups 5 and 6, improved better the hepatic histoarchitecture, the hepatocellular, and the oxidative stress injury markers in a dose-dependent manner. Conclusively, ethanol extractions of Cuscuta australis stem appear to protect the liver from acetaminophen intoxication better than the seed counterpart.

  19. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats

    PubMed Central

    Folarin, Rachael O.; Omirinde, Jamiu O.; Bejide, Ronald; Isola, Tajudeen O.; Usende, Levi I.; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for 7 days and then intoxicated as in Group 2 on the 8th day. Groups 5 and 6 received similar oral doses of Cuscuta australis stem extracts for 7 days and then intoxicated as in Groups 3 and 4. Group 2 rats showed severe periportal hepatic necrosis, significantly elevated serum hepatic injury markers, markedly increased lipid peroxidation, and decreased hepatic antioxidant enzymes activities. Remarkably, Cuscuta australis (seed and stem) extract pretreatments in Groups 3, 4, 5, and 6, most especially, the stem extract pretreatment in Groups 5 and 6, improved better the hepatic histoarchitecture, the hepatocellular, and the oxidative stress injury markers in a dose-dependent manner. Conclusively, ethanol extractions of Cuscuta australis stem appear to protect the liver from acetaminophen intoxication better than the seed counterpart. PMID:27433518

  20. Bicarbonate-activated persulfate oxidation of acetaminophen.

    PubMed

    Jiang, Mengdi; Lu, Junhe; Ji, Yuefei; Kong, Deyang

    2017-06-01

    Persulfate (PS) is widely used as an oxidant for in situ chemical remediation of contaminated groundwater. In this study we demonstrated for the first time that PS could be activated by bicarbonate. Acetaminophen was used as the probe compound to examine the reactivity of PS/bicarbonate system. It was found that acetaminophen could be effectively transformed and the reaction rate appeared pseudo-first-order to the concentrations of both acetaminophen and PS. Radical scavenger tests indicated that neither free radicals (SO 4 - and HO) nor superoxide (O 2 - ) was responsible for acetaminophen transformation. Generation of singlet oxygen ( 1 O 2 ) was verified using furfuryl alcohol (FFA) as a probe. Formation of 1 O 2 was further quantified in D 2 O fortified solution based on kinetic solvent isotopic effect (KSIE) but it was found that 1 O 2 contributed only 51.4% of the total FFA transformation. The other 48.6% was presumed to be ascribed to the reaction with peroxymonocarbonate (HCO 4 - ). However, the transformation of acetaminophen was mostly due to the reaction with HCO 4 - but not 1 O 2 . Instead of degradation, HCO 4 - oxidized acetaminophen via a one-electron abstraction mechanism resulting in the generation of acetaminophen radicals which coupled to each other to form dimers and trimers. HCO 4 - also hydrolyzed rapidly to form hydrogen peroxide (H 2 O 2 ) which led to the formation of 1 O 2 , during which O 2 - was a key intermediates. Because bicarbonate is ubiquitously presented in groundwater, the findings of this research provide important insights into the fundamental processes involved in PS oxidation in subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Management of acute paracetamol (acetaminophen) toxicity: a standardised proforma improves risk assessment and overall risk stratification by emergency medicine doctors.

    PubMed

    McQuade, David J; Aknuri, Srikanth; Dargan, Paul I; Wood, David M

    2012-12-01

    Paracetamol (acetaminophen) poisoning is the most common toxicological presentation in the UK. Doctors managing patients with paracetamol poisoning need to assess the risk of their patient developing hepatotoxicity before determining appropriate treatment. Patients deemed to be at 'high risk' of hepatotoxicity have lower treatment thresholds than those deemed to be at 'normal risk'. Errors in this process can lead to harmful or potentially fatal under or over treatment. To determine how well treating doctors assess risk factor status and whether a standardised proforma is useful in the risk stratification process. Retrospective 12-month case note review of all patients presenting with paracetamol poisoning to our large inner-city emergency department. Data were collected on the documentation of risk factors, the presence of a local hospital proforma and treatment outcomes. 249 presentations were analysed and only 59 (23.7%) had full documentation of all the risk factors required to make a complete risk assessment. 56 of the 59 (94.9%) had the local hospital proforma included in the notes; the remaining 3 (5.1%) had full documentation of risk factors despite the absence of a proforma. A local hospital proforma was more likely to be included in the emergency department notes in those with 'adequate documentation' (78 out of 120 (65%)) than for those with 'inadequate documentation' (16 out of 129 (12.4%)); X(2), p<0.001. Despite a low overall uptake of the proforma, use of a standardised proforma significantly increased the likelihood of documentation of the risk factors which increase risk for hepatotoxicity following paracetamol poisoning.

  2. Acetaminophen: a practical pharmacologic overview.

    PubMed Central

    Jackson, C H; MacDonald, N C; Cornett, J W

    1984-01-01

    Acetaminophen is an effective analgesic and antipyretic agent with few adverse effects when used in recommended dosages. The drug is metabolized mainly in the liver, and the several end products have no harmful effects. An intermediate compound in a minor metabolic pathway, however, is toxic; it is normally inactivated by glutathione. In the case of an acetaminophen overdose the hepatic stores of glutathione seem to become depleted, leaving the toxic intermediate free to damage liver tissue. Such damage is unlikely to occur unless the plasma concentration of acetaminophen peaks above 150 micrograms/mL--a level far in excess of the 5 to 20 micrograms/mL achieved with therapeutic doses of the drug. Long-term therapeutic use of acetaminophen does not appear to be associated with liver damage, although some case reports suggest the possibility. Acetaminophen poisoning follows an acute overdose and, if untreated, is manifested clinically by an initial phase of nonspecific signs and symptoms, a latent period in which the liver transaminase levels rise and then, 3 to 5 days after the ingestion, signs of more serious hepatic dysfunction. Most patients do not progress beyond the first or second phase. They and those who survive the third phase recover with no residual injury to the liver. Appropriate antidotal therapy markedly reduces the severity of the initial damage. PMID:6733646

  3. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented whenmore » animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2

  4. Association Between Prenatal Acetaminophen Exposure and Future Risk of Attention Deficit/Hyperactivity Disorder in Children.

    PubMed

    Hoover, Rebecca M; Hayes, V Autumn Gombert; Erramouspe, John

    2015-12-01

    To evaluate the effect of prenatal acetaminophen exposure on the future development of attention deficit/hyperactivity disorder (ADHD) in children. Literature searches of MEDLINE (1975 to June 2015), International Pharmaceutical Abstracts (1975 to June 2015), and Cochrane Database (publications through June 2015) for prospective clinical trials assessing the relationship of prenatal acetaminophen exposure and the development of attention deficit disorders or hyperactivity. Studies comparing self-reported maternal acetaminophen use during pregnancy to development of ADHD or ADHD-like behaviors in offspring between the ages of 3 and 12 years. Four studies examining the effects of prenatal acetaminophen exposure on subsequent ADHD behaviors were identified. Of these, one early study found no link to ADHD behaviors while the other studies found statistically significant correlations with the most prominent being a study finding a higher risk for using ADHD medications (hazard ratio = 1.29; 95% CI, 1.15-1.44) or having ADHD-like behaviors at age 7 years as determined by the Strengths and Difficulties Questionnaire (risk ratio = 1.13; 95% CI, 1.01-1.27) in children whose mothers used acetaminophen during pregnancy. While there does appear to be a mild correlation between prenatal acetaminophen use and the development of ADHD symptoms in children, current data do not provide sufficient evidence that prenatal acetaminophen exposure leads to development of ADHD symptoms late in life. Acetaminophen is a preferred option for pain management during pregnancy when compared with other medications such as nonsteroidal anti-inflammatory drugs or opioids for pyretic or pain relief. © The Author(s) 2015.

  5. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Acute acetaminophen overdose is associated with dose-dependent hypokalaemia: a prospective study of 331 patients.

    PubMed

    Waring, W Stephen; Stephen, Alexandra F L; Malkowska, Aleks M; Robinson, Oliver D G

    2008-03-01

    Hypokalaemia is a recognized complication of acute acetaminophen overdose. It is unclear whether this might be a pharmacological effect of acetaminophen, or due to association with confounding factors. The present study sought to better characterize the relationship between acetaminophen concentrations and risk of hypokalaemia. A prospective study of patients received N-acetylcysteine treatment within 15 hr of acute acetaminophen ingestion. Serum potassium concentrations were determined before and after N-acetylcysteine. Serum acetaminophen concentrations were used to indicate overall drug exposure by comparison to the Rumack-Matthew nomogram. Hypokalaemia was pre-defined by serum concentrations <3.5 mmol/l, and groups compared by Mann-Whitney tests. There were 331 patients. Median (95% confidence interval) fall in serum potassium concentration after N-acetylcysteine was 0.05 mmol/l (-0.11-0.30 mmol/l) if acetaminophen concentrations were below the 'high-risk' treatment line, 0.30 mmol/l (0.17-0.40 mmol/l) if between the 'high-risk' and 'normal' treatment lines (P = 0.0358), and 0.40 mmol/l (0.20-0.50 mmol/l) if above the 'normal' treatment line (P = 0.0136). A receiver operating characteristic showed that high acetaminophen concentrations were predictive of hypokalaemia (P = 0.0001 versus zero discriminatory line), and 4 hr acetaminophen concentration >156 mmol/l gave 81% sensitivity and 48% specificity. The risk of hypokalaemia after acute acetaminophen overdose depends on the extent of acetaminophen exposure, irrespective of N-acetylcysteine administration and independent of whether vomiting occurred. Acetaminophen appears to cause concentration-dependent hypokalaemia after overdose, and the pharmacological basis requires further consideration.

  7. Herbal hepatotoxicity and WHO global introspection method.

    PubMed

    Teschke, Rolf; Eickhoff, Axel; Wolff, Albrecht; Frenzel, Christian; Schulze, Johannes

    2013-01-01

    Herbal hepatotoxicity is a rare but highly disputed disease because numerous confounding variables may complicate accurate causality assessment. Case evaluation is even more difficult when the WHO global introspection method (WHO method) is applied as diagnostic algorithm. This method lacks liver specificity, hepatotoxicity validation, and quantitative items, basic qualifications required for a sound evaluation of hepatotoxicity cases. Consequently, there are no data available for reliability, sensitivity, specificity, positive and negative predictive value. Its scope is also limited by the fact that it cannot discriminate between a positive and a negative causality attribution, thereby stimulating case overdiagnosing and overreporting. The WHO method ignores uncertainties regarding daily dose, temporal association, start, duration, and end of herbal use, time to onset of the adverse reaction, and course of liver values after herb discontinuation. Insufficiently considered or ignored are comedications, preexisting liver diseases, alternative explanations upon clinical assessment, and exclusion of infections by hepatitis A-C, cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus (HSV), and varicella zoster virus (VZV). We clearly prefer as alternative the scale of CIOMS (Council for International Organizations of Medical Sciences) which is structured, quantitative, liver specific, and validated for hepatotoxicity. In conclusion, causality of herbal hepatotoxicity is best assessed by the liver specific CIOMS scale validated for hepatotoxicity rather than the obsolete WHO method that is liver unspecific and not validated for hepatotoxicity. CIOMS based assessments will ensure the correct diagnosis and exclude alternative diagnosis that may require other specific therapies.

  8. Review article: herbal and dietary supplement hepatotoxicity.

    PubMed

    Bunchorntavakul, C; Reddy, K R

    2013-01-01

    Herbal and dietary supplements are commonly used throughout the World. There is a tendency for underreporting their ingestion by patients and the magnitude of their use is underrecognised by Physicians. Herbal hepatotoxicity is not uncommonly encountered, but the precise incidence and manifestations have not been well characterised. To review the epidemiology, presentation and diagnosis of herbal hepatotoxicity. This review will mainly discuss single ingredients and complex mixtures of herbs marketed under a single label. A Medline search was undertaken to identify relevant literature using search terms including 'herbal', 'herbs', 'dietary supplement', 'liver injury', 'hepatitis' and 'hepatotoxicity'. Furthermore, we scanned the reference lists of the primary and review articles to identify publications not retrieved by electronic searches. The incidence rates of herbal hepatotoxicity are largely unknown. The clinical presentation and severity can be highly variable, ranging from mild hepatitis to acute hepatic failure requiring transplantation. Scoring systems for the causality assessment of drug-induced liver injury may be helpful, but have not been validated for herbal hepatotoxicity. Hepatotoxicity features of commonly used herbal products, such as Ayurvedic and Chinese herbs, black cohosh, chaparral, germander, greater celandine, green tea, Herbalife, Hydroxycut, kava, pennyroyal, pyrrolizidine alkaloids, skullcap, and usnic acid, have been individually reviewed. Furthermore, clinically significant herb-drug interactions are also discussed. A number of herbal medicinal products are associated with a spectrum of hepatotoxicity events. Advances in the understanding of the pathogenesis and the risks involved are needed to improve herbal medicine safety. © 2012 Blackwell Publishing Ltd.

  9. Infant Sleep After Immunization: Randomized Controlled Trial of Prophylactic Acetaminophen

    PubMed Central

    Gay, Caryl L.; Lynch, Mary; Lee, Kathryn A.

    2011-01-01

    OBJECTIVE: To determine the effects of acetaminophen and axillary temperature responses on infant sleep duration after immunization. METHODS: We conducted a prospective, randomized controlled trial to compare the sleep of 70 infants monitored by using ankle actigraphy for 24 hours before and after their first immunization series at ∼2 months of age. Mothers of infants in the control group received standard care instructions from their infants' health care provider, and mothers of infants in the intervention group were provided with predosed acetaminophen and instructed to administer a dose 30 minutes before the scheduled immunization and every 4 hours thereafter, for a total of 5 doses. Infant age and birth weight and immunization factors, such as acetaminophen use and timing of administration, were evaluated for changes in infant sleep times after immunization. RESULTS: Sleep duration in the first 24 hours after immunization was increased, particularly for infants who received their immunizations after 1:30 pm and for those who experienced elevated temperatures in response to the vaccines. Infants who received acetaminophen at or after immunization had smaller increases in sleep duration than did infants who did not. However, acetaminophen use was not a significant predictor of sleep duration when other factors were controlled. CONCLUSIONS: If further research confirms the relationship between time of day of vaccine administration, increased sleep duration after immunization, and antibody responses, then our findings suggest that afternoon immunizations should be recommended to facilitate increased sleep in the 24 hours after immunization, regardless of acetaminophen administration. PMID:22123869

  10. [Pyroglutamic acidemia associated with acetaminophen].

    PubMed

    Alados Arboledas, F J; de la Oliva Senovilla, P; García Muñoz, Ma J; Alonso Melgar, A; Ruza Tarrío, F

    2007-12-01

    We report a case of pyroglutamic acidemia probably related to acetaminophen administration. A 16-month boy recovering from hemolytic uremic syndrome abruptly developed unexplained high anion gap metabolic acidosis requiring hemodialysis. Septic shock, lactic acidosis and salicylate intoxication were ruled out. Betahydroxybutyrate and acetoacetate levels were within the normal range. No osmolarity gap or high amino acid levels were found. Urine and blood pyroglutamic acid levels were 392 mmol/mol creatinine (reference range: 9-55) and 9.8 mmol/L (reference range<0.16), respectively. The patient was receiving acetaminophen. We conclude that pyroglutamic acidosis should be considered in patients receiving acetaminophen who abruptly develop high anion gap metabolic acidosis not attributable to more common causes.

  11. Acetaminophen overdose

    MedlinePlus

    ... overdose, there is a very good chance of recovery. However, without rapid treatment, a very large overdose of acetaminophen can lead to liver failure and death in a few days. Alternative Names ...

  12. Serum Acetaminophen Protein Adduct Concentrations in Pediatric Emergency Department Patients.

    PubMed

    Heard, Kennon; Anderson, Victoria; Dart, Richard C; Kile, Deidre; Lavonas, Eric J; Green, Jody L

    2017-04-01

    Acetaminophen toxicity is a common cause of pediatric liver failure. The diagnosis may be limited by the short window of detection of acetaminophen in serum. Recently acetaminophen protein adducts (APAP-CYS) have been used as a biomarker with a longer duration of detection. The objective of this study was to describe the serum concentrations of APAP-CYS in pediatric patients with and without reported therapeutic acetaminophen exposure. A cross-sectional study of children age 1 to <12 years presenting to a pediatric emergency department. Subjects were stratified by recent acetaminophen use and had serum APAP-CYS measured using LC/MS. One hundred patients were enrolled. All of the patients whose caregivers denied acetaminophen exposure had nondetectable APAP-CYS. Fifty-two percent of subjects who were reported to have taken acetaminophen in the preceding 2 weeks had detectable serum APAP-CYS. The APAP-CYS concentrations were positively correlated with higher overall dose and more recent ingestion. APAP-CYS is detectable in the majority of children taking acetaminophen and not detected in the majority of children who are not exposed to acetaminophen.

  13. Hepatic kinetics of SCP-1 (N-[alpha-(1,2-benzisothiazol-3(2H)-ona-1, 1-dioxide-2-yl)-acetyl]-p-aminophenol) compared with acetaminophen in isolated rat liver.

    PubMed

    González-Martin, G; Lyndon, C; Sunkel, C

    1998-11-01

    The hepatic disposition of a new analgesic, SCP-1, a derivative of acetaminophen, was studied in the isolated perfused rat liver using a recirculating system. The aim of this study was to compare the kinetic parameters of this molecule with those of acetaminophen. Sprague-Dawley rat (230-330 g) livers were perfused for 2 h with 250 ml Krebs-Henseleit bicarbonate buffer containing SCP-1 or acetaminophen, 0.07 mmol l(-1) (n=4), 0.28 mmol l(-1) (n=4), and 0.8 mmol l(-1) (n=4) (approximately one, four and ten times the therapeutic doses in man, respectively). Perfusate samples were collected from the efflux at various times. The SCP-1 and acetaminophen perfusate concentrations were assayed by a HPLC method. Pharmacokinetic analysis was carried out using a computer program. There were significant differences between the hepatic kinetics of SCP-1 and those of acetaminophen. Thus, SCP-1 elimination half-life (mean 14.8+/-10.0 min) was shorter than that of the acetaminophen (186.1+/-27.7 min) (t=11.6, P=0.0001). While the half-life of SCP-1 increases with concentration, the half-life of acetaminophen remains constant as the concentration increases. The hepatic clearance was higher for SCP-1 than acetaminophen (mean 19.01+/-14.5 ml min(-1) vs. 1.29+/-0.08 ml min(-1), respectively) (t=2.44, P<0.05), and it behaved according to dose-dependent kinetics. The SCP-1 extraction ratio was higher (mean 0.63+/-0.49) than for acetaminophen (0.04+/-0.01) (t=2.41, P<0.05) and this parameter tended to decrease as the perfusate concentrations of SCP-1 increased. It was concluded that the hepatic kinetics of SCP-1 behaved according to dose-dependent kinetics, and statistically significant differences were found between pharmacokinetics parameters of both drugs studied. Copyright 1998 Elsevier Science B.V.

  14. False positive acetaminophen concentrations in patients with liver injury.

    PubMed

    Polson, Julie; Wians, Frank H; Orsulak, Paul; Fuller, Dwain; Murray, Natalie G; Koff, Jonathan M; Khan, Adil I; Balko, Jody A; Hynan, Linda S; Lee, William M

    2008-05-01

    Acetaminophen toxicity is the most common form of acute liver failure in the U.S. After acetaminophen overdoses, quantitation of plasma acetaminophen can aid in predicting severity of injury. However, recent case reports have suggested that acetaminophen concentrations may be falsely increased in the presence of hyperbilirubinemia. We tested sera obtained from 43 patients with acute liver failure, mostly unrelated to acetaminophen, utilizing 6 different acetaminophen quantitation systems to determine the significance of this effect. In 36 of the 43 samples with bilirubin concentrations ranging from 1.0-61.5 mg/dl no acetaminophen was detectable by gas chromatography-mass spectroscopy. These 36 samples were then utilized to test the performance characteristics of 2 immunoassay and 4 enzymatic-colorimetric methods. Three of four colorimetric methods demonstrated 'detectable' values for acetaminophen in from 4 to 27 of the 36 negative samples, low concentration positive values being observed when serum bilirubin concentrations exceeded 10 mg/dl. By contrast, the 2 immunoassay methods (EMIT, FPIA) were virtually unaffected. The false positive values obtained were, in general, proportional to the quantity of bilirubin in the sample. However, prepared samples of normal human serum with added bilirubin showed a dose-response curve for only one of the 4 colorimetric assays. False positive acetaminophen tests may result when enzymatic-colorimetric assays are used, most commonly with bilirubin concentrations >10 mg/dl, leading to potential clinical errors in this setting. Bilirubin (or possibly other substances in acute liver failure sera) appears to affect the reliable measurement of acetaminophen, particularly with enzymatic-colorimetric assays.

  15. Efficacy and safety of once-daily, extended-release hydrocodone in individuals previously receiving hydrocodone/acetaminophen combination therapy for chronic pain.

    PubMed

    Bartoli, Adrian; Michna, Edward; He, Ellie; Wen, Warren

    2015-01-01

    Hydrocodone/acetaminophen combination analgesics are frequently prescribed for chronic pain management; however, acetaminophen presents potential hepatotoxicity to patients and thus dose limitations. These opioid medications are also widely abused. Once-daily, single-entity hydrocodone (Hysingla™ ER tablets [HYD]) is a novel formulation with abuse-deterrent properties for the management of chronic pain and represents a suitable option for those patients receiving analgesics containing the same opioid analgesic, hydrocodone. This post-hoc analysis evaluated the efficacy and safety of HYD in patients whose primary pre-study analgesic was hydrocodone/acetaminophen analgesics (23-31% of the study populations). Data were analyzed from two Phase III trials, a 12-week randomized, placebo-controlled trial (RCT) and an open-label, 52-week trial. In both trials, a dose-titration period with HYD was followed by respective periods of fixed-dose double-blind (randomized controlled trial [RCT]) or open-label, flexible-dose maintenance treatment. Pain intensity was assessed using a numerical rating scale (0-10, 0 = no pain). For the RCT, primary and sensitivity analyses of pain scores used different approaches to handle missing data. Safety data for both studies were summarized. In the RCT, the mean baseline pain score was 7.3. Pain relief was greater with HYD than placebo during double-blind treatment. In the open-label, flexible-dose trial, the majority of patients were maintained on their titrated dose. Mean baseline pain score was 6.3, about 57% of patients completed the 1-year maintenance period, and mean pain scores were between 3.6 and 4.1 during the maintenance period. Use of supplemental pain medication decreased or was maintained during the maintenance treatment with HYD. Adverse events in both trials were typical of those associated with opioid analgesics. In patients whose primary pretrial analgesic was hydrocodone/acetaminophen combination tablets, single

  16. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  17. Conjugation of nitrated acetaminophen to Der p1 amplifies peripheral blood monocyte response to Der p1.

    PubMed

    Thomas, Ryan G; Rivera Reyes, Brenda M; Gaston, Benjamin M; Rivera Acosta, Nelki B; Bederman, Ilya R; Smith, Laura A; Sutton, Morgan T; Wang, Benlian; Hunt, John F; Bonfield, Tracey L

    2017-01-01

    An association of acetaminophen use and asthma was observed in the International Study of Asthma and Allergies in Childhood study. However there are no clear mechanisms to explain an association between acetaminophen use and immunologic pathology. In acidic conditions like those in the stomach and inflamed airway, tyrosine residues are nitrated by nitrous and peroxynitrous acids. The resulting nitrotyrosine is structurally similar to 2,4-dinitrophenol and 2,4-dinitrochlorobenzene, known haptens that enhance immune responses by covalently binding proteins. Nitrated acetaminophen shares similar molecular structure. We hypothesized the acetaminophen phenol ring undergoes nitration under acidic conditions, producing 3-nitro-acetaminophen which augments allergic responses by acting as a hapten for environmental allergens. 3-nitro-acetaminophen was formed from acetaminophen in the presence of acidified nitrite, purified by high performance liquid chromatography, and assayed by gas-chromatography mass spectrometry. Purified 3-nitro-acetaminophen was reacted with Dermatophagoides pteronyssinus (Der p1) and analyzed by mass spectrometry to identify the modification site. Human peripheral blood mononuclear cells proliferation response was measured in response to 3-nitro-acetaminophen and to 3-nitro-acetaminophen-modified Der p1. Acetaminophen was modified by nitrous acid forming 3-nitro-acetaminophen over a range of different acidic conditions consistent with airway inflammation and stomach acidity. The Der p1 protein-hapten adduct creation was confirmed by liquid chromatography-mass spectrometry proteomics modifying cysteine 132. Peripheral blood mononuclear cells exposed to 3-nitro-acetaminophen-modified Der p1 had increased proliferation and cytokine production compared to acetaminophen and Der p1 alone (n = 7; p < 0.05). These data suggests 3-nitro-acetaminophen formation and reaction with Der p1 provides a mechanism by which stomach acid or infection-induced low airway

  18. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma.

    PubMed

    Sheehan, William J; Mauger, David T; Paul, Ian M; Moy, James N; Boehmer, Susan J; Szefler, Stanley J; Fitzpatrick, Anne M; Jackson, Daniel J; Bacharier, Leonard B; Cabana, Michael D; Covar, Ronina; Holguin, Fernando; Lemanske, Robert F; Martinez, Fernando D; Pongracic, Jacqueline A; Beigelman, Avraham; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Chmiel, James F; Daines, Cori L; Daines, Michael O; Gaffin, Jonathan M; Gentile, Deborah A; Gower, W Adam; Israel, Elliot; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Ly, Ngoc; Marbin, Jyothi; Morgan, Wayne J; Myers, Ross E; Olin, J Tod; Peters, Stephen P; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Thyne, Shannon M; Wechsler, Michael E; Phipatanakul, Wanda

    2016-08-18

    Studies have suggested an association between frequent acetaminophen use and asthma-related complications among children, leading some physicians to recommend that acetaminophen be avoided in children with asthma; however, appropriately designed trials evaluating this association in children are lacking. In a multicenter, prospective, randomized, double-blind, parallel-group trial, we enrolled 300 children (age range, 12 to 59 months) with mild persistent asthma and assigned them to receive either acetaminophen or ibuprofen when needed for the alleviation of fever or pain over the course of 48 weeks. The primary outcome was the number of asthma exacerbations that led to treatment with systemic glucocorticoids. Children in both groups received standardized asthma-controller therapies that were used in a simultaneous, factorially linked trial. Participants received a median of 5.5 doses (interquartile range, 1.0 to 15.0) of trial medication; there was no significant between-group difference in the median number of doses received (P=0.47). The number of asthma exacerbations did not differ significantly between the two groups, with a mean of 0.81 per participant with acetaminophen and 0.87 per participant with ibuprofen over 46 weeks of follow-up (relative rate of asthma exacerbations in the acetaminophen group vs. the ibuprofen group, 0.94; 95% confidence interval, 0.69 to 1.28; P=0.67). In the acetaminophen group, 49% of participants had at least one asthma exacerbation and 21% had at least two, as compared with 47% and 24%, respectively, in the ibuprofen group. Similarly, no significant differences were detected between acetaminophen and ibuprofen with respect to the percentage of asthma-control days (85.8% and 86.8%, respectively; P=0.50), use of an albuterol rescue inhaler (2.8 and 3.0 inhalations per week, respectively; P=0.69), unscheduled health care utilization for asthma (0.75 and 0.76 episodes per participant, respectively; P=0.94), or adverse events. Among

  19. Acetaminophen (paracetamol) oral absorption and clinical influences.

    PubMed

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  20. Blood gene expression profiling of an early acetaminophen response.

    PubMed

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  1. Blood Gene Expression Profiling of an Early Acetaminophen Response

    PubMed Central

    Bushel, Pierre R.; Fannin, Rick D.; Gerrish, Kevin; Watkins, Paul B.; Paules, Richard S.

    2018-01-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing and 12 genes were detected with expression profiles significantly altered within 24 hrs. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration. PMID:26927286

  2. Transplacental Passage of Acetaminophen in Term Pregnancy.

    PubMed

    Nitsche, Joshua F; Patil, Avinash S; Langman, Loralie J; Penn, Hannah J; Derleth, Douglas; Watson, William J; Brost, Brian C

    2017-05-01

    Objective  The objective of this study was to determine the maternal and fetal pharmacokinetic (PK) profiles of acetaminophen after administration of a therapeutic oral dose. Study Design  After obtaining Institutional Review Board approval and their written informed consent, pregnant women were given a single oral dose (1,000 mg) of acetaminophen upon admission for scheduled cesarean delivery. Maternal venous blood and fetal cord blood were obtained at the time of delivery and acetaminophen levels were measured using gas chromatography-mass spectroscopy. PK parameters were calculated by noncompartmental analysis. Nonparametric correlation of maternal/fetal acetaminophen levels and PK curves were calculated. Results  In this study, 34 subjects were enrolled (median, 32 years; range, 25-39 years). The median maternal weight was 82 kg (range, 62-100 kg). All but two subjects were delivered beyond 39 weeks' gestation. The median newborn birth weight was 3,590 g (interquartile range, 3,403-3,848 g). Noncompartmental analysis described similar PK parameters in the maternal ( T 1/2 , 84 minutes; apparent clearance [Cl/F], 28.8 L/h; apparent volume of distribution [V d /F], 57.5 L) and fetal compartments ( T 1/2 , 82 minutes; Cl/F, 31.2 L/h; V d /F, 61.2 L). Paired maternal/fetal acetaminophen levels were highly correlated ( p  < 0.0001). Conclusion  Fetal acetaminophen PKs in the fetus parallels that in the mother suggesting that placental transfer is flow limited. Maternal acetaminophen levels can be used as a surrogate for fetal exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    PubMed

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  4. Metabolite kinetics: formation of acetaminophen from deuterated and nondeuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, K.S.; Waller, L.; Horning, M.G.

    1982-07-01

    The role of hepatic intrinsic clearance for metabolite formation from various precursors on subsequent metabolite elimination was was investigated in the once-through perfused rat liver preparation. Two pairs of acetaminophen precursors: (/sup 14/C) phenacetin-d5 and (/sup 3/H) phenacetin-do, (/sup 14/C) acetanilide and (/sup 3/H) phenacetin were delivered by constant flow (10 ml/min/liver) either by normal or retrograde perfusion to the rat liver preparations. The extents of acetaminophen sulfation were compared within the same preparation. The data showed that the higher the hepatocellular activity (intrinsic clearance) for acetaminophen formation, the greater the extent of subsequent acetaminophen sulfation. The findings were explainedmore » on the basis of blood transit time and metabolite duration time. Because of blood having only a finite transit time in liver, the longer the drug requires for metabolite formation, the less time will remain for metabolite sulfation and the less will be the degree of subsequent sulfation. Conversely, when the drug forms the primary metabolite rapidly, a longer time will remain for the metabolite to be sulfated in liver to result in a greater degree of metabolite sulfation. Finally, the effects of hepatic intrinsic clearances for metabolite formation and zonal distribution of enzyme systems for metabolite formation and elimination in liver are discussed.« less

  5. [Acetaminophen (paracetamol) causing renal failure: report on 3 pediatric cases].

    PubMed

    Le Vaillant, J; Pellerin, L; Brouard, J; Eckart, P

    2013-06-01

    Renal failure secondary to acetaminophen poisoning is rare and occurs in approximately 1-2 % of patients with acetaminophen overdose. The pathophysiology is still being debated, and renal acetaminophen toxicity consists of acute tubular necrosis, without complication if treated promptly. Renal involvement can sometimes occur without prior liver disease, and early renal manifestations usually occur between the 2nd and 7th day after the acute acetaminophen poisoning. While therapy is exclusively symptomatic, sometimes serious metabolic complications can be observed. The monitoring of renal function should therefore be considered as an integral part of the management of children with acute, severe acetaminophen intoxication. We report 3 cases of adolescents who presented with acute renal failure as a result of voluntary drug intoxication with acetaminophen. One of these 3 girls developed severe renal injury without elevated hepatic transaminases. None of the 3 girls' renal function required hemodialysis, but one of the 3 patients had metabolic complications after her acetaminophen poisoning. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    PubMed Central

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  7. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis

    PubMed Central

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-01-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported. PMID:26067475

  8. Hepatotoxicity associated with choline magnesium trisalicylate: case report and review of salicylate-induced hepatotoxicity.

    PubMed

    Cersosimo, R J; Matthews, S J

    1987-01-01

    A case of a 21-year-old woman who had developed mild hepatotoxicity while receiving choline magnesium trisalicylate therapy is described. She presented with fever and mild hepatic enzyme elevations before salicylate therapy was instituted. Liver function tests (LFT) returned to normal within five days of hospitalization but she continued to develop daily fevers. Blood, urine, and throat cultures were negative. An acute viral illness or reactivation of systemic lupus erythematosus were the suspected diagnoses. Choline magnesium trisalicylate was then administered in an effort to control her fever, and was successful. After three days of salicylate therapy her LFT values began to rise. They continued to rise for five more days before salicylate hepatotoxicity was suspected. Choline magnesium trisalicylate was discontinued after eight days and the patient's LFT quickly returned to normal. The source of fever was never identified, although infection with cytomegalovirus was considered the most likely cause. Salicylate-induced hepatotoxicity is reviewed.

  9. Hydrocodone-acetaminophen for pain control in first-trimester surgical abortion: a randomized controlled trial.

    PubMed

    Micks, Elizabeth A; Edelman, Alison B; Renner, Regina-Maria; Fu, Rongwei; Lambert, William E; Bednarek, Paula H; Nichols, Mark D; Beckley, Ethan H; Jensen, Jeffrey T

    2012-11-01

    Although hydrocodone-acetaminophen is commonly used for pain control in first-trimester abortion, the efficacy of oral opioids for decreasing pain has not been established. Our objective was to estimate the effect of hydrocodone-acetaminophen on patient pain perception during first-trimester surgical abortion. We conducted a randomized, double-blinded, placebo-controlled trial. Patients (before 11 weeks of gestation) received standard premedication (ibuprofen and lorazepam) and a paracervical block with the addition of 10 mg hydrocodone and 650 mg acetaminophen or placebo 45-90 minutes before surgical abortion. A sample size of 120 was calculated to provide 80% power to show a 15-mm difference (α=0.05) in the primary outcome of pain with uterine aspiration (100-mm visual analog scale). Secondary outcomes were pain at additional time points, satisfaction, side effects, adverse events, and need for additional pain medications. There were no significant differences in demographics or baseline pain between groups. There were no differences in pain scores between patients receiving hydrocodone-acetaminophen compared with placebo during uterine aspiration (65.7 mm compared with 63.2 mm, P=.59) or other procedural time points. There were no differences in satisfaction or need for additional pain medications. Patients who received hydrocodone-acetaminophen had more postoperative nausea than those receiving placebo (P=.03) when controlling for baseline nausea. No medication-related adverse events were noted. Hydrocodone-acetaminophen does not decrease pain during first-trimester abortion and may increase postoperative nausea. Clinicaltrials.gov, www.clinicaltrials.gov, NCT01330459. I.

  10. Targeted liquid chromatography–mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children

    PubMed Central

    Bhattacharyya, Sudeepa; Yan, Ke; Pence, Lisa; Simpson, Pippa M; Gill, Pritmohinder; Letzig, Lynda G; Beger, Richard D; Sullivan, Janice E; Kearns, Gregory L; Reed, Michael D; Marshall, James D; Van Den Anker, John N; James, Laura P

    2014-01-01

    Aim Long-chain acylcarnitines have been postulated to be sensitive biomarkers of acetaminophen (APAP)-induced hepatotoxicity in mouse models. In the following study, the relationship of acylcarnitines with other known indicators of APAP toxicity was examined in children receiving low-dose (therapeutic) and high-dose (‘overdose’ or toxic ingestion) exposure to APAP. Materials & methods The study included three subject groups: group A (therapeutic dose, n = 187); group B (healthy controls, n = 23); and group C (overdose, n = 62). Demographic, clinical and laboratory data were collected for each subject. Serum samples were used for measurement of APAP protein adducts, a biomarker of the oxidative metabolism of APAP and for targeted metabolomics analysis of serum acylcarnitines using ultra performance liquid chromatography–triple-quadrupole mass spectrometry. Results Significant increases in oleoyl- and palmitoyl-carnitines were observed with APAP exposure (low dose and overdose) compared with controls. Significant increases in serum ALT, APAP protein adducts and acylcarnitines were observed in overdose children that received delayed treatment (time to treatment from overdose >24 h) with the antidote N-acetylcysteine. Time to peak APAP protein adducts in serum was shorter than that of the acylcarnitines and serum ALT. Conclusion Perturbations in long-chain acylcarnitines in children with APAP toxicity suggest that mitochrondrial injury and associated impairment in the β-oxidation of fatty acids are clinically relevant as biomarkers of APAP toxicity. PMID:24521011

  11. Targeted liquid chromatography-mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children.

    PubMed

    Bhattacharyya, Sudeepa; Yan, Ke; Pence, Lisa; Simpson, Pippa M; Gill, Pritmohinder; Letzig, Lynda G; Beger, Richard D; Sullivan, Janice E; Kearns, Gregory L; Reed, Michael D; Marshall, James D; Van Den Anker, John N; James, Laura P

    2014-01-01

    Long-chain acylcarnitines have been postulated to be sensitive biomarkers of acetaminophen (APAP)-induced hepatotoxicity in mouse models. In the following study, the relationship of acylcarnitines with other known indicators of APAP toxicity was examined in children receiving low-dose (therapeutic) and high-dose ('overdose' or toxic ingestion) exposure to APAP. The study included three subject groups: group A (therapeutic dose, n = 187); group B (healthy controls, n = 23); and group C (overdose, n = 62). Demographic, clinical and laboratory data were collected for each subject. Serum samples were used for measurement of APAP protein adducts, a biomarker of the oxidative metabolism of APAP and for targeted metabolomics analysis of serum acylcarnitines using ultra performance liquid chromatography-triple-quadrupole mass spectrometry. Significant increases in oleoyl- and palmitoyl-carnitines were observed with APAP exposure (low dose and overdose) compared with controls. Significant increases in serum ALT, APAP protein adducts and acylcarnitines were observed in overdose children that received delayed treatment (time to treatment from overdose >24 h) with the antidote N-acetylcysteine. Time to peak APAP protein adducts in serum was shorter than that of the acylcarnitines and serum ALT. Perturbations in long-chain acylcarnitines in children with APAP toxicity suggest that mitochrondrial injury and associated impairment in the β-oxidation of fatty acids are clinically relevant as biomarkers of APAP toxicity.

  12. Coconut water vinegar ameliorates recovery of acetaminophen induced liver damage in mice.

    PubMed

    Mohamad, Nurul Elyani; Yeap, Swee Keong; Beh, Boon-Kee; Ky, Huynh; Lim, Kian Lam; Ho, Wan Yong; Sharifuddin, Shaiful Adzni; Long, Kamariah; Alitheen, Noorjahan Banu

    2018-06-25

    Coconut water has been commonly consumed as a beverage for its multiple health benefits while vinegar has been used as common seasoning and a traditional Chinese medicine. The present study investigates the potential of coconut water vinegar in promoting recovery on acetaminophen induced liver damage. Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared. Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level. Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.

  13. Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline.

    PubMed

    Hu, Jiangting; Kholmukhamedov, Andaleb; Lindsey, Christopher C; Beeson, Craig C; Jaeschke, Hartmut; Lemasters, John J

    2016-08-01

    Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction and the mitochondrial permeability transition (MPT). Iron is a critical catalyst for ROS formation, and reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity. Previous studies show that APAP disrupts lysosomes, which release ferrous iron (Fe(2+)) into the cytosol to trigger the MPT and cell killing. Here, our aim was to investigate whether iron released from lysosomes after APAP is then taken up into mitochondria via the mitochondrial electrogenic Ca(2+), Fe(2+) uniporter (MCFU) to cause mitochondrial dysfunction and cell death. Hepatocytes were isolated from fasted male C57BL/6 mice. Necrotic cell killing was assessed by propidium iodide fluorimetry. Mitochondrial membrane potential (ΔΨ) was visualized by confocal microscopy of rhodamine 123 (Rh123) and tetramethylrhodamine methylester (TMRM). Chelatable Fe(2+) was monitored by quenching of calcein (cytosol) and mitoferrofluor (MFF, mitochondria). ROS generation was monitored by confocal microscopy of MitoSox Red and plate reader fluorimetry of chloromethyldihydrodichlorofluorescein diacetate (cmH2DCF-DA). Administered 1h before APAP (10mM), the lysosomally targeted iron chelator, starch-desferal (1mM), and the MCFU inhibitors, Ru360 (100nM) and minocycline (4µM), decreased cell killing from 83% to 41%, 57% and 53%, respectively, after 10h. Progressive quenching of calcein and MFF began after ~4h, signifying increased cytosolic and mitochondrial chelatable Fe(2+). Mitochondria then depolarized after ~10h. Dipyridyl, a membrane-permeable iron chelator, dequenched calcein and MFF fluorescence after APAP. Starch-desferal, but not Ru360 and minocycline, suppressed cytosolic calcein quenching, whereas starch-desferal, Ru360 and minocycline all suppressed mitochondrial MFF quenching and mitochondrial depolarization. Starch-desferal, Ru360 and minocycline also each decreased ROS formation. Moreover

  14. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity[S

    PubMed Central

    Shi, Xiaolei; Yao, Dan; Gosnell, Blake A.; Chen, Chi

    2012-01-01

    During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury. PMID:22904346

  15. Supra-additive effects of tramadol and acetaminophen in a human pain model.

    PubMed

    Filitz, Jörg; Ihmsen, Harald; Günther, Werner; Tröster, Andreas; Schwilden, Helmut; Schüttler, Jürgen; Koppert, Wolfgang

    2008-06-01

    The combination of analgesic drugs with different pharmacological properties may show better efficacy with less side effects. Aim of this study was to examine the analgesic and antihyperalgesic properties of the weak opioid tramadol and the non-opioid acetaminophen, alone as well as in combination, in an experimental pain model in humans. After approval of the local Ethics Committee, 17 healthy volunteers were enrolled in this double-blind and placebo-controlled study in a cross-over design. Transcutaneous electrical stimulation at high current densities (29.6+/-16.2 mA) induced spontaneous acute pain (NRS=6 of 10) and distinct areas of hyperalgesia for painful mechanical stimuli (pinprick-hyperalgesia). Pain intensities as well as the extent of the areas of hyperalgesia were assessed before, during and 150 min after a 15 min lasting intravenous infusion of acetaminophen (650 mg), tramadol (75 mg), a combination of both (325 mg acetaminophen and 37.5mg tramadol), or saline 0.9%. Tramadol led to a maximum pain reduction of 11.7+/-4.2% with negligible antihyperalgesic properties. In contrast, acetaminophen led to a similar pain reduction (9.8+/-4.4%), but a sustained antihyperalgesic effect (34.5+/-14.0% reduction of hyperalgesic area). The combination of both analgesics at half doses led to a supra-additive pain reduction of 15.2+/-5.7% and an enhanced antihyperalgesic effect (41.1+/-14.3% reduction of hyperalgesic areas) as compared to single administration of acetaminophen. Our study provides first results on interactions of tramadol and acetaminophen on experimental pain and hyperalgesia in humans. Pharmacodynamic modeling combined with the isobolographic technique showed supra-additive effects of the combination of acetaminophen and tramadol concerning both, analgesia and antihyperalgesia. The results might act as a rationale for combining both analgesics.

  16. Postoperative Intravenous Acetaminophen for Craniotomy Patients: A Randomized Controlled Trial.

    PubMed

    Greenberg, Steven; Murphy, Glenn S; Avram, Michael J; Shear, Torin; Benson, Jessica; Parikh, Kruti N; Patel, Aashka; Newmark, Rebecca; Patel, Vimal; Bailes, Julian; Szokol, Joseph W

    2018-01-01

    To determine whether opioids during the first 24 postoperative hours were significantly altered when receiving intravenous (IV) acetaminophen during that time compared with those receiving placebo (normal saline). One hundred forty patients undergoing any type of craniotomy were randomly assigned to receive either 1 g of IV acetaminophen or placebo upon surgical closure, and every 6 hours thereafter, up to 18 hours postoperatively. Analgesic requirements for the first 24 postoperative hours were recorded. Time to rescue medications in the postanesthesia care unit (PACU)/intensive care unit (ICU), amount of rescue medication, ICU and hospital lengths of stay, number of successful neurological examinations, sedation, delirium, satisfaction, and visual analog scale pain scores were also recorded. Compared with the placebo group, more patients in the IV acetaminophen group (10/66 [15.2%] vs. 4/65 [6.2%] in the placebo group) did not require opioids within the first 24 postoperative hours, but this did not reach significance (odds ratio, -9.0%, 95% confidence interval -20.5% to 1.8%; P = 0.166). Both groups had similar times to rescue medications, amounts of rescue medications, ICU and hospital lengths of stay, numbers of successful neurological examinations, sedation, delirium, satisfaction scores, visual analog scale pain scores, and temperatures within the first 24 postoperative hours. The opioid requirements within the first 24 postoperative hours were similar in the placebo and acetaminophen groups. This study is informative for the design and planning of future studies investigating the management of postoperative pain in patients undergoing craniotomies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Regular use of acetaminophen or acetaminophen-codeine combinations and prescription of rescue therapy with non-steroidal anti-inflammatory drugs: a population-based study in primary care.

    PubMed

    Vannacci, Alfredo; Lombardi, Niccolò; Simonetti, Monica; Fornasari, Diego; Fanelli, Andrea; Cricelli, Iacopo; Cricelli, Claudio; Lora Aprile, Pierangelo; Lapi, Francesco

    2017-06-01

    There are contrasting positions concerning the benefit-risk ratio of acetaminophen use for osteoarthritis (OA)-related pain. To clarify the effectiveness of acetaminophen or acetaminophen-codeine combinations according to their regimen of use, we evaluated whether being a regular user (adherent) of these medications decreased the occurrence of rescue therapy with non-steroidal anti-inflammatory drugs (NSAIDs). Using the Health Search IMS Health Longitudinal Patient Database, we formed a cohort of patients aged ≥18 years and newly treated with acetaminophen or acetaminophen-codeine combinations for OA between 1 January 2001 and 31 December 2013. These patients were followed up for one year in which they were categorized as regular or irregular users of these medications according to a variable medication possession ratio (VMPR) ≥ 50% or lower. We operationally defined the rescue therapy as the use of any NSAIDs prescribed for OA-related pain. Overall, 40,029 patients (69.5% females; mean age: 68 ± 13.57) treated with acetaminophen or acetaminophen-codeine combinations formed the cohort. After the first year of treatment, regular users showed a statistically significantly lower risk of being prescribed with rescue therapy with NSAIDs (OR = 0.89; 95% CI 0.84-0.96). These findings show that regular use of acetaminophen or acetaminophen-codeine combinations may reduce the need for NSAIDs to treat OA-related pain.

  18. Elimination of the acetaminophen interference in an implantable glucose sensor.

    PubMed

    Zhang, Y; Hu, Y; Wilson, G S; Moatti-Sirat, D; Poitout, V; Reach, G

    1994-04-01

    Acetaminophen has been one of the most serious electrochemical interferences to oxidase-based amperometric biosensors that measure H2O2. A study was carried out to investigate various polymer materials for their selectivity as the sensor inner membrane. A composite membrane of cellulose acetate and Nafion was found to eliminate acetaminophen and other electrochemical interferences effectively while at the same time maintaining reasonable diffusivity for hydrogen peroxide. The excellent in vivo performance of the sensor was attributed not only to significantly reduced steady-state sensitivity to acetaminophen but also to very slow acetaminophen response. These features, combined with rapid acetaminophen clearance pharmacokinetics, led to the decreased response as demonstrated in the rat.

  19. Age-Related Pseudocapillarization of the Liver Sinusoidal Endothelium Impairs the Hepatic Clearance of Acetaminophen in Rats

    PubMed Central

    Huizer-Pajkos, Aniko; Cogger, Victoria C.; McLachlan, Andrew J.; Le Couteur, David G.; Jones, Brett; de Cabo, Rafael; Hilmer, Sarah N.

    2011-01-01

    We investigated the effect of age-related pseudocapillarization of the liver sinusoidal endothelium on the hepatic disposition of acetaminophen. The multiple indicator dilution technique assessed the hepatic disposition of tracer 14C-acetaminophen and reference markers in isolated perfused livers of young (n = 11) and old (n = 12) rats. Electron microscopy confirmed defenestration of the sinusoidal endothelium in old rats compared with young rats. Acetaminophen recovery following a single pass through the liver was significantly increased in old rats (0.64 ± 0.04, old; 0.59 ± 0.05, young; p < .05). In old age, there was significant reduction of the intercompartmental rate constant k1 (0.34 ± 0.10s-1, old; 0.61 ± 0.38s-1, young; p < .05) and the permeability-surface area product for the transfer of acetaminophen across the sinusoidal endothelium (0.034 ± 0.006 mL/s/g, old; 0.048 ± 0.014 mL/s/g, young; p < .005). There was no difference in k3, the measure of sequestration of acetaminophen that reflects enzyme activity. Age-related pseudocapillarization of the liver sinusoid resulted in increased acetaminophen recovery and decreased transfer of acetaminophen into the liver. PMID:21300741

  20. Association of Acetaminophen and Ibuprofen Use With Wheezing in Children With Acute Febrile Illness.

    PubMed

    Matok, Ilan; Elizur, Arnon; Perlman, Amichai; Ganor, Shani; Levine, Hagai; Kozer, Eran

    2017-03-01

    Many infants and children receive acetaminophen and/or ibuprofen during febrile illness. Previously, some studies have linked acetaminophen and ibuprofen use to wheezing and exacerbation of asthma symptoms in infants and children. To assess whether acetaminophen or ibuprofen use are associated with wheezing in children presenting to the emergency department (ED) with febrile illness. This was a cross-sectional study of children who presented with fever to the pediatric ED between 2009 and 2013. The data were collected from questionnaires and from the children's medical files. Patients with wheezing in the ED were compared with nonwheezing patients. Associations between medication use and wheezing were assessed using univariate and multivariate analyses. The multivariate analysis adjusted for potential confounding variables (ie, age, atopic dermatitis, allergies, smoking, antibiotics use, etc) via propensity scores. During the study period, 534 children admitted to the ED met our inclusion criteria, of whom 347 (65%) were included in the study. The use of acetaminophen was similar in children diagnosed with wheezing compared with those without wheezing (n = 39, 81.3%, vs n = 229, 82.7%, respectively). Ibuprofen use was significantly lower in children diagnosed with wheezing (n = 22, 52.4%, vs n = 168, 69.4%, respectively). In multivariate analysis, acetaminophen was not associated with a higher rate of wheezing during acute febrile illness (adjusted odds ratio [OR] = 0.76, 95% CI = 0.24- 2.39), whereas ibuprofen was associated with a lower risk of wheezing (adjusted OR = 0.36, 95% CI = 0.13-0.96). Our study suggests that acetaminophen and ibuprofen are not associated with increased risk for wheezing during acute febrile illness.

  1. Establishment of a methodology for investigating protectants against ethanol-induced hepatotoxicity.

    PubMed

    Ruan, Xueqing; Shen, Chong; Meng, Qin

    2010-05-01

    Ethanol-induced liver injury has been extensively reported in clinic, but still lacks an efficient in vitro platform for investigating its hepatotoxicity and protectants. This study aimed to establish a methodology on the culture conditions regarding the sealability against evaporation of ethanol, culture medium and 2D/3D culture of hepatocytes. Based on the experimental findings, it was indicated that the ethanol evaporation from culture plates was a severe problem reducing its toxicity in hepatocyte. According to the detected ethanol toxic response marked by reduced cell viability, 3D cultured hepatocytes in gel entrapment were suggested to be better than 2D hepatocyte in monolayer, but the cultures in either William's Medium E or DMEM exhibited comparable sensitivity to ethanol toxicity. Subsequently, 3D cultured hepatocytes with Parafilm sealing were systematically illustrated to well reflect the ethanol-induced lipid accumulation, reactive oxygen species/malondialdehyde generation, glutathione depletion and cytochrome 2E1 induction. Finally, such hepatocyte models were proposed as a platform for screening of herbal component against ethanol hepatotoxicity. Nano-silibinin, for the first time, found to perform significant protection against ethanol-induced hepatotoxicity while silibinin in normal particles could not inhibit such toxicity. This protection of nano-silibinin might relate to its improved bioavailability compared to normal insoluble silibinin and could act as an anti-oxidative and anti-steatosis agent against ethanol-induced hepatotoxicity. Copyright (c) 2010. Published by Elsevier Ltd.

  2. Intravenous Acetaminophen Does Not Decrease Persistent Surgical Pain After Cardiac Surgery.

    PubMed

    Turan, Alparslan; Karimi, Nika; Zimmerman, Nicole M; Mick, Stephanie L; Sessler, Daniel I; Mamoun, Negmeldeen

    2017-12-01

    The authors investigated the hypothesis that perioperative acetaminophen reduces incisional pain at 30 and 90 days. This was a prospective, randomized, double-blind trial. Tertiary-care hospital (single center) cardiac surgery unit. Patients undergoing cardiac surgery via median sternotomy. Patients were assigned randomly to intravenous (IV) acetaminophen or IV placebo. Patients were given 4 doses of 1 g of IV acetaminophen or an equal volume of saline placebo over 15 minutes every 6 hours for 24 hours starting in the operating room after sternal closure. Study participants were assessed by phone for incisional pain severity 30 and 90 days after surgery. Those reporting any incisional pain were asked to complete the Neuropathic Pain Questionnaire-Short Form and the modified Brief Pain Inventory. Patients were compared on 30- and 90-day incisional pain severity using separate multivariable linear regression models. IV acetaminophen had no effect on 30- and 90-day incisional pain, with an estimated difference in means (confidence interval) of 0.06 (-0.87 to 0.99) at 30 days (p = 0.88) and 0.07 (-0.71 to 0.86) at 90 days (p = 0.83). Low pain severity, neuropathic pain, and interference at both 30 and 90 days after surgery, regardless of treatment group, were observed. IV acetaminophen did not reduce the incidence or intensity of incisional pain at 30 days and 90 days after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Randomized, Placebo-controlled Trial of Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis: The ACROSS Trial

    PubMed Central

    Janz, David R; Bastarache, Julie A; Rice, Todd W; Bernard, Gordon R; Warren, Melissa A; Wickersham, Nancy; Sills, Gillian; Oates, John A; Roberts, L Jackson; Ware, Lorraine B

    2014-01-01

    Objective This trial evaluated the efficacy of acetaminophen in reducing oxidative injury, as measured by plasma F2-Isoprostanes, in adult patients with severe sepsis and detectable plasma cell-free hemoglobin. Design Single center, randomized, double-blind, placebo controlled phase II trial. Setting Medical ICU in a tertiary, academic medical center. Patients Critically ill patients ≥18 years old with severe sepsis and detectable plasma cell-free hemoglobin. Interventions Patients were randomized 1:1 to enteral acetaminophen 1 gram every 6 hours for three days (n = 18) or placebo (n = 22) with the same dosing schedule and duration. Measurements and Main Results F2-Isoprostanes on study day 3, the primary outcome, did not differ between acetaminophen (30 pg/mL, IQR 24–41) and placebo (36 pg/mL, IQR 25–80, p = 0.35). However, F2-Isoprostanes were significantly reduced on study day 2 in the acetaminophen group (24 pg/mL, IQR 19 – 36) compared with placebo (36 pg/mL, IQR 23–55, p = 0.047). Creatinine on study day 3, a secondary outcome, was significantly lower in the acetaminophen group (1.0 mg/dL, IQR 0.6–1.4) compared with placebo (1.3 mg/dL, IQR 0.83 – 2.0, p = 0.039). There was no statistically significant difference in hospital mortality (acetaminophen 5.6% vs. placebo 18.2%, p = 0.355) or adverse events (AST or ALT >400)(acetaminophen 9.5% vs. placebo 4.3%, p = 0.599). Conclusions In adults with severe sepsis and detectable plasma cell-free hemoglobin, treatment with acetaminophen within 24 hours of ICU admission may reduce oxidative injury and improve renal function. Further study is needed to confirm these findings and determine the effect of acetaminophen on patient-centered outcomes. PMID:25474535

  4. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications.

    PubMed

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Velmurugan, Murugan; Karuppiah, Chelladurai

    2016-12-01

    Acetaminophen is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of acetaminophen can cause hepatic toxicity and kidney damage. Hence, the determination of acetaminophen receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid and sensitive detection of the acetaminophen based on the bare (unmodified) screen printed carbon electrode (BSPCE) and its electrochemistry was studied in various pHs. From the observed results, the mechanism of the electro-oxidation of acetaminophen was derived for various pHs. The acetaminophen is not stable in strong acidic and strong alkaline media, which is hydrolyzed and hydroxylated. However, it is stable in intermediate pHs due to the dimerization of acetaminophen. The kinetics of the acetaminophen oxidation was briefly studied and documented in the schemes. In addition, the surface morphology and disorders of BSPCE was probed by scanning electron microscope (SEM) and Raman spectroscopy. Moreover, the BSPCE determined the acetaminophen with the linear concentration ranging from 0.05 to 190μM and the lower detection limit of 0.013μM. Besides that it reveals the good recoveries towards the pharmaceutical samples and shows the excellent selectivity, sensitivity and stability. To the best of our knowledge, this is the better performance compare to the previously reported unmodified acetaminophen sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Survey of patient knowledge related to acetaminophen recognition, dosing, and toxicity.

    PubMed

    Hornsby, Lori B; Whitley, Heather P; Hester, E Kelly; Thompson, Melissa; Donaldson, Amy

    2010-01-01

    To assess patient knowledge regarding acetaminophen dosing, toxicity, and recognition of acetaminophen-containing products. Descriptive, nonexperimental, cross-sectional study. Alabama, January 2007 to February 2008. 284 patients at four outpatient medical facilities. 12-item investigator-administered questionnaire. Degree of patient knowledge regarding acetaminophen safety, dosing recommendations, toxicity, alternative names and abbreviations, and products. Two-thirds of the 284 patients completing the survey reported current or recent use of pain, cold, or allergy medication. Of these, 25% reported knowing the active ingredient. Of patients, 46% and 13% knew that "acetaminophen" and "APAP," respectively, were synonymous with "Tylenol." Several patients (12%) believed that ingesting a harmful amount of acetaminophen was difficult or impossible. One-third of patients correctly identified the maximum daily dose, 10% reported a dose greater than 4 g, 25% were unsure of the dose, and 7% were unsure whether a maximum dose existed. One-half recognized liver damage as the primary toxicity. Results were similar between acetaminophen users and nonusers. Deficiencies were found in patient knowledge regarding acetaminophen recognition, dosing, and potential for toxicity. The development of effective educational initiatives is warranted to ensure patient awareness and limit the potential for acetaminophen overdose.

  6. Knowledge of appropriate acetaminophen doses and potential toxicities in an adult clinic population.

    PubMed

    Stumpf, Janice L; Skyles, Amy J; Alaniz, Cesar; Erickson, Steven R

    2007-01-01

    To evaluate the knowledge of appropriate doses and potential toxicities of acetaminophen and assess the ability to recognize products containing acetaminophen in an adult outpatient setting. Cross-sectional, prospective study. University adult general internal medicine (AGIM) clinic. 104 adult patients presenting to the clinic over consecutive weekdays in December 2003. Three-page, written questionnaire. Ability of patients to identify maximum daily doses and potential toxicities of acetaminophen and recognize products that contain acetaminophen. A large percentage of participants (68.3%) reported pain on a daily or weekly basis, and 78.9% reported use of acetaminophen in the past 6 months. Only 2 patients correctly identified the maximum daily dose of regular acetaminophen, and just 3 correctly identified the maximum dose of extra-strength acetaminophen. Furthermore, 28 patients were unsure of the maximum dose of either product. Approximately 63% of participants either had not received or were unsure whether information on the possible danger of high doses of acetaminophen had been previously provided to them. When asked to identify potential problems associated with high doses of acetaminophen, 43.3% of patients noted the liver would be affected. The majority of the patients (71.2%) recognized Tylenol as containing acetaminophen, but fewer than 15% correctly identified Vicodin, Darvocet, Tylox, Percocet, and Lorcet as containing acetaminophen. Although nearly 80% of this AGIM population reported recent acetaminophen use, their knowledge of the maximum daily acetaminophen doses and potential toxicities associated with higher doses was poor and appeared to be independent of education level, age, and race. This indicates a need for educational efforts to all patients receiving acetaminophen-containing products, especially since the ability to recognize multi-ingredient products containing acetaminophen was likewise poor.

  7. A randomized, double-blind, placebo-controlled trial on the role of preemptive analgesia with acetaminophen [paracetamol] in reducing headache following electroconvulsive therapy [ECT].

    PubMed

    Isuru, Amila; Rodrigo, Asiri; Wijesinghe, Chamara; Ediriweera, Dileepa; Premadasa, Shan; Wijesekara, Carmel; Kuruppuarachchi, Lalith

    2017-07-28

    Electroconvulsive therapy (ECT) is a safe and efficient treatment for several severe psychiatric disorders, but its use is limited by side effects. Post-ECT headache is one of the commonest side effects. Preemptive analgesia is effective in post-surgical pain management. The most commonly used analgesic is acetaminophen (paracetamol). However, acetaminophen as a preemptive analgesic for post-ECT headache has not been studied adequately. This study was conducted to compare the incidence and severity of post-ECT headache in patients who were administered acetaminophen pre-ECT with a placebo group. This study was a randomised, double-blind, placebo-controlled trial. Sixty-three patients received 1 g acetaminophen and 63 patients received a placebo identical to acetaminophen. The incidence and severity of headache 2 h before and after ECT were compared between placebo and acetaminophen groups. The severity was measured using a visual analog scale. Generalised linear models were used to evaluate variables associated with post ECT headache. Demographic and clinical variables of placebo and acetaminophen groups were comparable except for the energy level used to induce a seizure. Higher proportion of the placebo group (71.4%) experienced post-ECT headache when compared to the acetaminophen group (p < 0.001). The median pain score for headache was 0 (Inter quartile range: 0-2) in acetaminophen group whereas the score was 2 (IQR: 0-4) in placebo group (P < 0.001). Model fitting showed that the administration of acetaminophen is associated with less post-ECT headache (odds ratio = 0.23, 95% CI: 0.11-0.48, P < 0.001). A significant reduction was seen in both the incidence and severity of post-ECT headache with preemptive analgesia with acetaminophen. Ethical approval was granted by an Ethic review committee, University of Kelaniya, Sri Lanka (P/166/10/2015) and the trial was registered in the Sri Lanka Clinical Trials Registry ( SLCTR/2015/27 ).

  8. Underdosing of acetaminophen by parents and emergency department utilization.

    PubMed

    Goldman, Ran D; Scolnik, Dennis

    2004-02-01

    Fever is a common reason for parents to seek medical attention for their children. We conducted this study to document accuracy of parental administration of acetaminophen and to identify if parents who did not give an optimal dose would have decided not to come to the emergency department (ED) if the fever had diminished at home. A cross-sectional study including 248 caregivers of children who had a chief complaint of fever and had been given acetaminophen in the preceding 24 hours were interviewed. Enrollment was 86%. One hundred parents (47%) gave acetaminophen in the recommended dose, 26 parents (12%) gave an overdose, and 87 (41%) gave an underdose of acetaminophen. Half of the parents (54%) would not have come to the ED if the fever had subsided after using the antipyretic treatment at home. Children with significantly higher maximal temperature at home would not have been taken to the ED if fever had subsided. Parents who speak English as the primary language at home gave the recommended dose of acetaminophen more frequently than non-English-speaking parents. A significant portion of our population gives an underdose of acetaminophen, reflecting lack of knowledge or misuse. Based on parental reports, the majority of visits for fever might have been prevented, if parents had been successful in their effort to reduce temperature to below of what they considered as fever, but factors other than underdosing of acetaminophen probably encourage parents of febrile children to visit the ED.

  9. Sterile inflammation in acetaminophen-induced liver injury is mediated by Cot/tpl2.

    PubMed

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Angela M; Martín-Duce, Antonio; Velasco-Martín, Juan P; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-05-24

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.

  10. Sterile Inflammation in Acetaminophen-induced Liver Injury Is Mediated by Cot/tpl2*

    PubMed Central

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Ángela M.; Martín-Duce, Antonio; Velasco-Martín, Juan P.; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-01-01

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms. PMID:23572518

  11. Misunderstanding and Potential Unintended Misuse of Acetaminophen among Adolescents and Young Adults

    PubMed Central

    Shone, Laura P.; King, Jennifer P.; Doane, Cindy; Wilson, Karen M.; Wolf, Michael S.

    2013-01-01

    Purpose Acetaminophen is highly accessible yet potentially dangerous when used incorrectly. In attempts to address concerns about acetaminophen, The U.S. Food and Drug Administration (FDA) has identified gaps in evidence about unintentional misuse among adolescents. Therefore, our objectives were to assess: adolescents’: 1) health literacy; 2) knowledge about acetaminophen; 3) recent use of over-the-counter (OTC) medicines; 4) and use of medication dosing instructions to understand the medicine and how to use it (‘acetaminophen skills’). Methods Subjects and Setting: We conducted a cross-sectional survey of adolescents and young adults (ages 16–23 years) recruited from education settings and health care sites in Monroe County, New York, from 11/08–9/09. Measures: Using structured in-person interviews, we assessed acetaminophen knowledge and recent use of over-the-counter (OTC) medicines. We assessed participants’ ability to identify acetaminophen in OTC products and answer questions about instructions for acetaminophen use through role-plays of everyday health scenarios. We measured health literacy with the Rapid Estimate of Adult Literacy in Medicine (REALM) for participants >18, and the REALM-Teen for those <18. Results Confusion about acetaminophen and its use was common. Limited health literacy was an independent risk factor for poor knowledge, misunderstanding, and potential unsafe use of acetaminophen-containing medicines, however, most participants at all health literacy levels erred dangerously in ‘unsafe’ understanding of acetaminophen use from label instructions. Conclusions Individuals with limited health literacy may face disproportionate risk of unsafe use of acetaminophen due to confusion and misunderstanding of label information. Better labeling, public health programs, and educational efforts could facilitate safer use of acetaminophen. PMID:21951256

  12. Randomized open-labbel non-inferiority trial of acetaminophen or loxoprofen for patients with acute low back pain.

    PubMed

    Miki, Kenji; Ikemoto, Tatsunori; Hayashi, Kazuhiro; Arai, Young-Chang; Sekiguchi, Miho; Shi, Kenrin; Ushida, Takahiro

    2018-05-01

    Current worldwide clinical practice guidelines recommend acetaminophen as the first option for the treatment of acute low back pain. However, there is no concrete evidence regarding whether acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs) is more effective for treating acute low back pain (LBP) in Japan. The present study aimed to investigate whether acetaminophen treatment for acute musculoskeletal pain was comparable with loxoprofen (a traditional NSAID in Japan) treatment. Of the 140 patients with acute LBP who visited out-patient hospitals, 127 were considered eligible and were randomly allocated to a group taking acetaminophen or one taking loxoprofen. As primary outcome measure, pain intensity was measured using a 0-10-numeric rating scale (NRS). Moreover, pain disability, pain catastrophizing, anxiety, depression, and quality of life, as well as adverse events, were assessed as secondary outcomes. The primary outcome was tested with a noninferiority margin (0.84 on changes in pain-NRS), and the secondary outcomes were compared using conventional statistical methods at week 2 and week 4. Seventy patients completed the study (acetaminophen: 35, loxoprofen: 35). The dropout rates showed no significant difference between the two medication-groups. We found that the mean differences of changes in pain-NRS from baseline to week 2 or 4 between the two medication groups were not statistically beyond the noninferiority margin (mean [95% confidence interval]: -0.51 [-1.70, 0.67], at week 2 and -0.80 [-2.08, 0.48] at week 4). There were no consistent differences between the two medication groups in terms of secondary outcomes. The results suggest that acetaminophen has comparable analgesic effects on acute LBP, based on at least a noninferiority margin, compared with loxoprofen at 4 weeks. Acetaminophen seems to be a reasonable first-line option for patients with acute LBP in Japan. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights

  13. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice.

    PubMed

    Fu, Tianhua; Wang, Shijie; Liu, Jinping; Cai, Enbo; Li, Haijun; Li, Pingya; Zhao, Yan

    2018-05-15

    The purpose of this study was to evaluate the protective effects of α-mangostin against acetaminophen (APAP)-induced acute liver injury and discover its potential mechanisms in mice. Mice were continuously treated with α-mangostin (12.5 and 25 mg/kg) by intragastric administration once daily for 6 days, and injected intraperitoneally with APAP (300 mg/kg) after 1 h of α-mangostin administration on the last day. After APAP exposure for 24 h, the liver and serum were gathered to evaluate the hepatotoxicity. The results showed that α-mangostin effectively decreased the serum levels of alanine aminotransferase, aspartate transaminase, tumor necrosis factor (TNF-α), interleukin-1β and 6 (IL-1β, IL-6), and hepatic malondialdehyde level; and recovered hepatic glutathione (GSH), superoxide dismutase and catalase activities. Liver histopathological observation provided further evidence that α-mangostin pretreatment significantly inhibited APAP-induced hepatocellular necrosis, infiltration of inflammatory cell and hyperemia. According to the analysis of western-blot and RT-PCR detection, α-mangostin pretreatment validly inhibited the phosphorylation of ERK, JNK and p38 MAPK induced by APAP, which was consistent with the changes of TNF-α, IL-6 and IL-1β levels; the phosphorylation of IκBα and the translocation of NF-κBp65 were also attenuated by α-mangostin. These results provided a new mechanism for the protective effects of α-mangostin against APAP-induced acute liver injury. α-Mangostin significantly restrainted the oxidative stress induced by APAP. Moreover, the anti-inflammatory property of α-mangostin, which is mediated by the NF-κB and MAPK signaling pathways, also contributed to its hepatoprotective effect. Taken together, we believed that α-mangostin might be a potential material for drug development against drug-related hepatotoxicity. Copyright © 2018. Published by Elsevier B.V.

  14. Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study

    PubMed Central

    Basu, Ananda; Veettil, Sona; Dyer, Roy; Peyser, Thomas

    2016-01-01

    Abstract Background: Recent advances in accuracy and reliability of continuous glucose monitoring (CGM) devices have focused renewed interest on the use of such technology for therapeutic dosing of insulin without the need for independent confirmatory blood glucose meter measurements. An important issue that remains is the susceptibility of CGM devices to erroneous readings in the presence of common pharmacologic interferences. We report on a new method of assessing CGM sensor error to pharmacologic interferences using the example of oral administration of acetaminophen. Materials and Methods: We examined the responses of several different Food and Drug Administration–approved and commercially available CGM systems (Dexcom [San Diego, CA] Seven® Plus™, Medtronic Diabetes [Northridge, CA] Guardian®, and Dexcom G4® Platinum) to oral acetaminophen in 10 healthy volunteers without diabetes. Microdialysis catheters were placed in the abdominal subcutaneous tissue. Blood and microdialysate samples were collected periodically and analyzed for glucose and acetaminophen concentrations before and after oral ingestion of 1 g of acetaminophen. We compared the response of CGM sensors with the measured acetaminophen concentrations in the blood and interstitial fluid. Results: Although plasma glucose concentrations remained constant at approximately 90 mg/dL (approximately 5 mM) throughout the study, CGM glucose measurements varied between approximately 85 to 400 mg/dL (from approximately 5 to 22 mM) due to interference from the acetaminophen. The temporal profile of CGM interference followed acetaminophen concentrations measured in interstitial fluid (ISF). Conclusions: This is the first direct measurement of ISF concentrations of putative CGM interferences with simultaneous measurements of CGM performance in the presence of the interferences. The observed interference with glucose measurements in the tested CGM devices coincided temporally with appearance of

  15. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    PubMed Central

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity. PMID:25313982

  16. Herbal hepatotoxicity: a tabular compilation of reported cases.

    PubMed

    Teschke, Rolf; Wolff, Albrecht; Frenzel, Christian; Schulze, Johannes; Eickhoff, Axel

    2012-11-01

    Herbal hepatotoxicity is a field that has rapidly grown over the last few years along with increased use of herbal products worldwide. To summarize the various facets of this disease, we undertook a literature search for herbs, herbal drugs and herbal supplements with reported cases of herbal hepatotoxicity. A selective literature search was performed to identify published case reports, spontaneous case reports, case series and review articles regarding herbal hepatotoxicity. A total of 185 publications were identified and the results compiled. They show 60 different herbs, herbal drugs and herbal supplements with reported potential hepatotoxicity, additional information including synonyms of individual herbs, botanical names and cross references are provided. If known, details are presented for specific ingredients and chemicals in herbal products, and for references with authors that can be matched to each herbal product and to its effect on the liver. Based on stringent causality assessment methods and/or positive re-exposure tests, causality was highly probable or probable for Ayurvedic herbs, Chaparral, Chinese herbal mixture, Germander, Greater Celandine, green tea, few Herbalife products, Jin Bu Huan, Kava, Ma Huang, Mistletoe, Senna, Syo Saiko To and Venencapsan(®). In many other publications, however, causality was not properly evaluated by a liver-specific and for hepatotoxicity-validated causality assessment method such as the scale of CIOMS (Council for International Organizations of Medical Sciences). This compilation presents details of herbal hepatotoxicity, assisting thereby clinical assessment of involved physicians in the future. © 2012 John Wiley & Sons A/S.

  17. Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI.

    PubMed

    Bliven-Sizemore, E E; Sterling, T R; Shang, N; Benator, D; Schwartzman, K; Reves, R; Drobeniuc, J; Bock, N; Villarino, M E

    2015-09-01

    Nine months of daily isoniazid (9H) and 3 months of once-weekly rifapentine plus isoniazid (3HP) are recommended treatments for latent tuberculous infection (LTBI). The risk profile for 3HP and the contribution of hepatitis C virus (HCV) infection to hepatotoxicity are unclear. To evaluate the hepatotoxicity risk associated with 3HP compared to 9H, and factors associated with hepatotoxicity. Hepatotoxicity was defined as aspartate aminotransferase (AST) >3 times the upper limit of normal (ULN) with symptoms (nausea, vomiting, jaundice, or fatigue), or AST >5 x ULN. We analyzed risk factors among adults who took at least 1 dose of their assigned treatment. A nested case-control study assessed the role of HCV. Of 6862 participants, 77 (1.1%) developed hepatotoxicity; 52 (0.8%) were symptomatic; 1.8% (61/3317) were on 9H and 0.4% (15/3545) were on 3HP (P < 0.0001). Risk factors for hepatotoxicity were age, female sex, white race, non-Hispanic ethnicity, decreased body mass index, elevated baseline AST, and 9H. In the case-control study, HCV infection was associated with hepatotoxicity when controlling for other factors. The risk of hepatotoxicity during LTBI treatment with 3HP was lower than the risk with 9H. HCV and elevated baseline AST were risk factors for hepatotoxicity. For persons with these risk factors, 3HP may be preferred.

  18. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery

    PubMed Central

    Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.

    2012-01-01

    Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709

  19. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies. © The Author(s) 2015.

  20. Hepatotoxicity during Treatment for Tuberculosis in People Living with HIV/AIDS.

    PubMed

    Araújo-Mariz, Carolline; Lopes, Edmundo Pessoa; Acioli-Santos, Bartolomeu; Maruza, Magda; Montarroyos, Ulisses Ramos; Ximenes, Ricardo Arraes de Alencar; Lacerda, Heloísa Ramos; Miranda-Filho, Demócrito de Barros; Albuquerque, Maria de Fátima P Militão de

    2016-01-01

    Hepatotoxicity is frequently reported as an adverse reaction during the treatment of tuberculosis. The aim of this study was to determine the incidence of hepatotoxicity and to identify predictive factors for developing hepatotoxicity after people living with HIV/AIDS (PLWHA) start treatment for tuberculosis. This was a prospective cohort study with PLWHA who were monitored during the first 60 days of tuberculosis treatment in Pernambuco, Brazil. Hepatotoxicity was considered increased levels of aminotransferase, namely those that rose to three times higher than the level before initiating tuberculosis treatment, these levels being associated with symptoms of hepatitis. We conducted a multivariate logistic regression analysis and the magnitude of the associations was expressed by the odds ratio with a confidence interval of 95%. Hepatotoxicity was observed in 53 (30.6%) of the 173 patients who started tuberculosis treatment. The final multivariate logistic regression model demonstrated that the use of fluconazole, malnutrition and the subject being classified as a phenotypically slow acetylator increased the risk of hepatotoxicity significantly. The incidence of hepatotoxicity during treatment for tuberculosis in PLWHA was high. Those classified as phenotypically slow acetylators and as malnourished should be targeted for specific care to reduce the risk of hepatotoxicity during treatment for tuberculosis. The use of fluconazole should be avoided during tuberculosis treatment in PLWHA.

  1. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    PubMed Central

    Bhattacharyya, Sudeepa; Pence, Lisa; Beger, Richard; Chaudhuri, Shubhra; McCullough, Sandra; Yan, Ke; Simpson, Pippa; Hennings, Leah; Hinson, Jack; James, Laura

    2013-01-01

    High doses of acetaminophen (APAP) result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines. PMID:24958141

  2. High prevalence of hypokalemia after acute acetaminophen overdose: impact of psychiatric illness.

    PubMed

    Zyoud, Sa'ed H; Awang, Rahmat; Syed Sulaiman, Syed Azhar; Al-jabi, Samah W

    2010-09-01

    Hypokalemia is not an isolated disease but an associated finding in a number of different diseases. It is also a commonly neglected condition among patients with acute acetaminophen overdose. This study intended to determine the prevalence of hypokalemia and its clinical correlates in acute psychiatric illness among hypokalemic and normokalemic patients after acetaminophen overdose. This is a retrospective cohort study of hospital admissions for acute acetaminophen overdose conducted over a period of 5 years from 1 January 2004 to 31 December 2008. Demographic data and different types of psychiatric illness were compared between hypokalemic and normokalemic patients. Hypokalemia was predefined by a serum concentration <3.5 mmol/L. Statistical Package for Social Sciences (SPSS) 15 was used for data analysis. Two hundred and eighty patients out of 305 admissions were studied. Hypokalemia was found in 63.6% of patients with a higher prevalence in the presence of psychiatric illness (67.7%). Hypokalemic patients were significantly associated with the presence of major depression (p = .04), adjustment disorder (p < .001), anxiety (p = .01), and suicidal attempts (p = .04). Hypokalemia was common among patients with psychiatric illness and acute acetaminophen overdose.

  3. Acetaminophen Differentially Enhances Social Behavior and Cortical Cannabinoid Levels in Inbred Mice

    PubMed Central

    Gould, Georgianna G.; Seillier, Alexandre; Weiss, Gabriela; Giuffrida, Andrea; Burke, Teresa F.; Hensler, Julie G.; Rock, Crystal; Tristan, Amanda; McMahon, Lance R.; Salazar, Alexander; O’Connor, Jason C.; Satsangi, Neera; Satsangi, Rajiv K.; Gu, Ting-Ting; Treat, Keenan; Smolik, Corey; Schultz, Stephen T.

    2012-01-01

    Supratherapeutic doses of the analgesic acetaminophen (paracetomol) are reported to promote social behavior in Swiss mice. However, we hypothesized that it might not promote sociability in other strains due to cannabinoid CB1 receptor-mediated inhibition of serotonin (5-HT) transmission in the frontal cortex. We examined the effects of acetaminophen on social and repetitive behaviors in comparison to a cannabinoid agonist, WIN 55,212-2, in two strains of socially-deficient mice, BTBR and 129S1/SvImJ (129S). Acetaminophen (100 mg/kg) enhanced social interactions in BTBR, and social novelty preference and marble burying in 129S at serum levels ≥70 ng/ml. Following acetaminophen injection or sociability testing, anandamide (AEA) increased in BTBR frontal cortex, while behavior testing increased 2-arachidonyl glycerol (2-AG) levels in 129S frontal cortex. In contrast, WIN 55,212-2 (0.1 mg/kg) did not enhance sociability. Further, we expected CB1-deficient (+/−) mice to be less social than wild-type, but instead found similar sociability. Given strain differences in endocannabinoid response to acetaminophen, we compared cortical CB1 and 5-HT1A receptor density and function relative to sociable C57BL/6 mice. CB1 receptor saturation binding (Bmax= 958±117 fmol/mg protein), and affinity for [3H]CP55,940 (KD= 3±0.8 nM) was similar in frontal cortex among strains. CP55,940-stimulated [35S]GTPγS binding in cingulate cortex was 136±12, 156±22, and 75±9% above basal in BTBR, 129S and C57BL/6 mice. The acetaminophen metabolite para-aminophenol (1μM) failed to stimulate [35S]GTPγS binding. Hence, it appears that other indirect actions of acetaminophen, including 5-HT receptor agonism, may underlie its sociability promoting properties outweighing any CB1 mediated suppression by locally-elevated endocannabinoids in these mice. PMID:22542870

  4. Long-enduring primary hepatocyte-based co-cultures improve prediction of hepatotoxicity.

    PubMed

    Novik, Eric I; Dwyer, Jacquelyn; Morelli, James K; Parekh, Amit; Cho, Cheul; Pludwinski, Eitan; Shrirao, Anil; Freedman, Robert M; MacDonald, James S; Jayyosi, Zaid

    2017-12-01

    The failure of drug candidates during clinical trials and post-marketing withdrawal due to Drug Induced Liver Injury (DILI), results in significant late-stage attrition in the pharmaceutical industry. Animal studies have proven insufficient to definitively predict DILI in the clinic, therefore a variety of in vitro models are being tested in an effort to improve prediction of human hepatotoxicity. The model system described here consists of cryopreserved primary rat, dog or human hepatocytes co-cultured together with a fibroblast cell line, which aids in the hepatocytes' maintenance of more in vivo-like characteristics compared to traditional hepatic mono-cultures, including long term viability and retention of activity of cytochrome P450 isozymes. Cell viability was assessed by measurement of ATP following treatment with 29 compounds having known hepatotoxic liabilities. Hμrelrat™, Hμreldog™, and Hμrelhuman™ hepatic co-cultures were treated for 24h, or under repeat-dosing for 7 or 13days, and compared to rat and human hepatic mono-cultures following single-dose exposure for 24h. The results allowed for a comparison of cytotoxicity, species-specific responses and the effect of repeat compound exposure on the prediction of hepatotoxic potential in each model. Results show that the co-culture model had greater sensitivity compared to that of the hepatic mono-cultures. In addition, "time-based ratios" were determined by dividing the compounds' 24-hour TC 50 /C max values by TC 50 /C max values measured after dosing for either 7 or 13days. The results suggest that this approach may serve as a useful adjunct to traditional measurements of hepatotoxicity, improving the predictive value of early screening studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Hepatotoxicity in healthy infants exposed to nevirapine during pregnancy].

    PubMed

    Iveli, Pablo; Noguera-Julian, Antoni; Soler-Palacín, Pere; Martín-Nalda, Andrea; Rovira-Girabal, Núria; Fortuny-Guasch, Clàudia; Figueras-Nadal, Concepció

    2016-01-01

    The use of nevirapine in HIV-infected pregnant women is discouraged due to its potential to cause hepatotoxicity. There is limited information available on the toxicity in non-HIV infected newborn exposed to this drug during pregnancy. The aim of the study is to determine the extent of hepatotoxicity in the newborn exposed to nevirapine and HIV during pregnancy. A cross-sectional, observational, multicenter study was conducted on a cohort of healthy infants born to HIV-infected mothers, in whom the first determination of alanine aminotransferase (ALT), before 6weeks of age, was collected. Patients were allocated to 2groups according to exposure to nevirapine during pregnancy. Hepatotoxicity was rated according to the AIDS Table for Grading the Severity of Adult and Pediatric Adverse Events (DAIDS). This study included 160newborns from 159pregnancies (88exposed to nevirapine-based regimens and 71 exposed to protease inhibitors-based therapies). No cases of hepatotoxicity were observed according to the DAIDS Table for Grading. Two cases of ALT above normal values (2.8%; 95%CI: 0.3-9.8%) were observed in patients not exposed to nevirapine, and one case (1.1%; 95%CI: 0.0-6.1%) in the group exposed to nevirapine (P=.585). The lack of differences between groups suggests that highly active antiretroviral treatment regimens including nevirapine administered during pregnancy do not involve a higher risk of liver disease compared to other treatment combinations. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

    PubMed

    Van den Eede, Nele; Cuykx, Matthias; Rodrigues, Robim M; Laukens, Kris; Neels, Hugo; Covaci, Adrian; Vanhaecke, Tamara

    2015-12-01

    Since the publication of REACH guidelines, the need for in vitro tools for toxicity testing has increased. We present here the development of a hepatotoxicity testing tool using human HepaRG cell cultures and metabolomics. HepaRG cells were exposed to either 4mM acetaminophen (APAP) as reference toxicant for oxidative stress or 50 μM triphenyl phosphate (TPHP) as toxicant with unknown toxicity pathways (TPs). After 72 h exposure, cells were subjected to quenching and liquid-liquid extraction which resulted in a polar and an apolar fraction. Analysis of fractions was performed by ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-QTOF-MS). Significantly up or down regulated metabolites were selected by univariate statistics prior to identification. In order to obtain robust and specific TP biomarkers, the experiment was also repeated using a different culture medium composition to assess which metabolites show consistent changes. Potential biomarkers belonging to different TPs were found for APAP and TPHP. For APAP, the biomarkers were related to a decrease in unsaturated phospholipids, and for TPHP to an accumulation of phosphoglycerolipids and increase of palmitoyl lysophosphatidylcholine. This first proof-of-concept opens new perspectives for the analysis of other (reference) toxicants with different TPs and it can be used to expand the in vitro tool for hepatotoxicity screening of various compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Assessment of the protective potential of Premna tomentosa (L. Verbenaceae) extract on lipid profile and lipid-metabolizing enzymes in acetaminophen-intoxicated rats.

    PubMed

    Devi, Kasi Pandima; Sreepriya, Meenakshi; Balakrishna, Kedike; Veluchamy, Gopalasamy; Devaki, Thiruvegadam

    2004-06-01

    The liver is often damaged by environmental toxins, poor eating habits, alcohol and over-the-counter drug use that damage and weaken the liver, leading to important public health problems such as hepatitis, cirrhosis, and alcoholic liver diseases. It is cardinal to treat liver disorders, because it affects the biochemistry of the cell directly. Damage to the liver can be prevented by including a balanced diet that includes nutrients and herbs that support a healthy liver. Premna tomentosa (PT) is one such herbal drug used widely in India for the treatment of liver disorders, and we have already reported the hepatoprotective potential and antioxidant property of methanolic extract of PT leaves. Because injury to the liver can promote a variety of reactions with consequent effect on lipids, the present study was designed to elucidate the hypolipidemic effect of PT extract in acetaminophen (AA)-induced hepatotoxicity in rats. Animals were pretreated with PT extract (750 mg/kg, orally) for 15 days and then induced with hepatotoxicity by AA (640 mg/kg, intraperitoneally). PT extract pretreatment significantly inhibited induced alterations in the levels of cholesterol, triglycerides, free fatty acids, phospholipids, serum lipoproteins, and lipid-metabolizing enzymes. The results indicate that PT extract improves lipid metabolism and has the potential for use in hepatic disorders. Copyright Mary Ann Liebert, Inc.

  8. Degradation and transformation products of acetaminophen in soil.

    PubMed

    Li, Juying; Ye, Qingfu; Gan, Jay

    2014-02-01

    Acetaminophen is the most widely used human medicine. Trace levels of acetaminophen are frequently detected in treated wastewater and the impacted surface or groundwater resources. However, even though soil is a primary receiving compartment, the fate of acetaminophen in soil is poorly known, including in particular the potential for the formation of incomplete degradation products that may have altered biological activity and mobility. In this study, using both (14)C-labeling and LC-MS/MS techniques, we evaluated the dissipation routes and transformation pathways of acetaminophen in soils under a range of conditions. Throughout 120-d aerobic incubation, up to 17.0 ± 0.8% of (14)C-acetaminophen was mineralized, but mineralization was greatly inhibited after sterilization or amendment of biosolids. Immediately after treatment, the majority of (14)C-residue became non-extractable or bound, with the level accounting for 73.4-93.3% of the applied amount at the end of incubation. A total of 8 intermediates were identified, including 3-hydroxyacetaminophen, hydroquinone, 1, 4-benzoquinone, N-acetyl-p-benzoquinone imine, p-acetanisidide, 4-methoxyphenol, 2-hexenoic acid, and 1, 4-dimethoxybenzene. Mineralization and rapid conversion to bound residues suggest that acetaminophen is quickly detoxified in soil, decreasing the potential for off-site transport such as leaching or runoff. On the other hand, the formation of a large number of degradation intermediates, and their potential biological activity, may pose unknown risks, such as accumulation into edible plants. This risk warrants further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  10. Hepatotoxicity Induced by “the 3Ks”: Kava, Kratom and Khat

    PubMed Central

    Pantano, Flaminia; Tittarelli, Roberta; Mannocchi, Giulio; Zaami, Simona; Ricci, Serafino; Giorgetti, Raffaele; Terranova, Daniela; Busardò, Francesco P.; Marinelli, Enrico

    2016-01-01

    The 3Ks (kava, kratom and khat) are herbals that can potentially induce liver injuries. On the one hand, growing controversial data have been reported about the hepatotoxicity of kratom, while, on the other hand, even though kava and khat hepatotoxicity has been investigated, the hepatotoxic effects are still not clear. Chronic recreational use of kratom has been associated with rare instances of acute liver injury. Several studies and case reports have suggested that khat is hepatotoxic, leading to deranged liver enzymes and also histopathological evidence of acute hepatocellular degeneration. Numerous reports of severe hepatotoxicity potentially induced by kava have also been highlighted, both in the USA and Europe. The aim of this review is to focus on the different patterns and the mechanisms of hepatotoxicity induced by “the 3Ks”, while trying to clarify the numerous aspects that still need to be addressed. PMID:27092496

  11. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.

    2010-12-15

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality overmore » subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.« less

  12. Ibuprofen with acetaminophen for postoperative pain control following tonsillectomy does not increase emergency department utilization.

    PubMed

    Bedwell, Joshua R; Pierce, Matthew; Levy, Michelle; Shah, Rahul K

    2014-12-01

    To compare the performance of ibuprofen vs codeine for postoperative pain management after tonsillectomy as measured by need for emergency department (ED) treatment for pain and/or dehydration. Retrospective case series with chart review. Tertiary children's hospital. Consecutive series of patients who underwent tonsillectomy with or without adenoidectomy at a tertiary children's hospital. Patients were categorized based on the type of postoperative pain management (acetaminophen with codeine vs acetaminophen and ibuprofen). The main outcome measure was the proportion of patients requiring ED visits or inpatient admissions for inadequate pain control or dehydration. Secondary measures included antibiotic use, postoperative hemorrhage, need for return to the operating room, vomiting, and oral diet tolerance. Patients in the ibuprofen/acetaminophen group were younger than those in the codeine/acetaminophen group (6.2 vs 8.1 years, P < .05). Patients in the codeine/acetaminophen group were more likely to use antibiotics in the postoperative period (50.3% vs 5.9%, P < .05). The proportion of patients requiring ED visits or inpatient admission for dehydration was not significantly different between the groups (5.1% for codeine, 2.7% for ibuprofen, P = .12). Multivariable analysis controlling for age and antibiotic use showed no difference in ED visits or admission for dehydration (P = .09). There was no difference between the groups for any of the secondary measures. Ibuprofen with acetaminophen represents a safe and acceptable analgesic alternative to codeine and acetaminophen in patients undergoing pediatric tonsillectomy. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  13. [Impact factors and degradation mechanism for the ozonation of acetaminophen in aqueous solution].

    PubMed

    Cao, Fei; Yuan, Shou-Jun; Zhang, Meng-Tao; Wang, Wei; Hu, Zhen-Hu

    2014-11-01

    The effect and mechanism of O3 on the degradation of acetaminophen in aqueous solution were studied by the batch experiment. The results showed that acetaminophen could be degraded effectively by ozone and degradation of acetaminophen fitted well with the pseudo-first-order kinetics model (R2 > 0.992). The degradation of acetaminophen was promoted with the increase of pH, the concentration of bicarbonate and ozone. The results of gas chromatography-mass spectrometry (GC-MS) and ion chromatography analysis showed that degradation products such as hydroquinone and a series of carboxylic acids were firstly formed during ozonation of acetaminophen. Then, the products were further oxidized. The degradation pathways of acetaminophen were also discussed by the identified products. The result of TOC showed that the mineralization of acetaminophen was ultimately lower. When the initial concentration of acetaminophen was 20 mg x L(-1) and the concentration of ozone was 9.10 mg x L(-1), the mineralization was only 16.42% after 130 min.

  14. Study of Nephrotoxic Potential of Acetaminophen in Birds

    PubMed Central

    Jayakumar, K.; Mohan, K.; Swamy, H. D. Narayana; Shridhar, N. B.; Bayer, M. D.

    2010-01-01

    The present study was designed to evaluate the effect of acetaminophen on kidneys of birds by comparison with diclofenac that is used as positive control. The birds of Group I served as negative control and received normal saline, whereas Group II birds received diclofenac injection (2.5 mg/kg IM) and Group III birds received acetaminophen injection (10 mg/kg IM) for a period of seven days daily. The birds treated with diclofenac showed severe clinical signs of toxicity accompanied with high mortality and significant increase (P<0.001) in serum creatinine and uric acid concentration. The creatinine and uric acid concentrations were consistent with gross and histopathological findings. The negative control and acetaminophen-treated groups showed no adverse clinical signs, serum creatinine and uric acid concentrations were normal, and no gross or histopathological changes in kidneys were observed. Thus, it was concluded that acetaminophen can be used for treatment in birds without any adverse effect on kidneys. PMID:21170252

  15. Oral pharmacokinetics of acetaminophen to evaluate gastric emptying profiles of Shiba goats.

    PubMed

    Elbadawy, Mohamed; Sasaki, Kazuaki; Miyazaki, Yuji; Aboubakr, Mohamed; Khalil, Waleed Fathy; Shimoda, Minoru

    2015-10-01

    The pharmacokinetics of acetaminophen was investigated following oral dosing to Shiba goats in order to evaluate the properties of gastric emptying. Acetaminophen was intravenously and orally administered at 30 mg/kg body weight to goats using a crossover design with a 3-week washout period. The stability of acetaminophen in rumen juice was also assessed. Acetaminophen concentrations were measured by HPLC. Since acetaminophen was stable in rumen juice for 24 hr, the extremely low bioavailability (16%) was attributed to its hepatic extensive first-pass effect. The mean absorption time and absorption half-life were unexpectedly short (4.93 and 3.35 hr, respectively), indicating its marked absorption from the forestomach, which may have been due to its smaller molecular weight. Therefore, acetaminophen was considered to be unsuitable for evaluating gastric emptying in Shiba goats.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu; Hankey, Pamela; Mishin, Vladimir

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects ofmore » acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup

  17. An Immunoassay to Rapidly Measure Acetaminophen Protein Adducts Accurately Identifies Patients with Acute Liver Injury or Failure

    PubMed Central

    Roberts, Dean W.; Lee, William M.; Hinson, Jack A.; Bai, Shasha; Swearingen, Christopher J.; Stravitz, R. Todd; Reuben, Adrian; Letzig, Lynda; Simpson, Pippa M.; Rule, Jody; Fontana, Robert J.; Ganger, Daniel; Reddy, K. Rajender; Liou, Iris; Fix, Oren; James, Laura P.

    2017-01-01

    Background & Aims A rapid, reliable point-of-care assay to detect acetaminophen protein adducts in serum of patients with acute liver injury could improve diagnosis and management. AcetaSTAT is a competitive immunoassay used to measure acetaminophen protein adducts formed by toxic metabolites in serum samples from patients. We compared the accuracy of AcetaSTAT vs high-pressure liquid chromatography with electrochemical detection (HPLC-EC, a sensitive and specific quantitative analytical assay) to detect acetaminophen protein adducts. Methods We collected serum samples from 19 healthy individuals (no liver injury, no recent acetaminophen use), 29 patients without acetaminophen-associated acute liver injury, and 33 patients with acetaminophen-associated acute liver injury participating in the Acute Liver Failure Study Group registry. Each serum sample was analyzed by AcetaSTAT (reported as test band amplitude) and HPLC-EC (the reference standard). We also collected data on patient age, sex, weight, level of alanine aminotransferase on test day and peak values, concentration of acetaminophen, diagnoses (by site investigator and causality review committee), and outcome after 21 days. Differences between groups were analyzed using Fisher’s Exact for categorical variables and Kruskal-Wallis Test or Rank-Sum test for continuous variables. Results AcetaSTAT discriminated between patients with and without acetaminophen-associated acute liver injury; the median (and range) AcetaSTAT test band amplitude for patients with acetaminophen-associated acute liver injury was 584 (range, 222–1027) vs 3678 (range, 394–8289) for those without (P<.001). AcetaSTAT identified patients with acetaminophen-associated acute liver injury with 100% sensitivity, 86.2% specificity, a positive-predictive value of 89.2%, and a negative-predictive value of 100%. Results from AcetaSTAT were positive in 4 subjects who received a causality review committee diagnosis of non

  18. Hepatotoxicity of illegal home-made alcohols.

    PubMed

    Gökce, Hasan; Akcan, Ramazan; Celikel, Adnan; Zeren, Cem; Ortanca, Ibrahim; Demirkiran, Sumeyra

    2016-10-01

    .93, ethanol %95.70, 2-methyl-1-propanolol (isobutanol) %0.19, asetic acid %0.25, 3-methylbutanol (isoamyl alcohol) %0.77, and others %1.16. Chemical composition of commercial whisky sample (%v/v) was as follows: ethanol %97.72, 2-methyl-1-propanolol (isobutanol) %0.57, asetic acid %0.23, 3-methylbutanol (isoamyl alcohol) %1.28, and others %0.2. No traces of trans-anethole were detected in whisky. Normal liver morphology was recorded in control and walnut groups. However, bogma raki caused significant congestion and inflammatory cell infiltration compared to control and walnut group. On the other hand, whisky administration caused mild degeneration including inflammation in a limited area. Obtained findings suggest that trans-anethole containing alcoholic beverages are more hepatotoxic compared to commercial alcoholic beverages. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Rocuronium is more hepatotoxic than succinylcholine in vitro.

    PubMed

    Sauer, Martin; Piel, Ines; Haubner, Cristof; Richter, Georg; Mann, Miriam; Nöldge-Schomburg, Gabriele; Mencke, Thomas

    2017-09-01

    The development of liver failure is a major problem in critically ill patients. The hepatotoxicity of many drugs, as one important reason for liver failure, is poorly screened for in human models. Rocuronium and succinylcholine are neuromuscular blocking agents used for tracheal intubation and for rapid-sequence induction. We used an in-vitro test with a permanent cell line and compared rocuronium and succinylcholine for hepatotoxicity. In-vitro study. A basic science laboratory, University Hospital Rostock, Germany. The basic test compound is the permanent human liver cell line HepG2/C3A. In a standardised microtitre plate assay the toxicity of different concentrations of rocuronium, succinylcholine and plasma control was tested. After two incubation periods of 3 days, the viability of cells (XTT test, lactate dehydrogenase release and trypan blue staining), micro-albumin synthesis and the cytochrome 1A2 activity (metabolism of ethoxyresorufin) were measured. Differences between rocuronium and succinylcholine were assessed using the Kruskal-Wallis one-way test and two-tailed Mann-Whitney U test. Rocuronium, but not succinylcholine, led to a significant dose-dependent decrease of viability, albumin synthesis and cytochrome 1A2 activity of test cells. An in-vitro test with a cell line showed hepatotoxicity of rocuronium that was dose-dependent. Further studies are needed to investigate the underlying mechanisms of the effects of rocuronium on hepatic cellular integrity. Not suitable.

  20. Managing acute acetaminophen poisoning with oral versus intravenous N-acetylcysteine: a provider-perspective cost analysis.

    PubMed

    Marchetti, Albert; Rossiter, Richard

    2009-01-01

    Acetaminophen (APAP) overdose, which can lead to hepatotoxicity, is the most commonly reported poisoning in the United States and has the highest rate of mortality, with more than 100,000 exposures and 300 deaths reported annually (1) . The treatment of choice, N-acetylcysteine (NAC), is effective in both oral (PO) and intravenous (IV) formulations. The main difference in therapies, other than administration route, is time to complete delivery--72 hours for PO NAC versus 21 hours for IV NAC, according to full prescribing information. This distinction is the primary basis for variation in management costs for hospitalized patients receiving these products. To quantify and compare full treatment costs from the provider perspective to manage acute APAP poisoning with either PO or IV NAC in a standard treatment regimen. A cost model was developed and populated with published data comprising probabilities of potential clinical outcomes and the costs of resources consumed during patient care. For patients who present <10 hours post-ingestion, the estimated total cost of care with PO NAC in the treatment regimen is $5,817 (ICU patients) or $3,850, (ward patients) compared with $3,765 and $2,768 for similar care with IV NAC. Potential cost savings equal - $2,052 (-35%) or -$1,083 (-28%), respectively, in favor of IV NAC. Similar potential savings were estimated for patients presenting 10-24 hours post-ingestion. IV NAC is the less costly therapeutic option for APAP poisonings, based on simulation modeling and retrospective data. The current economic evaluation is restricted by the absence of comparative data from head-to-head, matched-cohort studies and the limitations common to retrospective APAP toxicology datasets. Additional research could refine these results.

  1. Quantification of a biomarker of acetaminophen protein adducts in human serum by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: clinical and animal model applications.

    PubMed

    Cook, Sarah F; King, Amber D; Chang, Yan; Murray, Gordon J; Norris, Hye-Ryun K; Dart, Richard C; Green, Jody L; Curry, Steven C; Rollins, Douglas E; Wilkins, Diana G

    2015-03-15

    The aims of this study were to develop, validate, and apply a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for quantification of protein-derived 3-(cystein-S-yl)-acetaminophen (APAP-Cys) in human serum. Formation of acetaminophen (APAP) protein adducts is thought to be a critical, early event in the development of APAP-induced hepatotoxicity, and quantification of these protein adducts in human serum represents a valuable tool for assessment of APAP exposure, metabolism, and toxicity. In the reported procedure, serum samples were first dialyzed or passed through gel filtration columns to remove APAP-Cys not covalently bound to proteins. Serum eluates were then subjected to enzymatic protease digestion to liberate protein-bound APAP-Cys. Norbuprenorphine-D3 was utilized as an internal standard (IS). APAP-Cys and IS were recovered from digested serum by protein precipitation with acetonitrile, and sample extracts were analyzed by HPLC-ESI-MS/MS. The method was validated by assessment of intra- and inter-assay accuracy and imprecision on two different analytical instrument platforms. APAP-Cys could be accurately quantified from 0.010 to 10μM, and intra- and inter-assay imprecision were <15% on both analytical instruments. APAP-Cys was stable in human serum for three freeze-thaw cycles and for 24h at ambient temperature. Extracted samples were stable when stored in refrigerated autosamplers for the typical duration of analysis or when stored at -20°C for six days. Results from process efficiency and matrix effect experiments indicated adequate recovery from human serum and insignificant ion suppression or enhancement. The utility and sensitivity of the reported procedure were illustrated by analysis of clinical samples collected from subjects taking chronic, therapeutic doses of APAP. Applicability to other biological matrices was also demonstrated by measurement of protein-derived APAP-Cys in plasma

  2. The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS⃞

    PubMed Central

    Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.

    2013-01-01

    Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116

  3. Acute pain management: acetaminophen and ibuprofen are often under-dosed.

    PubMed

    Milani, Gregorio P; Benini, Franca; Dell'Era, Laura; Silvagni, Davide; Podestà, Alberto F; Mancusi, Rossella Letizia; Fossali, Emilio F

    2017-07-01

    Most children with pain are managed by either acetaminophen or ibuprofen. However, no study has so far investigated if children are prescribed adequate doses of acetaminophen or ibuprofen in emergency department. Aim of this retrospective study was to investigate the prevalence of under-dosage of these drugs in children presenting with pain in emergency department. Children initially prescribed with acetaminophen or ibuprofen for pain management were included. The χ 2 automatic interaction detection method was used considering the percentage variation from the minimum of the appropriate dose as dependent variable while prescribed drug, age, gender, body weight, type of hospital (pediatric or general), and availability of internal guidelines on pediatric pain management in the emergency department as independent variables. Data on 1471 children managed for pain were available. Under-dosage was prescribed in 893 subjects (61%), of whom 577 were prescribed acetaminophen and 316 ibuprofen. The use of acetaminophen suppositories, body weight <12 kg or >40 kg, and the use of oral ibuprofen identified clusters of children associated with under-dosage prescription. Prescription of acetaminophen and ibuprofen was frequently under-dosed. The use of suppositories, lower and higher body weight, and the use of ibuprofen were associated with under-dosage. Under-dosing may reflect prescription of anti-pyretic doses. Agenzia Italiana del Farmaco-Observational Study Register (RSO). Registration code: PIERRE/1 What is Known: • Pain is frequent in children presented to emergency department. • International recommendations on pain management are often not implemented. What is New: • Acetaminophen and ibuprofen were frequently underdosed in children prescribed for pain in the Italian emergency departments. • Under-dosage may be related to the habit of using acetaminophen and ibuprofen in the recommended range for fever treatment.

  4. Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism.

    PubMed

    Jiang, Ping; Sheng, Yu-chen; Chen, Yu-hao; Ji, Li-li; Wang, Zheng-tao

    2014-11-01

    This study aims to observe the protective action of Flos Lonicerae (FL) aqueous extract against acetaminophen (AP)-induced liver injury and its mechanism. Results show that FL decreases AP-increased serum alanine/aspartate transaminases (ALT/AST) activity, as well as total bilirubin (TB) amount, in mice. Histological evaluation of the liver further confirms the protection of FL against AP-induced hepatotoxicity. TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay shows that FL reduces AP-increased apoptotic cells. Furthermore, AP-decreased liver glutamate-cysteine ligase (GCL) enzymatic activity and glutathione (GSH) amount are both reversed by FL because of the increased expression of the catalytic subunit of GCL (GCLC) protein. The amount of chlorogenic acid (CGA), caffeic acid, and luteolin, the main active compounds in FL, is detected by high-performance liquid chromatography (HPLC). In addition, cell viability assay demonstrates that polyphenols in FL, such as CGA, caffeic acid, as well as isochlorogenic acids A, B, and C, can reverse AP-induced cytotoxicity. In conclusion, FL can prevent AP-induced liver injury by inhibiting apoptosis. The cellular antioxidant enzyme GCL is also involved in such protection. Polyphenols may be the main active hepato-protective ingredients in FL. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Impact of Educational Levels and Health Literacy on Community Acetaminophen Knowledge.

    PubMed

    Ip, Eric J; Tang, Terrill T-L; Cheng, Vincent; Yu, Junhua; Cheongsiatmoy, Derren S

    2015-12-01

    Patient understanding of acetaminophen is important for its safe and appropriate self-use. A cross-sectional survey was conducted in the San Francisco Bay Area to determine the impact of educational level, patient health literacy score, and other demographic characteristics on acetaminophen knowledge. A 17-item, in-person, paper-and-pen questionnaire containing questions about demographics and acetaminophen knowledge was administered to 311 adults outside 5 local grocery stores in varying socioeconomic communities. Knowledge assessed was whether Tylenol-McNeil contains acetaminophen, maximum daily dose, and primary organ affected by toxicity. Participant health literacy was evaluated using the Rapid Estimate of Adult Literacy in Medicine-Short Form (REALM-SF) test. Of the 300 who successfully completed the study, only 3.8% of all subjects were able to answer all 3 acetaminophen knowledge questions correctly regardless of educational level or health literacy score. This reaffirms that a lack of appropriate acetaminophen knowledge remains present in the general population, and further efforts to educate patients will be needed to prevent adverse events. © The Author(s) 2014.

  6. Association of Acetaminophen Use During Pregnancy With Behavioral Problems in Childhood: Evidence Against Confounding.

    PubMed

    Stergiakouli, Evie; Thapar, Anita; Davey Smith, George

    2016-10-01

    Acetaminophen (paracetamol) is used by a large proportion of pregnant women. Research suggests that acetaminophen use in pregnancy is associated with abnormal fetal neurodevelopment. However, it is possible that this association might be confounded by unmeasured behavioral factors linked to acetaminophen use. To examine associations between offspring behavioral problems and (1) maternal prenatal acetaminophen use, (2) maternal postnatal acetaminophen use, and (3) partner's acetaminophen use. From February 2015 to March 2016, we collected and analyzed data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective birth cohort. We studied 7796 mothers enrolled in ALSPAC between 1991 and 1992 along with their children and partners. Acetaminophen use was assessed by questionnaire completion at 18 and 32 weeks of pregnancy and when the child was 61 months old. Maternal reports of behavioral problems using the Strengths and Difficulties Questionnaire (SDQ) when the children were 7 years old. We estimated risk ratios for behavioral problems in children after prenatal, postnatal, and partner's exposure to acetaminophen and mutually adjusted each association. Maternal prenatal acetaminophen use at 18 (n = 4415; 53%) and 32 weeks of pregnancy (n = 3381; 42%) was associated with higher odds of having conduct problems (risk ratio [RR], 1.42; 95% CI, 1.25-1.62) and hyperactivity symptoms (RR, 1.31; 95% CI, 1.16-1.49), while maternal acetaminophen use at 32 weeks was also associated with higher odds of having emotional symptoms (RR, 1.29; 95% CI, 1.09-1.53) and total difficulties (RR, 1.46; 95% CI, 1.21-1.77). This was not the case for maternal postnatal (n = 6916; 89%) or partner's (n = 3454; 84%) acetaminophen use. We found the associations between maternal prenatal acetaminophen use and all the SDQ domains unchanged even after adjusting for maternal postnatal or partner's acetaminophen use. Children exposed to acetaminophen prenatally

  7. Use of acetaminophen and risk of endometrial cancer: evidence from observational studies.

    PubMed

    Ding, Yuan-Yuan; Yao, Peng; Verma, Surya; Han, Zhen-Kai; Hong, Tao; Zhu, Yong-Qiang; Li, Hong-Xi

    2017-05-23

    Previous meta-analyses suggested that aspirin was associated with reduced risk of endometrial cancer. However, there has been no study comprehensively summarize the evidence of acetaminophen use and risk of endometrial cancer from observational studies. We systematically searched electronic databases (PubMed , EMBASE, Web of Science, and Cochrane Library) for relevant cohort or case-control studies up to February 28, 2017. Two independent authors performed the eligibility evaluation and data extraction. All differences were resolved by discussion. A random-effects model was applied to estimate summary relative risks (RRs) with 95% CIs. All statistical tests were two-sided. Seven observational studies including four prospective cohort studies and three case-control studies with 3874 endometrial cancer cases were included for final analysis. Compared with never use acetaminophen, ever use this drug was not associated with risk of endometrial cancer (summarized RR = 1.02; 95% CI: 0.93-1.13, I2 = 0%). Similar null association was also observed when compared the highest category of frequency/duration with never use acetaminophen (summarized RR = 0.88; 95% CI: 0.70-1.11, I2 = 15.2%). Additionally, the finding was robust in the subgroup analyses stratified by study characteristics and adjustment for potential confounders and risk factors. There was no evidence of publication bias by a visual inspection of a funnel plot and formal statistical tests. In summary, the present meta-analysis reveals no association between acetaminophen use and risk of endometrial cancer. More large scale prospective cohort studies are warranted to confirm our findings and carry out the dose-response analysis of aforementioned association.

  8. Resolution of an oral ulcer secondary to acetaminophen/hydrocodone withdrawal.

    PubMed

    Balasubramaniam, Ramesh; Lin, Po-Ching; White, Dean K; Yepes, Juan F

    2007-01-01

    Acetaminophen/hydrocodone is a common non-opioid/opioid analgesic indicated for the treatment of moderate to severe pain. The following report depicts a unique case involving a 57-year-old woman with a persistent, painful oral ulcer that was unresponsive to standard treatments. The ulcer was resolved when the patient discontinued acetaminophen/hydrocodone use. The cause of the ulcer is unclear but it was speculated to result from a systemic hypersensitivity reaction to acetaminophen/hydrocodone.

  9. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen.

    PubMed

    Kyle, M E; Miccadei, S; Nakae, D; Farber, J L

    1987-12-31

    Superoxide dismutase, catalase and mannitol prevent the killing of cultured hepatocytes by acetaminophen in the presence of an inhibitor of glutathione reductase, BCNU. Under these conditions, the cytotoxicity of acetaminophen depends upon its metabolism, since beta-naphthoflavone, an inhibitor of mixed function oxidation, prevents the cell killing. In hepatocytes made resistant to acetaminophen by pretreatment with the ferric iron chelator, deferoxamine, addition of ferric or ferrous iron restores the sensitivity to acetaminophen. In such a situation, both superoxide dismutase and catalase prevent the killing by acetaminophen in the presence of ferric iron. By contrast, catalase, but not superoxide dismutase, prevents the cell killing dependent upon addition of ferrous iron. These results document the participation of both superoxide anion and hydrogen peroxide in the killing of cultured hepatocytes by acetaminophen and suggest that hydroxyl radicals generated by an iron catalyzed Haber-Weiss reaction mediate the cell injury.

  10. [Efficacy of tramadol/acetaminophen medication for central post-stroke pain].

    PubMed

    Tanei, Takafumi; Kajita, Yasukazu; Noda, Hiroshi; Takebayashi, Shigenori; Hirano, Masaki; Nakahara, Norimoto; Wakabayashi, Toshihiko

    2013-08-01

    Central post-stroke pain(CPSP)is the most difficult type of central neuropathic pain to control with medical treatment. Opioids are commonly used for chronic neuropathic pain, but their efficacy in treating central neuropathic pain, particularly CPSP, is not clear. Tramadol is an opioid analgesic that, in combination with acetaminophen, has been approved since 2011 for the treatment of non-cancer pain in Japan. In this study we evaluated the efficacy of tramadol/acetaminophen medication for CPSP. We retrospectively reviewed nine cases of CPSP that received oral tramadol/acetaminophen medication. All cases received tramadol/acetaminophen medication after first taking pregabalin then antidepressant medication. Pain levels were assessed before tramadol/acetaminophen medication began and one month after a maintenance dose was reached, using a visual analogue scale(VAS)and the McGill pain questionnaire(MPQ). The mean dose of tramadol was 121±61.6 mg/day. Tramadol/acetaminophen medication was effective in reducing pain in seven of nine cases(77.8%). The VAS improved 32.9±13.8% from pre-to post-medication, and the MPQ improved from 15.4±9.1 pre-medication to 8.1±4.7 post-medication(p<0.05). These effects continued 9.3±4.5 months during follow up periods. Side effects were observed in six cases(one severe, one moderate, two mild, two transient), but medication was continued in eight cases. Oral tramadol/acetaminophen medication was effective at reducing pain levels in patients with CPSP, and is a medication option for the treatment of CPSP.

  11. Developing consumer-centered, nonprescription drug labeling a study in acetaminophen.

    PubMed

    King, Jennifer P; Davis, Terry C; Bailey, Stacy Cooper; Jacobson, Kara L; Hedlund, Laurie A; Di Francesco, Lorenzo; Parker, Ruth M; Wolf, Michael S

    2011-06-01

    In the U.S., acetaminophen overdose has surpassed viral hepatitis as the leading cause of acute liver failure, and misuse contributes to more than 30,000 hospitalizations annually. Half to two thirds of acetaminophen overdoses are unintentional, suggesting the root cause is likely poor understanding of medication labeling or failure to recognize the consequences of exceeding the recommended maximum daily dosage. Elicit subject feedback about active ingredient and dosing information on over-the-counter (OTC) acetaminophen and elicit feedback on proposed plain-language text and icons. Six focus groups, preceded by individual interviews, were conducted in April 2010 among 45 adults in two cities from two clinics and an adult basic education center. The individual interviews evaluated knowledge of OTC pain relievers, attention to product label information and literacy level while the group discussion elicited preference for label messages and icons. Analyses were conducted from April to June 2010. Forty-four percent read at or below the 6th-grade level. Individual interviews revealed that <50% of participants routinely examine product label information. Only 31% know acetaminophen is in Tylenol®. The groups achieved consensus on a preferred icon for acetaminophen, desired explicit statement of potential liver damage in the warning against simultaneous use of acetaminophen products, and indicated preference for an icon and wording for maximum dose. With the high prevalence of OTC use, a consumer-centered approach to developing icons and messages to promote awareness and safe use of acetaminophen could benefit consumers. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Pharmacokinetics of hydrocodone/acetaminophen combination product in children ages 6-17 with moderate to moderately severe postoperative pain.

    PubMed

    Liu, Wei; Dutta, Sandeep; Kearns, Greg; Awni, Walid; Neville, Kathleen A

    2015-02-01

    Lortab® Elixir, a proprietary combination product containing hydrocodone and acetaminophen, is approved in the US for the treatment of moderate to moderately severe pain in children. Despite this approval, pediatric pharmacokinetic data using this product have not been previously published. Using a single-dose open-label study approach, we evaluated the pharmacokinetics, tolerability, and safety of this product in 17 healthy children 6-17 years of age. Results showed that the body weight-normalized oral clearance (L/h/kg) of hydrocodone and acetaminophen were 42% and 27% higher, respectively when compared to data from healthy adults. This suggests that a higher mg/kg dose would be required in children to achieve exposures similar to adults. We found adjustment of hydrocodone and acetaminophen dose by body surface area to be more optimal than body weight-based dose adjustments for achieving similar systemic exposure in children and adults. However, body weight-based hydrocodone and acetaminophen dosing regimens provided close approximation of adult exposures in pediatric patients with approximately 22% to 24% lower hydrocodone and acetaminophen dose/BW-normalized AUC in pediatric patients compared to adults. Finally, the adverse event profile in our pediatric cohort was consistent with that expected of opioid-naive subjects receiving opioid-combination therapy. © 2014, The American College of Clinical Pharmacology.

  13. Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model

    PubMed Central

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2016-01-01

    Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209

  14. Antithyroid drug-related hepatotoxicity in hyperthyroidism patients: a population-based cohort study

    PubMed Central

    Wang, Meng-Ting; Lee, Wan-Ju; Huang, Tien-Yu; Chu, Che-Li; Hsieh, Chang-Hsun

    2014-01-01

    Aims The evidence of hepatotoxicity of antithyroid drugs (ATDs) is limited to case reports or spontaneous reporting. This study aimed to quantify the incidence and comparative risks of hepatotoxicity for methimazole (MMI)/carbimazole (CBM) vs. propylthiouracil (PTU) in a population-based manner. Methods We conducted a cohort study of hyperthyroidism patients initially receiving MMI/CBM or PTU between 1 January 2004 and 31 December 2008 using the Taiwan National Health Insurance Research Database. The examined hepatotoxicity consisted of cholestasis, non-infectious hepatitis, acute liver failure and liver transplant, with the incidences and relative risks being quantified by Poisson exact methods and Cox proportional hazard models, respectively. Results The study cohort comprised 71 379 ATD initiators, with a median follow-up of 196 days. MMI/CBM vs. PTU users had a higher hepatitis incidence rate (3.17/1000 vs. 1.19/1000 person-years) but a lower incidence of acute liver failure (0.32/1000 vs. 0.68/1000 person-years). The relative risk analysis indicated that any use of MMI/CBM was associated with a 2.89-fold (95% CI 1.81, 4.60) increased hepatitis risk compared with PTU, with the risk increasing to 5.08-fold for high dose MMI/CBM (95% CI 3.15, 8.18). However, any MMI/CBM use vs. PTU was not related to an increased risk of cholestasis (adjusted hazard ratio [HR] 1.14, 95% CI 0.40, 3.72) or acute liver failure (adjusted HR 0.54, 95% CI 0.24, 1.22). Conclusions MMI/CBM and PTU exert dissimilar incidence rates of hepatotoxicity. Compared to PTU, MMI/CBM are associated in a dose-dependent manner with an increased risk for hepatitis while the risks are similar for acute liver failure and cholestasis. PMID:25279406

  15. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

    PubMed

    Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua

    2015-01-01

    As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Acetaminophen Enhances Cisplatin- and Paclitaxel-mediated Cytotoxicity to SKOV3 Human Ovarian Carcinoma

    PubMed Central

    Wu, Y. Jeffrey; Neuwelt, Alexander J.; Muldoon, Leslie L.; Neuwelt, Edward A.

    2013-01-01

    Background Ovarian cancer is commonly treated with cisplatin/paclitaxel but many tumors become resistant. Acetaminophen reduced glutathione and enhanced chemotherapy efficacy in treating hepatic cancer. The objective of this study was to examine if acetaminophen enhances the cytotoxicity of cisplatin/paclitaxel in ovarian cancer. Materials and Methods SKOV3 human ovarian carcinoma cells in vitro and a subcutaneous tumor nude rat model were used and treated with cisplatin/paclitaxel with or without acetaminophen. Results In vitro, acetaminophen enhanced apoptosis induced by cisplatin and paclitaxel with similar effects on glutathione, reactive oxygen species and mitochondrial membrane potential but different effects on nuclear factor erythroid 2-related factor 2 (NRF2) translocation. In vivo, acetaminophen was uniformly distributed in tissue and significantly reduced hepatic glutathione. Acetaminophen enhanced cisplatin chemotherapeutic effect by reducing tumor recurrence Conclusion Our results suggest that acetaminophen as a chemoenhancing adjuvant could improve the efficacy of cisplatin and paclitaxel in treating patients with ovarian carcinoma and other tumor types. PMID:23749887

  17. Paracetamol (acetaminophen) efficacy and safety in the newborn.

    PubMed

    Cuzzolin, Laura; Antonucci, Roberto; Fanos, Vassilios

    2013-02-01

    Neonates can perceive pain, therefore an adequate analgesic therapy is a major issue not only from an ethical perspective but also to improve short- and long-term outcome. Fever during the neonatal period requires hospitalization and needs a treatment with an antipyretic agent because of the high risk of severe complications. Paracetamol (acetaminophen), the most commonly prescribed drug in paediatric patients for its analgesic and antipyretic effects, is the only agent recommended for use as an antipyretic in the newborn and has been recently proposed as a supplement therapy to opioids for postoperative analgesia. This article aims to give an updated overview on the use of paracetamol in newborns by presenting its pharmacological profile (mechanism of action, pharmacokinetics), recommendations for dosing regimens (oral or rectal administration: 25-30 mg/kg/day in preterm neonates of 30 weeks' gestation, 45 mg/kg/day in preterm neonates of 34 weeks' gestation, 60 mg/kg/day in term neonates; i.v. administration: indicatively 20-40 mg/kg/day depending on gestational age, with some differences among various guidelines) and clinical uses (more commonly as analgesic/antipyretic by oral or rectal route, but also i.v. in anaesthesia for postoperative analgesia and painful procedures in Neonatal Intensive Care Units). Moreover, drug tolerability is discussed in the light of its potential hepatotoxicity and the unique characteristics of the newborn patient. By analyzing the available literature and the dosing guidelines, a mismatch exists between the current clinical use of paracetamol and the recommendations, suggesting a cautious approach particularly in extremely preterm neonates.

  18. An Immunoassay to Rapidly Measure Acetaminophen Protein Adducts Accurately Identifies Patients With Acute Liver Injury or Failure.

    PubMed

    Roberts, Dean W; Lee, William M; Hinson, Jack A; Bai, Shasha; Swearingen, Christopher J; Stravitz, R Todd; Reuben, Adrian; Letzig, Lynda; Simpson, Pippa M; Rule, Jody; Fontana, Robert J; Ganger, Daniel; Reddy, K Rajender; Liou, Iris; Fix, Oren; James, Laura P

    2017-04-01

    A rapid and reliable point-of-care assay to detect acetaminophen protein adducts in the serum of patients with acute liver injury could improve diagnosis and management. AcetaSTAT is a competitive immunoassay used to measure acetaminophen protein adducts formed by toxic metabolites in serum samples from patients. We compared the accuracy of AcetaSTAT vs high-pressure liquid chromatography with electrochemical detection (HPLC-EC; a sensitive and specific quantitative analytic assay) to detect acetaminophen protein adducts. We collected serum samples from 19 healthy individuals (no liver injury, no recent acetaminophen use), 29 patients without acetaminophen-associated acute liver injury, and 33 patients with acetaminophen-associated acute liver injury participating in the Acute Liver Failure Study Group registry. Each serum sample was analyzed by AcetaSTAT (reported as test band amplitude) and HPLC-EC (the reference standard). We also collected data on patient age, sex, weight, level of alanine aminotransferase on test day and peak values, concentration of acetaminophen, diagnoses (by site investigator and causality review committee), and outcome after 21 days. Differences between groups were analyzed using the Fisher exact test for categoric variables and the Kruskal-Wallis test or rank-sum test for continuous variables. AcetaSTAT discriminated between patients with and without acetaminophen-associated acute liver injury; the median AcetaSTAT test band amplitude for patients with acetaminophen-associated acute liver injury was 584 (range, 222-1027) vs 3678 (range, 394-8289) for those without (P < .001). AcetaSTAT identified patients with acetaminophen-associated acute liver injury with 100% sensitivity, 86.2% specificity, a positive predictive value of 89.2%, and a negative predictive value of 100%. Results from AcetaSTAT were positive in 4 subjects who received a causality review committee diagnosis of non-acetaminophen-associated acute liver injury; HPLC-EC and

  19. Association of Acetaminophen Use During Pregnancy With Behavioral Problems in Childhood: Evidence Against Confounding

    PubMed Central

    Stergiakouli, Evie; Thapar, Anita; Davey Smith, George

    2017-01-01

    Importance Acetaminophen (paracetamol) is used by a large proportion of pregnant women. Research suggests that acetaminophen use in pregnancy is associated with abnormal fetal neurodevelopment. However, it is possible that this association might be confounded by unmeasured behavioral factors linked to acetaminophen use. Objective To examine associations between offspring behavioral problems and (1) maternal prenatal acetaminophen use, (2) maternal postnatal acetaminophen use, and (3) partner’s acetaminophen use. Design, Setting, and Participants From February 2015 to March 2016, we collected and analyzed data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective birth cohort. We studied 7796 mothers enrolled in ALSPAC between 1991 and 1992 along with their children and partners. Exposures Acetaminophen use was assessed by questionnaire completion at 18 and 32 weeks of pregnancy and when the child was 61 months old. Main Outcomes and Measures Maternal reports of behavioral problems using the Strengths and Difficulties Questionnaire (SDQ) when the children were 7 years old. We estimated risk ratios for behavioral problems in children after prenatal, postnatal, and partner’s exposure to acetaminophen and mutually adjusted each association. Results Maternal prenatal acetaminophen use at 18 (n = 4415; 53%) and 32 weeks of pregnancy (n = 3381; 42%) was associated with higher odds of having conduct problems (risk ratio [RR], 1.42; 95% CI, 1.25-1.62) and hyperactivity symptoms (RR, 1.31; 95% CI, 1.16-1.49), while maternal acetaminophen use at 32 weeks was also associated with higher odds of having emotional symptoms (RR, 1.29; 95% CI, 1.09-1.53) and total difficulties (RR, 1.46; 95% CI, 1.21-1.77). This was not the case for maternal postnatal (n = 6916; 89%) or partner’s (n = 3454; 84%) acetaminophen use. We found the associations between maternal prenatal acetaminophen use and all the SDQ domains unchanged even after adjusting for maternal

  20. Paracetamol poisoning in children and hepatotoxicity.

    PubMed Central

    Penna, A; Buchanan, N

    1991-01-01

    1. Paracetamol is one of the most common drugs that children accidentally ingest. Unlike the situation in adults, death and hepatotoxicity in children from paracetamol poisoning are exceedingly uncommon events. A review of the literature has revealed only seven deaths and fourteen cases of hepatotoxicity in children, with most of the cases resulting from chronic poisoning and not acute poisoning. 2. Children may be less prone to paracetamol hepatotoxicity because of developmental differences in the drug's metabolism and its pathways of detoxification. In the therapeutic setting of treatment of fever and pain in children, paracetamol is regarded as a drug with a higher therapeutic index, and as such, there seems to be little concern with strict adherence to dosage regimes. 3. Scrutiny of the above paediatric cases associated with chronic paracetamol poisoning suggests that the margin of safety of frequent therapeutic doses of paracetamol in infants and young children to be a lot lower than previously appreciated. This review highlights the need to re-evaluate the safety of paracetamol in the context of chronic therapy in infants and young children. PMID:1931463

  1. Research Advances on Hepatotoxicity of Herbal Medicines in China.

    PubMed

    Liu, Changxiao; Fan, Huirong; Li, Yazhuo; Xiao, Xiaohe

    2016-01-01

    In general, herbal medicines have been considered as safe by the general public, since they are naturally occurring and have been applied in treatment for over thousands of years. As the use of herbal medicine is rapidly increasing globally, the potential toxicity of herbal drugs, in particular drug-induced liver injury (DILI), has now become a serious medical issue. According to the literature, the authors analyzed and discussed the hepatotoxicity problem of Chinese herbal medicines (CHM), including global overview on herbal-induced liver injury (HILI), current research progress on toxic CHM, diagnosis and treatment of HILI, and modern approaches and technologies of study of hepatotoxicity. As to promote the recognition of HILI and tackle the issue, a guideline for the diagnosis and treatment of HILI has recently been drafted by Chinese scientists. As suggested by the guideline, the hepatotoxicity issue of CHM, as a matter of fact, is overestimated. Up to date, the investigation of hepatotoxicity of CHM is now booming with worldwide application of CHM. This review therefore provides useful information for investigating hepatotoxicity of herbal medicine and characterizing DILI caused by CHM. In addition, authors describe in which way further efforts should be made to study the rationale of CHM and liver injury.

  2. Research Advances on Hepatotoxicity of Herbal Medicines in China

    PubMed Central

    Fan, Huirong; Li, Yazhuo; Xiao, Xiaohe

    2016-01-01

    In general, herbal medicines have been considered as safe by the general public, since they are naturally occurring and have been applied in treatment for over thousands of years. As the use of herbal medicine is rapidly increasing globally, the potential toxicity of herbal drugs, in particular drug-induced liver injury (DILI), has now become a serious medical issue. According to the literature, the authors analyzed and discussed the hepatotoxicity problem of Chinese herbal medicines (CHM), including global overview on herbal-induced liver injury (HILI), current research progress on toxic CHM, diagnosis and treatment of HILI, and modern approaches and technologies of study of hepatotoxicity. As to promote the recognition of HILI and tackle the issue, a guideline for the diagnosis and treatment of HILI has recently been drafted by Chinese scientists. As suggested by the guideline, the hepatotoxicity issue of CHM, as a matter of fact, is overestimated. Up to date, the investigation of hepatotoxicity of CHM is now booming with worldwide application of CHM. This review therefore provides useful information for investigating hepatotoxicity of herbal medicine and characterizing DILI caused by CHM. In addition, authors describe in which way further efforts should be made to study the rationale of CHM and liver injury. PMID:28078299

  3. Testing of Candidate Icons to Identify Acetaminophen-Containing Medicines

    PubMed Central

    Shiffman, Saul; Cotton, Helene; Jessurun, Christina; Sembower, Mark A.; Pype, Steve; Phillips, Jerry

    2016-01-01

    Adding icons on labels of acetaminophen-containing medicines could help users identify the active ingredient and avoid concomitant use of multiple medicines containing acetaminophen. We evaluated five icons for communication effectiveness. Adults (n = 300) were randomized to view a prescription container label or over-the-counter labels with either one or two icons. Participants saw two icon candidates, and reported their interpretation; experts judged whether these reflected critical confusions that might cause harm. Participants rated how effectively each icon communicated key messages. Icons based on abbreviations of “acetaminophen” (“Ac”, “Ace”, “Acm”) were rated less confusing and more effective in communicating the active ingredient than icons based on “APAP” or an abstract symbol. Icons did not result in critical confusion when seen on a readable medicine label. Icon implementation on prescription labels was more effective at communicating the warning against concomitant use than implementation on over-the-counter (OTC) labels. Adding an icon to a second location on OTC labels did not consistently enhance this communication, but reduced rated effectiveness of acetaminophen ingredient communication among participants with limited health literacy. The abbreviation-based icons seem most suitable for labeling acetaminophen-containing medications to enable users to identify acetaminophen-containing products. PMID:28970383

  4. Toxic Myocarditis Caused by Acetaminophen in a Multidrug Overdose.

    PubMed

    Gosselin, Maxime; Dazé, Yann; Mireault, Pascal; Crahes, Marie

    2017-12-01

    We report the case of an 18-year-old woman with personality disorders who was hospitalized a few hours after suicidal ingestion of acetaminophen, quetiapine, acetylsalicylic acid, and ethanol. Twelve hours after admission, severe liver damage was evident, but the patient was stable and awaiting hepatic transplantation. Electrolytes were successfully controlled. The condition of the liver stabilized. Cardiac biomarkers then deteriorated unexpectedly. Localized ST-segment elevations were noted on electrocardiogram, but angiography ruled out myocardial infarction. A computed tomographic scan ruled out cerebral edema. The patient died of irreversible cardiac arrest 40 hours after admission. Heart failure remained unexplained, and the body underwent forensic autopsy.At autopsy, histologic findings were indicative of acute toxic myocarditis and were concluded to be caused by acetaminophen intoxication. Acetaminophen overdose is common and typically leads to liver failure requiring supportive treatment and emergency liver transplantation. Toxic myocarditis is an extremely rare complication of acetaminophen overdose. It has only been reported 4 times in the literature despite the widespread use and misuse of acetaminophen. Toxic myocarditis remains a possibility in many cases of overdose but can be overlooked in a clinical picture dominated by hepatorenal failure and encephalopathy. Clinicians and forensic pathologists should be aware of this rare potential complication.

  5. A retrospective cohort study of long-term immediate-release hydrocodone/acetaminophen use and acetaminophen dosing above the Food and Drug Administration recommended maximum daily limit among commercially insured individuals in the United States (2008-2013).

    PubMed

    DeVeaugh-Geiss, Angela; Kadakia, Aditi; Chilcoat, Howard; Alexander, Louis; Coplan, Paul

    2015-06-01

    Immediate-release (IR) hydrocodone/acetaminophen is the most prescribed opioid in the United States; however, patterns of use, including long-term treatment and dose, are not well described. Duration of use, including the percentage of patients on long-term treatment (>90 days of continuous use), was assessed for patients newly prescribed IR hydrocodone/acetaminophen compared to other opioid analgesics in a national commercial insurance database (January 2008-September 2013). Though only a small percentage of IR hydrocodone/acetaminophen patients continued treatment long-term (1.7%), the number was large (104,839) and was nearly 5 times the number receiving extended-release (ER) morphine (n = 22,338) and nearly 4 times the number receiving ER oxycodone (n = 26,946) long-term. Using a less conservative allowable gap in treatment increased the number of patients meeting the criteria for long-term use (approximately 160,000 for IR hydrocodone/acetaminophen vs <30,000 for ER morphine and ER oxycodone). Most patients meeting these criteria received IR hydrocodone doses between >20 and ≤60 mg/d (n = 56,220, 53.6%) in month 4; 5.5% (n = 5,743) received doses >60 mg/d. Moreover, approximately 15% of IR hydrocodone/acetaminophen patients (n > 900,000) were prescribed total daily acetaminophen doses exceeding 4 g (the limit recommended by the U.S. Food and Drug Administration) at their initial IR hydrocodone/acetaminophen prescription or any time during therapy. Although most patients were prescribed IR hydrocodone/acetaminophen for acute pain, the number of patients prescribed long-term therapy exceeds the number of patients prescribed ER opioids. It is important to consider the benefits and risks inherent with long-term opioid therapy, whether with IR or ER opioids, to ensure safe use of these products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception

    PubMed Central

    Eschalier, Alain; Zygmunt, Peter M.; Högestätt, Edward D.

    2010-01-01

    Background Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E2 (PGE2) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain. PMID:20862299

  7. Emergency department patient knowledge concerning acetaminophen (paracetamol) in over-the-counter and prescription analgesics.

    PubMed

    Fosnocht, D; Taylor, J R; Caravati, E M

    2008-04-01

    This study was designed to evaluate patient knowledge of the acetaminophen (paracetamol) content of commonly used pain medications and the maximum daily recommended dose of acetaminophen. A prospective, convenience sample of emergency department patients were enrolled. Data were recorded using a standardised questionnaire over 4 months. 1009 patients were enrolled. 492 patients (49%) did not know if Tylenol contained acetaminophen (paracetamol). The majority (66-90%) of patients did not know if Lortab, Vicodin, Percocet, non-aspirin pain reliever, ibuprofen, Motrin, or Advil contained acetaminophen. 568 patients (56%) reported not knowing the maximum daily dose of acetaminophen and only 71 patients (7%) reported the correct daily dose. Patient knowledge of the acetaminophen content of commonly used analgesic medications and its maximum recommended daily dose is limited. This may contribute to unintentional repeated supratherapeutic ingestion (RSTI) of acetaminophen, or overdose.

  8. Factors associated with anti-TB drug-induced hepatotoxicity and genetic polymorphisms in indigenous and non-indigenous populations in Brazil.

    PubMed

    Heinrich, Melissa M; Zembrzuski, Verônica M; Ota, Marcos M; Sacchi, Flavia P; Teixeira, Raquel L F; Cabello Acero, Pedro H; Cunha, Geraldo Marcelo; Souza-Santos, Reinaldo; Croda, Julio; Basta, Paulo C

    2016-12-01

    Anti-tuberculosis (TB) drugs are responsible for the occurrence of several adverse drug reactions (ADRs), including hepatotoxicity. The aim was to estimate the incidence of hepatotoxicity and its association with genetic polymorphisms and clinical-epidemiological factors by comparing indigenous and non-indigenous TB patients. We investigated clinical-epidemiological variables, serum levels of liver enzymes and NAT2, CYP2E1 and GSTM1 polymorphisms. A non-conditional logistic regression was used to identify the factors associated with hepatotoxicity. Odds ratios were used as the association measures. The incidence of hepatotoxicity was 19.7% for all patients. The risk of hepatotoxicity was almost four times higher in indigenous patients, comparing to non-indigenous. We identified a new nonsynonymous single nucleotide polymorphism of NAT2 in indigenous patients. In total, 54.6% of the patients expressed a slow acetylation phenotype profile. The frequency of the null genotype of GSTM1 was higher in non-indigenous patients (p = 0.002), whereas no significant differences in relation to polymorphisms of CYP2E1 were observed between the groups. Hepatotoxicity was associated with patients older than 60 and indigenous (OR = 26.0; 95%CI:3.1-217.6; OR = 3.8; 95%CI:1.3-11.1, respectively). Furthermore, hepatotoxicity was associated with a slow acetylation profile in indigenous patients (OR = 10.7; 95%CI:1.2-97.2). Our findings suggest that there are distinct acetylation profiles in the Brazilian population, emphasizing the importance of pharmacogenetic analyses for achieving personalized therapeutic schemes and better outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Clinical pharmacist influence at hospital to prevent overdosed prescription of acetaminophen].

    PubMed

    Viguier, F; Roessle, C; Zerhouni, L; Rouleau, A; Benmelouka, C; Chevallier, A; Chast, F; Conort, O

    2016-11-01

    The recommended daily dose of acetaminophen is limited to 60mg/kg/day with a maximum of 3g daily dose in adults weighing less than 50kg or in patients undergoing certain risk factors. This study aimed at assessing the fulfillment of those recommendations and the possible impact on the liver dysfunction at supra-therapeutic doses of acetaminophen. This study was performed one day in 9 services. Patients characteristics, acetaminophen dose, daily dose administered, physiopathological aspects, markers of liver damage were collected. Among 542 prescriptions analyzed, 343 of them contained acetaminophen. The median age of patients studied was 81 years and one third weighed less than 50kg. The main risk factor of supra-therapeutic prescriptions was the lack of dose acetaminophen based on weight with 14% patients concerned and this risk raised at 17% when the pathophysiological conditions were included. The presence of pharmacists in medicals departments was more effective than the use of informatics programs limiting the dose systematically to 3g/day, or a distant pharmaceutical validation from care services to reduce the risk of acetaminophen overdose. According to the statement of administrations, only 4 of 49 patients received doses above 60mg/kg/day with a low impact on liver function tests. The continuous presence in pharmaceutical care services was the most effective measure to ensure effective implementation of acetaminophen recommendations. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  10. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    PubMed

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (P<0.00001). When analyzing the body temperature reduction after 5days from the start of treatment, the pooled RR (Risk Ratio) and its 95% CI were 0.04 (95% CI: -0.20 to 0.29), with no statistical significance (P=0.73). For functional outcome (mRS≤2) analysis, the pooled RR and its 95% CI were 1.08 (0.88, 1.32), with no statistical significance (P=0.45). In addition, the difference of serious adverse events between acetaminophen and placebo was 0.86 (95% CI: 0.62 to 1.2), with no statistical significance (P=0.27). Acetaminophen was revealed to have some favorable influence in body temperature reduction in acute stroke, but showed no important effect on improving functional outcome and reducing adverse events of patients. What is already known on this

  11. Role of metabolism in drug-induced idiosyncratic hepatotoxicity.

    PubMed

    Walgren, Jennie L; Mitchell, Michael D; Thompson, David C

    2005-01-01

    Rare adverse reactions to drugs that are of unknown etiology, or idiosyncratic reactions, can produce severe medical complications or even death in patients. Current hypotheses suggest that metabolic activation of a drug to a reactive intermediate is a necessary, yet insufficient, step in the generation of an idiosyncratic reaction. We review evidence for this hypothesis with drugs that are associated with hepatotoxicity, one of the most common types of idiosyncratic reactions in humans. We identified 21 drugs that have either been withdrawn from the U.S. market due to hepatotoxicity or have a black box warning for hepatotoxicity. Evidence for the formation of reactive metabolites was found for 5 out of 6 drugs that were withdrawn, and 8 out of 15 drugs that have black box warnings. For the other drugs, either evidence was not available or suitable studies have not been carried out. We also review evidence for reactive intermediate formation from a number of additional drugs that have been associated with idiosyncratic hepatotoxicity but do not have black box warnings. Finally, we consider the potential role that high dosages may play in these adverse reactions.

  12. Intravenous vs Oral Acetaminophen as an Adjunct to Multimodal Analgesia After Total Knee Arthroplasty: A Prospective, Randomized, Double-Blind Clinical Trial.

    PubMed

    O'Neal, Jason B; Freiberg, Andrew A; Yelle, Marc D; Jiang, Yandong; Zhang, Chengwei; Gu, Yin; Kong, Xiangyi; Jian, Wenling; O'Neal, Wesley T; Wang, Jingping

    2017-10-01

    The efficacy of intravenous (IV) acetaminophen compared with its oral formulation for postoperative analgesia is unknown. We hypothesized that the addition of acetaminophen to a multimodal analgesia regimen would provide improved pain management in patients after total knee arthroplasty (TKA) and that the effect of acetaminophen would be variable based on the route of delivery. The study was a single-center, randomized, double-blinded, placebo-controlled clinical trial on the efficacy of IV vs oral acetaminophen in patients undergoing unilateral TKA. One hundred seventy-four subjects were randomized to one of the 3 groups: IV acetaminophen group (IV group, n = 57) received 1 g IV acetaminophen and oral placebo before postanesthesia care unit (PACU) admission; oral acetaminophen group (PO group, n = 58) received 1 g oral acetaminophen and volume-matched IV normal saline; placebo group (Placebo group, n = 59) received oral placebo and volume-matched IV normal saline. Pain scores were obtained every 15 minutes during PACU stay. Average pain scores, maximum pain score, and pain scores before physical therapy were compared among the 3 groups. Secondary outcomes included total opiate consumption, time to PACU discharge, time to rescue analgesia, and time to breakthrough pain. The average PACU pain score was similar in the IV group (0.56 ± 0.99 [mean ± standard deviation]) compared with the PO group (0.67 ± 1.20; P = .84) and Placebo group (0.58 ± 0.99; P = .71). Total opiate consumption at 6 hours (0.47 mg hydromorphone equivalents ± 0.56 vs 0.54 ± 0.53 vs 0.54 ± 0.61; P = .69) and at 24 hours (1.25 ± 1.30 vs 1.49 ± 1.34 vs 1.36 ± 1.31; P = .46) were also similar between the IV, PO, and Placebo groups. No significant differences were found between all groups for any other outcome. Neither IV nor oral acetaminophen provides additional analgesia in the immediate postoperative period when administered as an adjunct to multimodal analgesia in patients

  13. Adolescents' Misperceptions of the Dangerousness of Acetaminophen in Overdose.

    ERIC Educational Resources Information Center

    Harris, Hope Elaine; Myers, Wade C.

    1997-01-01

    Assesses the generality and strength of nonclinical youths' (N=569) perceptions of the harmfulness and lethality of acetaminophen in overdose. Findings indicate that adolescents have ready access to acetaminophen and use it in suicide attempts but underestimate its potential for toxicity, lacking knowledge regarding side effects of overdose. (RJM)

  14. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease.

    PubMed

    Wong, D R; Coenen, M J H; Derijks, L J J; Vermeulen, S H; van Marrewijk, C J; Klungel, O H; Scheffer, H; Franke, B; Guchelaar, H-J; de Jong, D J; Engels, L G J B; Verbeek, A L M; Hooymans, P M

    2017-02-01

    Hepatotoxicity, gastrointestinal complaints and general malaise are common limiting adverse reactions of azathioprine and mercaptopurine in IBD patients, often related to high steady-state 6-methylmercaptopurine ribonucleotide (6-MMPR) metabolite concentrations. To determine the predictive value of 6-MMPR concentrations 1 week after treatment initiation (T1) for the development of these adverse reactions, especially hepatotoxicity, during the first 20 weeks of treatment. The cohort study consisted of the first 270 IBD patients starting thiopurine treatment as part of the Dutch randomised-controlled trial evaluating pre-treatment thiopurine S-methyltransferase genotype testing (ClinicalTrials.gov NCT00521950). Blood samples for metabolite assessment were collected at T1. Hepatotoxicity was defined by alanine aminotransaminase elevations >2 times the upper normal limit or a ratio of alanine aminotransaminase/alkaline phosphatase ≥5. Forty-seven patients (17%) presented hepatotoxicity during the first 20 weeks of thiopurine treatment. A T1 6-MMPR threshold of 3615 pmol/8 × 10 8 erythrocytes was defined. Analysis of patients on stable thiopurine dose (n = 174) showed that those exceeding the 6-MMPR threshold were at increased risk of hepatotoxicity: OR = 3.8 (95% CI: 1.8-8.0). Age, male gender and BMI were significant determinants. A predictive algorithm was developed based on these determinants and the 6-MMPR threshold to assess hepatotoxicity risk [AUC = 0.83 (95% CI: 0.75-0.91)]. 6-MMPR concentrations above the threshold also correlated with gastrointestinal complaints: OR = 2.4 (95% CI: 1.4-4.3), and general malaise: OR = 2.0 (95% CI: 1.1-3.7). In more than 80% of patients, thiopurine-induced hepatotoxicity could be explained by elevated T1 6-MMPR concentrations and the independent risk factors age, gender and BMI, allowing personalised thiopurine treatment in IBD to prevent early failure. © 2016 John Wiley & Sons Ltd.

  15. From painkiller to empathy killer: acetaminophen (paracetamol) reduces empathy for pain

    PubMed Central

    Crocker, Jennifer; Way, Baldwin M.

    2016-01-01

    Simulation theories of empathy hypothesize that empathizing with others’ pain shares some common psychological computations with the processing of one’s own pain. Support for this perspective has largely relied on functional neuroimaging evidence of an overlap between activations during the experience of physical pain and empathy for other people’s pain. Here, we extend the functional overlap perspective to the neurochemical level and test whether a common physical painkiller, acetaminophen (paracetamol), can reduce empathy for another’s pain. In two double-blind placebo-controlled experiments, participants rated perceived pain, personal distress and empathic concern in response to reading scenarios about another's physical or social pain, witnessing ostracism in the lab, or visualizing another study participant receiving painful noise blasts. As hypothesized, acetaminophen reduced empathy in response to others’ pain. Acetaminophen also reduced the unpleasantness of noise blasts delivered to the participant, which mediated acetaminophen's effects on empathy. Together, these findings suggest that the physical painkiller acetaminophen reduces empathy for pain and provide a new perspective on the neurochemical bases of empathy. Because empathy regulates prosocial and antisocial behavior, these drug-induced reductions in empathy raise concerns about the broader social side effects of acetaminophen, which is taken by almost a quarter of adults in the United States each week. PMID:27217114

  16. Acetaminophen and meloxicam inhibit platelet aggregation and coagulation in blood samples from humans.

    PubMed

    Martini, Angela K; Rodriguez, Cassandra M; Cap, Andrew P; Martini, Wenjun Z; Dubick, Michael A

    2014-12-01

    Acetaminophen (Ace) and meloxicam (Mel) are the two types of analgesic and antipyretic medications. This study investigated the dose responses of acetaminophen and meloxicam on platelet aggregation and coagulation function in human blood samples. Blood samples were collected from six healthy humans and processed to make platelet-adjusted (100 × 10 cells/μl) blood samples. Acetaminophen (Tylenol, Q-PAP, 100 mg/ml) was added at the doses of 0 μg/ml (control), 214 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Similarly, meloxicam (Metacam, 5 mg/ml) was added at doses of 0 μg/ml (control), 2.85 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Fifteen minutes after the addition of acetaminophen and/or meloxicam, platelet aggregation was stimulated with collagen (2 μg/ml) or arachidonic acid (0.5 mmol/l) and assessed using a Chrono-Log 700 aggregometer. Coagulation function was assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and using Rotem thrombelastogram. A robust inhibition by acetaminophen and/or meloxicam was observed in arachidonic acid-stimulated platelet aggregation starting at 1 × dose. Collagen-stimulated platelet aggregation was inhibited by ACE starting at 1 × (78 ± 10% of control), and by meloxicam starting at 4 × (72 ± 5% of control, both P < 0.05). The inhibitions by acetaminophen and meloxicam combined were similar to those by acetaminophen or meloxicam. aPTT was prolonged by meloxicam starting at 4 ×. No changes were observed in PT or any of Rotem measurements by acetaminophen and/or meloxicam. Acetaminophen and meloxicam compromised platelet aggregation and aPTT. Further effort is warranted to characterize the effects of acetaminophen and meloxicam on bleeding in vivo.

  17. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.

    PubMed

    Mahmoud, Y I; Mahmoud, A A; Nassar, G

    2015-01-01

    Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.

  18. Randomized controlled trial of intravenous acetaminophen for postcesarean delivery pain control.

    PubMed

    Altenau, Brie; Crisp, Catrina C; Devaiah, C Ganga; Lambers, Donna S

    2017-09-01

    demographic characteristics including patient age, body mass index, gravidity, parity, race, comorbidities, or number of prior cesarean deliveries. There were no differences between groups in estimated blood loss or length of stay. The total amount of oral narcotic medications consumed by patients receiving intravenous acetaminophen was significantly reduced when compared with the placebo group (47 mg vs 65 mg of oxycodone; P = .034). The total amount of ibuprofen used between groups was not different. There was no difference in pain scores between groups before and after study dose administration. There was no significant difference in narcotic side effects (nausea/emesis, respiratory depression, constipation) in either study arm. Intravenous acetaminophen in the postoperative period following cesarean delivery resulted in a significant decrease in oral narcotic consumption for pain control. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Population pharmacokinetics of intravenous acetaminophen in Japanese patients undergoing elective surgery.

    PubMed

    Imaizumi, Tsuyoshi; Obara, Shinju; Mogami, Midori; Iseki, Yuzo; Hasegawa, Makiko; Murakawa, Masahiro

    2017-06-01

    Intravenous (i.v.) acetaminophen is administered during surgery for postoperative analgesia. However, little information is available on the pharmacokinetics of i.v. acetaminophen in Japanese patients undergoing surgery under general anesthesia. The study was approved by the Institutional Review Board and registered at UMIN-CTR (UMIN000013418). Patients scheduled to undergo elective surgery under general anesthesia were enrolled after obtaining written informed consent. During surgery, 1 g of i.v. acetaminophen was administered over 15, 60, or 120 min. Acetaminophen concentrations (15 or 16 samples per case) were measured at time points from 0-480 min after the start of administration (liquid chromatography-mass spectrometry/tandem mass spectrometry; limit of quantitation 0.1 μg/mL). The predictive performance of three published pharmacokinetic models was evaluated. Population pharmacokinetics were also analyzed using a nonlinear mixed-effect model based on the NONMEM program. Data from 12 patients who underwent endoscopic or lower limb procedures were analyzed (male/female = 7/5, median age 55 years, weight 63 kg). Anesthesia was maintained with remifentanil and propofol or sevoflurane. The pharmacokinetic model of i.v. acetaminophen reported by Würthwein et al. worked well. Using 185 datapoints, the pharmacokinetics of i.v. acetaminophen were described by a two-compartment model with weight as a covariate but not age, sex, or creatinine clearance. The median prediction error and median absolute prediction error of the final model were -1 and 10%, respectively. A population pharmacokinetic model of i.v. acetaminophen in Japanese patients was constructed, with performance within acceptable ranges.

  20. 5-oxoproline-induced anion gap metabolic acidosis after an acute acetaminophen overdose.

    PubMed

    Lawrence, David T; Bechtel, Laura K; Charlton, Nathan P; Holstege, Christopher P

    2010-09-01

    Metabolic acidosis after acute acetaminophen overdose is typically attributed to either transient lactic acidosis without evidence of hepatic injury or hepatic failure. High levels of the organic acid 5-oxoprolinuria are usually reported in patients with predisposing conditions, such as sepsis, who are treated in a subacute or chronic fashion with acetaminophen. The authors report a case of a 40-year-old woman who developed anion gap metabolic acidosis and somnolence after an acute acetaminophen overdose. Substantial hepatic damage did not occur, which ruled out acetaminophen-induced hepatic insufficiency as a cause of the patient's acidosis or altered mental status. Urinalysis revealed elevated levels of 5-oxoproline, suggesting that the patient's acute acetaminophen overdose was associated with marked anion gap metabolic acidosis due solely to 5-oxoproline without hepatic complications. The acidosis fully resolved with N-acetylcysteine treatment and supportive care including hydration.

  1. Randomized Trial of Adding Parenteral Acetaminophen to Prochlorperazine and Diphenhydramine to Treat Headache in the Emergency Department.

    PubMed

    Meyering, Stefan H; Stringer, Ryan W; Hysell, Matthew K

    2017-04-01

    length of stay (161 minutes for acetaminophen arm and 159 minutes for placebo). However, 17/45 (38%) of patients who received IV acetaminophen required rescue analgesia, opposed to 24/45 (53%) of patients in the placebo group (p=0.13) 95% CI [-5%-34%]. IV acetaminophen when used with prochlorperazine and diphenhydramine to treat acute headaches in the ED resulted in statistically significant pain reduction compared with prochlorperazine and diphenhydramine alone as measured by both threshold of lowering VAS pain score by at least two points (NNT = 4) and overall decline in VAS pain score. Further study is required to validate these results.

  2. Glycyrrhetinic acid prevents acetaminophen-induced acute liver injury via the inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in mice.

    PubMed

    Yang, Genling; Zhang, Li; Ma, Li; Jiang, Rong; Kuang, Ge; Li, Ke; Tie, Hongtao; Wang, Bin; Chen, Xinyu; Xie, Tianjun; Gong, Xia; Wan, Jingyuan

    2017-09-01

    Acetaminophen (APAP) is a widely used antipyretic and analgesic drug, which is safe and effective at the therapeutic dose. Unfortunately, excessive dosage of APAP could cause severe liver injury due to lack of effective therapy. Successful therapeutic strategies are urgently requested in clinic. Glycyrrhetinic acid (GA), derived from a traditional medicine licorice, has been shown to exert anti-inflammatory and antioxidant actions. In this study, the effect and the underlying mechanism of GA on APAP-induced hepatotoxicity were explored. Our results showed that pretreatment with GA significantly reduced serum ALT and AST activities, alleviated hepatic pathological damages with hepatocellular apoptosis, down-regulated expression of CYP2E1 mRNA and protein, increased GSH levels, and reduced reactive oxygen species (ROS) productions in the liver of APAP-exposed mice. Furthermore, GA obviously inhibited APAP-induced HMGB1-TLR4 signal activation, as evaluated by reduced hepatic HMGB1 release, p-IRAK1, p-MAPK and p-IκB expression as well as the productions of TNF-α and IL-1β. In addition, GA attenuated hepatic neutrophils recruitment and macrophages infiltration caused by APAP. These findings reflected that GA could alleviate APAP-induced hepatotoxicity, the possible mechanism is associated with down-regulation of CYP2E1 expression and deactivation of HMGB1-TLR4 signal pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    PubMed Central

    Pyka, Alina; Budzisz, Marika; Dołowy, Małgorzata

    2013-01-01

    Adsorption thin layer chromatography (NP-TLC) with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1), P2 (Product no. 2), and P3 (Product no. 3). Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. The presented method was validated by specificity, range, linearity, accuracy, precision, detection limit, quantitative limit, and robustness. The TLC-densitometric method was also compared with a pharmacopeial UV-spectrophotometric method for the assay of acetaminophen, and the results confirmed statistically that the NP-TLC-densitometric method can be used as a substitute method. It could be said that the validated NP-TLC-densitometric method is suitable for the routine analysis of acetaminophen in quantity control laboratories. PMID:24063006

  4. Surface modification of acetaminophen particles by atomic layer deposition.

    PubMed

    Kääriäinen, Tommi O; Kemell, Marianna; Vehkamäki, Marko; Kääriäinen, Marja-Leena; Correia, Alexandra; Santos, Hélder A; Bimbo, Luis M; Hirvonen, Jouni; Hoppu, Pekka; George, Steven M; Cameron, David C; Ritala, Mikko; Leskelä, Markku

    2017-06-15

    Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al 2 O 3 , TiO 2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO 2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. N-Acetylcysteine Use in Non-Acetaminophen-Induced Acute Liver Failure.

    PubMed

    McPheeters, Chelsey M; VanArsdale, Vanessa M; Weant, Kyle A

    2016-01-01

    This article will review the available evidence related to the management of non-acetaminophen induced acute liver failure with N-acetylcysteine. Randomized controlled trials and a meta-analysis were included in this review. The efficacy of N-acetylcysteine in the treatment of acute liver failure from causes other than acetaminophen toxicity was evaluated. The efficacy of N-acetylcysteine in non-acetaminophen-induced acute liver failure is limited to specific patient populations. Patients classified as Coma Grade I or II are more likely to benefit from the use of this agent. The use of N-acetylcysteine is associated with improved transplant-free survival, not overall survival, in adults. N-Acetylcysteine does not improve the overall survival of patients with non-acetaminophen-induced acute liver failure but may be beneficial in those patients with Coma Grades I-II. Liver transplantation remains the only definitive therapy in advanced disease.

  6. Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis.

    PubMed

    Qin, Chenjie; Zhang, Huilu; Zhao, Linghao; Zeng, Min; Huang, Weijian; Fu, Gongbo; Zhou, Weiping; Wang, Hongyang; Yan, Hexin

    2017-11-29

    Berberine has been shown to reduce acute liver injury although the underlying mechanism is not fully understood. Because of the anatomic connection, the liver is constantly exposed to gut-derived bacterial products and metabolites. In this study, we showed that berberine has beneficial effects on both hepatotoxicity and intestinal damage in a rat model of chronic or acute liver injury. Microbiota transplantation from the rats with chronic hepatotoxicity could aggravate acute hepatotoxicity in mice treated with diethylnitrosamine (DEN). In rat models with gut homeostasis disruption induced by penicillin or dextran sulfate sodium (DSS), their fecal microbiota could also cause an enhanced hepatotoxicity of recipient mice. When treated with berberine, the DSS-induced enteric dysbacteriosis could be mitigated and their fecal bacteria were able to reduce acute hepatotoxicity in recipient mice. This study indicates that berberine could improve intestinal dysbacteriosis, which reduces the hepatotoxicity caused by pathological or pharmacological intervention. Fecal microbiota transplantation might be a useful method to directly explore homeostatic alteration in gut microbiota.

  7. Controlling postoperative use of i.v. acetaminophen at an academic medical center.

    PubMed

    Vincent, William R; Huiras, Paul; Empfield, Jennifer; Horbowicz, Kevin J; Lewis, Keith; McAneny, David; Twitchell, David

    2018-04-15

    Results of an interprofessional formulary initiative to decrease postoperative prescribing of i.v. acetaminophen are reported. After a medical center added i.v. acetaminophen to its formulary, increased prescribing of the i.v. formulation and a 3-fold price increase resulted in monthly spending of more than $40,000, prompting an organizationwide effort to curtail that cost while maintaining effective pain management. The surgery, anesthesia, and pharmacy departments applied the Institute for Healthcare Improvement's Model for Improvement to implement (1) pharmacist-led enforcement of prescribing restrictions, (2) retrospective evaluation of i.v. acetaminophen's impact on rates of opioid-related adverse effects, (3) restriction of prescribing of the drug to 1 postoperative dose on select patient care services, and (4) guideline-driven pain management according to an enhanced recovery after surgery (ERAS) protocol. Monitored metrics included the monthly i.v. acetaminophen prescribing rate, the proportion of i.v. acetaminophen orders requiring pharmacist intervention to enforce prescribing restrictions, and prescribing rates for select adjunctive analgesics. Within a year of project implementation, the mean monthly i.v. acetaminophen prescribing rate decreased by 83% from baseline to about 6 doses per 100 patient-days, with a decline in the monthly drug cost to about $4,000. Documented pharmacist interventions increased 2.7-fold, and use of oral acetaminophen, ketorolac, and gabapentin in ERAS areas increased by 18% overall. An interprofessional initiative at a large medical center reduced postoperative use of i.v. acetaminophen by more than 80% and yielded over $400,000 in annual cost savings. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Chronic Intermittent Hypoxia and Acetaminophen Induce Synergistic Liver Injury

    PubMed Central

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C.; Torbenson, Michael S.; Polotsky, Vsevolod Y.

    2010-01-01

    Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. OSA has been associated with liver injury. Acetaminophen (APAP) is one of the most commonly used drugs, which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg/kg) or normal saline daily. A combination of CIH and APAP caused liver injury with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. APAP alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a five-fold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. APAP or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA. PMID:19028810

  9. Over-the-Counter Relief From Pains and Pleasures Alike: Acetaminophen Blunts Evaluation Sensitivity to Both Negative and Positive Stimuli.

    PubMed

    Durso, Geoffrey R O; Luttrell, Andrew; Way, Baldwin M

    2015-06-01

    Acetaminophen, an effective and popular over-the-counter pain reliever (e.g., the active ingredient in Tylenol), has recently been shown to blunt individuals' reactivity to a range of negative stimuli in addition to physical pain. Because accumulating research has shown that individuals' reactivity to both negative and positive stimuli can be influenced by a single factor (an idea known as differential susceptibility), we conducted two experiments testing whether acetaminophen blunted individuals' evaluations of and emotional reactions to both negative and positive images from the International Affective Picture System. Participants who took acetaminophen evaluated unpleasant stimuli less negatively and pleasant stimuli less positively, compared with participants who took a placebo. Participants in the acetaminophen condition also rated both negative and positive stimuli as less emotionally arousing than did participants in the placebo condition (Studies 1 and 2), whereas nonevaluative ratings (extent of color saturation in each image; Study 2) were not affected by drug condition. These findings suggest that acetaminophen has a general blunting effect on individuals' evaluative and emotional processing, irrespective of negative or positive valence. © The Author(s) 2015.

  10. Over-the-Counter Relief From Pains and Pleasures Alike: Acetaminophen Blunts Evaluation Sensitivity to Both Negative and Positive Stimuli

    PubMed Central

    Durso, Geoffrey R. O.; Luttrell, Andrew; Way, Baldwin M.

    2015-01-01

    Acetaminophen, an effective and popular over-the-counter pain reliever (e.g., the active ingredient in Tylenol), has recently been shown to blunt individuals’ reactivity to a range of negative stimuli in addition to physical pain. Because accumulating research has shown that individuals’ reactivity to both negative and positive stimuli can be influenced by a single factor (an idea known as differential susceptibility), we conducted two experiments testing whether acetaminophen blunted individuals’ evaluations of and emotional reactions to both negative and positive images from the International Affective Picture System. Participants who took acetaminophen evaluated unpleasant stimuli less negatively and pleasant stimuli less positively, compared with participants who took a placebo. Participants in the acetaminophen condition also rated both negative and positive stimuli as less emotionally arousing than did participants in the placebo condition (Studies 1 and 2), whereas nonevaluative ratings (extent of color saturation in each image; Study 2) were not affected by drug condition. These findings suggest that acetaminophen has a general blunting effect on individuals’ evaluative and emotional processing, irrespective of negative or positive valence. PMID:25862546

  11. [Severe metabolic acidosis as a result of 5-oxoproline in acetaminophen use].

    PubMed

    Holman, Mirjam; ter Maaten, Jan C

    2010-01-01

    Acetaminophen overdose is a well known cause of liver function disorder and even hepatic failure. Less well known is that even a therapeutic dose of acetaminophen may lead to life-threatening problems. We describe an 84-year-old patient with severe metabolic acidosis and an increased anion gap secondary to 5-oxoproline elevation as a result of acetaminophen use. A systematic approach can help us to determine the cause of a high anion gap metabolic acidosis. In unexplained high anion gap acidosis clinicians should consider the possibility of 5-oxoproline accumulation in patients with risk factors such as acetaminophen use, female sex, malnutrition, infection, diminished liver function or renal failure.

  12. From painkiller to empathy killer: acetaminophen (paracetamol) reduces empathy for pain.

    PubMed

    Mischkowski, Dominik; Crocker, Jennifer; Way, Baldwin M

    2016-09-01

    Simulation theories of empathy hypothesize that empathizing with others' pain shares some common psychological computations with the processing of one's own pain. Support for this perspective has largely relied on functional neuroimaging evidence of an overlap between activations during the experience of physical pain and empathy for other people's pain. Here, we extend the functional overlap perspective to the neurochemical level and test whether a common physical painkiller, acetaminophen (paracetamol), can reduce empathy for another's pain. In two double-blind placebo-controlled experiments, participants rated perceived pain, personal distress and empathic concern in response to reading scenarios about another's physical or social pain, witnessing ostracism in the lab, or visualizing another study participant receiving painful noise blasts. As hypothesized, acetaminophen reduced empathy in response to others' pain. Acetaminophen also reduced the unpleasantness of noise blasts delivered to the participant, which mediated acetaminophen's effects on empathy. Together, these findings suggest that the physical painkiller acetaminophen reduces empathy for pain and provide a new perspective on the neurochemical bases of empathy. Because empathy regulates prosocial and antisocial behavior, these drug-induced reductions in empathy raise concerns about the broader social side effects of acetaminophen, which is taken by almost a quarter of adults in the United States each week. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.

    PubMed

    Sabordo, L; Sallustio, B C; Evans, A M; Nation, R L

    2000-10-01

    Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P <.05) while decreasing its biliary excretion half-life (P <.05), suggesting an interaction between GG and hepatically generated clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.

  14. Alteration in metabolism and toxicity of acetaminophen upon repeated administration in rats.

    PubMed

    Kim, Sun J; Lee, Min Y; Kwon, Do Y; Kim, Sung Y; Kim, Young C

    2009-10-01

    Our previous studies showed that administration of a subtoxic dose of acetaminophen (APAP) to female rats increased generation of carbon monoxide from dichloromethane, a metabolic reaction catalyzed mainly by cytochrome P450 (CYP) 2E1. In this study we examined the changes in metabolism and toxicity of APAP upon repeated administration. An intraperitoneal dose of APAP (500 mg/kg) alone did not increase aspartate aminotransferase, alanine aminotransferase, or sorbitol dehydrogenase activity in serum, but was significantly hepatotoxic when the rats had been pretreated with an identical dose of APAP 18 h earlier. The concentrations and disappearance of APAP and its metabolites in plasma were monitored for 8 h after the treatment. APAP pretreatment reduced the elevation of APAP-sulfate, but increased APAP-cysteine concentrations in plasma. APAP or APAP-glucuronide concentrations were not altered. Administration of a single dose of APAP 18 h before sacrifice increased microsomal CYP activities measured with p-nitrophenol, p-nitroanisole, and aminopyrine as probes. Expression of CYP2E1, CYP3A, and CYP1A proteins in the liver was also elevated significantly. The results suggest that administration of APAP at a subtoxic dose may result in an induction of hepatic CYP enzymes, thereby altering metabolism and toxicological consequences of various chemical substances that are substrates for the same enzyme system.

  15. Treatment with acetaminophen/paracetamol or ibuprofen alleviates post-dose symptoms related to intravenous infusion with zoledronic acid 5 mg.

    PubMed

    Wark, J D; Bensen, W; Recknor, C; Ryabitseva, O; Chiodo, J; Mesenbrink, P; de Villiers, T J

    2012-02-01

    Patients treated with intravenous zoledronic acid 5 mg for osteoporosis may experience post-dose influenza-like symptoms. Oral acetaminophen/paracetamol or ibuprofen administered 4 h post-infusion reduced the proportion of patients with increased oral temperature and worsening post-infusion symptom scores vs. placebo, thus providing an effective strategy for the treatment of such symptoms. Once-yearly intravenous zoledronic acid 5 mg is a safe and effective treatment for postmenopausal osteoporosis. This study assessed whether transient influenza-like post-dose symptoms associated with intravenous infusion of zoledronic acid can be reduced by post-dose administration of acetaminophen/paracetamol or ibuprofen. In an international, multicenter, randomized, double-blind, double-dummy parallel-group study, bisphosphonate-naïve postmenopausal women with osteopenia (n = 481) were randomized to receive zoledronic acid 5 mg + acetaminophen/paracetamol (n = 135), ibuprofen (n = 137) or placebo (n = 137), or placebo + placebo (n = 72). Acetaminophen/paracetamol and ibuprofen were administered every 6 h for 3 days beginning 4 h post-infusion. The proportion of patients with increased oral temperature (≥1°C above 37.5°C) and with worsening post-infusion symptom scores over 3 days was significantly lower in patients receiving ibuprofen (36.8% and 48.5%) or acetaminophen/paracetamol (37.3% and 46.3%) vs. those receiving placebo (63.5% and 75.9%, respectively; all p < 0.0001) compared with background rates of 11.1% and 16.7%, respectively, in the absence of any active treatment. Overall incidence of adverse events was comparable for patients receiving acetaminophen/paracetamol or ibuprofen. Oral acetaminophen/paracetamol or ibuprofen effectively managed the transient influenza-like symptoms associated with zoledronic acid 5 mg.

  16. Curcumin protects against acetaminophen-induced apoptosis in hepatic injury

    PubMed Central

    Li, Gang; Chen, Jun-Bao; Wang, Chao; Xu, Zhi; Nie, Hao; Qin, Xiao-Yan; Chen, Xiao-Mei; Gong, Quan

    2013-01-01

    AIM: To explore the effects of curcumin (CMN) on hepatic injury induced by acetaminophen (APAP) in vivo. METHODS: Male mice were randomly divided into three groups: group I (control) mice received the equivalent volumes of phosphate-buffered saline (PBS) intraperitoneally (ip); Group II [APAP + carboxymethylcellulose (CMC)] mice received 1% CMC (vehicle) 2 h before APAP injection; Group III (APAP + CMN) mice received curcumin (10 or 20 mg/kg, ip) 2 h before before or after APAP challenge. In Groups II and III, APAP was dissolved in pyrogen-free PBS and injected at a single dose of 300 mg/kg. CMN was dissolved in 1% CMC. Mice were sacrificed 16 h after the APAP injection to determine alanine aminotransferase (ALT) levels in serum and malondialdehyde (MDA) accumulation, superoxide dismutase (SOD) activity and hepatocyte apoptosis in liver tissues. RESULTS: Both pre- and post-treatment with curcumin resulted in a significant decrease in serum ALT compared with APAP treatment group (10 mg/kg: 801.46 ± 661.34 U/L; 20 mg/kg: 99.68 ± 86.48 U/L vs 5406.80 ± 1785.75 U/L, P < 0.001, respectively). The incidence of liver necrosis was significantly lowered in CMN treated animals. MDA contents were significantly reduced in 20 mg/kg CMN pretreatment group, but increased in APAP treated group (10.96 ± 0.87 nmol/mg protein vs 16.03 ± 2.58 nmol/mg protein, P < 0.05). The decrease of SOD activity in APAP treatment group and the increase of SOD in 20 mg/kg CMN pretreatment group were also detected (24.54 ± 4.95 U/mg protein vs 50.21 ± 1.93 U/mg protein, P < 0.05). Furthermore, CMN treatment efficiently protected against APAP-induced apoptosis via increasing Bcl-2/Bax ratio. CONCLUSION: CMN has significant therapeutic potential in both APAP-induced hepatotoxicity and other types of liver diseases. PMID:24259976

  17. Pharmacokinetics and pharmacodynamics of oral acetaminophen in combination with codeine in healthy Greyhound dogs.

    PubMed

    KuKanich, B

    2016-10-01

    The purpose of this study was to determine the pharmacokinetic and antinociceptive effects of an acetaminophen/codeine combination administered orally to six healthy greyhounds. Antinociception was assessed using an electronic von Frey (vF) device as a mechanical/pressure model. Acetaminophen was administered at a dose of 600 mg (14.4-23.1 mg/kg) and codeine phosphate at 90 mg (2.1-3.3 mg/kg) equivalent to 67.5 mg codeine base (1.6-2.5 mg/kg). The geometric mean maximum plasma concentrations of acetaminophen, codeine, and codeine-6-glucuronide were 7.95 μg/mL, 11.0 ng/mL, and 3819 ng/mL, respectively. Morphine concentrations were <1 ng/mL. The terminal half-lives of acetaminophen, codeine, and codeine-6-glucuronide were 0.94, 1.71, and 3.12 h. There were no significant changes in vF thresholds, except at 12 h which decreased on average by 17% compared to baseline. The decrease in vF thresholds at 12 h could be due to aversion, hyperalgesia, or random variability. The lack of antinociception in this study could be due to a true lack of antinociception, lack of model sensitivity, or specificity. Further studies using different models (including clinical trials), different dog breeds, multiple dose regimens, and a range of dosages are needed prior to recommended use or concluding lack of efficacy for oral acetaminophen/codeine in dogs. © 2016 John Wiley & Sons Ltd.

  18. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.

    PubMed

    Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment.

    PubMed

    Tolosa, Laia; Donato, M Teresa; Pérez-Cataldo, Gabriela; Castell, José Vicente; Gómez-Lechón, M José

    2012-12-01

    In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum.

    PubMed

    Li, Chunyu; Niu, Ming; Bai, Zhaofang; Zhang, Congen; Zhao, Yanling; Li, Ruiyu; Tu, Can; Li, Huifang; Jing, Jing; Meng, Yakun; Ma, Zhijie; Feng, Wuwen; Tang, Jinfa; Zhu, Yun; Li, Jinjie; Shang, Xiaoya; Zou, Zhengsheng; Xiao, Xiaohe; Wang, Jiabo

    2017-06-01

    The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent "knock-out" and "knock-in" strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.

  1. A case of lacosamide-induced hepatotoxicity.

    PubMed

    Sunwoo, Jun-Sang; Byun, Jung-Ick; Lee, Sang Kun

    2015-06-01

    Lacosamide is a novel antiepileptic drug that acts mainly via the selective enhancement of slow inactivation of voltage-gated sodium channels. It has been reported that lacosamide is effective and generally tolerable as an adjuvant treatment in patients with partial seizures. There are few reports regarding liver damage caused by lacosamide. We describe a case of a patient with drug-resistant epilepsy who developed symptomatic hepatotoxicity after lacosamide administration. A 22-year-old female with a 2-year history of temporal lobe epilepsy was admitted to our hospital because of nausea, dizziness, and abnormal liver function tests. Lacosamide was added for further seizure control 9 days before the current presentation. Her liver enzymes were markedly increased: aspartate aminotransferase, 635 U/L; alanine aminotransferase, 697 U/L. Lacosamide was ceased immediately, whereas other medications (zonisamide, clobazam, and tianeptine) were not withdrawn. The level of liver enzymes improved significantly within a few days, and a diagnosis of lacosamide-induced hepatitis was made based on the obvious temporal relationship. This case report demonstrates that hepatotoxicity may develop in association with lacosamide therapy. Liver function tests should be prompted in patients with symptoms suggestive of adverse effects after the initiation of lacosamide. Further research is required to identify predisposing factors of lacosamideinduced hepatotoxicity.

  2. [Hepatotoxicity associated with the use of Herbalife].

    PubMed

    Jóhannsson, Magnús; Ormarsdóttir, Sif; Olafsson, Sigurdur

    2010-03-01

    Many herbal products are known to be hepatotoxic. In a recent survey in Iceland concerning adverse reactions related to herbal medicines, Herbalife products were implicated in the majority of the reported cases of hepatotoxicity. The clinical presentations of five cases of Herbalife related liver injury during the period of 1999-2008 are analysed. Causality was assessed by using the WHO-UMC system for causality assessment and the RUCAM method. Of the five cases there were four females and one male; median age was 46 years (range 29-78). Herbalife had been used for 1 to 7 months prior to presentation. Four patients presented with a hepatocellular and one with a cholestatic reaction. Median values were for bilirubin 190 micromol/L (range: 26-311; ref. < 20 micromol/L), ALP 407 U/L (range: 149-712; ref. 35-105 U/L) and ALT 24 87 U/L (range: 456-2637; ref. 70 and 45 U/L for males and females, respectively). Liver biopsy was performed in 2 patients and was consistent with toxic hepatitis in both cases. Other causes of hepatitis were excluded by appropriate serological testing and ultrasound. Causality assessment according to RUCAM was probable in three cases and possible in two. Using the WHO-UMC criteria causality was certain in one case, probable in two and possible in two cases. Hepatotoxicity is probably associated with the use of Herbalife products. Hepatotoxicity due to herbal remedies is an important differential diagnosis in the diagnostic work-up of liver injury.

  3. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    PubMed

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  4. Hepatotoxic constituents and toxicological mechanism of Xanthium strumarium L. fruits.

    PubMed

    Xue, Li-Ming; Zhang, Qiao-Yan; Han, Ping; Jiang, Yi-Ping; Yan, Rong-Di; Wang, Yang; Rahman, Khalid; Jia, Min; Han, Ting; Qin, Lu-Ping

    2014-03-14

    In the recent years, the international community has attached increasing importance to possible toxicity associated with Traditional Chinese Medicine (TCM). And hepatotoxicity is one of the major concerns, a fundamental pathological process induced by toxicant. This paper is in an attempt to identify the hepatotoxic components in Xanthium strumarium L. fruits (XSF) and interpret the toxicological mechanism induced by XSF. XSF extract was prepared and seven characteristic components were isolated and identified in XSF water extracts. We evaluated their hepatotoxicity effect on cell proliferation and lactate dehydrogenase (LDH) activity in L-02 and BRL liver cell line. An integrated metabonomics study using high-resolution (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy combined with multivariate statistical analysis was undertake to elucidate the hepatotoxicity mechanism induced in rats by XSF. The urine and serum metabolites were measured after treatment of rats with XSF (7.5, 15.0 and 30.0 g/kg/day) for 5 days. The results showed that atractyloside, carboxyatractyloside, 4'-desulphate-atractyloside and XSF induced significant cytotoxic effects in both L-02 and BRL liver cell lines, indicating that atractyloside, carboxyatractyloside, and 4'-desulphate-atractyloside were the toxic components of XSF. When rats were treated with XSF at 30.0 g/kg the hepatotoxicity was reflected in the changes observed in serum biochemical profiles and by the histopathological examination of the liver. The levels of VLDL/LDL, 3-HB, lactate, acetate, acetone and glutamate in serum were increased in this group, while d-glucose, choline and valine were decreased. The elevation in the levels of succinate, citrate, 2-oxo-glutamate, glycine, 3-HB, acetate, lactate, hippurate, dimethylglycine, methylamine, dimethylamine, phenylalanine and tryptophan was observed in urine, in contrast a reduction in the intensities of taurine, d-glucose, N-acetyl-glucoprotein and trimethylamine

  5. Plasma and cerebrospinal fluid pharmacokinetic parameters after single-dose administration of intravenous, oral, or rectal acetaminophen.

    PubMed

    Singla, Neil K; Parulan, Cherri; Samson, Roselle; Hutchinson, Joel; Bushnell, Rick; Beja, Evelyn G; Ang, Robert; Royal, Mike A

    2012-09-01

    This is the first study to compare plasma and cerebrospinal fluid (CSF) pharmacokinetics of intravenous (IV), oral (PO), or rectal (PR) formulations of acetaminophen. Healthy male subjects (N = 6) were randomized to receive a single dose of IV (OFIRMEV(®) ; Cadence) 1,000 mg (15 minute infusion), PO (2 Tylenol(®) 500 mg caplets; McNeil Consumer Healthcare), or PR acetaminophen (2 Feverall(®) 650 mg suppositories; Actavis) with a 1-day washout period between doses. The 1,300 mg PR concentrations were standardized to 1,000 mg. Acetaminophen plasma and CSF levels were obtained at T0, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 6 hours. IV acetaminophen showed earlier and higher plasma and CSF levels compared with PO or PR administration. CSF bioavailability over 6 hours (AUC(0-6)) for IV, PO, and PR 1 g was 24.9, 14.2, and 10.3 μg·h/mL, respectively. No treatment-related adverse events were reported. One subject was replaced because of premature failure of his lumbar spinal catheter. The mean CSF level in the IV group was similar to plasma from 3 to 4 hours and higher from 4 hours on. Absorption phase, variability in plasma, and CSF were greater in PO and PR groups than variability with IV administration. These results demonstrate that earlier and greater CSF penetration occurs as a result of the earlier and higher plasma peak with IV administration compared with PO or PR. © 2012 Lotus Clinical Research, LLC. Pain Practice © 2012 World Institute of Pain.

  6. Acetaminophen Versus Liquefied Ibuprofen for Control of Pain During Separation in Orthodontic Patients: A Randomized Triple Blinded Clinical Trial.

    PubMed

    Hosseinzadeh Nik, Tahereh; Shahsavari, Negin; Ghadirian, Hannaneh; Ostad, Seyed Nasser

    2016-07-01

    The aim of this randomized clinical study was to investigate the effectiveness of acetaminophen 650 mg or liquefied ibuprofen 400 mg in pain control of orthodontic patients during separation with an elastic separator. A total of 101 patients with specific inclusion criteria were divided randomly into three groups (acetaminophen, liquefied ibuprofen, and placebo). They were instructed to take their drugs one hour before separator placement and every six hours afterward (five doses in total). They recorded their discomfort on visual analog scales immediately after separator placement, 2 hours later, 6 hours later, at bedtime, and 24 hours after separator placement. Repeated measure analysis of variance (ANOVA) was used to compare the mean pain scores between the three groups. Data were collected from 89 patients. The pain increased with time in all groups. Pain scores were statistically lower in the analgesic groups compared with the placebo group (P.value<0.001), but no statistically significant difference was found in mean pain scores between the two drug groups (acetaminophen and liquefied ibuprofen) (P.value=1). Acetaminophen and liquefied ibuprofen have similar potential in pain reduction during separation.

  7. Administering of pregabalin and acetaminophen on management of postoperative pain in patients with nasal polyposis undergoing functional endoscopic sinus surgery.

    PubMed

    Rezaeian, Ahmad

    2017-12-01

    Management of postoperative pain is a common problem in endoscopic sinus surgery. The objective of this study is the evaluation of pregabalin and acetaminophen effects on the management of postoperative pain in patients with nasal polyposis undergoing functional endoscopic sinus surgery (FESS). In this clinical trial, double-blinded study, 70 patients with nasal polyposis who have indication of FESS were enrolled to this study. After operation, patients were divided randomly into pregabalin and acetaminophen therapy groups. The pregabalin group (n = 35) was treated under pregabalin 50 mg TDS and the acetaminophen group (n = 35) was treated under tablet acetaminophen 500 mg/6 h. Each group was administered for 3 d. The visual analogue scale (VAS) was measured in onset, 12, 24, 48 and 72 h after surgery. All data were entered into SPSS software (SPSS Inc., Chicago, IL) and appropriate statistical tests were assessed to every relation. In this study, there was no significant difference between two groups according to VAS in onset (p = .37); however, VAS in 12, 24, 48 and 72 h after operation was significantly lower in the pregabalin group compared with the acetaminophen group (p < .0001, for every four). Also in the pregabalin group, adverse effects were significantly lower than the acetaminophen group (p < .03). Pregabalin has more effect, safely and usefully than acetaminophen on the management of postoperative pain in the patients with nasal polyposis undergoing functional endoscopic sinus surgery.

  8. Hepatotoxicity of NONI juice: Report of two cases

    PubMed Central

    Stadlbauer, Vanessa; Fickert, Peter; Lackner, Carolin; Schmerlaib, Jutta; Krisper, Peter; Trauner, Michael; Stauber, Rudolf E

    2005-01-01

    AIM: NONI juice (Morinda citrifolia) is an increasingly popular wellness drink claimed to be beneficial for many illnesses. No overt toxicity has been reported to date. We present two cases of novel hepatotoxicity of NONI juice. Causality of liver injury by NONI juice was asses-sed. Routine laboratory tests and transjugular or percutaneous liver biopsy were performed. The first patient underwent successful liver transplantation while the second patient recovered spontaneously after cessation of NONI juice. A 29-year-old man with previous toxic hepatitis associated with small doses of paracetamol developed sub-acute hepatic failure following consumption of 1.5 L NONI juice over 3 wk necessitating urgent liver transplantation. A 62-year-old woman without evidence of previous liver disease developed an episode of self-limited acute hepatitis following consumption of 2 L NONI juice for over 3 mo. The most likely hepatotoxic components of Morinda citrifolia were anthraquinones. Physicians should be aware of potential hepatotoxicity of NONI juice. PMID:16094725

  9. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    PubMed

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  10. Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity.

    PubMed

    McEneny-King, Alanna; Osman, Wesseem; Edginton, Andrea N; Rao, Praveen P N

    2017-06-01

    The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer's disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC 50 =33.0µM; 2, IC 50 =8.5µM) compared to tacrine (CYP1A2 IC 50 =1.5µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer overflow components.

    PubMed

    Jung, Chanil; Oh, Jeill; Yoon, Yeomin

    2015-07-01

    The combined coagulation and adsorption of targeted acetaminophen and naproxen using activated biochar and aluminum sulfate were studied under various synthetic "combined sewer overflow" (CSO) conditions. The biochar demonstrated better adsorption performance for both acetaminophen and naproxen (removal, 94.1 and 97.7%, respectively) than that of commercially available powdered activated carbon (removal, 81.6 and 94.1%, respectively) due to superior carbonaceous structure and surface properties examined by nuclear magnetic resonance analysis. The adsorption of naproxen was more favorable, occupying active adsorption sites on the adsorbents by naproxen due to its higher adsorption affinity compared to acetaminophen. Three classified CSO components (i.e., representing hydrophobic organics, hydrophilic organics, and inorganics) played different roles in the adsorption of both adsorbates, resulted in inhibition by humic acid complexation or metal ligands and negative electrostatic repulsion under adsorption and coagulation combined system. Adsorption alone with biochar was determined to be the most effective adsorptive condition for the removal of both acetaminophen and naproxen under various CSO conditions, while both coagulation alone and combined adsorption and coagulation failed to remove the acetaminophen and naproxen adequately due to an increase in ionic strength in the presence of spiked aluminum species derived from the coagulant.

  12. Protective effect of ALDH2 against cyclophosphamide-induced acute hepatotoxicity via attenuating oxidative stress and reactive aldehydes.

    PubMed

    Zhai, Xiaoxuan; Zhang, Zhenxiao; Liu, Wenwen; Liu, Baoshan; Zhang, Rui; Wang, Wenjun; Zheng, Wen; Xu, Feng; Wang, Jiali; Chen, Yuguo

    2018-04-30

    Cyclophosphamide (CY) is a widely used chemotherapeutic agent that is associated with severe side effects, such as hepatotoxicity and nephrotoxicity. However, the extent, mechanisms and potential prevention and treatment strategies of CY-induced acute hepatotoxicity and nephrotoxicity are largely unknown. In this study, we determined the existence and extent of CY-induced acute hepatotoxicity and nephrotoxicity, and demonstrated the effect of ALDH2 on CY-induced acute tissue toxicity and related mechanisms. Adult male C57BL/6J (wide-type, WT) and ALDH2 -/- (KO) mice were divided into four groups: WT, WT + CY, KO + CY and WT + CY + Alda-1. Biochemical analysis showed that plasma ALT was increased by 35.8% in KO + CY group and decreased by 21.1% in WT + CY + Alda-1 group compared to WT + CY group (P < 0.05, respectively). However, there was no significant difference among WT, WT + CY and KO + CY groups regarding plasma renal marker enzymes, including blood urea nitrogen (BUN), creatinine and cystatin C (CysC). Levels of reactive oxygen species (ROS) and toxic aldehydes (acrolein, 4-hydroxynonenol and malondialdehyde) were increased significantly in KO + CY group and decreased significantly in WT + CY + Alda-1 group compared to WT + CY group (P < 0.05, respectively). These findings demonstrate that CY could induce acute hepatotoxicity without nephrotoxicity, and ALDH2 plays a protective role in CY-induced acute hepatotoxicity. The underlying mechanisms are associated with attenuating oxidative stress and detoxifying reactive aldehydes. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Ibuprofen versus acetaminophen as a post-partum analgesic for women with severe pre-eclampsia: randomized clinical study.

    PubMed

    Vigil-De Gracia, Paulino; Solis, Valentin; Ortega, Nelson

    2017-06-01

    To compare differences in blood pressure levels between patients with severe post-partum pre-eclampsia using ibuprofen or acetaminophen. A randomized controlled trial was made in women with severe pre-eclampsia or superimposed pre-eclampsia after vaginal birth. The patient was randomly selected to receive either 400 mg of ibuprofen every 8 h or 1 g of acetaminophen every 6 h during the post-partum. The primary variable was systolic hypertension ≥150 mmHg and/or diastolic hypertension ≥100 mmHg after the first 24 h post-partum. Secondary variables were the arterial blood pressure readings at 24, 48, 72, and 96 h post-partum and maternal complications. A total of 113 patients were studied: 56 in the acetaminophen group and 57 in the ibuprofen group. With regard to the primary outcome, more cases were significantly hypertensive in the ibuprofen group (36/57; 63.1%) than in the acetaminophen group (16/56; 28.6%). Severe hypertension (≥160/110 mmHg) was not significantly different between the groups, 14.5% (acetaminophen) and 24.5% (ibuprofen). The levels of arterial blood pressure show a hammock-shaped curve independent of the drug used, however, is more noticeable with ibuprofen. This study shows that ibuprofen significantly elevates blood pressure in women with severe pre-eclampsia during the post-partum period.

  14. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    PubMed

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat.

    PubMed

    Mauger, Alexis R; Taylor, Lee; Harding, Christopher; Wright, Benjamin; Foster, Josh; Castle, Paul C

    2014-01-01

    Acetaminophen (paracetamol) is a commonly used over-the-counter analgesic and antipyretic and has previously been shown to improve exercise performance through a reduction in perceived pain. This study sought to establish whether its antipyretic action may also improve exercise capacity in the heat by moderating the increase in core temperature. On separate days, 11 recreationally active participants completed two experimental time-to-exhaustion trials on a cycle ergometer in hot conditions (30°C, 50% relative humidity) after ingesting a placebo control or an oral dose of acetaminophen in a randomized, double-blind design. Following acetaminophen ingestion, participants cycled for a significantly longer period of time (acetaminophen, 23 ± 15 min versus placebo, 19 ± 13 min; P = 0.005; 95% confidence interval = 90-379 s), and this was accompanied by significantly lower core (-0.15°C), skin (-0.47°C) and body temperatures (0.19°C; P < 0.05). In the acetaminophen condition, participants also reported significantly lower ratings of thermal sensation (-0.39; P = 0.015), but no significant change in heart rate was observed (P > 0.05). This is the first study to demonstrate that an acute dose of acetaminophen can improve cycling capacity in hot conditions, and that this may be due to the observed reduction in core, skin and body temperature and the subjective perception of thermal comfort. These findings suggest that acetaminophen may reduce the thermoregulatory strain elicited from exercise, thus improving time to exhaustion.

  16. Potential protective effect of honey against paracetamol-induced hepatotoxicity.

    PubMed

    Galal, Reem M; Zaki, Hala F; Seif El-Nasr, Mona M; Agha, Azza M

    2012-11-01

    Paracetamol overdose causes severe hepatotoxicity that leads to liver failure in both humans and experimental animals. The present study investigates the protective effect of honey against paracetamol-induced hepatotoxicity in Wistar albino rats. We have used silymarin as a standard reference hepatoprotective drug. Hepatoprotective activity was assessed by measuring biochemical parameters such as the liver function enzymes, serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). Equally, comparative effects of honey on oxidative stress biomarkers such as malondialdyhyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx) were also evaluated in the rat liver homogenates.  We estimated the effect of honey on serum levels and hepatic content of interleukin-1beta (IL-1β) because the initial event in paracetamol-induced hepatotoxicity has been shown to be a toxic-metabolic injury that leads to hepatocyte death, activation of the innate immune response and upregulation of inflammatory cytokines. Paracetamol caused marked liver damage as noted by significant increased activities of serum AST and ALT as well as the level of Il-1β. Paracetamol also resulted in a significant decrease in liver GSH content and GPx activity which paralleled an increase in Il-1β and MDA levels. Pretreatment with honey and silymarin prior to the administration of paracetamol significantly prevented the increase in the serum levels of hepatic enzyme markers, and reduced both oxidative stress and inflammatory cytokines. Histopathological evaluation of the livers also revealed that honey reduced the incidence of paracetamol-induced liver lesions. Honey can be used as an effective hepatoprotective agent against paracetamol-induced liver damage.

  17. Efficacy and safety of a fixed combination of tramadol and paracetamol (acetaminophen) as pain therapy within palliative medicine.

    PubMed

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-02-01

    The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1(st) to December 31(st) 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a "rescue dose" of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for P<0.05. The average duration of treatment with a fixed combination tramadol and acetaminophen was 57 days (13-330 days). Already after 24 hours of treatment the average pain score was significantly lower (p<0.0001) compared to the admission day [5.00 (4:00 to 8:00) during the first days versus 2.00 (1:00 to 7:00) during the second day of treatment]. The average dose of the fixed combination tramadol and acetaminophen tablets was 4.8 ± 1.8 (180 mg of tramadol and 1560 mg paracetamol). Side effects, in the treatment of pain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects.

  18. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  19. Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests.

    PubMed

    Teschke, Rolf; Frenzel, Christian; Schulze, Johannes; Schwarzenboeck, Alexander; Eickhoff, Axel

    2013-07-27

    To analyze the validity of applied test criteria and causality assessment methods in assumed Herbalife hepatotoxicity with positive reexposure tests. We searched the Medline database for suspected cases of Herbalife hepatotoxicity and retrieved 53 cases including eight cases with a positive unintentional reexposure and a high causality level for Herbalife. First, analysis of these eight cases focused on the data quality of the positive reexposure cases, requiring a baseline value of alanine aminotransferase (ALT) < 5 upper limit of normal (N) before reexposure, with N as the upper limit of normal, and a doubling of the ALT value at reexposure as compared to the ALT value at baseline prior to reexposure. Second, reported methods to assess causality in the eight cases were evaluated, and then the liver specific Council for International Organizations of Medical Sciences (CIOMS) scale validated for hepatotoxicity cases was used for quantitative causality reevaluation. This scale consists of various specific elements with scores provided through the respective case data, and the sum of the scores yields a causality grading for each individual case of initially suspected hepatotoxicity. Details of positive reexposure test conditions and their individual results were scattered in virtually all cases, since reexposures were unintentional and allowed only retrospective rather than prospective assessments. In 1/8 cases, criteria for a positive reexposure were fulfilled, whereas in the remaining cases the reexposure test was classified as negative (n = 1), or the data were considered as uninterpretable due to missing information to comply adequately with the criteria (n = 6). In virtually all assessed cases, liver unspecific causality assessment methods were applied rather than a liver specific method such as the CIOMS scale. Using this scale, causality gradings for Herbalife in these eight cases were probable (n = 1), unlikely (n = 4), and excluded (n = 3). Confounding

  20. Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests

    PubMed Central

    Teschke, Rolf; Frenzel, Christian; Schulze, Johannes; Schwarzenboeck, Alexander; Eickhoff, Axel

    2013-01-01

    AIM: To analyze the validity of applied test criteria and causality assessment methods in assumed Herbalife hepatotoxicity with positive reexposure tests. METHODS: We searched the Medline database for suspected cases of Herbalife hepatotoxicity and retrieved 53 cases including eight cases with a positive unintentional reexposure and a high causality level for Herbalife. First, analysis of these eight cases focused on the data quality of the positive reexposure cases, requiring a baseline value of alanine aminotransferase (ALT) < 5 upper limit of normal (N) before reexposure, with N as the upper limit of normal, and a doubling of the ALT value at reexposure as compared to the ALT value at baseline prior to reexposure. Second, reported methods to assess causality in the eight cases were evaluated, and then the liver specific Council for International Organizations of Medical Sciences (CIOMS) scale validated for hepatotoxicity cases was used for quantitative causality reevaluation. This scale consists of various specific elements with scores provided through the respective case data, and the sum of the scores yields a causality grading for each individual case of initially suspected hepatotoxicity. RESULTS: Details of positive reexposure test conditions and their individual results were scattered in virtually all cases, since reexposures were unintentional and allowed only retrospective rather than prospective assessments. In 1/8 cases, criteria for a positive reexposure were fulfilled, whereas in the remaining cases the reexposure test was classified as negative (n = 1), or the data were considered as uninterpretable due to missing information to comply adequately with the criteria (n = 6). In virtually all assessed cases, liver unspecific causality assessment methods were applied rather than a liver specific method such as the CIOMS scale. Using this scale, causality gradings for Herbalife in these eight cases were probable (n = 1), unlikely (n = 4), and excluded (n

  1. A single acute hepatotoxic dose of CCl4 causes oxidative stress in the rat brain.

    PubMed

    Ritesh, K R; Suganya, A; Dileepkumar, H V; Rajashekar, Y; Shivanandappa, T

    2015-01-01

    Carbon tetrachloride (CCl 4 ), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. We have investigated whether oxidative stress is induced in the brain at a single hepatotoxic dosage (1 ml/kg bw) of CCl 4 . Increased lipid peroxidation (LPO), protein carbonyls (PC) content and glutathione (GSH) depletion were observed in the brain regions of rats treated with CCl 4 which was higher than that of liver. A drastic reduction in the activity of glutathione- S -transferase (GST) was seen in the brain regions which was higher than that of liver. Similarly, activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), NADH- and NADPH-dehydrogenase were reduced in the brain regions similar to that of liver. Higher induction of oxidative stress in the brain compared to that of liver implies vulnerability of the brain for CCl 4 neurotoxicity. Our study shows that a single hepatotoxic dose of CCl 4 is equally neurotoxic to rats.

  2. Comparison of intravenous ibuprofen and acetaminophen for postoperative multimodal pain management in bariatric surgery: A randomized controlled trial.

    PubMed

    Erdogan Kayhan, Gulay; Sanli, Mukadder; Ozgul, Ulku; Kirteke, Ramazan; Yologlu, Saim

    2018-06-20

    Multimodal analgesic strategies are recommended to decrease opioid requirements and opioid-induced respiratory complications in patients undergoing laparoscopic bariatric surgery. Recent studies have demonstrated that intravenous ibuprofen decreases opioid consumption compared with placebo. The primary aim of this study was to compare the effect of intravenous ibuprofen and intravenous acetaminophen on opioid consumption. We also aimed to compare postoperative pain levels and side effects of the drugs. Randomized, double-blinded study. University hospital. Eighty patients, aged 18-65 years, (ASA physical status II-III) undergoing laparoscopic sleeve gastrectomy or laparoscopic Roux-en-Y gastric bypass surgery were included in this study. Patients were randomized to receive 800 mg ibuprofen or 1 g acetaminophen intravenously every 6 h for the first 24 h following surgery; in addition, patient-controlled analgesia with morphine was administered. Postoperative morphine consumption in the first 24 h, visual analog scale (VAS) pain scores at rest and with movement, and opioid related side effects were assessed. In addition, time to passage of flatus, surgical complications, lengths of intensive care unit and hospital stay, and laboratory parameters were recorded. The mean morphine consumption was 23.94 ± 13.89 mg in iv ibuprofen group and 30.23 ± 13.76 mg in the acetaminophen group [mean difference: -6.28 (95% CI, -12.70, 0.12); P = 0.055]. The use of intravenous ibuprofen was associated with reduction in pain at rest (AUC, 1- to 24-h, P < 0.001 and 12- to 24-h, P = 0.021) and pain with movement (AUC, 1-24, 6-24, and 12-24 h, P < 0.001). Intravenous ibuprofen was well tolerated with no serious side effects except dizziness. Intravenous ibuprofen did not significantly reduce opioid consumption compared to intravenous acetaminophen; however, it reduced the severity of pain. Intravenous ibuprofen may be a good alternative to

  3. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinicalmore » onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH

  4. Physical and Chemical Compatibility of Injectable Acetaminophen During Simulated Y-Site Administration

    PubMed Central

    Anderson, Collin; Boehme, Sabrina; Ouellette, Jacquelyn; Stidham, Chanelle; MacKay, Mark

    2014-01-01

    Purpose: The physical and chemical compatibility of intravenous acetaminophen with commonly administered injectable medications was evaluated. Methods: Simulated Y-site evaluation was accomplished by mixing 2 mL of acetaminophen (10 mg/mL) with 2 mL of an alternative intravenous medication and subsequently storing the mixture in a polypropylene syringe for 4 hours. The aliquot solutions were visually inspected and evaluated for crystal content at 4 hours by infusing 4 mL of the medication mixture through a 0.45-μm nitrocellulose filter disc. Medication mixtures that were selected for chemical stability testing were analyzed by high-performance liquid chromatography at 0, 1, and 4 hours using a Zorbax Eclipse Plus C18, 4.6 x 100 mm, 3.5-μm column for separation of analytes with subsequent diode-array detection. Medications were considered chemically compatible if the concentrations of all components were >90% of the original concentrations during the 4 hour simulated Y-site compatibility test. Results: U.S. Pharmacopeial Convention (USP) standards for physical particle counts were met for acetaminophen injection (10 mg/mL) when combined with cefoxitin, ceftriaxone, clindamycin, dexamethasone, diphenhydramine, dolasetron, fentanyl, granisetron, hydrocortisone, hydromorphone, ketorolac, meperidine, methylprednisolone, midazolam, morphine, nalbuphine, ondansetron, piperacillin/tazobactam, ranitidine, and vancomycin. Injectable acetaminophen is incompatible with acyclovir and diazepam and therefore should not be administered concomitantly with either of these products. Further testing confirmed the chemical compatibility of acetaminophen with ceftriaxone, diphenhydramine, granisetron, ketorolac, nalbuphine, ondansetron, piperacillin/tazobactam, and vancomycin. Conclusion: All medications tested with acetaminophen were physically compatible except for acyclovir and diazepam. All 8 medications tested for chemical compatibility with acetaminophen were stable over the 4

  5. Impact of Postoperative Intravenous Acetaminophen on Opioid Requirements and Pain Scores Following Gynecologic Procedures.

    PubMed

    Stoudenmire, Laura G; Norman, Christy M; Latif, Erin Z

    2016-10-01

    This study aims to assess the impact of postoperative intravenous (IV) acetaminophen on opioid requirements and pain scores in patients following gynecologic procedures. A retrospective cohort study of patients undergoing gynecologic procedures was conducted to assess the impact of adding scheduled IV acetaminophen to postoperative analgesic regimens. The control group consisted of patients admitted prior to formulary addition of IV acetaminophen; the study group consisted of patients admitted after formulary addition of IV acetaminophen who received scheduled IV acetaminophen for at least the first 24 hours postoperatively. Opioid requirements 0 to 24 hours postoperatively served as the primary end point. Secondary end points included average pain score, cumulative acetaminophen dose, nonopioid analgesic requirements, and rate of adverse events 0 to 24 hours postoperatively. One hundred and thirty-seven patients who underwent a gynecologic procedure from January 2009 to April 2013 were included in this study. Baseline characteristics were similar between the groups. In the first 24 hours postoperatively, there was no difference in opioid requirements between the groups (21 mg [interquartile range, IQR, 15-39.8 mg] vs 32.6 mg [IQR, 16.75-41 mg], P = 0.150). The average pain score and incidence of adverse events did not differ between the 2 groups. Postoperative administration of IV acetaminophen did not provide a significant opioid-sparing effect in patients undergoing gynecologic procedures. © The Author(s) 2015.

  6. N-acetylcysteine-induced headache in hospitalized patients with acute acetaminophen overdose.

    PubMed

    Zyoud, Sa'ed H; Awang, Rahmat; Sulaiman, Syed Azhar Syed; Al-Jabi, Samah W

    2011-06-01

    Intravenous N-acetylcysteine (IV-NAC) is usually regarded as a safe antidote to acetaminophen overdose. However, during infusion of the loading dose, adverse drug reactions such as a headache may occur. The objectives of this study were to investigate the prevalence of headache in patients presenting to hospital after acetaminophen overdose and to determine which clinical findings are most predictive of headache among these patients. This is a retrospective cohort study of hospital admissions for acute acetaminophen overdose that was conducted over a period of 4 years from January 1, 2005 to December 31, 2008. Demographic data, clinical characteristics, and predictors of headache were analyzed. spss 15 was used for data analysis. Two-hundred and fifty-five patients were studied; their mean age was 23.1 ± 1.6; 83.9% of them were women and 14.9% had a headache during hospitalization. Headache among patients was significantly associated with IV-NAC administration (P = 0.001), intentional ingestion of drug (P = 0.04), acetaminophen concentration above 'possible toxicity' treatment line (P = 0.04), a high acetaminophen concentration (P = 0.04), and a long hospital stay (P = 0.03). Multiple logistic regression showed a significant risk factor for headache in patients administered IV-NAC (P = 0.04). We recorded a high frequency of headache in patients with acute acetaminophen overdose in our geographical area. This study suggests that among those patients, the use of IV-NAC is associated with an increased risk of headache. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  7. Aspirin and Acetaminophen Use and the Risk of Cervical Cancer

    PubMed Central

    Friel, Grace; Liu, Cici S.; Kolomeyevskaya, Nonna V.; Hampras, Shalaka S.; Kruszka, Bridget; Schmitt, Kristina; Cannioto, Rikki A.; Lele, Shashikant B.; Odunsi, Kunle O.; Moysich, Kirsten B.

    2016-01-01

    Objective In this study, we investigated whether regular use of aspirin or acetaminophen was associated with risk of cervical cancer in women treated at an American cancer hospital. Methods This case-control study included 328 patients with cervical cancer and 1,312 controls matched on age and decade enrolled. Controls were women suspected of having but not ultimately diagnosed with a neoplasm. Analgesic use was defined as regular (at least once per week for ≥6 months), frequent (≥7 tablets/week), very long term (≥11 years), or frequent, long term (≥7 tablets per week for ≥5 years). Results Compared to nonusers, frequent aspirin use was associated with decreased odds of cervical cancer (odds ratio, 0.53; 95%confidence interval, 0.29–0.97). A slightly larger association was observed with frequent, long-term use of aspirin (odds ratio, 0.46; 95% confidence interval, 0.22–0.95). Acetaminophen use was not associated with the risk of cervical cancer. Conclusions Our findings suggest that frequent and frequent, long-term use of aspirin is associated with decreased odds of cervical cancer. To our knowledge, this is the first US-based study examining these associations. Given the widespread use of nonsteroidal anti-inflammatory drugs and acetaminophen worldwide, further investigations of the possible role of analgesics in cervical cancer, using a larger sample size with better-defined dosing regimens, are warranted. PMID:25856123

  8. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats.

    PubMed

    Shinozaki, Tomonari; Yamada, Toshihiko; Nonaka, Takahiro; Yamamoto, Tatsuo

    2015-06-01

    Although non-steroidal anti-inflammatory drugs and acetaminophen have no proven efficacy against neuropathic pain, they are frequently prescribed for neuropathic pain patients. We examined whether the combination of opioids (tramadol and morphine) with indomethacin or acetaminophen produce favorable effects on neuropathic pain and compared the efficacy for neuropathic pain with that for inflammatory pain. The carrageenan model was used as the inflammatory pain model while the tibial neuroma transposition (TNT) model was used as the neuropathic pain model. The tibial nerve is transected in the TNT model, with the tibial nerve stump then transpositioned to the lateral aspect of the hindlimb. Neuropathic pain (mechanical allodynia and neuroma pain) is observed after TNT injury. Drugs were administered orally. In the carrageenan model, all drugs produced anti-allodynic effects and all drug combinations, but not tramadol + indomethacin combination, produced synergistic anti-allodynic effects. In the TNT model, tramadol and morphine, but not acetaminophen and indomethacin, produced anti-neuropathic pain effects. In the combination, with the exception of morphine + acetaminophen combination, both acetaminophen and indomethacin reduced the 50% effective dose (ED50) of tramadol and morphine as compared with the ED50s for the single drug study in the TNT model. The ED50s of tramadol and morphine in the carrageenan combination test were not statistically significantly different from the ED50s in the TNT model combination study. The combination of opioids with indomethacin or acetaminophen produced a synergistic analgesic effect both in inflammatory and neuropathic pain with some exceptions. The efficacy of these combinations for neuropathic pain was not different from that for inflammatory pain.

  9. [High anion gap metabolic acidosis (pyroglutamic acidosis) induced by chronic acetaminophen use].

    PubMed

    Tchougang Nono, J; Mistretta, V; Noirot, I; Canivet, J L; Damas, P

    2018-01-01

    Acetaminophen is the most consumable analgesic in the world in the form of medical prescription or self-medication. It is one of the active ingredients most often involved in voluntary poisoning. Lethal dose of acetaminophen classically induces acute hepatic failure on hepatic necrosis. Chronic intake of sub-lethal doses (i.e. near recommended therapeutic doses) of acetaminophen in the presence of certain risk factors may be responsible for another much less recognized pathological manifestation: severe metabolic acidosis with an increased anion gap due to the accumulation of 5-oxoproline or pyroglutamic acid.

  10. Bioequivalence and Pharmacokinetic Evaluation Study of Acetaminophen vs. Acetaminophen Plus Caffeine Tablets in Healthy Mexican Volunteers.

    PubMed

    Guzmán, Nora Angélica Núñez; Molina, Daniel Ruiz; Núñez, Benigno Figueroa; Soto-Sosa, Juan Carlos; Abarca, Jorge Eduardo Herrera

    2016-12-01

    The aim of this clinical trial was to establish the bioequivalence of two tablets containing acetaminophen 650 mg (reference) and acetaminophen 650 mg plus caffeine 65 mg (test), administered orally, in fasting conditions in healthy Mexican volunteers. Blood samples were taken from 21 male and five female individuals, during a 24-h period, to characterize the pharmacokinetic profile of acetaminophen. Plasma samples were quantified by ultra-performance liquid chromatography, tandem mass spectrometry. Pharmacokinetic metrics (maximum plasma concentration, area under the curve from time zero to the last sampling time, and area under the curve from time zero to infinity) were used to determine the 90 % confidence interval of the test/reference coefficient. The geometric mean values for maximum plasma concentration obtained for the reference and test products were 9.46 ± 34.21 and 9.72 ± 32.38 µg/mL, respectively, whereas for the area under the curve from time zero to the last sampling time the values obtained were 34.93 ± 32.58 and 35.89 ± 31.03 µg h/mL for the reference and test formulations, respectively. The 90 % confidence intervals were within the acceptance range (80-125 %). The test product was bioequivalent to the reference product. A faster absorption was seen in the test formulation in the Mexican population.

  11. Study on the reaction mechanism and the static injection chemiluminescence method for detection of acetaminophen.

    PubMed

    Wu, Yongjun; Zhang, Huili; Yu, Songcheng; Yu, Fei; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B

    2013-01-01

    Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over-the-counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol-HRP-H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol-HRP-H2O2 system. A putative enhancement mechanism for the luminol-H2O2-HRP-acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O-H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol-H2O2-HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.

  12. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat.

    PubMed

    Yip, Lian Yee; Aw, Chiu Cheong; Lee, Sze Han; Hong, Yi Shuen; Ku, Han Chen; Xu, Winston Hecheng; Chan, Jessalyn Mei Xuan; Cheong, Eleanor Jing Yi; Chng, Kern Rei; Ng, Amanda Hui Qi; Nagarajan, Niranjan; Mahendran, Ratha; Lee, Yuan Kun; Browne, Edward R; Chan, Eric Chun Yong

    2018-01-01

    The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295). © 2017 by the American Association for the Study of Liver Diseases.

  13. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats

    PubMed Central

    Omidi, Arash; Riahinia, Narges; Montazer Torbati, Mohammad Bagher; Behdani, Mohammad-Ali

    2014-01-01

    Objectives: Acetaminophen (APAP) toxicity is known to be common and potentially fatal. This study aims to investigate the protective effects of hydroalcoholic extract, remaining from Crocus sativus petals (CSP) against APAP-induced hepatotoxicity by measuring the blood parameters and studying the histopathology of liver in male rats. Materials and Methods: Wister rats (24) were randomly assigned into four groups including: I) healthy, receiving normal saline; II) Intoxicated, receiving only APAP (600 mg/kg); III) pre-treated with low dose of CSP (10 mg /kg) and receiving APAP (600 mg/kg); IV) pre-treated with high dose of CSP (20 mg/kg) and receiving APAP (600 mg/kg). Results: The APAP treatment resulted in higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and bilirubin, along with lower total protein and albumin concentration than the control group. The administration of CSP with a dose of 20 mg/kg was found to result in lower levels of AST, ALT and bilirubin, with a significant higher concentration of total protein and albumin. The histopathological results regarding liver pathology, revealed sever conditions including cell swelling, severe inflammation and necrosis in APAP-exposed rats, which was quiet contrasting compared to the control group. The pre-treated rats with low doses of ‍CSP showed hydropic degeneration with mild necrosis in centrilobular areas of the liver, while the same subjects with high doses of ‍CSP appeared to have only mild hepatocyte degeneration. Conclusions: Doses of 20 mg/kg of CSP ameliorates APAP–induced acute liver injury in rats. It was concluded that the antioxidant property of CSP resulted in reducing the oxidative stress complications of toxic levels of APAP in intoxicated rats. PMID:25386395

  14. Evaluation of Medicated Gel as a Supplement to Providing Acetaminophen in the Drinking Water of C57BL/6 Mice after Surgery

    PubMed Central

    Christy, Amanda C; Byrnes, Kimberly R; Settle, Timothy L

    2014-01-01

    After surgery, rodents frequently receive acetaminophen-treated drinking water for pain relief, but the effectiveness of this practice is often questioned. Gel products are now available to facilitate the delivery of oral medication to rodents after surgery. We sought to compare consumption of flavored medicated gel and medicated water after surgery and to determine whether providing supplemental acetaminophen in gel form ensures the ingestion of a therapeutic dose of an analgesic after surgery. Male C57BL/6 mice were allocated into 3 groups after surgery: those that received acetaminophen-treated water and untreated gel (MW group); those that received medicated gel and untreated water (MG group); and those that received acetaminophen in both forms (MWG group). Total water and gel consumption were monitored daily from the day before surgery until 2 d thereafter. Mice in the MG group consumed significantly less gel than water, and consequently, the total acetaminophen dose per mouse in the MG group (49 mg/kg) was significantly less than that of the MWG group (347 mg/kg). Although the dose consumed by mice in the MW group (158 mg/kg) approached the targeted acetaminophen dose of 200 mg/kg, only mice in the MWG group actually achieved the desired dose. The results of this study indicate that flavored acetaminophen-containing gel can be used in combination with medicated water to ensure that rodents ingest the targeted dose of medication. PMID:24602545

  15. [Determination of serum acetaminophen based on the diazo reaction and its application in the evaluation of gastric emptying].

    PubMed

    Li, Cai-na; Sun, Su-juan; Shen, Zhu-fang

    2015-05-01

    This study aims to establish a method to determine the serum acetaminophen concentration based on diazo reaction, and apply it in the gastric emptying evaluation. Theoretically, acetaminophen could take hydrolysis reaction in hydrochloric acid solution to produce p-aminophenol, which could then take diazo reaction resulting in a product with special absorption peak at 312 nm. Then the serum acetaminophen concentration and recovery rate were calculated according to the standard curve drawn with absorbance at 312 nm. ICR mice were given a dose of acetaminophen (500 mg x kg(-1)) by gavage and the serum acetaminophen was dynamically measured through the diazo reaction. Besides, ICR mice were subcutaneously injected with the long-acting GLP-1 analog GW002 before the gavage of acetaminophen, and serum acetaminophen concentration was measured as above to study how GW002 could influence the gastric emptying. The data showed acetaminophen ranging from 0 to 160 μg x mL(-1) could take diazo reaction with excellent linear relationship, and the regression equation was y = 0.0181 x +0.0104, R2 = 0.9997. The serum acetaminophen was also measured with good linear relationship (y = 0.0045 x + 0.0462, R = 0.9982) and the recovery rate was 97.4%-116.7%. The serum concentration of acetaminophen reached peak at about 0.5 h after gavage, and then gradually decreased. GW002 could significantly lower the serum acetaminophen concentration and make the area under the concentration-time curve (AUC) decrease by 28.4%. In conclusion, a method for the determination of serum acetaminophen based on the diazo reaction was established with good accuracy and could be used in the evaluation of gastric emptying.

  16. Acetaminophen and Metamizole Induce Apoptosis in HT 29 and SW 480 Colon Carcinoma Cell Lines In Vitro.

    PubMed

    Bundscherer, Anika C; Malsy, Manuela; Gruber, Michael A; Graf, Bernhard M; Sinner, Barbara

    2018-02-01

    The perioperative phase is supposed to be a period with high vulnerability for cancer dissemination. Acetaminophen and metamizole are common analgesics administered during this phase. We investigated the effect of acetaminophen, metamizole and 4-methylaminoantipyrine (MAA) on proliferation and apoptosis of colon carcinoma cell lines (SW 480 and HT 29). Proliferation was detected by cell proliferation ELISA BrdU, and apoptosis by Annexin V staining. Cytochrome c and caspase 3, 8 and 9 expression levels were detected by western blot. Acetaminophen, metamizole or MAA caused slight changes in proliferation. Acetaminophen, metamizole or the combination increased apoptosis in both cell lines. All agents decreased caspase 3 and 8 expression in SW480. Acetaminophen decreased caspase 9 expression in both cell lines. In clinically relevant doses, acetaminophen and/or metamizole induce apoptosis in both colon cancer cell lines. Both mitochondrial and death receptor pathways might be involved in acetaminophen-induced apoptosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Herbal hepatotoxicity: Challenges and pitfalls of causality assessment methods

    PubMed Central

    Teschke, Rolf; Frenzel, Christian; Schulze, Johannes; Eickhoff, Axel

    2013-01-01

    The diagnosis of herbal hepatotoxicity or herb induced liver injury (HILI) represents a particular clinical and regulatory challenge with major pitfalls for the causality evaluation. At the day HILI is suspected in a patient, physicians should start assessing the quality of the used herbal product, optimizing the clinical data for completeness, and applying the Council for International Organizations of Medical Sciences (CIOMS) scale for initial causality assessment. This scale is structured, quantitative, liver specific, and validated for hepatotoxicity cases. Its items provide individual scores, which together yield causality levels of highly probable, probable, possible, unlikely, and excluded. After completion by additional information including raw data, this scale with all items should be reported to regulatory agencies and manufacturers for further evaluation. The CIOMS scale is preferred as tool for assessing causality in hepatotoxicity cases, compared to numerous other causality assessment methods, which are inferior on various grounds. Among these disputed methods are the Maria and Victorino scale, an insufficiently qualified, shortened version of the CIOMS scale, as well as various liver unspecific methods such as the ad hoc causality approach, the Naranjo scale, the World Health Organization (WHO) method, and the Karch and Lasagna method. An expert panel is required for the Drug Induced Liver Injury Network method, the WHO method, and other approaches based on expert opinion, which provide retrospective analyses with a long delay and thereby prevent a timely assessment of the illness in question by the physician. In conclusion, HILI causality assessment is challenging and is best achieved by the liver specific CIOMS scale, avoiding pitfalls commonly observed with other approaches. PMID:23704820

  18. Effects of acetaminophen and ibuprofen in children with migraine receiving preventive treatment with magnesium.

    PubMed

    Gallelli, Luca; Avenoso, Tiziana; Falcone, Daniela; Palleria, Caterina; Peltrone, Francesco; Esposito, Maria; De Sarro, Giovambattista; Carotenuto, Marco; Guidetti, Vincenzo

    2014-02-01

    The purpose of this study was to evaluate both the effects of ibuprofen and/or acetaminophen for the acute treatment of primary migraine in children in or out prophylactic treatment with magnesium. Children ranging from the ages of 5 to 16 years with at least 4 attack/month of primary migraine were eligible for participation the study. A visual analog scale was used to evaluate pain intensity at the moment of admission to the study (start of the study) and every month up to 18 months later (end of the study). One hundred sixty children of both sexes aged 5-16 years were enrolled and assigned in 4 groups to receive a treatment with acetaminophen or ibuprofen without or with magnesium. Migraine pain endurance and monthly frequency were similar in the 4 groups. Both acetaminophen and ibuprofen induced a significant decrease in pain intensity (P < .01), without a time-dependent correlation, but did not modify its frequency. Magnesium pretreatment induced a significant decrease in pain intensity (P < .01) without a time-dependent correlation in both acetaminophen- and ibuprofen-treated children and also significantly reduced (P < .01) the pain relief timing during acetaminophen but not during ibuprofen treatment (P < .01). In both acetaminophen and ibuprofen groups, magnesium pretreatment significantly reduced the pain frequency (P < .01). Magnesium increased the efficacy of ibuprofen and acetaminophen with not age-related effects. © 2013 American Headache Society.

  19. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.

    2013-06-15

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used asmore » diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at

  20. Relative Bioavailability, Intranasal Abuse Potential, and Safety of Benzhydrocodone/Acetaminophen Compared with Hydrocodone Bitartrate/Acetaminophen in Recreational Drug Abusers.

    PubMed

    Guenther, Sven M; Mickle, Travis C; Barrett, Andrew C; Roupe, Kathryn Ann; Zhou, Jing; Lam, Vincent

    2018-05-01

    Benzhydrocodone is a hydrocodone prodrug that has been combined with acetaminophen (APAP) in a novel immediate-release analgesic. This study evaluated the relative bioavailability, intranasal abuse potential, and safety of benzhydrocodone/APAP compared with commercially available hydrocodone bitartrate (HB)/APAP. Single-center, randomized, double-blind, double-dummy, two-part study comprising a Dose Selection (Part A) phase and a Main Study (Part B) phase. Clinical research site. Healthy adult, nondependent, recreational opioid users with a history of intranasal abuse. Subjects (N = 42) in Part B received five in-clinic treatments consisting of intranasal and oral benzhydrocodone/APAP (13.34/650 mg), intranasal and oral hydrocodone/APAP (15/650 mg), and placebo, with four or more days of washout between treatments. Pharmacodynamic assessments included subjective effects of Drug Liking, Overall Drug Liking, and Take Drug Again (assessed on visual analog scale [VAS]), as well as nasal irritation. Pharmacokinetics and safety were also assessed. Hydrocodone Cmax was 11% lower for intranasal benzhydrocodone/APAP vs intranasal HB/APAP (P = 0.0027). Early cumulative hydrocodone exposures for intranasal benzhydrocodone/APAP through 0.5, 1, and 2 hours were reduced by approximately 50%, 29%, and 15%, respectively (P ≤ 0.0024). Correspondingly, Drug Liking VAS values up to two hours postdose were significantly lower for intranasal benzhydrocodone/APAP vs intranasal HB/APAP (P ≤ 0.0079), although peak Drug Liking VAS (Emax) scores were not different (P = 0.2814). Adverse nasal effects were more frequent for intranasal benzhydrocodone/APAP vs intranasal HB/APAP. Reduced hydrocodone exposure and drug liking at early time intervals, coupled with adverse nasal effects, can be expected to provide a level of deterrence to the intranasal route of abuse for benzhydrocodone/APAP.

  1. Use of aspirin, non-steroidal anti-inflammatory drugs, and acetaminophen (paracetamol), and risk of psoriasis and psoriatic arthritis: a cohort study.

    PubMed

    Wu, Shaowei; Han, Jiali; Qureshi, Abrar A

    2015-02-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to induce or exacerbate psoriasis. We aimed to evaluate the association between several widely used analgesics, including aspirin, non-aspirin NSAIDs, and acetaminophen (paracetamol), and risk of psoriasis and psoriatic arthritis (PsA) in a large cohort of US women, the Nurses' Health Study II (1991-2005). Information on regular use of aspirin, NSAIDs, and acetaminophen was collected for 95,540 participants during the follow-up. During 1,321,280 person-years of follow-up, we documented 646 incident psoriasis cases and 165 concomitant PsA cases. Compared to women who reported no use, regular acetaminophen and NSAIDs users with more than 10 years of use had multivariate hazard ratios of 3.60 [95% confidence interval (CI): 2.02-6.41] and 2.10 (95% CI: 1.11-3.96) for PsA, respectively. There was no clear association between aspirin and risk of psoriasis or PsA. In conclusion, long-term acetaminophen and NSAIDs use may be associated with an increased risk of PsA. Special attention on psoriasis and PsA screening may be needed for those who are prescribed for acetaminophen and NSAIDs for long-term periods.

  2. Postoperative analgesic efficacy of single high dose and low dose rectal acetaminophen in pediatric ophthalmic surgery

    PubMed Central

    Gandhi, Ranju; Sunder, Rani

    2012-01-01

    Background: Analgesic efficacy of rectal acetaminophen is variable in different surgical procedures. Little data is available on its efficacy in ophthalmic surgeries. We conducted this prospective, randomized, double blind study to evaluate and compare the efficacy of single high dose and low dose rectal acetaminophen in pediatric ophthalmic surgery over a 24 hour period. Materials and Methods: 135 children scheduled for elective ophthalmic surgery were randomly allocated to one of the three groups, high, low, or control (H, L, or N) and received rectal acetaminophen 40 mg/kg, 20 mg/kg or no rectal drug respectively after induction of general anesthesia. Postoperative observations included recovery score, hourly observational pain score (OPS) up to 8 hours, time to first analgesic demand, and requirement of rescue analgesics and antiemetics over a 24 hour period. Results: Nineteen of 30 (63%) of children in group N required postoperative rescue analgesic versus 5/48 (10%) of group H (P <0.0001) and 10/47 (23%) of group L (P =0.0005) during 24 hour period. Mean time to requirement of first analgesic was 206±185 min in group H, 189±203min in group L, and 196 ±170 min in group N (P=0.985). OPS was significantly lower in group H and L compared to group N during first 8 hours. Requirement of rescue antiemetic was 18.7% in group H as compared to 23% each in group L and group N (P >0.5). Conclusions: Single dose rectal acetaminophen can provide effective postoperative analgesia for pediatric ophthalmic surgery at both high dose (40 mg/kg) and low dose (20 mg/kg) both in early postoperative and over a 24 hour period. PMID:23225924

  3. Prophylactic Acetaminophen or Ibuprofen Results in Equivalent Acute Mountain Sickness Incidence at High Altitude: A Prospective Randomized Trial.

    PubMed

    Kanaan, Nicholas C; Peterson, Alicia L; Pun, Matiram; Holck, Peter S; Starling, Jennifer; Basyal, Bikash; Freeman, Thomas F; Gehner, Jessica R; Keyes, Linda; Levin, Dana R; O'Leary, Catherine J; Stuart, Katherine E; Thapa, Ghan B; Tiwari, Aditya; Velgersdyk, Jared L; Zafren, Ken; Basnyat, Buddha

    2017-06-01

    Recent trials have demonstrated the usefulness of ibuprofen in the prevention of acute mountain sickness (AMS), yet the proposed anti-inflammatory mechanism remains unconfirmed. Acetaminophen and ibuprofen were tested for AMS prevention. We hypothesized that a greater clinical effect would be seen from ibuprofen due to its anti-inflammatory effects compared with acetaminophen's mechanism of possible symptom reduction by predominantly mediating nociception in the brain. A double-blind, randomized trial was conducted testing acetaminophen vs ibuprofen for the prevention of AMS. A total of 332 non-Nepali participants were recruited at Pheriche (4371 m) and Dingboche (4410 m) on the Everest Base Camp trek. The participants were randomized to either acetaminophen 1000 mg or ibuprofen 600 mg 3 times a day until they reached Lobuche (4940 m), where they were reassessed. The primary outcome was AMS incidence measured by the Lake Louise Questionnaire score. Data from 225 participants who met inclusion criteria were analyzed. Twenty-five participants (22.1%) in the acetaminophen group and 18 (16.1%) in the ibuprofen group developed AMS (P = .235). The combined AMS incidence was 19.1% (43 participants), 14 percentage points lower than the expected AMS incidence of untreated trekkers in prior studies at this location, suggesting that both interventions reduced the incidence of AMS. We found little evidence of any difference between acetaminophen and ibuprofen groups in AMS incidence. This suggests that AMS prevention may be multifactorial, affected by anti-inflammatory inhibition of the arachidonic-acid pathway as well as other analgesic mechanisms that mediate nociception. Additional study is needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Race, Gender, and Genetic Polymorphism Contribute to Variability in Acetaminophen Pharmacokinetics, Metabolism, and Protein-Adduct Concentrations in Healthy African-American and European-American Volunteers.

    PubMed

    Court, Michael H; Zhu, Zhaohui; Masse, Gina; Duan, Su X; James, Laura P; Harmatz, Jerold S; Greenblatt, David J

    2017-09-01

    Over 30 years ago, black Africans from Kenya and Ghana were shown to metabolize acetaminophen faster by glucuronidation and slower by oxidation compared with white Scottish Europeans. The objectives of this study were to determine whether similar differences exist between African-Americans and European-Americans, and to identify genetic polymorphisms that could explain these potential differences. Acetaminophen plasma pharmacokinetics and partial urinary metabolite clearances via glucuronidation, sulfation, and oxidation were determined in healthy African-Americans (18 men, 23 women) and European-Americans (34 men, 20 women) following a 1-g oral dose. There were no differences in acetaminophen total plasma, glucuronidation, or sulfation clearance values between African-Americans and European-Americans. However, median oxidation clearance was 37% lower in African-Americans versus European-Americans (0.57 versus 0.90 ml/min per kilogram; P = 0.0001). Although acetaminophen total or metabolite clearance values were not different between genders, shorter plasma half-life values (by 11-14%; P < 0.01) were observed for acetaminophen, acetaminophen glucuronide, and acetaminophen sulfate in women versus men. The UGT2B15*2 polymorphism was associated with variant-allele-number proportional reductions in acetaminophen total clearance (by 15-27%; P < 0.001) and glucuronidation partial clearance (by 23-48%; P < 0.001). UGT2B15 *2/*2 genotype subjects also showed higher acetaminophen protein-adduct concentrations than *1/*2 (by 42%; P = 0.003) and *1/*1 (by 41%; P = 0.003) individuals. Finally, CYP2E1 *1D/*1D genotype African-Americans had lower oxidation clearance than *1C/*1D (by 42%; P = 0.041) and *1C/*1C (by 44%; P = 0.048) African-Americans. Consequently, African-Americans oxidize acetaminophen more slowly than European-Americans, which may be partially explained by the CYP2E1*1D polymorphism. UGT2B15*2 influences acetaminophen pharmacokinetics in both African

  5. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    PubMed

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Efficacy and Safety of a Fixed Combination of Tramadol and Paracetamol (Acetaminophen) as Pain Therapy Within Palliative Medicine

    PubMed Central

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-01-01

    Goal: The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. Material and methods: A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1st to December 31st 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a “rescue dose” of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for P<0.05. Results: The average duration of treatment with a fixed combination tramadol and acetaminophen was 57 days (13-330 days). Already after 24 hours of treatment the average pain score was significantly lower (p<0.0001) compared to the admission day [5.00 (4:00 to 8:00) during the first days versus 2.00 (1:00 to 7:00) during the second day of treatment]. The average dose of the fixed combination tramadol and acetaminophen tablets was 4.8 ± 1.8 (180 mg of tramadol and 1560 mg paracetamol). Side effects, in the treatment of pain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Conclusion: Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects. PMID:25870531

  7. Protection of a Ceramide Synthase 2 Null Mouse from Drug-induced Liver Injury

    PubMed Central

    Park, Woo-Jae; Park, Joo-Won; Erez-Roman, Racheli; Kogot-Levin, Aviram; Bame, Jessica R.; Tirosh, Boaz; Saada, Ann; Merrill, Alfred H.; Pewzner-Jung, Yael; Futerman, Anthony H.

    2013-01-01

    Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury. PMID:24019516

  8. Neonicotinoid formaldehyde generators: possible mechanism of mouse-specific hepatotoxicity/hepatocarcinogenicity of thiamethoxam.

    PubMed

    Swenson, Tami L; Casida, John E

    2013-02-04

    Thiamethoxam (TMX), an important insecticide, is hepatotoxic and hepatocarcinogenic in mice but not rats. Studies of Syngenta Central Toxicology Laboratory on species specificity in metabolism established that TMX is a much better substrate for mouse liver microsomal CYPs than the corresponding rat or human enzymes in forming desmethyl-TMX (dm-TMX), which is also hepatotoxic, and clothianidin (CLO), which is not hepatotoxic or hepatocarcinogenic. They proposed that TMX hepatotoxicity/hepatocarcinogencity is due to dm-TMX and a further metabolite desmethyl-CLO (dm-CLO) (structurally analogous to a standard inducible nitric oxide synthase inhibitor) acting synergistically. The present study considers formation of formaldehyde (HCHO) and N-methylol intermediates as an alternative mechanism of TMX hepatotoxicity/hepatocarcinogenicity. Comparison of neonicotinoid metabolism by mouse, rat and human microsomes with NADPH showed two important points. First, TMX and dm-TMX yield more HCHO than any other commercial neonicotinoid. Second, mouse microsomes give much higher conversion than rat or human microsomes. These observations provide an alternative hypothesis of HCHO and N-methylol intermediates from CYP-mediated oxidative oxadiazinane ring cleavage as the bioactivated hepatotoxicants. However, the proposed mono-N-methylol CYP metabolites are not observed, possibly further reacting in situ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. A Multi-center Comparison of the Safety of Oral versus Intravenous Acetylcysteine for Treatment of Acetaminophen Overdose

    PubMed Central

    2010-01-01

    Oral and intravenous (IV) acetylcysteine are used for treatment of acetaminophen poisoning. The objective of this multi-center study was to compare the safety of these two routes of administration. METHODS We conducted a multi-center chart review of all patients treated with acetylcysteine for acetaminophen poisoning. The primary safety outcome was the percentage of patients with of acetylcysteine-related adverse events. RESULTS A total of 503 subjects were included in the safety analysis (306 IV only, 145 oral only and 52 both routes).There were no serious adverse events related to acetylcysteine for either route. Nausea and vomiting were the most common related adverse events and were more common with oral treatment (23% vs 9%). Anaphylactoid reactions were more common with IV administration (6% vs 2%). Conclusions Intravenous and oral acetylcysteine are both associated with minimal side effects and are safe for treatment of acetaminophen toxicity. PMID:20524832

  10. Severe anion gap metabolic acidosis from acetaminophen use secondary to 5-oxoproline (pyroglutamic acid) accumulation.

    PubMed

    Zand, Ladan; Muriithi, Angela; Nelsen, Eric; Franco, Pablo M; Greene, Eddie L; Qian, Qi; El-Zoghby, Ziad M

    2012-12-01

    Anion gap metabolic acidosis (AGMA) is commonly encountered in medical practice. Acetaminophen-induced AGMA is, however, not widely recognized. We report 2 cases of high anion gap metabolic acidosis secondary to 5-oxoproline accumulation resulting from acetaminophen consumption: the first case caused by acute one-time ingestion of large quantities of acetaminophen and the second case caused by chronic repeated ingestion in a patient with chronic liver disease. Recognition of this entity facilitated timely diagnosis and effective treatment. Given acetaminophen is commonly used over the counter medication, increased recognition of this adverse effect is of important clinical significance.

  11. Hepatotoxicity due to first-line anti-tuberculosis drugs: a five-year experience in a Taiwan medical centre.

    PubMed

    Shu, C-C; Lee, C-H; Lee, M-C; Wang, J-Y; Yu, C-J; Lee, L-N

    2013-07-01

    Hepatotoxicity with first-line drugs, a major complication of anti-tuberculosis treatment, has not been studied by time-dependent analysis. Adult patients diagnosed with pulmonary tuberculosis (PTB) from 2005 to 2009 were reviewed retrospectively. Hepatotoxicity during anti-tuberculosis treatment was defined by symptomatic elevation of liver transaminases ≥3 times the upper limit of normal, or ≥5 times if asymptomatic. Risk factors for hepatotoxicity were investigated using time-dependent Cox regression analysis. Of 926 patients identified and followed for 4122.9 person-months (pm), 111 (12.0%) developed hepatotoxicity after a median 38.0 days from start of treatment. Around 3.5% had severe hepatotoxicity. The most common symptoms were general malaise and poor appetite. The incidence rate of hepatotoxicity was 0.59, 0.69 and 3.71/100 pm for isoniazid, rifampicin (RMP) and pyrazinamide (PZA), respectively. Old age, female sex, autoimmune disease, human immunodeficiency virus infection, more days with PZA in the last 8-14 days, and fewer days with RMP in the last 15-21 days before hepatotoxicity were independent risk factors for hepatotoxicity during treatment. A significant number of adult patients on first-line treatment experience hepatotoxicity. PZA is the most common causative drug. For high-risk patients, careful adjustment of the anti-tuberculosis regimen and regular monitoring of liver transaminases are necessary.

  12. Vitamin E and selenium treatment of monocrotaline induced hepatotoxicity in rats.

    PubMed

    Cuce, G; Canbaz, H T; Sozen, M E; Yerlikaya, F H; Kalkan, S

    2017-01-01

    Monocrotaline (MCT) is a hepatotoxic pyrrolizidine alkaloid that is derived from plants; exposure may occur by consumption of contaminated grains, herbal teas and medicines. MCT can cause liver damage. We investigated the antioxidant effects of selenium (Se) and vitamin E against the toxic effects of MCT. Female Wistar albino rats were divided into four groups: a control group, an MCT group, an MCT + Se group, and an MCT + vitamin E group. Liver tissues were harvested, fixed, processed to paraffin and sections were cut. Anti-von Willebrand factor (vWF) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL), and hematoxylin and eosin staining were performed. Serum and liver tissue glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx) levels were measured. Histopathological and TUNEL data showed significantly increased liver damage in the MCT group compared to controls. Histopathological and TUNEL staining indicated significant improvements in the MCT + vitamin E and MCT + Se groups compared to the MCT group. MCT significantly reduced the serum GSH level and GPx activity, and liver GPx activity. Biochemical data indicated a significant improvement in serum GSH level in the MCT + vitamin E group compared to the MCT group. We suggest that vitamin E and Se afford limited protection against MCT hepatotoxicity.

  13. Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.

    PubMed

    Buness, Andreas; Roth, Adrian; Herrmann, Annika; Schmitz, Oliver; Kamp, Hennicke; Busch, Kristina; Suter, Laura

    2014-01-01

    Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI) using transcriptomics, metabolite profiling (metabolomics) and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine), classical clinical chemistry markers like AST (aspartate aminotransferase), ALT (alanine aminotransferase), and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1) and Egr1 (early growth response protein 1). The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.

  14. Levofloxacin-induced hepatotoxicity and death.

    PubMed

    Gulen, Muge; Ay, Mehmet Oguzhan; Avci, Akkan; Acikalin, Ayca; Icme, Ferhat

    2015-01-01

    Drug-induced hepatotoxicity is a major cause of hepatocellular injury in patients admitting to emergency services with acute liver failure. Hepatic necrosis may be at varying degrees from mild elevations in transaminases to fulminant hepatitis, and even death. The case of a 53-year-old female patient with toxic hepatitis due to levofloxacin and multiple organ failure secondary to toxic hepatitis is presented. Patient suffered itching, redness, and rash after receiving a single dose of 750 mg of levofloxacin tablets for pulmonary infection 10 days ago. Skin lesions had regressed within 3 days, but desquamation formed all over the body. After the fifth day of drug intake, complaints of abdominal pain, vomiting, and yellowing in skin color had started. The patient was referred to our emergency department with these complaints 10 days after drug intake. Patient was thought as a candidate for liver transplant, but cardiopulmonary arrest occurred, and the patient died before she could be referred to a transplant center. This case is important because hepatotoxicity and death due to levofloxacin is uncommon in the literature.

  15. Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring.

    PubMed

    Andrade, Chittaranjan

    2016-02-01

    Acetaminophen (paracetamol) is available over the counter in most countries and is widely considered to be safe for use during pregnancy; studies report gestational exposures to acetaminophen that lie in the 46%-65% range. Acetaminophen influences inflammatory and immunologic mechanisms and may predispose to oxidative stress; these and other effects are hypothesized to have the potential to compromise neurodevelopment in the fetal and infant brain. Two ecological studies suggested that population-level trends in the use of acetaminophen were associated with trends in the incidence/prevalence of autism; one of these studies specifically examined acetaminophen use during pregnancy. One large prospective observational cohort study found that gestational exposure to acetaminophen (especially when the duration of exposure was 28 days or more) was associated with motor milestone delay, gross and fine motor impairments, communication impairment, impairments in internalizing and externalizing behaviors, and hyperactivity, all at age 3 years; however, social and emotional developmental behaviors were mostly unaffected. A very recent large cohort study with a 12.7-year follow-up found that gestational exposure to acetaminophen was associated with an increased risk of autism spectrum disorder, but only when a hyperkinetic disorder was also present. In the light of existing data associating acetaminophen use during pregnancy and subsequent risk of attention-deficit/hyperactivity disorder, this new finding suggests that the predisposition, if any, is toward the hyperkinetic syndrome rather than to autism. In summary, the empirical data are very limited, but whatever empirical data exist do not support the suggestion that the use of acetaminophen during pregnancy increases the risk of autism in the offspring. © Copyright 2016 Physicians Postgraduate Press, Inc.

  16. Assessment of the efficacy and safety profiles of aspirin and acetaminophen with codeine: results from 2 randomized, controlled trials in individuals with tension-type headache and postoperative dental pain.

    PubMed

    Gatoulis, Sergio C; Voelker, Michael; Fisher, Matt

    2012-01-01

    Aspirin is a widely used NSAID that has been extensively studied in numerous conditions. Nonprescription analgesics, such as aspirin, are frequently used for a wide variety of common ailments, including conditions such as dental pain and tension-type headache. We sought to compare the efficacy and safety profiles of aspirin, acetaminophen with codeine, and placebo in the treatment of post-operative dental pain and tension-type headache. These were 2 randomized, double-blind, placebo-controlled, single-dose clinical trials that assigned participants (2:2:1) to receive either aspirin (1000 mg), acetaminophen (300 mg) with codeine (30 mg), or placebo. The primary efficacy end point was the sum of pain intensity differences from baseline (SPID) over 6 hours for the dental pain study and over 4 hours for the tension-type headache study. Other common analgesic measures, in addition to safety, were also evaluated. The results of the dental pain study for aspirin and acetaminophen with codeine suggest statistically significant efficacy for all measures compared with placebo at all time points. Aspirin provided statistically significant efficacy compared with acetaminophen with codeine for SPID(0-4) (P = 0.028). In the tension-type headache study, aspirin and acetaminophen with codeine provided statistically significant efficacy compared with placebo for SPID(0-4) and SPID(0-6) (P < 0.001) and for total pain relief (P < 0.001). There were no significant differences between aspirin and acetaminophen with codeine at any evaluation of SPID (P ≥ 0.070), complete relief (P ≥ 0.179), or time to meaningful relief (P ≥ 0.245). Regarding safety, there were no statistically significant differences between treatment groups in the incidence of adverse events in the dental pain and tension-type headache studies. These 2 randomized, double-blind, placebo-controlled studies demonstrate that treatment with aspirin (1000 mg) provides statistically significant analgesic efficacy

  17. Associations between Acetaminophen Use during Pregnancy and ADHD Symptoms Measured at Ages 7 and 11 Years

    PubMed Central

    Thompson, John M. D.; Waldie, Karen E.; Wall, Clare R.; Murphy, Rinky; Mitchell, Edwin A.

    2014-01-01

    Objective Our aim was to replicate and extend the recently found association between acetaminophen use during pregnancy and ADHD symptoms in school-age children. Methods Participants were members of the Auckland Birthweight Collaborative Study, a longitudinal study of 871 infants of European descent sampled disproportionately for small for gestational age. Drug use during pregnancy (acetaminophen, aspirin, antacids, and antibiotics) were analysed in relation to behavioural difficulties and ADHD symptoms measured by parent report at age 7 and both parent- and child-report at 11 years of age. The analyses included multiple covariates including birthweight, socioeconomic status and antenatal maternal perceived stress. Results Acetaminophen was used by 49.8% of the study mothers during pregnancy. We found significantly higher total difficulty scores (Strengths and Difficulty Questionnaire parent report at age 7 and child report at age 11) if acetaminophen was used during pregnancy, but there were no significant differences associated with any of the other drugs. Children of mothers who used acetaminophen during pregnancy were also at increased risk of ADHD at 7 and 11 years of age (Conners’ Parent Rating Scale-Revised). Conclusions These findings strengthen the contention that acetaminophen exposure in pregnancy increases the risk of ADHD-like behaviours. Our study also supports earlier claims that findings are specific to acetaminophen. PMID:25251831

  18. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity

    PubMed Central

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2012-01-01

    AIMS Paracetamol (acetaminophen) poisoning remains the major cause of severe acute hepatotoxicity in the UK. In this large single centre cohort study we examined the clinical impact of staggered overdoses and delayed presentation following paracetamol overdose. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced severe liver injury, of whom 161 (24.3%) had taken a staggered overdose. Staggered overdose patients were significantly older and more likely to abuse alcohol than single time point overdose patients. Relief of pain (58.2%) was the commonest rationale for repeated supratherapeutic ingestion. Despite lower total ingested paracetamol doses and lower admission serum alanine aminotransferase concentrations, staggered overdose patients were more likely to be encephalopathic on admission, require renal replacement therapy or mechanical ventilation and had higher mortality rates compared with single time point overdoses (37.3% vs. 27.8%, P = 0.025), although this overdose pattern did not independently predict death. The King's College poor prognostic criteria had reduced sensitivity (77.6, 95% CI 70.8, 81.5) for this pattern of overdose. Of the 396/450 (88.0%) single time point overdoses in whom accurate timings could be obtained, 178 (44.9%) presented to medical services >24 h following overdose. Delayed presentation beyond 24 h post overdose was independently associated with death/liver transplantation (OR 2.25, 95% CI 1.23, 4.12, P = 0.009). CONCLUSIONS Both delayed presentation and staggered overdose pattern are associated with adverse outcomes following paracetamol overdose. These patients are at increased risk of developing multi-organ failure and should be considered for early transfer to specialist liver centres. PMID:22106945

  19. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    PubMed

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5 pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. High Dose Atorvastatin Associated with Increased Risk of Significant Hepatotoxicity in Comparison to Simvastatin in UK GPRD Cohort

    PubMed Central

    Clarke, Alan T.; Johnson, Paul C. D.; Hall, Gillian C.; Ford, Ian; Mills, Peter R.

    2016-01-01

    Background & Aims Occasional risk of serious liver dysfunction and autoimmune hepatitis during atorvastatin therapy has been reported. We compared the risk of hepatotoxicity in atorvastatin relative to simvastatin treatment. Methods The UK GPRD identified patients with a first prescription for simvastatin [164,407] or atorvastatin [76,411] between 1997 and 2006, but with no prior record of liver disease, alcohol-related diagnosis, or liver dysfunction. Incident liver dysfunction in the following six months was identified by biochemical value and compared between statin groups by Cox regression model adjusting for age, sex, year treatment started, dose, alcohol consumption, smoking, body mass index and comorbid conditions. Results Moderate to severe hepatotoxicity [bilirubin >60μmol/L, AST or ALT >200U/L or alkaline phosphatase >1200U/L] developed in 71 patients on atorvastatin versus 101 on simvastatin. Adjusted hazard ratio [AHR] for all atorvastatin relative to simvastatin was 1.9 [95% confidence interval 1.4–2.6]. High dose was classified as 40–80mg daily and low dose 10–20mg daily. Hepatotoxicity occurred in 0.44% of 4075 patients on high dose atorvastatin [HDA], 0.07% of 72,336 on low dose atorvastatin [LDA], 0.09% of 44,675 on high dose simvastatin [HDS] and 0.05% of 119,732 on low dose simvastatin [LDS]. AHRs compared to LDS were 7.3 [4.2–12.7] for HDA, 1.4 [0.9–2.0] for LDA and 1.5 [1.0–2.2] for HDS. Conclusions The risk of hepatotoxicity was increased in the first six months of atorvastatin compared to simvastatin treatment, with the greatest difference between high dose atorvastatin and low dose simvastatin. The numbers of events in the analyses were small. PMID:26983033

  1. Hepatoprotective potential of Fagonia olivieri DC. against acetaminophen induced toxicity in rat.

    PubMed

    Rashid, Umbreen; Khan, Muhammad Rashid; Sajid, Moniba

    2016-11-09

    Fagonia olivieri (DC) being used for the treatment of diabetes, cancer, fever and claimed to be effective in many other stress related disorders. In this study we have evaluated the F. olivieri whole methanol extract and its derived fractions for various in vitro and in vivo antioxidant studies. The crude methanol extract of the whole plant of F. olivieri (FOM) and its derived fractions; n-hexane (FOH), chloroform (FOC), ethyl acetate (FOE), n-butanol (FOB) and aqueous (FOA) were evaluated for the total phenolic and flavonoid content and in vitro antioxidant abilities. The antioxidant effect of FOM was determined by acetaminophen-induced hepatotoxicity in Sprague-Dawley (Rattus novergicus) male rats. The methanol/fractions were also analysed by HPLC analysis for the presence of polyphenolics. The total phenolic content of the samples ranged from 19.3 ± 0.529 to 106.2 ± 0.892 mg GAE/g extract while total flavonoid content 16.2 ± 0.881 to 50.1 ± 1.764 mg RTE/g extract, respectively. FOA showed highest radical scavenging activity for DPPH (IC 50  = 55.2 ± 1.212 μg/ml), ABTS (IC 50  = 90.2 ± 1.232 μg/ml) superoxide (IC 50  = 37.1 ± 0.643 μg/ml) and for H 2 O 2 (IC 50  = 64 ± 1.463 μg/ml). FOE exhibited the highest antioxidant activities for phosphomolybdenum (IC 50  = 78.2 ± 0.883 μg/ml) and for hydroxyl radical scavenging (IC 50  = 82 ± 2.603 μg/ml). HPLC analysis of FOM and its derived fractions showed the presence of rutin, catechin and gallic acid. Elevated levels of AST, ALT, ALP, LDH and lipid profile in serum and lipid peroxidation and DNA damages in liver; while decreased activity level of CAT, SOD, GSH-Px, GR and reduced glutathione (GSH) concentration induced with acetaminophen in rat were reverted towards the control group with co-administration of FOM. Our results showed that F. olivieri is a potential source of natural antioxidants, which justifies its use in folklore

  2. Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats.

    PubMed

    Jiang, Peng; Zhang, Xiuwen; Huang, Yutong; Cheng, Nengneng; Ma, Yueming

    2017-10-25

    Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens , accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation in the liver after oral administration (1.25 and 2.5 g/kg for 14 days in rats). Serum metabolomics evaluation based on high-resolution mass spectrometry was conducted and real-time PCR was used to determine the expression levels of CPT-1, CPT-2, PPAR-α, and LCAD genes. Effects of kurarinone on triglyceride levels were evaluated in HL-7702 cells. Tissue distribution of kurarinone and kurarinone glucuronides was analyzed in rats receiving ESF (2.5 g/kg). Active uptake of kurarinone and kurarinone glucuronides was studied in OAT2-, OATP1B1-, OATP2B1-, and OATP1B3-transfected HEK293 cells. Our results revealed that after oral administration of ESF in rats, kurarinone glucuronides were actively transported into hepatocytes by OATP1B3 and hydrolyzed into kurarinone, which inhibited fatty acid β-oxidation through the reduction of l-carnitine and the inhibition of PPAR-α pathway, ultimately leading to lipid accumulation and liver injury. These findings contribute to understanding hepatotoxicity of kurarinone after oral administration of ESF.

  3. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  4. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell.

    PubMed

    de Luna, Mark Daniel G; Veciana, Mersabel L; Su, Chia-Chi; Lu, Ming-Chun

    2012-05-30

    Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe(2+) and H(2)O(2) concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe(2+) concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Evaluation of a 12-Hour Sustained-Release Acetaminophen (Paracetamol) Formulation: A Randomized, 3-Way Crossover Pharmacokinetic and Safety Study in Healthy Volunteers.

    PubMed

    Yue, Yong; Collaku, Agron; Liu, Dongzhou J

    2018-01-01

    Acetaminophen (paracetamol) is a first-line treatment for mild and moderate pain. A twice-daily sustained-release (SR) formulation may be more convenient for chronic users than standard immediate-release (IR) acetaminophen. This randomized, 3-way crossover study evaluated pharmacokinetics and safety of single-dose 1500- and 2000-mg SR acetaminophen formulations and 2 doses of IR acetaminophen 1000 mg given 6 hours apart in healthy adults (n = 14). Primary outcome was time that plasma acetaminophen concentration was ≥4 μg/mL (T C≥4μg/mL ). Key secondary outcomes were area under the plasma concentration-time curve (AUC) from time 0 to time t, when plasma acetaminophen was detectable (AUC 0-t ), AUC from 0 to infinity (AUC 0-inf ), and maximum plasma acetaminophen concentration (C max ). T C≥4μg/mL from 2000-mg SR acetaminophen was similar to that from 2 doses of IR acetaminophen, whereas T C≥4μg/mL for 1500-mg SR acetaminophen was significantly shorter than that for IR acetaminophen (P = .004). The extent of acetaminophen absorption from 2000-mg SR and 2 doses of the IR formulation was similar and within bioequivalence limits with regard to AUC 0-12 , AUC 0-t , and AUC 0-inf . The extent of acetaminophen absorption from 1500-mg SR was significantly lower than that from IR acetaminophen. The 2000-mg SR represents a potential candidate formulation for 12-hour dosing with acetaminophen. © 2017, The American College of Clinical Pharmacology.

  6. Comparison of the Efficacy and Safety of 2 Acetaminophen Dosing Regimens in Febrile Infants and Children: A Report on 3 Legacy Studies.

    PubMed

    Temple, Anthony R; Zimmerman, Brenda; Gelotte, Cathy; Kuffner, Edwin K

    2017-01-01

    Compare efficacy and safety of 10 to 15 mg/kg with 20 to 30 mg/kg acetaminophen in febrile children 6 months to ≤ 11 years from 3 double-blind, randomized, single or multiple dose studies. Doses were compared on sum of the temperature differences (SUMDIFF), maximum temperature difference (MAXDIFF), temperature differences at each time point, and dose by time interactions. Alanine aminotransferase (ALT) was evaluated in the 72-hour duration study. A single dose of acetaminophen 20 to 30 mg/kg produced a greater effect on temperature decrement and duration of antipyretic effect over 8 hours than a single dose of 10 to 15 mg/kg. When equivalent total doses (i.e., 2 doses of 10 to 15 mg/kg given at 4-hour intervals and 1 dose of 20 to 30 mg/kg) were given over the initial 8-hour period, there were no significant temperature differences. Over a 72-hour period, 10 to 15 mg/kg acetaminophen administered every 4 hours maintained a more consistent temperature decrement than 20 to 30 mg/kg acetaminophen administered every 8 hours. Following doses of 60 to 90 mg/kg/day for up to 72 hours, no child had a clinically important increase in ALT from baseline. The number of children with reported adverse events was similar between doses. Data demonstrate the antipyretic effect of acetaminophen is dependent on total dose over a given time interval. These 3 studies provide clinical evidence that the recommended standard acetaminophen dose of 10 to 15 mg/kg is a safe and effective dose for treating fever in pediatric patients when administered as a single dose or as multiple doses for up to 72 hours.

  7. Analysis of 90 cases of antithyroid drug-induced severe hepatotoxicity over 13 years in China.

    PubMed

    Yang, Jun; Li, Lin-Fa; Xu, Qin; Zhang, Jun; Weng, Wan-Wen; Zhu, Yang-Jun; Dong, Meng-Jie

    2015-03-01

    Antithyroid drug (ATD)-induced severe hepatotoxicity is a rare but serious complication of ATD therapy. The characteristics of severe hepatotoxicity have been reported in only a small number of patients. Ninety patients with ATD-induced severe hepatotoxicity presenting during a 13 year period (2000-2013) who were about to undergo nuclear medicine therapy with (131)I from a sample of 8864 patients with hyperthyroidism were studied, and the outcomes were evaluated. The mean age of the patients with ATD-induced severe hepatotoxicity was 41.6±12.5 years (mean±standard deviation), and the female to male ratio was 2.2:1. The methimazole (MMI) dose given at the onset was 19.1±7.4 mg/day. The propylthiouracil (PTU) dose given at the onset was 212.8±105.0 mg/day. ATD-induced severe hepatotoxicity occurred in 63.3%, 75.6%, and 81.1% of patients within 4, 8, and 12 weeks of the onset of ATD therapy, respectively. The types of severe hepatotoxicity did not differ significantly between the MMI and PTU groups (p=0.188). The frequency of the cholestatic type in the MMI group (35.3%, 18/51) was higher than that in the PTU group (17.9%, 7/39), but these frequencies were not significantly different (p=0.069). The patients who were treated with (131)I received an average dose of 279.1±86.1 MBq (n=84). Therapy was successful in 60 of the 67 patients (89.6%). The success rate was equivalent (p=0.696) between the groups receiving MMI (91.7%, 33/36) and PTU (87.1%, 27/31). Severe hepatotoxicity tends to occur within the first three months after the onset of ATD therapy. The type of ATD-induced severe hepatotoxicity did not differ between the MMI and PTU groups. (131)I therapy is an effective treatment approach for patients with ATD-induced severe hepatotoxicity.

  8. Hepatotoxicity induced by methimazole in a previously healthy patient.

    PubMed

    Gallelli, Luca; Staltari, Orietta; Palleria, Caterina; De Sarro, Giovambattista; Ferraro, Maria

    2009-09-01

    We report a case of hepatotoxicity induced by methimazole treatment in a patient affected by hyperthyroidism. A 54-year-old man, presented to our observation for palpitations, excessive sweating, weakness, heat intolerance and weight loss. On physical examination, his blood pressure was 140/90 mmHg and heart beat was 100/min regular. He had mild tremors and left exophthalmos. Laboratory test revealed a significant increase in serum thyroid hormone levels with a decrease in thyroid stimulating hormone levels. A diagnosis of hyperthyroidism was made and he began treatment with methimazole (30 mg/day). Fourteen days later, he returned for the development of scleral icterus, followed by dark urine, and abdominal pain in the right upper quadrant. Laboratory examinations and liver biopsy performed a diagnosis of cholestatic hepatitis, secondary to methimazole usage. Methimazole was promptly withdrawn and cholestyramine, ursodeoxycholic acid, and chlorpheniramine were given. After five days, abdominal pain resolved and laboratory parameters returned to normal. Naranjo probability scale indicated a probable relationship between hepatotoxicity and methimazole therapy. In conclusion physicians should be aware the risk of hepatotoxicity related with methimazole.

  9. Modeling Drug- and Chemical-Induced Hepatotoxicity with Systems Biology Approaches

    PubMed Central

    Bhattacharya, Sudin; Shoda, Lisl K.M.; Zhang, Qiang; Woods, Courtney G.; Howell, Brett A.; Siler, Scott Q.; Woodhead, Jeffrey L.; Yang, Yuching; McMullen, Patrick; Watkins, Paul B.; Andersen, Melvin E.

    2012-01-01

    We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell–cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological

  10. Fetal programming of mental health by acetaminophen? Response to the SMFM statement: prenatal acetaminophen use and ADHD.

    PubMed

    Olsen, Jørn; Liew, Zeyan

    2017-12-01

    A number of studies indicate that acetaminophen taken during pregnancy may have a programming effect on the fetal brain development. The potential adverse consequences may only surface to clinical detection years later. Should we act on these findings now or do we wait for additional evidence? Areas covered: We argue for action inspired by these well analyzed studies that are based on five prospective cohorts data collected from different countries. Several analytical options have been employed especially to address confounding, and all analyses have consistently suggested that confounding alone is an unlikely explanation for this disturbing observation. Expert opinion: Acetaminophen is often used for minor symptom or discomfort where the treatment has no strong indication and carries little, if any risk for the pregnant women. The harm of doing nothing may well exceed the harm for taking precautionary actions considering the consequences at stake.

  11. Ameliorative effect of vitamin C against hepatotoxicity induced by emamectin benzoate in rats.

    PubMed

    Khaldoun Oularbi, H; Richeval, C; Lebaili, N; Zerrouki-Daoudi, N; Baha, M; Djennas, N; Allorge, D

    2017-07-01

    In the present study, we aimed to assess the potential protective effect of ascorbic acid (AA) against emamectin benzoate (EMB)-induced hepatotoxicity. For this purpose, biochemical, histopathological and analytical investigations were performed. Male Wistar rats were distributed into three groups, that is, a control group, an EMB group given 10 mg EMB/kg body weight (BW) by gavage and an EMB + AA group given 10 mg EMB/kg BW and vitamin C intraperitoneally (200 mg/kg). The duration of the treatment was 28 days and the duration of the study was 42 days. There was a statistically significant increase of all hepatic biomarkers, that is, aspartate aminotransferase, alanine aminotransferase and gamma-glutamyltransferase activities, and glycemia, in EMB-treated group when compared with the control group. Light microscopic observations revealed variable signs of hepatotoxicity in the EMB group, which were represented by alteration of normal hepatic architecture, inflammatory cell infiltration, hepatocellular steatosis and foci of necrosis at 28 and 42 days post-treatment. However, co-treatment with vitamin C reduced EMB-related liver toxicity and diminished the abnormal biochemical and architectural damage. Emamectin B1a and B1b residues were detectable in all plasma samples of treated rats at 14, 21 and 28 days of treatment. The drug liver tissue concentration was significantly lower in EMB + AA group compared with EMB group at 28 and 42 days. In conclusion, the findings of the present study clearly indicate a significant protective action of vitamin C against EMB hepatotoxicity.

  12. Acute Hepatotoxicity of Intravenous Amiodarone: Case Report and Review of the Literature.

    PubMed

    Chen, Chia-Chi; Wu, Chien-Chih

    2016-01-01

    Amiodarone is a class III antiarrhythmic drug widely used for the treatment of both supraventricular and ventricular arrhythmias in intensive care unit. Hepatotoxicity of amiodarone is usually mild and delayed onset. Acute hepatotoxicity is a rare side effect and usually correlated to intravenous form use. In this case, acute hepatocellular injury occurred within 24 hours after the administration of intravenous amiodarone. Liver enzyme significantly improved after holding intravenous amiodarone use. Because ventricular arrhythmia persisted and side effects occurred to alternative therapy, low dose of oral amiodarone was resumed and hepatotoxicity did not occur afterward. Acute hepatotoxicity of intravenous amiodarone is possibly related to polysorbate 80, the solubilizer of amiodarone infusion or higher dose. As a result, when intravenous amiodarone is prescribed, closely monitoring liver enzyme is highly suggested. If acute hepatitis takes place secondary to intravenous amiodarone, oral therapy should not be resumed afterward. If there is no alternative treatment, lower dose of oral amiodarone (≤200 mg/d) could be tried and should monitor liver function regularly.

  13. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    PubMed Central

    Anderson, Richard A.; Johnston, Zoe C.; Chetty, Tarini; Smith, Lee B.; Mckinnell, Chris; Dean, Afshan; Homer, Natalie Z.; Jorgensen, Anne; Camacho-Moll, Maria-Elena; Sharpe, Richard M.; Mitchell, Rod T.

    2016-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; p=0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; p=0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect. PMID:25995226

  14. A risk-benefit assessment of paracetamol (acetaminophen) combined with caffeine.

    PubMed

    Palmer, Hazel; Graham, Garry; Williams, Kenneth; Day, Richard

    2010-06-01

    To determine the risk: benefit of paracetamol combined with caffeine in the short-term management of acute pain conditions. Database searches were conducted to identify double-blind trials comparing paracetamol/caffeine with paracetamol alone (benefit analysis) and any data pertaining to hepatotoxicity of paracetamol when combined with caffeine (risk analysis). Paracetamol/caffeine (1,000 mg/130 mg) vs paracetamol (1,000 mg) alone. Assessment of benefit has been derived by meta-analysis. Information on the pain condition and number of patients studied, dosing regimen, study design and analgesic outcome measures (total pain relief scores) was extracted and dichotomous outcomes were obtained by calculating the number of patients in each treatment group who achieved at least 50% of the maximum total pain relief score. Assessment of risk has been made by appraisal of the literature. Eight studies from four papers provided sufficient quantitative data for satisfactory meta-analysis. The relative benefit (of achieving at least 50% pain relief) of paracetamol/caffeine vs paracetamol alone was 1.12 (95% Confidence Interval 1.05-1.19) across a number of acute pain states (dysmenorrhoea, headache, post-partum pain, and dental pain). Review of the effects of the combination of paracetamol and caffeine on the liver revealed no compelling data to suggest a clinically meaningful increase in hepatotoxicity with use of paracetamol/caffeine combinations. Paracetamol/caffeine (1,000 mg/130 mg) is effective and safe for use in acute management of pain. The hepatotoxicity of overdoses of paracetamol results from its oxidative metabolism, caffeine does not produce any increase in oxidative metabolism of therapeutic concentrations of paracetamol.

  15. Risk Factors, Clinical Presentation, and Outcomes in Overdose With Acetaminophen Alone or With Combination Products: Results From the Acute Liver Failure Study Group.

    PubMed

    Serper, Marina; Wolf, Michael S; Parikh, Nikhil A; Tillman, Holly; Lee, William M; Ganger, Daniel R

    2016-01-01

    Acetaminophen (APAP) is the most common cause of acute liver failure (ALF) in the west. It is unknown if APAP overdose in combination with diphenhydramine or opioids confers a different clinical presentation or prognosis. Study objectives were to compare (1) baseline patient characteristics; (2) initial clinical presentation; and (3) clinical outcomes among patients with ALF due to APAP alone or in combination with diphenhydramine or opioids. We analyzed 666 cases of APAP-related liver failure using the Acute Liver Failure Study Group database from 1998 to 2012. The database contains detailed demographic, laboratory, and clinical outcome data, including hemodialysis, transplantation, and death and in-hospital complications such as arrhythmia and infection. The final sample included 666 patients with APAP liver injury. A total 30.3% of patients were overdosed with APAP alone, 14.1% with APAP/diphenhydramine, and 56.6% with APAP/opioids. Patients taking APAP with opioids were older, had more comorbidities, and were more likely to have unintentional overdose (all P<0.0001). On presentation, 58% in the APAP/opioid group had advanced encephalopathy as compared with 43% with APAP alone (P=0.001) The APAP/diphenhydramine group presented with the highest serum aminotransferase levels, no differences in laboratory values were noted at 3 days postenrollment. No significant differences were observed in clinical outcomes among the groups. Most patients with APAP-induced ALF were taking APAP combination products. There were significant differences in patient characteristics and clinical presentation based on the type of product ingested, however, there were no differences noted in delayed hepatotoxicity or clinical outcomes.

  16. Don't Double Up on Acetaminophen

    MedlinePlus

    ... re at the store deciding which product to buy, check the 'Drug Facts' label of OTC cold, cough and flu ... If you’re still not sure which to buy, ask the pharmacist for advice. FDA has an ... medicines containing acetaminophen accounted for nearly half of all ...

  17. Codeine Plus Acetaminophen for Pain After Photorefractive Keratectomy: A Randomized, Double-Blind, Placebo-Controlled Add-On Trial.

    PubMed

    Pereira, Vinicius B P; Garcia, Renato; Torricelli, Andre A M; Mukai, Adriana; Bechara, Samir J

    2017-10-01

    Pain after photorefractive keratectomy (PRK) is significant, and the analgesic efficacy and safety of oral opioids in combination with acetaminophen has not been fully investigated in PRK trials. To assess the efficacy and safety of the combination of codeine plus acetaminophen (paracetamol) versus placebo as an add-on therapy for pain control after PRK. Randomized, double-blind, placebo-controlled trial. Single tertiary center. One eye was randomly allocated to the intervention, whereas the fellow eye was treated with a placebo. Eyes were operated 2 weeks apart. The participants were adults older than 20 years with refractive stability for ≥1 year, who underwent PRK for correction of myopia or myopic astigmatism. Codeine (30 mg) plus acetaminophen (500 mg) was given orally 4 times per day for 4 days after PRK. The follow-up duration was 4 months. The study outcomes included pain scores at 1 to 72 hours, as measured by the visual analog scale, McGill Pain Questionnaire, and Brief Pain Inventory, as well as adverse events and corneal wound healing. Of the initial 82 eyes, 80 completed the trial (40 intervention, 40 placebo). Median (interquartile range) pain scores as measured by the visual analog scale were statistically and clinically lower during treatment with codeine/acetaminophen compared with the placebo: 1 hour: 4 (2-4) versus 6 (3-6), P < 0.001; 24 hours: 4 (3-6) versus 7 (6-9), P < 0.001; 48 hours: 1 (0-2) versus 3 (2-5), P < 0.001; and 72 hours: 0 (0-0) versus 0 (0-2), P = 0.001. Virtually identical results were obtained by the McGill Pain Questionnaire and Brief Pain Inventory scales. The most common adverse events with codeine/acetaminophen were drowsiness (42%), nausea (18%), and constipation (5%). No case of delayed epithelial healing was observed in both treatment arms. When added to the usual care therapy, the oral combination of codeine/acetaminophen was safe and significantly superior to the placebo for pain control after PRK. URL: http

  18. Protective Effect of Baccharis trimera Extract on Acute Hepatic Injury in a Model of Inflammation Induced by Acetaminophen

    PubMed Central

    Pádua, Bruno da Cruz; Rossoni Júnior, Joamyr Victor; de Brito Magalhães, Cíntia Lopes; Chaves, Míriam Martins; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; de Souza, Gustavo Henrique Bianco; Brandão, Geraldo Célio; Rodrigues, Ivanildes Vasconcelos; Lima, Wanderson Geraldo; Costa, Daniela Caldeira

    2014-01-01

    Background. Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. Methods. The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. Results. The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. Conclusions. The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose. PMID:25435714

  19. Use of acetaminophen in relation to the occurrence of cancer: a review of epidemiologic studies.

    PubMed

    Weiss, Noel S

    2016-12-01

    Acetaminophen has several pharmacologic properties that suggest it could be carcinogenic in human beings. A number of epidemiologic studies have been conducted to examine whether use of acetaminophen actually predisposes to the occurrence of one or more forms of cancer. There are inherent limitations to many of these studies, including the inaccurate identification of users and nonusers of acetaminophen, relatively short follow-up for cancer incidence, and the potential for confounding by indication. The present manuscript reviews the results of epidemiologic studies of acetaminophen use in relation to cancer incidence published through the end of 2015. The limitations of the underlying studies notwithstanding, some interim conclusions can be reached. For all but several forms of cancer, there is no suggestion that persons who have taken acetaminophen are at altered risk, even persons who have consumed a large quantity of the drug or those who have taken it for an extended duration. While in some studies the incidence of renal cell carcinoma has been observed to be increased among acetaminophen users, several other studies have failed to observe any such association; the reason for the discrepant findings is unclear. Some of the small number of studies that have presented data on the incidence of lymphoma, leukemia, and plasma cell disorders have found the risk to be modestly higher in users than nonusers of acetaminophen, but the results of other studies of these malignancies will be needed to gauge the possible role of publication bias as the basis for the positive results.

  20. Determinants of hepatotoxicity after repeated supratherapeutic paracetamol ingestion: systematic review of reported cases.

    PubMed

    Acheampong, Paul; Thomas, Simon H L

    2016-10-01

    To evaluate the role of reported daily dose, age and other risk factors, and to assess the value of quantifying serum transaminase activity and paracetamol (acetaminophen) concentration at initial assessment for identifying patients at risk of hepatotoxicity following repeated supratherapeutic paracetamol ingestion (RSPI). Systematic literature review with collation and analysis of individual-level data from reported cases of RSPI associated with liver damage. In 199 cases meeting the selection criteria, severe liver damage (ALT/AST ≥1000 IU l(-1) , liver failure or death) was reported in 186 (93%) cases including 77/78 (99%) children aged ≤6 years. Liver failure occurred in 127 (64%) cases; of these 49 (39%) died. Maximum ingested daily paracetamol doses were above UK recommendations in 143 (72%) patients. US-Australasian thresholds for repeated supratherapeutic ingestions requiring intervention were not met in 71 (36%) cases; of these 35 (49%) developed liver failure and 10 (14%) died. No cases developing liver damage had paracetamol concentration < 20 mg l(-1) and a normal ALT/AST on initial presentation or when RSPI was first suspected, but both of these values were only available for 79 (40%) cases. Severe liver damage is reported after RSPI in adults and children, sometimes involving reported doses below current thresholds for intervention. Paracetamol concentrations <20 mg l(-1) with normal serum ALT/AST activity on initial assessment suggests a low risk of subsequent liver damage. These findings are, however, limited by low patient numbers, publication bias and the accuracy of the histories in reported cases. © 2016 The British Pharmacological Society.

  1. The role of chronic hepatitis in isoniazid hepatotoxicity during treatment for latent tuberculosis infection.

    PubMed

    Bliven, E E; Podewils, L J

    2009-09-01

    To examine chronic viral hepatitis (CVH) as a risk factor for hepatotoxicity during isoniazid (INH) treatment for latent tuberculosis infection (LTBI). A search of MEDLINE (1966-May 2008) was conducted using the terms 'tuberculosis', 'antitubercular', 'therapeutics', 'treatment', 'prevention', 'prophylaxis', 'hepatitis', 'toxic hepatitis', 'hepatotoxic', 'liver' and 'injury'. Peer-reviewed, English-language articles describing the relationship between a history of CVH and occurrence of hepatotoxicity during LTBI treatment were selected. We limited CVH diagnoses to reports with positive serological test or biopsy for hepatitis B or C. Risk ratios and 95% confidence intervals were abstracted or derived. We reviewed 486 abstracts, and 11 studies met the selection criteria. Populations included in the studies were the general population (n = 6) and transplant recipients (n = 5). The variability in study designs and case finding practices precluded performing a quantitative meta-analysis. Two studies of former or current drug users reported a consistent, positive association between chronic hepatitis C infection and INH hepatotoxicity. Other risk ratios did not significantly or consistently show any association between CVH in patients treated for LTBI and the development of INH hepatotoxicity. Owing to the limited number of published papers, CVH was not established as a risk factor for INH hepatotoxicity during LTBI treatment. Controlled studies are needed to define the safety and tolerability of LTBI treatment in those with CVH and to provide an evidence base for recommendations for LTBI treatment in persons with CVH.

  2. Identifying 2 prenylflavanones as potential hepatotoxic compounds in the ethanol extract of Sophora flavescens.

    PubMed

    Yu, Qianqian; Cheng, Nengneng; Ni, Xiaojun

    2013-11-01

    Zhixue capsule is a prescription for hemorrhoid commonly used in traditional Chinese medicine. This drug was recalled by the State Food and Drug Administration in 2008 because of severe adverse hepatic reactions. Zhixue capsule is composed of ethanol extracts of Cortex Dictamni (ECD) and Sophora flavescens (ESF). In our preliminary study, we observed the hepatotoxic effects of ESF on rat primary hepatocytes. However, ECD did not exhibit hepatotoxicity at the same concentration range. In this study, ESF was evaluated for its potential hepatotoxic effects on rats. Bioassay-guided isolation was used to identify the material basis for hepatotoxicity. Treatment with 1.25 g/kg and 2.5 g/kg ESF significantly elevated the alanine aminotransferase and aspartate aminotransferase levels in the serum. The changes in the levels of transaminases were supported by the remarkable fatty degeneration of liver histopathology. Further investigations using bioassay-guided isolation and analysis indicated that prenylated flavanones accounted for the positive hepatotoxic results. Two isolated compounds were identified, kurarinone and sophoraflavanone G, using nuclear magnetic resonance and mass spectrometry techniques. These compounds have potent toxic effects on primary rat hepatocytes (with IC50 values of 29.9 μM and 16.5 μM) and human HL-7702 liver cells (with IC50 values of 48.2 μM and 40.3 μM), respectively. Consequently, the hepatotoxic constituents of S. flavescens were determined to be prenylated flavanones, kurarinone, and sophoraflavanone G. © 2013 Institute of Food Technologists®

  3. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication.

    PubMed

    Paridaens, Annelies; Raevens, Sarah; Colle, Isabelle; Bogaerts, Eliene; Vandewynckel, Yves-Paul; Verhelst, Xavier; Hoorens, Anne; van Grunsven, Leo A; Van Vlierberghe, Hans; Geerts, Anja; Devisscher, Lindsey

    2017-05-01

    Acetaminophen overdose in mice is characterized by hepatocyte endoplasmic reticulum stress, which activates the unfolded protein response, and centrilobular hepatocyte death. We aimed at investigating the therapeutic potential of tauroursodeoxycholic acid, a hydrophilic bile acid known to have anti-apoptotic and endoplasmic reticulum stress-reducing capacities, in experimental acute liver injury induced by acetaminophen overdose. Mice were injected with 300 mg/kg acetaminophen, 2 hours prior to receiving tauroursodeoxycholic acid, N-acetylcysteine or a combination therapy, and were euthanized 24 hours later. Liver damage was assessed by serum transaminases, liver histology, terminal deoxynucleotidyl transferase dUTP nick end labelling staining, expression profiling of inflammatory, oxidative stress, unfolded protein response, apoptotic and pyroptotic markers. Acetaminophen overdose resulted in a significant increase in serum transaminases, hepatocyte cell death, unfolded protein response activation, oxidative stress, NLRP3 inflammasome activation, caspase 1 and pro-inflammatory cytokine expressions. Standard of care, N-acetylcysteine and, to a lesser extent, tauroursodeoxycholic treatment were associated with significantly lower transaminase levels, hepatocyte death, unfolded protein response activation, oxidative stress markers, caspase 1 expression and NLRP3 levels. Importantly, the combination of N-acetylcysteine and tauroursodeoxycholic acid improved serum transaminase levels, reduced histopathological liver damage, UPR-activated CHOP, oxidative stress, caspase 1 expression, NLRP3 levels, IL-1β levels and the expression of pro-inflammatory cytokines and this to a greater extend than N-acetylcysteine alone. These findings indicate that a combination strategy of N-acetylcysteine and tauroursodeoxycholic acid surpasses the standard of care in acetaminophen-induced liver injury in mice and might represent an attractive therapeutic opportunity for acetaminophen

  4. ANTAGONISM OF CHLOROBENZENE-INDUCED HEPATOTOXICITY BY LINDANE

    EPA Science Inventory

    In a 2x2 factorial designed experiment involving chlorobenzene and gamma-hexachlorocyclohexane (lindane), the hepatotoxicity induced by a challenge dose of chlorobenzene was altered by the pretreatments due to selective changes in various metabolic pathways. These changes resulte...

  5. Acetaminophen Increases Aldosterone Secretion While Suppressing Cortisol and Androgens: A Possible Link to Increased Risk of Hypertension.

    PubMed

    Oskarsson, Agneta; Ullerås, Erik; Ohlsson Andersson, Åsa

    2016-10-01

    Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug. Potential side effects are of public health concern, and liver toxicity from acute overdose is well known. More recently, a regular use of acetaminophen has been associated with an increased risk of hypertension. We investigated effects of acetaminophen on steroidogenesis as a possible mechanism for the hypertensive action by using the human adrenocortical cell line, H295R. Cells were treated with 0.1, 0.5, and 1mM of acetaminophen for 24 hours, and secretion of steroids and gene expression of key steps in the steroidogenesis were investigated. Progesterone and aldosterone secretion were increased dose dependently, while secretion of 17α-OH-progesterone and cortisol as well as dehydroepiandrosterone and androstenedione was decreased. CYP17α-hydroxylase activity, assessed by the ratio 17α-OH-progesterone/progesterone, and CYP17-lyase activity, assessed by the ratio androstenedione/17α-OH-progesterone, were both dose-dependently decreased by acetaminophen. No effects were revealed on cell viability. Treatment of cells with 0.5mM of acetaminophen did not cause any effects on the expression of 10 genes in the steroidogenic pathways. The pattern of steroid secretion caused by acetaminophen can be explained by inhibition of CYP17A1 enzyme activity. A decreased secretion of glucocorticoids and androgens, as demonstrated by acetaminophen, would, in an in vivo situation, induce adrenocorticotropic hormone release via negative feedback in the hypothalamic-pituitary-adrenal axis and result in an upregulation of aldosterone secretion. Our results suggest a novel possible mechanism for acetaminophen-induced hypertension, which needs to be further elucidated in clinical investigations. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity.

    PubMed

    A V, Vipin; K, Raksha Rao; Kurrey, Nawneet Kumar; K A, Anu Appaiah; G, Venkateswaran

    2017-07-01

    Aflatoxin B 1 (AFB 1 ) is one of the predominant mycotoxin contaminant in food and feed, causing oxidative stress and hepatotoxicity. Ginger phenolics have been reported for its antioxidant potential and hepatoprotective activity. The present study investigated the protective effects of phenolics rich ginger extract (GE) against AFB 1 induced oxidative stress and hepatotoxicity, in vitro and in vivo. The phenolic acid profiles of GE showed 6-gingerol and 6-shogaol as predominant components. Pretreatment of HepG2 cells with GE significantly inhibited the production of intracellular reactive oxygen species (ROS), DNA strand break, and cytotoxicity induced by AFB 1 . A comparable effect was observed in in vivo. Male Wistar rats were orally treated with GE (100 and 250mg/kg) daily, with the administration of AFB 1 (200μg/kg) every alternative day for 28days. Treatment with GE significantly reduced AFB 1 induced toxicity on the serum markers of liver damage. In addition, GE also showed significant hepatoprotective effect by reducing the lipid peroxidation and by enhancing the antioxidant enzymes activities. These results combined with liver histopathological observations indicated that GE has potential protective effect against AFB 1 induced hepatotoxicity. Additionally, administration of GE up-regulated Nrf2/HO-1 pathway, which further proved the efficiency of GE to inhibit AFB 1 induced hepatotoxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose.

    PubMed

    Wong, Anselm; Sivilotti, Marco L A; Graudins, Andis

    2017-06-01

    The paracetamol-aminotransferase multiplication product (APAP × ALT) is a risk predictor of hepatotoxicity that is somewhat independent of time and type of ingestion. However, its accuracy following ingestion of modified-release formulations is not known, as the product has been derived and validated after immediate-release paracetamol overdoses. The aim of this retrospective cohort study was to evaluate the accuracy of the multiplication product to predict hepatotoxicity in a cohort of patients with modified-release paracetamol overdose. We assessed all patients with modified-release paracetamol overdose presenting to our hospital network from October 2009 to July 2016. Ingestion of a modified-release formulation was identified by patient self-report or retrieval of the original container. Hepatotoxicity was defined as peak alanine aminotransferase ≥1000 IU/L, and acute liver injury (ALI) as a doubling of baseline ALT to more than 50 IU/L. Of 1989 paracetamol overdose presentations, we identified 73 modified-release paracetamol exposures treated with acetylcysteine. Five patients developed hepatotoxicity, including one who received acetylcysteine within eight hours of an acute ingestion. No patient with an initial multiplication product <10,000 mg/L × IU/L developed hepatotoxicity (sensitivity 100% [95%CI 48%, 100%], specificity 97% [90%, 100%]). Specificity fell to 54% (95%CI: 34, 59%) at a product cut-off point <1500 mg/L × IU/L. When calculated within eight hours of ingestion, mild elevations of the multiplication product fell quickly on repeat testing in patients without ALI or hepatotoxicity. In modified-release paracetamol overdose treated with acetylcysteine, the paracetamol-aminotransferase multiplication product demonstrated similar accuracy and temporal profile to previous reports involving mostly immediate-release formulations. Above a cut-point of 10,000 mg/L × IU/L, it was very strongly associated with the development

  8. Allopurinol Use During Maintenance Therapy for Acute Lymphoblastic Leukemia Avoids Mercaptopurine-related Hepatotoxicity.

    PubMed

    Giamanco, Nicole M; Cunningham, Bethany S; Klein, Laura S; Parekh, Dina S; Warwick, Anne B; Lieuw, Kenneth

    2016-03-01

    6-Mercaptopurine (6-MP) is the mainstay of treatment for acute lymphoblastic leukemia and lymphoblastic lymphoma. It is metabolized into the pharmacologically active, 6-thioguanine nucleotide (6-TGN), and 6-methyl mercaptopurine nucleotides (6-MMPN), which is associated with hepatotoxicity that jeopardizes antileukemic therapy. Allopurinol alters the metabolism of 6-MP to increase 6-TGN levels and decreases 6-methyl mercaptopurine nucleotides levels. We report 2 cases in which combination therapy of allopurinol with 6-MP was used successfully to avoid hepatotoxicity while delivering adequate 6-TGN levels. We suggest that this combination therapy can be used safely to change the metabolite production in patients who develop excessive hepatotoxicity.

  9. Use of intravenous acetaminophen (paracetamol) in a pediatric patient at the end of life: case report.

    PubMed

    Marks, Adam D; Keefer, Patricia; Saul, D'Anna

    2013-12-01

    For the better part of 100 years, acetaminophen (or paracetamol as it is known outside of the United States) has been a common first-line analgesic in pediatrics and is typically well tolerated with minimal side effects. Its use as an anti-pyretic is also well-documented and thus it is used broadly for symptom control in the general pediatric population. In pediatric palliative care, acetaminophen is also used as an adjuvant to opioid therapy for pain as well as an anti-pyretic. For many pediatric patients near end-of-life, however, the ability to tolerate oral intake is diminished and rectal suppository administration can be distressing or contraindicated as in the setting of neutropenia, thus limiting use of acetaminophen by its usual routes. In Europe and Australia, an intravenous formulation of acetaminophen has been used for many years and has only recently become available in the United States. Here, we describe a case using intravenous acetaminophen in a pediatric patient at the end of life.

  10. Efficacy of Intravenous Acetaminophen in Periimplantation Pain of Cardiac Electronic Devices: A Randomized Double-Blinded Study.

    PubMed

    Mollazadeh, Reza; Eftekhari, Mohammad Reza; Eslami, Masoud

    2017-06-01

    Although intravenous acetaminophen has been administered to reduce postoperative pain, it has not been used during cardiac implantable electronic devices (CIEDs) implantation. This was a randomized double-blinded interventional study. Thirty-two patients who were referred for new CIED implantation during July 2012 until April 2013 randomly received placebo or 1 g of intravenous acetaminophen. All patients were treated with local anesthesia. Pain score during incision, pocket creation, and in the recovery room, and the patients' need for analgesics during the 6 hours after the procedure were recorded in both groups. Seventeen and 15 patients received acetaminophen and placebo, respectively. Pain scores in patients treated with acetaminophen were significantly lower (4.4 vs 2.9, P = .004), and they received less analgesics (17% vs 60%, P = .014). Intravenous administration of acetaminophen is effective for pain relief in patients undergoing CIED implantation and decreases the need for postoperative analgesics. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  11. Comparison of the effects of treatment with celecoxib, loxoprofen, and acetaminophen on postoperative acute pain after arthroscopic knee surgery: A randomized, parallel-group trial.

    PubMed

    Onda, Akira; Ogoshi, Atsuko; Itoh, Mieko; Nakagawa, Tomoyuki; Kimura, Masashi

    2016-03-01

    Selective cyclooxygenase-2 (COX-2) inhibitors, conventional non-selective nonsteroidal anti-inflammatory drugs (NSAIDs), and acetaminophen have been adopted for the relief of mild to moderate acute and chronic pain. However, it remains unclarified whether the therapeutic differences in pain sensation exist among these agents. The aim of this study was to compare the efficacy of different types of analgesic agents for postoperative acute pain management. A single-center, randomized, controlled study was performed in consecutive patients who underwent the second-look procedure with removal of internal fixation after anterior cruciate ligament reconstruction or arthroscopic meniscal repair/meniscectomy. Celecoxib (400 mg for the first dose and then 200 mg), loxoprofen (60 mg), or acetaminophen (600 mg) was orally administered from postoperative 3 h. The pain intensity on a 100-mm VAS scale and subjective assessment of therapeutic pain-relief were compared among these three treatment groups until postoperative 2 days. The acquired data were analyzed according to the per-protocol analysis principle. A total of 432 patients were screened, and 160 were enrolled. The VAS score tended to decrease over time in all groups. There was a significant improvement in the pain score both at rest and on movement, and subjective impression in the celecoxib-treated group compared with acetaminophen at postoperative 2 days. On the other hand, loxoprofen resulted in the benefit only in the pain score at rest in comparison with acetaminophen. Any comparisons between celecoxib and loxoprofen showed insignificant differences throughout observations. No adverse effects were confirmed in each group. These obtained findings in our dose setting conditions suggest that celecoxib and loxoprofen treatments were superior to acetaminophen in pain-relief, though the superiority of loxoprofen over acetaminophen was modest. Overall, selective COX-2 inhibitors including conventional NSAIDs seem to

  12. Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation.

    PubMed

    Dalida, Maria Lourdes P; Amer, Kristine Marfe S; Su, Chia-Chi; Lu, Ming-Chun

    2014-01-01

    This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol-gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95% removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.

  13. Molindone and hepatotoxicity.

    PubMed

    Bhatia, S C; Banta, L E; Ehrlich, D W

    1985-10-01

    An adolescent male with chronic schizophrenic disorder, paranoid type, was treated with molindone. He developed hepatotoxicity in the early treatment phase as evidenced by flu-like symptoms and laboratory abnormalities of liver functions. These symptoms and his hepatic functions improved on discontinuing molindone. Similar liver function trends were seen on reintroduction and subsequent withdrawal of the drug. Hepatic hypersensitivity has not been reported previously with the use of this drug. It is suggested that clinicians should be aware of this association and should assess hepatic functions in patients who develop a prodromal flu-like syndrome with this drug, especially in the early treatment phase.

  14. Methoxyflurane enhances allyl alcohol hepatotoxicity in rats. Possible involvement of increased acrolein formation.

    PubMed

    Kershaw, W C; Barsotti, D A; Leonard, T B; Dent, J G; Lage, G L

    1989-01-01

    The effect of methoxyflurane anesthesia on allyl alcohol-induced hepatotoxicity and the metabolism of allyl alcohol was studied in male rats. Hepatotoxicity was assessed by the measurement of serum alanine aminotransferase activity and histopathological examination. Allyl alcohol-induced hepatotoxicity was enhanced when allyl alcohol (32 mg/kg) was administered 4 hr before or up to 8 days after a single 10-min exposure to methoxyflurane vapors. The possibility that methoxyflurane increases alcohol dehydrogenase-dependent oxidation of allyl alcohol to acrolein, the proposed toxic metabolite, was evaluated by measuring the rate of acrolein formation in the presence of allyl alcohol and liver cytosol. The effect of methoxyflurane on alcohol dehydrogenase activity in liver cytosol was also assessed by measuring the rate of NAD+ utilization in the presence of ethyl alcohol or allyl alcohol. Alcohol dehydrogenase activity and rate of acrolein formation were elevated in methoxyflurane-pretreated rats. The results suggest that a modest increase in alcohol dehydrogenase activity and rate of acrolein formation markedly enhances allyl alcohol-induced hepatotoxicity.

  15. Acetaminophen interacts with human hemoglobin: optical, physical and molecular modeling studies.

    PubMed

    Seal, Paromita; Sikdar, Jyotirmoy; Roy, Amartya; Haldar, Rajen

    2017-05-01

    Acetaminophen, a widely used analgesic and antipyretic drug has ample affinity to bind globular proteins. Here, we have illustrated a substantive study pertaining to the interaction of acetaminophen with human hemoglobin (HHb). Different spectroscopic (absorption, fluorescence, and circular dichroism (CD) spectroscopy), calorimetric, and molecular docking techniques have been employed in this study. Acetaminophen-induced graded alterations in absorbance and fluorescence of HHb confirm their interaction. Analysis of fluorescence quenching at different temperature and data obtained from isothermal titration calorimetry indicate that the interaction is static and the HHb has one binding site for the drug. The negative values of Gibbs energy change (ΔG 0 ) and enthalpy changes (ΔH 0 ) and positive value of entropy change (ΔS 0 ) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. The reaction involves hydrophobic pocket of the protein which is further stabilized by hydrogen bonding as evidenced from ANS and sucrose binding studies. These findings were also supported by molecular docking simulation study using AutoDock 4.2. The interaction influences structural integrity as well as functional properties of HHb as evidenced by CD spectroscopy, increased rate of co-oxidation and decreased esterase activity of HHb. So, from these findings, we may conclude that acetaminophen interacts with HHb through hydrophobic and hydrogen bonding, and the interaction perturbs the structural and functional properties of HHb.

  16. Role of caspase-1 and interleukin-1{beta} in acetaminophen-induced hepatic inflammation and liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed

    2010-09-15

    Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less

  17. [Acetaminophen induced 5-oxoproline acidosis: An uncommon case of high anion gap metabolic acidosis].

    PubMed

    Lanot, A; Henri, P; Nowoczyn, M; Read, M H; Maucorps, C; Sassier, M; Lobbedez, T

    2018-02-01

    The most common causes of high anion gap metabolic acidosis (HAGMA) are lactic acidosis, ketoacidosis, and intoxications. Nevertheless, clinicians can be faced with unexplained HAGMA, with a need to look for less common etiologies. We describe a case of 5-oxoproline (pyroglutamate) acidosis due to chronic acetaminophen ingestion at therapeutic dose in a 79-year-old inpatient. The pathophysiology of this condition is detailed, with abnormalities in the gamma-glutamyl cycle due to acetaminophen ingestion and severe chronic morbidities, resulting in glutathione and cysteine deficiency and then accumulation of 5-oxoproline. In HAGMA, when usual causes have been excluded, 5-oxoproline acidosis should be suspected in patients with chronic morbidities and acetaminophen ingestion. This diagnosis should be kept in mind because it generally resolves quickly with cessation of acetaminophen and administration of intravenous fluids. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  18. Hepatotoxicity by Drugs: The Most Common Implicated Agents

    PubMed Central

    Björnsson, Einar S.

    2016-01-01

    Idiosyncratic drug-induced liver injury (DILI) is an underreported and underestimated adverse drug reaction. Information on the documented hepatotoxicity of drugs has recently been made available by a website that can be accessed in the public domain: LiverTox (http://livertox.nlm.nih.gov). According to critical analysis of the hepatotoxicity of drugs in LiverTox, 53% of drugs had at least one case report of convincing reports of liver injury. Only 48 drugs had more than 50 case reports of DILI. Amoxicillin-clavulanate is the most commonly implicated agent leading to DILI in the prospective series. In a recent prospective study, liver injury due to amoxicillin-clavulanate was found to occur in approximately one out of 2300 users. Drugs with the highest risk of DILI in this study were azathioprine and infliximab. PMID:26861310

  19. Predicting Drug-induced Hepatotoxicity Using QSAR and Toxicogenomics Approaches

    PubMed Central

    Low, Yen; Uehara, Takeki; Minowa, Yohsuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro; Sedykh, Alexander; Muratov, Eugene; Fourches, Denis; Zhu, Hao; Rusyn, Ivan; Tropsha, Alexander

    2014-01-01

    Quantitative Structure-Activity Relationship (QSAR) modeling and toxicogenomics are used independently as predictive tools in toxicology. In this study, we evaluated the power of several statistical models for predicting drug hepatotoxicity in rats using different descriptors of drug molecules, namely their chemical descriptors and toxicogenomic profiles. The records were taken from the Toxicogenomics Project rat liver microarray database containing information on 127 drugs (http://toxico.nibio.go.jp/datalist.html). The model endpoint was hepatotoxicity in the rat following 28 days of exposure, established by liver histopathology and serum chemistry. First, we developed multiple conventional QSAR classification models using a comprehensive set of chemical descriptors and several classification methods (k nearest neighbor, support vector machines, random forests, and distance weighted discrimination). With chemical descriptors alone, external predictivity (Correct Classification Rate, CCR) from 5-fold external cross-validation was 61%. Next, the same classification methods were employed to build models using only toxicogenomic data (24h after a single exposure) treated as biological descriptors. The optimized models used only 85 selected toxicogenomic descriptors and had CCR as high as 76%. Finally, hybrid models combining both chemical descriptors and transcripts were developed; their CCRs were between 68 and 77%. Although the accuracy of hybrid models did not exceed that of the models based on toxicogenomic data alone, the use of both chemical and biological descriptors enriched the interpretation of the models. In addition to finding 85 transcripts that were predictive and highly relevant to the mechanisms of drug-induced liver injury, chemical structural alerts for hepatotoxicity were also identified. These results suggest that concurrent exploration of the chemical features and acute treatment-induced changes in transcript levels will both enrich the

  20. Acetaminophen-induced anion gap metabolic acidosis secondary to 5-oxoproline: a case report.

    PubMed

    Abkur, Tarig Mohammed; Mohammed, Waleed; Ali, Mohamed; Casserly, Liam

    2014-12-06

    5-oxoproline (pyroglutamic acid), an organic acid intermediate of the gamma-glutamyl cycle, is a rare cause of high anion gap metabolic acidosis. Acetaminophen and several other drugs have been implicated in the development of transient 5-oxoprolinemia in adults. We believe that reporting all cases of 5-oxoprolinemia will contribute to a better understanding of this disease. Here, we report the case of a patient who developed transient 5-oxoprolinemia following therapeutic acetaminophen use. A 75-year-old Caucasian woman was initially admitted for treatment of an infected hip prosthesis and subsequently developed transient high anion gap metabolic acidosis. Our patient received 40 g of acetaminophen over a 10-day period. After the more common causes of high anion gap metabolic acidosis were excluded, a urinary organic acid screen revealed a markedly increased level of 5-oxoproline. The acidosis resolved completely after discontinuation of the acetaminophen. 5-oxoproline acidosis is an uncommon cause of high anion gap metabolic acidosis; however, it is likely that it is under-diagnosed as awareness of the condition remains low and testing can only be performed at specialized laboratories. The diagnosis should be suspected in cases of anion gap metabolic acidosis, particularly in patients with recent acetaminophen use in combination with sepsis, malnutrition, liver disease, pregnancy or renal failure. This case has particular interest in medicine, especially for the specialties of nephrology and orthopedics. We hope that it will add more information to the literature about this rare condition.

  1. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure.

    PubMed

    Lee, William M; Hynan, Linda S; Rossaro, Lorenzo; Fontana, Robert J; Stravitz, R Todd; Larson, Anne M; Davern, Timothy J; Murray, Natalie G; McCashland, Timothy; Reisch, Joan S; Robuck, Patricia R

    2009-09-01

    N-acetylcysteine (NAC), an antidote for acetaminophen poisoning, might benefit patients with non-acetaminophen-related acute liver failure. In a prospective, double-blind trial, acute liver failure patients without clinical or historical evidence of acetaminophen overdose were stratified by site and coma grade and assigned randomly to groups that were given NAC or placebo (dextrose) infusion for 72 hours. The primary outcome was overall survival at 3 weeks. Secondary outcomes included transplant-free survival and rate of transplantation. A total of 173 patients received NAC (n = 81) or placebo (n = 92). Overall survival at 3 weeks was 70% for patients given NAC and 66% for patients given placebo (1-sided P = .283). Transplant-free survival was significantly better for NAC patients (40%) than for those given placebo (27%; 1-sided P = .043). The benefits of transplant-free survival were confined to the 114 patients with coma grades I-II who received NAC (52% compared with 30% for placebo; 1-sided P = .010); transplant-free survival for the 59 patients with coma grades III-IV was 9% in those given NAC and 22% in those given placebo (1-sided P = .912). The transplantation rate was lower in the NAC group but was not significantly different between groups (32% vs 45%; P = .093). Intravenous NAC generally was well tolerated; only nausea and vomiting occurred significantly more frequently in the NAC group (14% vs 4%; P = .031). Intravenous NAC improves transplant-free survival in patients with early stage non-acetaminophen-related acute liver failure. Patients with advanced coma grades do not benefit from NAC and typically require emergency liver transplantation.

  2. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing

    PubMed Central

    Shuhendler, Adam J.; Pu, Kanyi; Cui, Lina; Uetrecht, Jack P.

    2014-01-01

    Current drug-safety assays for hepatotoxicity rely on biomarkers with low predictive power. The production of radical species, specifically reactive oxygen species (ROS) and reactive nitrogen species (RNS), has been proposed as an early unifying event linking the bioactivation of drugs to hepatotoxicity and as a more direct and mechanistic indicator of hepatotoxic potential. Here we present a nanosensor for rapid, real-time in vivo imaging of drug-induced ROS and RNS for direct evaluation of acute hepatotoxicity. By combining fluorescence resonance energy transfer (FRET) and chemiluminescence resonance energy transfer (CRET), our semiconducting polymer–based nanosensor simultaneously and differentially detects RNS and ROS using two optically independent channels. Drug-induced hepatotoxicity and its remediation are imaged longitudinally in mice following systemic challenge with acetaminophen or isoniazid. Dose-dependent ROS and RNS activity is detected in the liver within minutes of drug challenge, preceding histological changes, protein nitration and DNA double strand break induction. PMID:24658645

  3. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments.

    PubMed

    Lin, Angela Yu-Chen; Lin, Chih-Ann; Tung, Hsin-Hsin; Chary, N Sridhara

    2010-11-15

    Sorption and combined sorption-biodegradation experiments were conducted in laboratory batch studies with 100 g soil/sediments and 500 mL water to investigate the fates in aqueous environments of acetaminophen, caffeine, propranolol, and acebutolol, four frequently used and often-detected pharmaceuticals. All four compounds have demonstrated significant potential for degradation and sorption in natural aqueous systems. For acetaminophen, biodegradation was found to be a primary mechanism for degradation, with a half-life (t(1/2)) for combined sorption-biodegradation of 2.1 days; in contrast, sorption alone was responsible only for a 30% loss of aqueous-phase acetaminophen after 15 days. For caffeine, both biodegradation and sorption were important (t(1/2) for combined sorption-biodegradation was 1.5 days). However, for propranolol and acebutolol, sorption was found to be the most significant removal mechanism and was not affected by biodegradation. Desorption experiments revealed that the sorption process was mostly irreversible. High values were found for K(d) for caffeine, propranolol, and acebutolol, ranging from 250 to 1900 L kg(-1), which explained their greater tendency for sorption onto sediments, compared to the more hydrophilic acetaminophen. Experimentally derived values for logK(oc) differed markedly from values calculated from correlation equations. This discrepancy was attributed to the fact that these equations are well suited for hydrophobic interactions but may fail to predict the sorption of polar and ionic compounds. These results suggest that mechanisms other than hydrophobic interactions played an important role in the sorption process. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. In silico models for the prediction of dose-dependent human hepatotoxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Ailan; Dixon, Steven L.

    2003-12-01

    The liver is extremely vulnerable to the effects of xenobiotics due to its critical role in metabolism. Drug-induced hepatotoxicity may involve any number of different liver injuries, some of which lead to organ failure and, ultimately, patient death. Understandably, liver toxicity is one of the most important dose-limiting considerations in the drug development cycle, yet there remains a serious shortage of methods to predict hepatotoxicity from chemical structure. We discuss our latest findings in this area and present a new, fully general in silico model which is able to predict the occurrence of dose-dependent human hepatotoxicity with greater than 80% accuracy. Utilizing an ensemble recursive partitioning approach, the model classifies compounds as toxic or non-toxic and provides a confidence level to indicate which predictions are most likely to be correct. Only 2D structural information is required and predictions can be made quite rapidly, so this approach is entirely appropriate for data mining applications and for profiling large synthetic and/or virtual libraries.

  5. [Nevirapine related hepatotoxicity: the prevalence and risk factors in a cohort of ART naive Han Chinese with AIDS].

    PubMed

    Gao, Shi-cheng; Gui, Xi-en; Deng, Li-ping; Zhang, Yong-xi; Yan, Ya-jun; Rong, Yu-ping; Liang, Ke; Yang, Rong-rong

    2010-09-01

    To investigate the incidence of hepatotoxicity in acquired immunodeficiency syndrome (AIDS) patients on combined anti-retroviral therapy (cART) containing nevirapine (NVP) and to assess the risk factors and its impact on cART. 330 AIDS patients from March 2003 to June 2008 at local county were enrolled and a retrospective study using Kaplan-meier survival and Multivariate logistic regression modeling was conducted. 267 out of 330 patients received NVP based cART and 63 cases received EFV-based cART. The deference of prevalences of hepatotoxicity between the two groups is statistically significant (Chi2 = 6.691, P = 0.01). 133 out of 267 (49.8%) patients on NVP based cART had at least one episode of ALT elevation during a median 21 months (interquartile ranges, IQR 6, 37) follow-up time, amounts for 28.5 cases per 100 person-years. Baseline ALT elevation (OR = 14.368, P = 0.017)and HCV co-infection (OR = 3.009, P = 0.000) were risk factors for cART related hepatotoxicity, while greatly increased CD4+ T(CD4) cell count was protective against hepatotoxicity development (OR = 0.996, P = 0.000). Patients co-infected with HCV received NVP-based cART had the higher probability of hepatotoxicity than those without HCV co-infection (Log rank: Chi2 = 16.764, P = 0.000). 23 out of the 133 subjects (17.3%) with NVP related hepatotoxicity discontinued cART temporarily or shifted NVP to efavirenz. NVP related hepatotoxicity was common among ARV naive HIV infected subjects in our cohort. Baseline ALT elevation and HCV co-infection were associated statistically with the development of hepatotoxicity. Hepatotoxicity led to discontinuing cART temporarily or switching to other regimens in some subjects. It suggested that NVP should be used with caution in patients co-infected with HCV among whom anti-HCV therapy before cART initiation may contribute to minimizing the probability of NVP associated hepatotoxicity.

  6. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  7. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  8. Experimental models of hepatotoxicity related to acute liver failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less

  9. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  10. Simultaneous determination of carisoprodol and acetaminophen in an attempted suicide by liquid chromatography-mass spectrometry with positive electrospray ionization.

    PubMed

    Matsumoto, Tomohiro; Sano, Toshiyuki; Matsuoka, Toshiyasu; Aoki, Minoru; Maeno, Yoshitaka; Nagao, Masataka

    2003-03-01

    An adult female ingested a considerable quantity of carisoprodol/acetaminophen tablets, which are not commercially available in Japan, in an attempt to commit suicide. Generally, because of lack of the appreciable ultraviolet absorbance or fluorescence, carisoprodol and its major metabolite meprobamate are determined by gas chromatography or gas chromatography-mass spectrometry. Complicated derivatization is, however, necessary to that methodology. Thus, we investigated the derivatization-free, highly sensitive, and simultaneous determination of carisoprodol, meprobamate, and acetaminophen by means of liquid chromatography-mass spectrometry (LC-MS) with positive electrospray ionization. A semi-micro ODS column was used. Ammonium acetate solution (10mM) and acetonitrile were used as mobile phase at a flow rate of 150 microL/min using gradient elution. MS parameters were as follows: capillary voltage, 3.5 kV; cone voltage, +30 V; extractor voltage, 5 kV; and ion source temperature, 100 degrees C. Urine samples pretreated by Oasis HLB cartridge, or plasma samples deproteinized by adding ice-cold acetonitrile were analyzed by LC-MS. The limits of quantitation for each compound were as follows: 0.50 ng/mL for carisoprodol; 10 ng/mL for acetaminophen; and 1.0 ng/mL for meprobamate. In the present case, carisoprodol and acetaminophen were the only drugs detected. Meprobamate was also found as the metabolite of carisoprodol in both urine and plasma. The plasma levels of carisoprodol, acetaminophen, and meprobamate on arrival were 29.5, 245, and 46.7 microg/mL, respectively. These levels were extremely high compared with therapeutic plasma concentrations. Despite the high plasma concentrations of these drugs, which correspond to fatal levels, the patient survived.

  11. Herbal hepatotoxicity: suspected cases assessed for alternative causes.

    PubMed

    Teschke, Rolf; Schulze, Johannes; Schwarzenboeck, Alexander; Eickhoff, Axel; Frenzel, Christian

    2013-09-01

    Alternative explanations are common in suspected drug-induced liver injury (DILI) and account for up to 47.1% of analyzed cases. This raised the question of whether a similar frequency may prevail in cases of assumed herb-induced liver injury (HILI). We searched the Medline database for the following terms: herbs, herbal drugs, herbal dietary supplements, hepatotoxic herbs, herbal hepatotoxicity, and herb-induced liver injury. Additional terms specifically addressed single herbs and herbal products: black cohosh, Greater Celandine, green tea, Herbalife products, Hydroxycut, kava, and Pelargonium sidoides. We retrieved 23 published case series and regulatory assessments related to hepatotoxicity by herbs and herbal dietary supplements with alternative causes. The 23 publications comprised 573 cases of initially suspected HILI; alternative causes were evident in 278/573 cases (48.5%). Among them were hepatitis by various viruses (9.7%), autoimmune diseases (10.4%), nonalcoholic and alcoholic liver diseases (5.4%), liver injury by comedication (DILI and other HILI) (43.9%), and liver involvement in infectious diseases (4.7%). Biliary and pancreatic diseases were frequent alternative diagnoses (11.5%), raising therapeutic problems if specific treatment is withheld; pre-existing liver diseases including cirrhosis (9.7%) were additional confounding variables. Other diagnoses were rare, but possibly relevant for the individual patient. In 573 cases of initially assumed HILI, 48.5% showed alternative causes unrelated to the initially incriminated herb, herbal drug, or herbal dietary supplement, calling for thorough clinical evaluations and appropriate causality assessments in future cases of suspected HILI.

  12. Effects of platelet-rich plasma on liver regeneration in CCl4-induced hepatotoxicity model.

    PubMed

    Mafi, Afsaneh; Dehghani, Farzaneh; Moghadam, Abbas; Noorafshan, Ali; Vojdani, Zahra; Talaei-Khozani, Tahereh

    2016-12-01

    Numerous bioactive growth factors and cytokines in platelet-rich plasma (PRP) have recently made it an attractive biomaterial for therapeutic purposes. These growth factors have the potential to regenerate the injured tissues. The aim of this study was to investigate the therapeutic effects of PRP in hepatotoxic animal model. Hepatotoxicity was induced in rats by oral administration of 4 mL/kg/week of CCl 4 diluted 1:1 in corn oil for 10 weeks. To confirm the hepatotoxicity, 24 h after the last CCl 4 administration, blood samples were collected via cardiac puncture to assess the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total protein, and total bilirubin. Twenty-four hours after blood collection, the experimental animals received a single injection of PRP (1 mL) via the anterior mesenteric vein. One week later, all biochemical tests were performed again, and the rats were scarified and their livers were removed, prepared histologically, and stained. The stereological analyses were performed to evaluate the effects of PRP on histopathological features of CCl 4 -treated livers. The results were compared statistically with the corresponding control and CCl 4 +normal saline (NS)-treated animals. A significant decrease in the number and volume of hepatocytes (p = 0.01), and also a reduction in the volume of sinusoids (p = 0.001) and connective tissue (p = 0.04), were observed in the PRP-treated animals compared with the CCl 4 +NS-treated ones. Our findings demonstrated that application of PRP had beneficial effects on CCl 4 -induced fibrosis; however, it had detrimental effects on the total number of hepatocytes and the volume of hepatocytes and sinusoidal spaces.

  13. Effects of ebselen on radiocontrast media-induced hepatotoxicity in rats.

    PubMed

    Basarslan, Fatmagul; Yilmaz, Nigar; Davarci, Isil; Akin, Mustafa; Ozgur, Mustafa; Yilmaz, Cahide; Ulutas, Kemal Turker

    2013-09-01

    Oxidative stress is accepted as a potential responsible mechanism in the pathogenesis of radiocontrast media (RCM)-induced hepatotoxicity. Therefore, we aimed to investigate the protective effects of ebselen against RCM-induced hepatotoxicity by measuring tissue oxidant/antioxidant parameters and histological changes in rats. Wistar albino rats were randomly separated into four groups consisting of eight rats per group. Normal saline was given to the rats in control group (group 1). RCM was given to the rats in group 2, and both RCM and ebselen were given to the rats in group 3. Only ebselen was given to the rats in group 4. Liver sections of the killed animals were analyzed to measure the levels of malondialdehyde (MDA) and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as histopathological changes. In RCM group, SOD and CAT levels were found increased. In RCM-ebselen group, MDA, SOD and CAT levels were found decreased. In RCM-ebselen group, however, GSH-Px activities of liver tissue increased. All these results indicated that ebselen produced a protective mechanism against RCM-induced hepatotoxicity and took part in oxidative stress.

  14. 21 CFR 862.3030 - Acetaminophen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acetaminophen test system. 862.3030 Section 862.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  15. 21 CFR 862.3030 - Acetaminophen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acetaminophen test system. 862.3030 Section 862.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  16. 21 CFR 862.3030 - Acetaminophen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acetaminophen test system. 862.3030 Section 862.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  17. 21 CFR 862.3030 - Acetaminophen test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acetaminophen test system. 862.3030 Section 862.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  18. 21 CFR 862.3030 - Acetaminophen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acetaminophen test system. 862.3030 Section 862.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  19. Metabolic activation and nucleic acid binding of acetaminophen and related arylamine substrates by the respiratory burst of human granulocytes.

    PubMed

    Corbett, M D; Corbett, B R; Hannothiaux, M H; Quintana, S J

    1989-01-01

    Following stimulation with phorbol myristate acetate, human granulocytes were found to incorporate acetaminophen, p-phenetidine, p-aminophenol, and p-chloroaniline into cellular DNA and RNA. Phenacetin was not incorporated into nucleic acid or metabolized by such activated granulocytes. None of the substrates gave nucleic acid binding if the granulocyte cultures were not induced to undergo the respiratory burst. Additional studies on the binding of acetaminophen to DNA and RNA were made by use of both ring-14C-labeled and carbonyl-14C-labeled forms of this substrate. The finding that equivalent amounts of these two labeled acetaminophen substrates were bound to cellular DNA demonstrated that the intact acetaminophen molecule was incorporated into DNA. On the other hand, the finding that excess ring-14C-labeled acetaminophen was incorporated into cellular RNA implies partial hydrolysis of the acetaminophen substrate prior to RNA binding. Evidence was presented which strongly indicates that the nucleic acid binding of the substrates was covalent in nature. The inability of the respiratory burst to result in the binding of phenacetin to nucleic acid suggests that arylamides are not normally activated or metabolized by activated granulocytes. Acetaminophen is an exception to the recalcitrance of arylamides to such bioactivation processes because it also possesses the phenolic functional group, which, like the arylamine group, is oxidized by certain reactive oxygen species. Myeloperoxidase appears to be much more important in the binding of acetaminophen to DNA than it is in the DNA binding of arylamines in general. The role of the respiratory burst in causing the bioactivation of certain arylamines, which are not normally genotoxic via the more usual microsomal activation pathways, was extended to include certain amide substrates such as acetaminophen.

  20. Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin.

    PubMed

    Zhou, Mi; Feng, Mei; Fu, Ling-Ling; Ji, Lin-Dan; Zhao, Jin-Shun; Xu, Jin

    2016-11-01

    Tributyltin (TBT) is one of the most widely used organotin biocides, which has severe endocrine-disrupting effects on marine species and mammals. Given that TBT accumulates at higher levels in the liver than in any other organ, and it acts mainly as a hepatotoxic agent, it is important to clearly delineate the hepatotoxicity of TBT. However, most of the available studies on TBT have focused on observations at the cellular level, while studies at the level of genes and proteins are limited; therefore, the molecular mechanisms of TBT-induced hepatotoxicity remains largely unclear. In the present study, we applied a toxicogenomic approach to investigate the effects of TBT on gene expression in the human normal liver cell line HL7702. Gene expression profiling identified the apoptotic pathway as the major cause of hepatotoxicity induced by TBT. Flow cytometry assays confirmed that medium- and high-dose TBT treatments significantly increased the number of apoptotic cells, and more cells underwent late apoptosis in the high-dose TBT group. The genes encoding heat shock proteins (HSPs), kinases and tumor necrosis factor receptors mediated TBT-induced apoptosis. These findings revealed novel molecular mechanisms of TBT-induced hepatotoxicity, and the current microarray data may also provide clues for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Efficacy of tramadol-acetaminophen tablets in low back pain patients with depression.

    PubMed

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Ozaki, Toshifumi

    2015-03-01

    Tramadol-acetaminophen tablets are currently used to treat pain, including that of degenerative lumbar disease. Although there are many reports on tramadol-acetaminophen tablets, treatment outcomes in low back pain (LBP) patients with depression remain uncertain. This study investigated the outcomes of LBP patients with depression treated with tramadol-acetaminophen tablets. Of 95 patients with chronic LBP, 70 (26 men, 44 women; mean age 64 years) who were judged as having depression by the Self-Rating Depression Scale (SDS) were included in this study. In this trial, patients received one of two randomly assigned 8-week treatment regimes: tramadol-acetaminophen (Tramadol group, n = 35) and non-steroidal anti-inflammatory drugs (NSAIDs) (NSAID group, n = 35). In addition to completing self-report questionnaires, patients provided demographic and clinical information. All patients were assessed using a Numerical Rating Scale (NRS), Oswestry Disability Index (ODI), Pain Disability Assessment Scale (PDAS), Hospital Anxiety and Depression Scale (HADS), SDS, and Pain Catastrophizing Scale (PCS). After 8 weeks' treatment, the NRS and SDS scores were lower in the Tramadol group than in the NSAID group (p < 0.05). There were no significant differences in the ODI, PDAS, and PCS scores between the groups (p = 0.47, 0.09, 0.47). Although there was no difference in the anxiety component of the HADS between the groups (p = 0.36), the depression component was lower in the Tramadol group than in the NSAID group (p < 0.05). There was no significant difference between groups in the percentage of patients with treatment-associated adverse events. This investigation found that tramadol-acetaminophen is effective for reducing LBP and provided a prophylactic antidepressant effect in chronic LBP patients with depression.

  2. Side Effects of HIV Medicines: HIV and Hepatotoxicity

    MedlinePlus

    ... provider tells you to. How is hepatotoxicity detected? Liver function tests (LFTs) are a group of blood tests ... Laboratory Testing From the Department of Veterans Affairs: Primary Care of Veterans with HIV: Liver Disease and Cirrhosis From the National Institutes of ...

  3. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com; Novik, Eric I.; Gerets, Helga H.

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine modelmore » along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.« less

  4. Formation and disposition of the minor metabolites of acetaminophen in the hamster.

    PubMed

    Gemborys, M W; Mudge, G H

    1981-01-01

    The urinary metabolites of acetaminophen and N-hydroxyacetaminophen were studied in the hamster over a wide dose range and with pretreatments designed to modify drug metabolism. Attention was focused on the origin and disposition of the minor metabolites. The sum of the 3-thio adducts, rather than just the 3-mercapturic adduct, is considered the better index of the formation of the reactive immediate precursor, presumably N-acetyl-p-benzoquinoneimine. At low dosage this amounts to 33% of the administered dose in this species. There is a major contribution from the 3-methylthio adduct, the magnitude of which has not been previously recognized. The 3-methylthio and the 3-methylsulfoxide derivates of acetaminophen are secondarily derived from the 3-glutathione adduct within the enterohepatic circulation, as indicated by their late appearance in the urine, the effect of common bile duct ligation and the metabolism of the minor metabolites when they themselves are administered. Following the administration of N-hydroxyacetaminophen this was excreted in the urine along with its phenolic conjugates, but no urinary N-hydroxyacetaminophen was detectable after the administration of acetaminophen itself. Of particular interest to the pathogenesis of analgesic nephropathy was the detection in the urine of small amounts of p-aminophenol, a known nephrotoxic agent, following dosage with acetaminophen. This metabolite has not been previously detected.

  5. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    PubMed

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  6. Ginger for Prevention of Antituberculosis-induced Gastrointestinal Adverse Reactions Including Hepatotoxicity: A Randomized Pilot Clinical Trial.

    PubMed

    Emrani, Zahra; Shojaei, Esphandiar; Khalili, Hossein

    2016-06-01

    In this study, the potential benefits of ginger in preventing antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity have been evaluated in patients with tuberculosis. Patients in the ginger and placebo groups (30 patients in each group) received either 500 mg ginger (Zintoma)(®) or placebo one-half hour before each daily dose of antituberculosis drugs for 4 weeks. Patients' gastrointestinal complaints (nausea, vomiting, dyspepsia, and abdominal pain) and antituberculosis drug-induced hepatotoxicity were recorded during the study period. In this cohort, nausea was the most common antituberculosis drug-induced gastrointestinal adverse reactions. Forty eight (80%) patients experienced nausea. Nausea was more common in the placebo than the ginger group [27 (90%) vs 21 (70%), respectively, p = 0.05]. During the study period, 16 (26.7%) patients experienced antituberculosis drug-induced hepatotoxicity. Patients in the ginger group experienced less, but not statistically significant, antituberculosis drug-induced hepatotoxicity than the placebo group (16.7% vs 36.7%, respectively, p = 0.07). In conclusion, ginger may be a potential option for prevention of antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Risk assessment of hepatotoxicity among tuberculosis and human immunodeficiency virus/AIDS-coinfected patients under tuberculosis treatment.

    PubMed

    Ngouleun, Williams; Biapa Nya, Prosper Cabral; Pieme, Anatole Constant; Telefo, Phelix Bruno

    2016-12-01

    Tuberculosis (TB) is a worldwide public health problem. It is a contagious and grave disease caused by Mycobacterium tuberculosis. Current drugs such as isoniazid, pyrazinamide, and rifampicin used for the treatment of tuberculosis are potentially hepatotoxic and can lead to drug hepatitis. In order to improve the follow-up of TB patients in Cameroon, we carried out a study which aimed to evaluate the hepatotoxicity risk factors associated with anti-TB drugs. The studies were performed on 75 participants who had visited the Loum District Hospital located in the littoral region of Cameroon for their routine consultation. Participants have been selected based on pre-established criteria of inclusion and exclusion. Prior to the informed consent signature, patients were given compelling information about the objective and the result output of the study. They were questioned about antioxidant food and alcohol consumption as well as some clinical signs of hepatotoxicity such as fever, nausea, vomiting, and tiredness. The collected blood was tested for the determination of biochemical markers (transaminases and C-reactive protein) using standard spectrophotometric methods. Biochemical analysis of samples showed a significant increase (p<.05) of aspartate aminotransferase and alanine aminotransferase values in TB patients coinfected with human immunodeficiency virus/AIDS (33.28±16.58UI/L and 30.84±17.17UI/L, respectively) compared with the respective values of the controls (16.35±5.31UI/L and 16.45±4.83UI/L). Taking individually, the liver injury patient percentage of TB patients was significant compared to TBC when considering alanine aminotransferase and aspartate aminotransferase parameters. When considering risk factors, antioxidant food consumption significantly reduced the liver injury patient percentage for the above parameters, whereas an opposite situation was observed with alcohol consumption between TB-coinfection and TB patients. Regarding the C

  8. Randomised controlled trial comparing oral and intravenous paracetamol (acetaminophen) plasma levels when given as preoperative analgesia.

    PubMed

    van der Westhuizen, J; Kuo, P Y; Reed, P W; Holder, K

    2011-03-01

    Gastric absorption of oral paracetamol (acetaminophen) may be unreliable perioperatively in the starved and stressed patient. We compared plasma concentrations of parenteral paracetamol given preoperatively and oral paracetamol when given as premedication. Patients scheduled for elective ear; nose and throat surgery or orthopaedic surgery were randomised to receive either oral or intravenous paracetamol as preoperative medication. The oral dose was given 30 minutes before induction of anaesthesia and the intravenous dose given pre-induction. All patients were given a standardised anaesthetic by the same specialist anaesthetist who took blood for paracetamol concentrations 30 minutes after the first dose and then at 30 minute intervals for 240 minutes. Therapeutic concentrations of paracetamol were reached in 96% of patients who had received the drug parenterally, and 67% of patients who had received it orally. Maximum median plasma concentrations were 19 mg.l(-1) (interquartile range 15 to 23 mg.l(-1)) and 13 mg.l(-1) (interquartile range 0 to 18 mg.l(-1)) for the intravenous and oral group respectively. The difference between intravenous and oral groups was less marked after 150 minutes but the intravenous preparation gave higher plasma concentrations throughout the study period. It can be concluded that paracetamol gives more reliable therapeutic plasma concentrations when given intravenously.

  9. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  10. Predicting hepatotoxicity using ToxCast in vitro bioactivity and ...

    EPA Pesticide Factsheets

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors then used supervised machine learning to predict their hepatotoxic effects.Results: A set of 677 chemicals were represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PADEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector classification (SVM), classification and regression trees (CART), k-nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid representation. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) and proliferative lesions (0.72±0.09). Though chemical and bioactivity class

  11. p-Aminophenol-induced hepatotoxicity in hamsters: role of glutathione.

    PubMed

    Fu, Xin; Chen, Theresa S; Ray, Mukunda B; Nagasawa, Herbert T; Williams, Walter M

    2004-01-01

    p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA. Copyright 2004 Wiley Periodicals, Inc.

  12. Investigation of the Hepatotoxic and Immunotoxic Effects of the Peroxisome Proliferator Perfluorodecanoic Acid

    DTIC Science & Technology

    1991-04-30

    np. A #127 6Investigation of the Hepatotoxic and OHIO Immunotoxic Effects of the Peroxisome AJE Proliferator Perfluorodecanoic Acid Donald E. Frazier...Investigation of the Hepatotoxic and Immunotoxic Effects G-AFOSR 90-0371 of the Peroxisome Proliferator Perfluorodecanoic Acid TA - 2312/A5 L AUTMOS) Donald E...involved evaluation of the immunotoxic and toxic effects of perfluorodecanoic acid (PFDA). Eight day exposure to PFDA caused thymic atrophy with marked

  13. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

    PubMed

    Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa

    2017-02-01

    Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.

  14. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes.

    PubMed

    Jung, Hyun Ah; Kim, Jae-I; Choung, Se Young; Choi, Jae Sue

    2014-08-01

    As part of our efforts to isolate anti-hepatotoxic agents from marine natural products, we screened the ability of 14 edible varieties of Korean seaweed to protect against doxorubicin-induced hepatotoxicity in primary rat hepatocytes. Among the crude extracts of two Chlorophyta (Codium fragile and Capsosiphon fulvescens), seven Phaeophyta (Undaria pinnatifida, Sargassum thunbergii, Pelvetia siliquosa, Ishige okamurae, Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis), five Rhodophyta (Chondrus ocellatus, Gelidium amansii, Gracilaria verrucosa, Symphycladia latiuscula and Porphyra tenera), and the extracts of Ecklonia stolonifera, Ecklonia cava, Eisenia bicyclis and Pelvetia siliquosa exhibited significant protective effects on doxorubicin-induced hepatotoxicity, with half maximal effective concentration (EC50) values of 2.0, 2.5, 3.0 and 15.0 μg/ml, respectively. Since Ecklonia stolonifera exhibits a significant protective potential and is frequently used as foodstuff, we isolated six phlorotannins, including phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofucofuroeckol A (4), dieckol (5) and triphloroethol-A (6). Phlorotannins 2 ∼ 6 exhibited potential protective effects on doxorubicin-induced hepatotoxicity, with corresponding EC50 values of 3.4, 8.3, 4.4, 5.5 and 11.5 μg/ml, respectively. The results clearly demonstrated that the anti-hepatotoxic effects of Ecklonia stolonifera and its isolated phlorotannins are useful for further exploration and development of therapeutic modalities for treatment of hepatotoxicity. © 2014 Royal Pharmaceutical Society.

  15. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain.

    PubMed

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Nishida, Keiichiro; Takei, Yoshitaka; Ozaki, Toshifumi

    2016-01-01

    Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP) remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years) treated with tramadol-acetaminophen (n = 36) and celecoxib (n = 37) was performed. All patients were assessed using the self-reported questionnaires. A mediation model was constructed using a bootstrapping method to evaluate the mediating effects of pain relief after treatment. Results. A total of 35 (55.6%) patients met the criteria for apathy. A four-week treatment regimen in the tramadol group conferred significant improvements in the Apathy scale and numerical rating scale but not in the Rolland-Morris Disability Questionnaire, Pain Disability Assessment Scale, or Pain Catastrophizing Scale. The depression component of the Hospital Anxiety and Depression Scale was lower in the tramadol group than in the celecoxib group. The mediation analysis found that the impact of tramadol-acetaminophen on the change in apathy was not mediated by the pain relief. Conclusions. Tramadol-acetaminophen was effective at reducing chronic LBP and conferred a prophylactic motivational effect in patients with chronic LBP.

  16. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain

    PubMed Central

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Nishida, Keiichiro; Takei, Yoshitaka; Ozaki, Toshifumi

    2016-01-01

    Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP) remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years) treated with tramadol-acetaminophen (n = 36) and celecoxib (n = 37) was performed. All patients were assessed using the self-reported questionnaires. A mediation model was constructed using a bootstrapping method to evaluate the mediating effects of pain relief after treatment. Results. A total of 35 (55.6%) patients met the criteria for apathy. A four-week treatment regimen in the tramadol group conferred significant improvements in the Apathy scale and numerical rating scale but not in the Rolland-Morris Disability Questionnaire, Pain Disability Assessment Scale, or Pain Catastrophizing Scale. The depression component of the Hospital Anxiety and Depression Scale was lower in the tramadol group than in the celecoxib group. The mediation analysis found that the impact of tramadol-acetaminophen on the change in apathy was not mediated by the pain relief. Conclusions. Tramadol-acetaminophen was effective at reducing chronic LBP and conferred a prophylactic motivational effect in patients with chronic LBP. PMID:27445626

  17. Is it useful to add acetaminophen to high-potency opioids in cancer-related pain?

    PubMed

    Corsi, Oscar; Pérez-Cruz, Pedro E

    2017-05-04

    Pain is one of the most frequent and relevant symptoms in cancer patients. The World Health Organization's analgesic ladder proposes the use of strong opioids associated with adjuvants such as acetaminophen or nonsteroidal anti-inflammatory drugs in step III. However, it is unclear whether adding acetaminophen to an analgesic regimen based on strong opioids has any benefit in cancer patients with moderate to severe pain. To answer this question we searched in Epistemonikos database, which is maintained by screening multiple information sources. We identified two systematic reviews including five randomized trials overall. We extracted data and generated a summary of findings table using the GRADE approach. We concluded that adding acetaminophen to strong opioids might make little or no difference in improving pain management in cancer patients.

  18. Protective Effect of Korean Red Ginseng against Aflatoxin B1-Induced Hepatotoxicity in Rat

    PubMed Central

    Kim, Yong-Seong; Kim, Yong-Hoon; Noh, Jung-Ran; Cho, Eun-Sang; Park, Jong-Ho; Son, Hwa-Young

    2011-01-01

    Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has a variety of biological properties, including anti-inflammatory, antioxidant and anticancer effects. Aflatoxin B1 (AFB1) produced by the Aspergillus spp. causes acute hepatotoxicity by lipid peroxidation and oxidative DNA damage, and induces liver carcinoma in humans and laboratory animals. This study was performed to examine the protective effects of KRG against hepatotoxicity induced by AFB1 using liver-specific serum marker analysis, histopathology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In addition, to elucidate the possible mechanism of hepatoprotective effects, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were analyzed. Rats were treated with 250 mg/kg of KRG (KRG group) or saline (AFB1 group) for 4 weeks and then received 150 μg/kg of AFB1 intraperitoneally for 3 days. Rats were sacrificed at 12 h, 24 h, 48 h, 72 h, or 1 wk after AFB1 treatment. In the KRG pre-treatment group, serum alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels were low, but superoxide dismutase, catalase, and glutathione peroxidase activities were high as compared to the AFB1 alone group. Histopathologically, AFB1 treatment induced necrosis and apoptosis in hepatocytes, and led to inflammatory cells infiltration in the liver. KRG pre-treatment ameliorated these changes. These results indicate that KRG may have protective effects against hepatotoxicity induced by AFB1 that involve the antioxidant properties of KRG. PMID:23717067

  19. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-kappaB pathway: role of a novel plant protein.

    PubMed

    Ghosh, Ayantika; Sil, Parames C

    2009-01-27

    Oxidative stress is a major cause of drug induced hepatic diseases. The present study aims to investigate the antioxidative signaling mechanism of a protein isolated from the herb, Cajanus indicus against acetaminophen induced necrotic cell death. We found that incubation of hepatocytes with the protein prevented acetaminophen-induced loss in cell viability, reduction in glutathione level and enhancement of reactive oxygen species generation. Treatment of mice with the protein before administration of acetaminophen also reduced serum nitrite and TNF-alpha formation. Moreover, it counteracted acetaminophen-induced loss in mitochondrial membrane potential, loss in adenosine tri phosphate and rise in intracellular calcium. Investigating the cell signaling pathways, we found that the protein exerts its protective action via the activation of NF-kappaB and Akt and deactivation of STAT-1. Surprisingly, no role of ERK1/2 or STAT-3 was found in the protein-mediated protection of hepatocytes during acetaminophen exposure. Finally, we found that acetaminophen introduces necrosis as the primary phenomena of cell death and protein treatment decreased the necrotic process as evident from the DNA fragmentation and flow-cytometry studies. In addition, administration of the protein to mice before acetaminophen application showed fewer number of TUNEL positive cells. Combining, data suggest that the protein possesses cytoprotective activity against acetaminophen-induced oxidative cellular damage and prevents hepatocytes from necrotic death.

  20. Effect of goat milk on hepatotoxicity induced by antitubercular drugs in rats.

    PubMed

    Miglani, Sonam; Patyar, Rakesh Raman; Patyar, Sazal; Reshi, Mohammad Rafi

    2016-10-01

    Aim of the present study was to assess the hepatoprotective activity of goat milk on antitubercular drug-induced hepatotoxicity in rats. Hepatotoxicity was induced in rats using a combination of isoniazid, rifampicin, and pyrazinamide given orally as a suspension for 30 days. Treatment groups received goat milk along with antitubercular drugs. Liver damage was assessed using biochemical and histological parameters. Administration of goat milk (20 mL/kg) along with antitubercular drugs (Group III) reversed the levels of serum alanine aminotransferase (82 ± 25.1 vs. 128.8 ± 8.9 units/L) and aspartate aminotransferase (174.7 ± 31.5 vs. 296.4 ± 56.4 units/L, p<0.01) compared with antitubercular drug treatment Group II. There was a significant decrease in serum alanine aminotransferase (41.8 ± 4.1 vs. 128.8 ± 8.9 ​ units/L, p<0.01) and aspartate aminotransferase (128.8 ± 8.54 vs. 296.4 ± 56.4 units/L, p<0.001) levels in Group IV (goat milk 40 mL/kg) compared with antitubercular drug treatment Group II. Goat milk (20 mL/kg and 40 mL/kg) was effective in reversing the rise in malondialdehyde level compared with the antitubercular drug suspension groups (58.5 ± 2 vs. 89.88 ± 2.42 μmol/mL of tissue homogenate, p<0.001 and 69.7 ± 0.78 vs. 89.88 ± 2.42 μmol/mL of tissue homogenate, p<0.001, respectively). Similarly, both doses of milk significantly prevented a fall in superoxide dismutase level (6.23 ± 0.29 vs. 3.1 ± 0.288 units/mL, p<0.001 and 7.8 ± 0.392 vs. 3.1 ± 0.288 units/mL, p<0.001) compared with the group receiving antitubercular drugs alone. Histological examination indicated that goat milk reduced inflammation and necrotic changes in hepatocytes in the treatment groups. The results indicated that goat milk prevented the antitubercular drug-induced hepatotoxicity and is an effective hepatoprotective agent. Copyright © 2016. Published by Elsevier B.V.

  1. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies.

    PubMed

    Fraser, Keith; Bruckner, Dylan M; Dordick, Jonathan S

    2018-06-18

    Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.

  2. The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif A Abdelmottaleb; Qaid, Huda Abdo Yahya

    2018-01-01

    The aim of the study was to confirm the hepatotoxicity induced by small-sized gold nanoparticles (GNPs) and evaluate the role of quercetin (Qur) and arginine (Arg) against hepatotoxicity caused by GNPs. Twenty-five healthy male Wistar-Kyoto rats were used. GNPs were administered intraperitoneally to these rats at the dose of 50 μL for seven consecutive days. The role of Qur and Arg antioxidants against toxicity induced by GNPs was detected through the measurement of serum liver function and oxidative stress biomarkers in the liver tissues. Coadministration of Qur and Arg along with GNPs significantly induced dramatic alterations in the biochemical parameters. Levels of malondialdehyde, gamma-glutamyl transferase, alanine aminotransferase, alkaline phosphatase, and total protein increased significantly in the GNPs injected group than in the control group, while reduced glutathione was greatly reduced in the GNPs group than in the control group. It also significantly decreased liver enzymes and the oxidative stress, therefore improving the liver damage and hepatotoxicity induced by GNPs. This study demonstrated that Qur and Arg antioxidants effectively improved the hepatic oxidative damage induced by GNPs. It also substantiates the application of Qur and Arg as protecting stand-in against GNPs' hepatotoxicity.

  3. Clinical efficacy of hydrocodone-acetaminophen and tramadol for control of postoperative pain in dogs following tibial plateau leveling osteotomy.

    PubMed

    Benitez, Marian E; Roush, James K; McMurphy, Rose; KuKanich, Butch; Legallet, Claire

    2015-09-01

    To evaluate clinical efficacy of hydrocodone-acetaminophen and tramadol for treatment of postoperative pain in dogs undergoing tibial plateau leveling osteotomy (TPLO). ANIMALS 50 client-owned dogs. Standardized anesthetic and surgical protocols were followed. Each patient was randomly assigned to receive either tramadol hydrochloride (5 to 7 mg/kg, PO, q 8 h; tramadol group) or hydrocodone bitartrate-acetaminophen (0.5 to 0.6 mg of hydrocodone/kg, PO, q 8 h; hydrocodone group) for analgesia after surgery. The modified Glasgow composite measure pain scale was used to assess signs of postoperative pain at predetermined intervals by an investigator who was blinded to treatment group. Scoring commenced with the second dose of the assigned study analgesic. Pain scores and rates of treatment failure (ie, dogs requiring rescue analgesia according to a predetermined protocol) were compared statistically between groups. 12 of 42 (29%; 5/19 in the hydrocodone-acetaminophen group and 7/23 in the tramadol group) dogs required rescue analgesic treatment on the basis of pain scores. Median pain score for the hydrocodone group was significantly lower than that of the tramadol group 2 hours after the second dose of study analgesic. The 2 groups had similar pain scores at all other time points. Overall, differences in pain scores between dogs that received hydrocodone-acetaminophen or tramadol were minor. The percentage of dogs with treatment failure in both groups was considered unacceptable.

  4. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    PubMed

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P < 0.01), while direct application of acetaminophen to the dorsal horn did not reduce these responses. Direct application of N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  5. Acute hepatotoxicity after ingestion of Morinda citrifolia (Noni Berry) juice in a 14-year-old boy.

    PubMed

    Yu, Elizabeth L; Sivagnanam, Mamata; Ellis, Linda; Huang, Jeannie S

    2011-02-01

    We present a case of a 14-year-old previously healthy boy with acute hepatotoxicity after noni berry juice consumption. As the popularity of noni berry consumption continues to increase, heightened awareness of the relation between noni berry consumption and acute hepatotoxicity is important.

  6. The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Choi, Eugene; Alsop, Derek; Wilson, Joanna Y

    2018-05-01

    In this study, we examined if rainbow trout chronically exposed to acetaminophen (10 and 30 μgL -1 ) showed histological changes that coincided with functional changes in the kidney, gill and liver. Histological changes in the kidney included movement and loss of nuclei, non-uniform nuclei size, non-uniform cytoplasmic staining, and loss of tubule integrity. Histological effects were more severe at the higher concentration and coincided with concentration dependent increases in urine flow rate and increased urinary concentrations of sodium, chloride, potassium, calcium, urea, ammonia, glucose, and protein. Yet, glomerular filtration rate was not altered with acetaminophen exposure. In the gill, filament end swelling, whole filament swelling, and swelling of the lamellae were observed in exposed fish. Lamellar spacing decreased in both exposure groups, but lamellar area decreased only with 30 μgL -1 exposure. At faster swimming speeds, oxygen consumption was limited in acetaminophen exposed fish, and critical swimming speed was also decreased in both exposure groups. The liver showed decreased perisinusoidal spaces at 10 and 30 μgL -1 acetaminophen, and decreased cytoplasmic vacuolation with 30 μgL -1 acetaminophen. A decrease in liver glycogen was also observed at 30 μgL -1 . There was no change in plasma concentrations of sodium, chloride, potassium, calcium, magnesium, and glucose with exposure, suggesting compensation for urinary loss. Indeed, an increase in Na + -K + -ATPase activity in the gills was found with 30 μgL -1 acetaminophen exposure. Chronic exposure of rainbow trout to the environmentally relevant pharmaceutical acetaminophen, alters both histology and function of organs responsible for ion and nutrient homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Use of acetaminophen (paracetamol) during pregnancy and the risk of attention-deficit/hyperactivity disorder in the offspring.

    PubMed

    Andrade, Chittaranjan

    2016-03-01

    Prenatal exposure to acetaminophen may result in compromised neurodevelopment through inflammatory and immunologic mechanisms, through predisposition to oxidative stress, and through endocrine, endogenous cannabinoid, and other mechanisms. Several small and large prospective studies have found an association between gestational acetaminophen exposure and attention-deficit/hyperactivity disorder (ADHD)-like behaviors, use of ADHD medication, and ADHD diagnoses in offspring during childhood; the only negative study was a small investigation that examined only one aspect of attention as an outcome. Creditably, most of the studies adjusted analyses for many (but not all) confounds associated with ADHD risk. Importantly, one pivotal study also adjusted for pain, infection, inflammation, and fever to reduce confounding by indication; this study found a dose-dependent risk. In the light of the finding of a single study that infection and fever during pregnancy by themselves do not raise the ADHD risk, it appears possible that the use of acetaminophen during pregnancy is itself responsible for the increased risk of ADHD. This suggests that acetaminophen may not be as safe in pregnancy as is widely believed. However, since fever during pregnancy may itself be associated with adverse gestational outcomes, given the present level of uncertainty about the ADHD risk with acetaminophen, it is suggested that, until more data are available, the use of acetaminophen in pregnancy should not be denied in situations in which the need for the drug is clear. © Copyright 2016 Physicians Postgraduate Press, Inc.

  8. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps.

    PubMed

    Teschke, Rolf; Eickhoff, Axel

    2015-01-01

    Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI) with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although, herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences) scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM) are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality.

  9. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps

    PubMed Central

    Teschke, Rolf; Eickhoff, Axel

    2015-01-01

    Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI) with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although, herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences) scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM) are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality. PMID:25954198

  10. Comparison of the quantification of acetaminophen in plasma, cerebrospinal fluid and dried blood spots using high-performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Taylor, Rachel R.; Hoffman, Keith L.; Schniedewind, Björn; Clavijo, Claudia; Galinkin, Jeffrey L.; Christians, Uwe

    2013-01-01

    Acetaminophen (paracetamol, N-(4-hydroxyphenyl) acetamide) is one of the most commonly prescribed drugs for the management of pain in children. Quantification of acetaminophen in pre-term and term neonates and small children requires the availability of highly sensitive assays in small volume blood samples. We developed and validated an LC-MS/MS assay for the quantification of acetaminophen in human plasma, cerebro-spinal fluid (CSF) and dried blood spots (DBS). Reconstitution in water (DBS only) and addition of a protein precipitation solution containing the deuterated internal standard were the only manual steps. Extracted samples were analyzed on a Kinetex 2.6 μm PFP column using an acetonitrile/formic acid gradient. The analytes were detected in the positive multiple reaction mode. Alternatively, DBS were automatically processed using direct desorption in a sample card and preparation (SCAP) robotic autosampler in combination with online extraction. The range of reliable response in plasma and CSF was 3.05-20,000 ng/ml (r2 > 0.99) and 27.4-20,000 ng/ml (r2 > 0.99) for DBS (manual extraction and automated direct desorption). Inter-day accuracy was always within 85-115% and inter-day precision for plasma, CSF and manually extracted DBS were less than 15%. Deming regression analysis comparing 167 matching pairs of plasma and DBS samples showed a correlation coefficient of 0.98. Bland Altman analysis indicated a 26.6% positive bias in DBS, most likely reflecting the blood: plasma distribution ratio of acetaminophen. DBS are a valid matrix for acetaminophen pharmacokinetic studies. PMID:23670126

  11. Mechanisms of Cell Injury with Hepatotoxic Chemicals

    DTIC Science & Technology

    1985-05-01

    McLean (1982), Dis- sociation of cell death from covalent binding of paracetamol by flavones in a hepatocyte system, Biochem. Pharmacol., 31:3745-3749...MacDonald, and R. D. HarbJson (1977), Effect of N-acetylcysteine on hepatic covalent binding of paracetamol (acetaminophen), Lancet, 1:657-658...Williams (1977), Paracetamol -induced hepatic necrosis in the mouse-relationship between covalent binding, hepatic glutathione depletion, and the

  12. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  13. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Bazhen Decoction Protects against Acetaminophen Induced Acute Liver Injury by Inhibiting Oxidative Stress, Inflammation and Apoptosis in Mice

    PubMed Central

    Song, Erqun; Fu, Juanli; Xia, Xiaomin; Su, Chuanyang; Song, Yang

    2014-01-01

    Bazhen decoction is a widely used traditional Chinese medicinal decoction, but the scientific validation of its therapeutic potential is lacking. The objective of this study was to investigate corresponding anti-oxidative, anti-inflammatory and anti-apoptosis activities of Bazhen decoction, using acetaminophen-treated mice as a model system. A total of 48 mice were divided into four groups. Group I, negative control, treated with vehicle only. Group II, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days. Group III, received a single dose of 900 mg/kg acetaminophen. Group IV, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days and a single dose of 900 mg/kg acetaminophen 30 min before last Bazhen decoction administration. Bazhen decoction administration significantly decrease acetaminophen-induced serum ALT, AST, ALP, LDH, TNF-α, IL-1β, ROS, TBARS and protein carbonyl group levels, as well as GSH depletion and loss of MMP. Bazhen decoction restore SOD, CAT, GR and GPx activities and depress the expression of pro-inflammatory factors, such as iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6, respectively. Moreover, Bazhen decoction down-regulate acetaminophen-induced Bax/Bcl-2 ratio, caspase 3, caspase 8 and caspase 9. These results suggest the anti-oxidative, anti-inflammatory and anti-apoptosis properties of Bazhen decoction towards acetaminophen-induced liver injury in mice. PMID:25222049

  15. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex.

    PubMed

    Onaolapo, Olakunle J; Adekola, Moses A; Azeez, Taiwo O; Salami, Karimat; Onaolapo, Adejoke Y

    2017-01-01

    We compared the relative protective abilities of silymarin and l-methionine pre-treatment in acetaminophen overdose injuries of the liver, kidney and cerebral cortex by assessing behaviours, antioxidant status, tissue histological changes and biochemical parameters of hepatic/renal function. Rats were divided into six groups of ten each; animals in five of these groups were pre-treated with oral distilled water, silymarin (25mg/kg) or l-methionine (2.5, 5 and 10mg/kg body weight) for 14days; and then administered intraperitoneal (i.p.) acetaminophen at 800mg/kg/day for 3days. Rats in the sixth group (normal control) received distilled water orally for 14days and then i.p. for 3days. Neurobehavioural tests were conducted 7days after last i.p treatment, and animals sacrificed on the 8th day. Plasma was assayed for biochemical markers of liver/kidney function; while sections of the liver, kidney and cerebral cortex were either homogenised for assay of antioxidant status or processed for histology. Acetaminophen overdose resulted in locomotor retardation, excessive self-grooming, working-memory impairment, anxiety, derangement of liver/kidney biochemistry, antioxidant imbalance, and histological changes in the liver, kidney and cerebral cortex. Administration of silymarin or increasing doses of l-methionine counteracted the behavioural changes, reversed biochemical indices of liver/kidney injury, and improved antioxidant activity. Silymarin and l-methionine also conferred variable degrees of tissue protection, on histology. Either silymarin or l-methionine can protect vulnerable tissues from acetaminophen overdose injury; however, each offers variable protection to different tissues. This study highlights an obstacle to seeking the 'ideal' protective agent against acetaminophen overdose. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Acetaminophen use in pregnancy and neurodevelopment: attention function and autism spectrum symptoms.

    PubMed

    Avella-Garcia, Claudia B; Julvez, Jordi; Fortuny, Joan; Rebordosa, Cristina; García-Esteban, Raquel; Galán, Isolina Riaño; Tardón, Adonina; Rodríguez-Bernal, Clara L; Iñiguez, Carmen; Andiarena, Ainara; Santa-Marina, Loreto; Sunyer, Jordi

    2016-12-01

    Acetaminophen is extensively used during pregnancy. But there is a lack of population-representative cohort studies evaluating its effects on a range of neuropsychological and behavioural endpoints. We aimed to assess whether prenatal exposure to acetaminophen is adversely associated with neurodevelopmental outcomes at 1 and 5 years of age. This Spanish birth cohort study included 2644 mother-child pairs recruited during pregnancy. The proportion of liveborn participants evaluated at 1 and 5 years was 88.8% and 79.9%, respectively. Use of acetaminophen was evaluated prospectively in two structured interviews. Ever/never use and frequency of use (never, sporadic, persistent) were measured. Main neurodevelopment outcomes were assessed using Childhood Autism Spectrum Test (CAST), Conner's Kiddie Continuous Performance Test (K-CPT) and ADHD-DSM-IV form list. Regression models were adjusted for social determinants and co-morbidities. Over 40% of mothers reported using acetaminophen. Ever-exposed offspring had higher risks of presenting more hyperactivity/impulsivity symptoms [incidence rate ratio (IRR) = 1.41, 95% confidence interval (CI) 1.01-1.98), K-CPT commission errors (IRR = 1.10, 1.03-1.17), and lower detectability scores (coefficient β = -0.75, -0.13--0.02). CAST scores were increased in ever-exposed males (β = 0.63, 0.09-1.18). Increased effect sizes of risks by frequency of use were observed for hyperactivity/impulsivity symptoms (IRR = 2.01, 0.95-4.24) in all children, K-CPT commission errors (IRR = 1.32, 1.05-1.66) and detectability (β = -0.18, -0.36-0.00) in females, and CAST scores in males (β = 1.91, 0.44-3.38). Prenatal acetaminophen exposure was associated with a greater number of autism spectrum symptoms in males and showed adverse effects on attention-related outcomes for both genders. These associations seem to be dependent on the frequency of exposure. © The Author 2016; all rights reserved. Published by Oxford University Press

  17. Alternating Acetaminophen and Ibuprofen versus Monotherapies in Improvements of Distress and Reducing Refractory Fever in Febrile Children: A Randomized Controlled Trial.

    PubMed

    Luo, Shuanghong; Ran, Mengdong; Luo, Qiuhong; Shu, Min; Guo, Qin; Zhu, Yu; Xie, Xiaoping; Zhang, Chongfan; Wan, Chaomin

    2017-10-01

    No evidence can be found in the medical literature about the efficacy of alternating acetaminophen and ibuprofen treatment in children with refractory fever. Our objective was to assess the effect of alternating acetaminophen and ibuprofen therapy on distress and refractory fever compared with acetaminophen or ibuprofen as monotherapy in febrile children. A total of 474 febrile children with axillary temperature ≥38.5 °C and fever history ≤3 days in a tertiary hospital were randomly assigned to receive either (1) alternating acetaminophen and ibuprofen (acetaminophen 10 mg/kg per dose with shortest interval of 4 h and ibuprofen 10 mg/kg per dose with shortest interval of 6 h and the shortest interval between acetaminophen and ibuprofen ≥2 h; n = 158), (2) acetaminophen monotherapy (10 mg/kg per dose with shortest interval of 4 h; n = 158), or (3) ibuprofen monotherapy (10 mg/kg per dose with shortest interval of 6 h; n = 158). The mean Non-Communicating Children's Pain Checklist (NCCPC) score was measured every 4 h, and axillary temperatures were measured every 2 h. In total, 471 children were included in an intention-to-treat analysis. No significant clinical or statistical difference was found in mean NCCPC score or temperature during the 24-h treatment period in all febrile children across the three groups. Although the proportion of children with refractory fever for 4 h and 6 h was significantly lower in the alternating group than in the monotherapy groups (4 h: 11.54% vs. 26.58% vs. 21.66%, respectively [p = 0.003]; 6 h: 3.85% vs. 10.13% vs. 17.83%, respectively [p < 0.001]), the mean NCCPC score of children with refractory fever for 4 or 6 h was not lower than those in either of the monotherapy groups. The number of patients who developed persistent high body temperature was consistent across all study groups. Alternating acetaminophen and ibuprofen can reduce the proportion of children with refractory fever, but if one cycle

  18. Rofecoxib-induced hepatotoxicity: A forgotten complication of the coxibs

    PubMed Central

    Yan, Brian; Leung, Yvette; Urbanski, Stefan J; Myers, Robert P

    2006-01-01

    Rofecoxib is a member of the coxib family of nonsteroidal anti-inflammatory drugs that selectively inhibit cyclooxygenase-2. Although the coxibs are generally well-tolerated, rofecoxib was recently withdrawn from the market due to concerns regarding cardiovascular safety. Rare cases of hepatic injury attributable to the coxibs have been reported. In the present study, two additional cases of severe hepatotoxicity are described in patients with cholestatic symptoms and abnormal liver biochemistry, shortly following the initiation of rofecoxib for arthritic complaints. In both cases, liver histology was compatible with drug-induced hepatotoxicity, and rapid clinical and biochemical improvements were observed following rofecoxib discontinuation. With new coxibs and expanding indications on the horizon, physicians in all areas of practice must be aware of this disorder and consider it in any patient who develops hepatic dysfunction after taking a coxib. PMID:16691302

  19. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.

    PubMed

    Woolbright, Benjamin L; Jaeschke, Hartmut

    2017-04-01

    Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Can a serum acetaminophen concentration obtained less than 4 hours post-ingestion determine which patients do not require treatment with acetylcysteine?

    PubMed

    Yarema, Mark C; Green, Jason P; Sivilotti, Marco L A; Johnson, David W; Nettel-Aguirre, Alberto; Victorino, Charlemaigne; Spyker, Daniel A; Rumack, Barry H

    2017-02-01

    The interpretation of acetaminophen concentrations obtained prior to 4 hours after an acute, single overdose remains unclear. Patient care decisions in the Emergency Department could be accelerated if such concentrations could reliably exclude the need for treatment. To determine the agreement between a serum acetaminophen concentration obtained less than 4 hours after an acute ingestion and the subsequent 4 + hour concentration, and the predictive accuracy of early concentrations for identifying patients with potentially toxic exposures. A secondary analysis of patients admitted for acetaminophen poisoning at one of the 34 hospitals in eight Canadian cities from 1980 to 2005. We examined serum acetaminophen concentrations obtained less than 4 hours post-ingestion, and again 4 or more hours post-ingestion. For the diagnostic accuracy analysis, we specified a cutpoint of 100 μg/mL (662 μmol/L) obtained between 2 and 4 hours and a subsequent 4 to 20 hour acetaminophen concentration above the nomogram treatment line of 150 μg/mL (993 μmol/L). Of 2454 patients identified, 879 (36%) had a subsequent acetaminophen concentration above the nomogram treatment line. The 2-4 hour concentration demonstrated a sensitivity of 0.96 [95% CI; 0.94, 0.97] and a negative likelihood ratio of 0.070 [0.048, 0.10]. Coingested opioids reduced this sensitivity to 0.91 [0.83, 0.95], and antimuscarinics to 0.86 [0.72, 0.94]. Only very low to undetectable acetaminophen concentrations prior to 4 hours reliably excluded a subsequent concentration over the treatment line. Applying an acetaminophen concentration cutpoint of 100 μg/mL (662 μmol/L) at 2-4 hours after an acute ingestion as a threshold for repeat testing and/or treatment would occasionally miss potentially toxic exposures. Absorption of acetaminophen is only slightly delayed by coingested opioids or antimuscarinics. Our analysis validates the practice of not retesting when the first post-ingestion acetaminophen