Sample records for acetate acetone methanol

  1. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  3. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Free energy of mixing of acetone and methanol: a computer simulation investigation.

    PubMed

    Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál

    2013-12-19

    The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.

  5. Elimination of the azeotropic point of acetone and methanol by 1,3-dimethylimidazolium dimethylphosphate: an ab initio calculation study.

    PubMed

    Yu, Guangren; Liu, Xiaomin; Zhang, Xiaochun; Chen, Xiaochun; Liu, Zhiping; Abdeltawab, Ahmed A

    2017-03-01

    1,3-Dimethylimidazolium dimethylphosphate ([C 1 mim][DMP]) was observed experimentally to be able to eliminate the atmospheric azeotropic point of acetone and methanol, which is an important azeotrope generally encountered in furfural production and the Fischer-Tropsch process. Here, we employed ab initio calculation to understand the underlying mechanism of [C 1 mim][DMP] in eliminating the azeotropic point of acetone and methanol. Structure, energy and interaction in binary-, ternary- and quaternary-clusters composed of methanol, acetone, [C 1 mim] + or/and [DMP]‾ were calculated. The σ-hole, AIM and NBO analyses were performed to understand intermolecular interaction with electron density, electron occupancy, charge transfer and molecular orbital interaction. Hydrogen bond interaction plays a key role in azeotropic point elimination; due to the much stronger hydrogen bond interaction between methanol and [C 1 mim][DMP] than that between acetone and [C 1 mim][DMP], [C 1 mim][DMP] prefers to interact with methanol rather than acetone, and the original interaction between methanol and acetone is separated by [C 1 mim][DMP]. The hydrogen bond is from the orbital interaction between O lone-pair-electron orbitals of the hydrogen bond acceptor and σ * (C-H) or σ * (O-H) anti-bonding orbitals of the hydrogen bond donor, where remarkable electron or charge transfer occurs. These theoretical calculation results are in agreement with the experimental observation that [C 1 mim][DMP] eliminates the azeotropic point of methanol and acetone. This work shows that ab initio calculation may be employed to rationalize the design or synthesis of ionic liquids for separating azeotropes. Graphical Abstract Elimination of azeotropic point of acetone and methanol by [C 1 mim][DMP].

  6. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  7. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Wang, Jingkang; Wang, Yongli

    2005-02-01

    The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.

  8. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    PubMed

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  9. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    PubMed Central

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetateacetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  10. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  11. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    PubMed

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  13. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    PubMed

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  14. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    PubMed

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts.

    PubMed

    Wu, Ying; Chen, Huiyong; Xiao, Jing; Liu, Defei; Liu, Zewei; Qian, Yu; Xi, Hongxia

    2015-12-09

    The adsorptive separation properties of M-BTC isostructural series (M = Ti, Fe, Cu, Co, Ru, Mo) for methanol-acetone mixtures were investigated by using various computational procedures of grand canonical Monte Carlo simulations (GCMC), density functional theory (DFT), and ideal adsorbed solution theory (IAST), following with comprehensive understanding of adsorbate-metal interactions on the adsorptive separation behaviors. The obtained results showed that the single component adsorptions were driven by adsorbate-framework interactions at low pressures and by framework structures at high pressures, among which the mass effects, electrostatics, and geometric accessibility of the metal sites also played roles. In the case of methanol-acetone separation, the selectivity of methanol on M-BTCs decreased with rising pressures due to the pressure-dependent separation mechanisms: the cooperative effects between methanol and acetone hindered the separation at low pressures, whereas the competitive effects of acetone further resulted in the lower selectivity at high pressures. Among these M-BTCs, Ti and Fe analogues exhibited the highest thermodynamic methanol/acetone selectivity, making them promising for adsorptive methanol/acetone separation processes. The investigation provides mechanistic insights on how the nature of metal centers affects the adsorption properties of MOFs, and will further promote the rational design of new MOF materials for effective gas mixture separation.

  17. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  18. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media(5-8) that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid,more » which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. Here, we find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolitesupported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. Finally, we anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol

  19. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    DOE PAGES

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; ...

    2017-11-30

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media(5-8) that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid,more » which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. Here, we find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolitesupported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. Finally, we anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol

  20. Methanogenic degradation of acetone by an enrichment culture.

    PubMed

    Platen, H; Schink, B

    1987-01-01

    An anaerobic enrichment culture degraded 1 mol of acetone to 2 mol of methane and 1 mol of carbon dioxide. Two microorganisms were involved in this process, a filament-forming rod similar to Methanothrix sp. and an unknown rod with round to slightly pointed ends. Both organisms formed aggregates up to 300 micron in diameter. No fluorescing bacteria were observed indicating that hydrogen or formate-utilizing methanogens are not involved in this process. Acetate was utilized in this culture by the Methanothrix sp. Inhibition of methanogenesis by bromoethanesulfonic acid or acetylene decreased the acetone degradation rate drastically and led to the formation of 2 mol acetate per mol of acetone. Streptomycin completely inhibited acetone degradation, and neither acetate nor methane was formed. 14CO2 was incorporated exclusively into the C-1 atom of acetate indicating that acetone is degraded via carboxylation to an acetoacetate residue. It is concluded that acetone is degraded by a coculture of an eubacterium and an acetate-utilizing methanogen and that acetate is the only intermediate transferred between both. The energetical problems of the eubacterium converting acetone to acetate are discussed.

  1. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory

  2. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  3. Influence of moisture on the crystal forms of niclosamide obtained from acetone and ethyl acetate.

    PubMed

    Manek, Rahul V; Kolling, William M

    2004-03-04

    The purpose of this study was to elucidate the formation of crystal hydrates of niclosamide and to delineate the effect of relative humidity on the crystal forms obtained from acetone and ethyl acetate. Recrystallization of niclosamide was performed in the presence and absence of moisture. Two hydrates and their corresponding anhydrates were isolated. The hydrates obtained by the process of recrystallization from acetone (Form I) and that obtained from ethyl acetate (Form II) were classified based on differences in their dehydration profile, crystal structure, shape, and morphology. Crystals obtained in the absence of moisture were unstable, and when exposed to the laboratory atmosphere transformed to their corresponding hydrates. Differential scanning calorimetry thermograms indicate that Form I changes to an anhydrate at temperatures below 100 degrees C, while Form II dehydrates in a stepwise manner above 140 degrees C. This finding was further confirmed by thermogravimetric analysis. Dehydration of Form II was accompanied by a loss of structural integrity, demonstrating that water molecules play an important role in maintaining its crystal structure. Form I, Form II, and the anhydrate of Form II showed no significant moisture sorption over the entire range of relative humidity. Although the anhydrate of Form I did not show any moisture uptake at low humidity, it converted to the monohydrate at elevated relative humidity (>95%). All forms could be interconverted depending on the solvent and humidity conditions.

  4. Products from the Oxidation of n-Butane from 298 to 735 K Using Either Cl Atom or Thermal Initiation: Formation of Acetone and Acetic Acid-Possible Roaming Reactions?

    PubMed

    Kaiser, E W; Wallington, T J

    2017-11-16

    The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl 2 ) with n-butane generated the 2-butyl radicals in mixtures of n-C 4 H 10 , O 2 , and Cl 2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition

  5. A systemic view on the distribution of diet-derived methanol and hepatic acetone in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Höllriegl, Vera; Matuschek, Georg; Zimmermann, Ralf; Hoeschen, Christoph; de Angelis, Martin Hrabě; Rozman, Jan

    2017-12-06

    Volatile organic compounds (VOCs) from breath can successfully be used to diagnose disease-specific pathological alterations in metabolism. However, the exact origin and underlying biochemical pathways that could be mapped to VOC signatures are mainly unknown. There is a knowledge gap regarding the contribution of tissues, organs, the gut microbiome, and exogenous factors to the 'sum signal' from breath samples. Animal models for human disease such as mutant mice provide the possibility to reproduce genetic predisposition to disease, thereby allowing in-depth analysis of metabolic and biochemical functions. We hypothesized that breath VOCs can be traced back to origins and organ-specific metabolic functions by combining breath concentrations with systemic levels detected in different organs and biological media (breath, blood, feces and urine). For this we fed C57Bl/6N mice a grain-based chow or a purified low-fat diet, thereby modifying the emission of methanol in breath whereas acetone levels were unaffected. We then measured headspace concentrations of both VOCs in ex vivo samples of several biological media. Cecum content especially was identified as a likely source of systemic methanol, whereas the liver showed highest acetone concentrations. Our findings are a first step to the systemic mapping of VOC patterns to metabolic functions in mice because differences between VOCs could be traced to different sources in the body. As a future aim, different levels of so-called omics technologies (genomics, proteomics, metabolomics, and breathomics) could be mapped to metabolic pathways in multiple tissues, deepening our understanding of VOC metabolism and possibly leading to early non-invasive biomarkers for human pathologies.

  6. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szanyi, János; Kwak, Ja Hun

    2015-09-01

    In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in themore » gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank

  7. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  9. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    PubMed

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  10. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (t R) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  11. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rowsmore » of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)« less

  12. Efficacy of indigenous plant extracts on the malaria vector Anopheles subpictus Grassi (Diptera: Culicidae)

    PubMed Central

    Elango, G.; Zahir, A. Abduz; Bagavan, A.; Kamaraj, C.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of plant origin may serve as suitable alternative biocontrol techniques in the future. The purpose of the present study was to assess the ethyl acetate, acetone and methanol extracts of Andrographis paniculata, Eclipta prostrata and Tagetes erecta leaves tested for oviposition-deterrent, ovicidal and repellent activities against malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). Methods: The dried leaves of the three plants were powdered mechanically and extracted with ethyl acetate, acetone and methanol. One gram of crude extract was first dissolved in 100 ml of acetone (stock solution). From the stock solution, test solution concentrations of 31.21- 499.42 mg/l for oviposition- deterrence assay and repellency and 15.60 - 998.85 mg/l were used in ovicidal assay. The percentage oviposition- deterrence, hatching rate of eggs and protection time were calculated. One-way analysis of variance was used for the multiple concentration tests and for per cent mortality to determine significant treatment differences. Results: The percentage of effective oviposition repellency was highest at 499.42 mg/l and the lowest at 31.21 mg/l in ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta. The oviposition activity index (OAI) value of ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta at 499.42 mg/l were -0.91, -0.93, -0.84, -0.84, -0.87, -0.82, -0.87, -0.89 and -0.87, respectively. Mortality (no egg hatchability) was 100 per cent with ethyl acetate and methanol extracts of A. paniculata, E. prostrata and T. erecta at 998.85 mg/l. The maximum adult repellent activity was observed at 499.42 mg/l in ethyl acetate extracts of A. paniculata, E. prostrata and methanol extracts of T. erecta, and the mean complete protection time ranged from 120 to 150 min with

  13. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displacedmore » from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.« less

  14. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  15. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    NASA Astrophysics Data System (ADS)

    Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile

    2017-01-01

    Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.

  16. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  17. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    NASA Astrophysics Data System (ADS)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  19. Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus.

    PubMed

    Kamaraj, C; Bagavan, A; Elango, G; Zahir, A Abduz; Rajakumar, G; Marimuthu, S; Santhoshkumar, T; Rahuman, A Abdul

    2011-07-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year and the development of resistance to chemical insecticides resulting in rebounding vectorial capacity. Plants may be alternative sources of mosquito control agents. The present study assessed the role of larvicidal activities of hexane, chloroform, ethyl acetate, acetone, and methanol dried leaf and bark extracts of Annona squamosa L., Chrysanthemum indicum L., and Tridax procumbens L. against the fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Larvicidal activities of three medicinal plant extracts were studied in the range of 4.69 to 1000 mg/l in the laboratory bioassays against early 4 th instar larvae of An. subpictus and Cx. tritaeniorhynchus. The mortality data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) to kill 50 and 90 per cent of the treated larvae of the respective species. All plant extracts showed moderate effects after 24 h of exposure; however, the highest toxic effect of bark methanol extract of A. squamosa, leaf ethyl acetate extract of C. indicum and leaf acetone extract of T. procumbens against the larvae of An. subpictus (LC 50 = 93.80, 39.98 and 51.57 mg/l) and bark methanol extract of A. squamosa, leaf methanol extract of C. indicum and leaf ethyl acetate extract of T. procumbens against the larvae of Cx. tritaeniorhynchus (LC50 =104.94, 42.29 and 69.16 mg/l) respectively. Our data suggest that the bark ethyl acetate and methanol extract of A. squamosa, leaf ethyl acetate and methanol extract of C. indicum, acetone and ethyl acetate extract of T. procumbens have the potential to be used as an ecofriendly approach for the control of the An. subpictus, and Cx. tritaeniorhynchus.

  20. Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus

    PubMed Central

    Kamaraj, C.; Bagavan, A.; Elango, G.; Zahir, A. Abduz; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquitoes transmit serious human diseases, causing millions of deaths every year and the development of resistance to chemical insecticides resulting in rebounding vectorial capacity. Plants may be alternative sources of mosquito control agents. The present study assessed the role of larvicidal activities of hexane, chloroform, ethyl acetate, acetone, and methanol dried leaf and bark extracts of Annona squamosa L., Chrysanthemum indicum L., and Tridax procumbens L. against the fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Methods: Larvicidal activities of three medicinal plant extracts were studied in the range of 4.69 to 1000 mg/l in the laboratory bioassays against early 4th instar larvae of An. subpictus and Cx. tritaeniorhynchus. The mortality data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) to kill 50 and 90 per cent of the treated larvae of the respective species. Results: All plant extracts showed moderate effects after 24 h of exposure; however, the highest toxic effect of bark methanol extract of A. squamosa, leaf ethyl acetate extract of C. indicum and leaf acetone extract of T. procumbens against the larvae of An. subpictus (LC50 = 93.80, 39.98 and 51.57 mg/l) and bark methanol extract of A. squamosa, leaf methanol extract of C. indicum and leaf ethyl acetate extract of T. procumbens against the larvae of Cx. tritaeniorhynchus (LC50 =104.94, 42.29 and 69.16 mg/l) respectively. Interpretation & Conclusions: Our data suggest that the bark ethyl acetate and methanol extract of A. squamosa, leaf ethyl acetate and methanol extract of C. indicum, acetone and ethyl acetate extract of T. procumbens have the potential to be used as an ecofriendly approach for the control of the An. subpictus, and Cx. tritaeniorhynchus. PMID:21808141

  1. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

  3. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

    PubMed Central

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-01-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  4. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    PubMed

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.

    PubMed

    Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol

    2017-07-01

    Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

  6. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  7. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  8. Evaluation of medicinal plant extracts against blood-sucking parasites.

    PubMed

    Kamaraj, Chinnaperumal; Rahuman, Abdul Abdul; Bagavan, Asokan; Elango, Gandhi; Rajakumar, Govindasamy; Zahir, Abdul Abduz; Marimuthu, Sampath; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram

    2010-05-01

    The present study was based on assessments of the antiparasitic activities to determine the efficacies of acetone, chloroform, ethyl acetate, hexane, and methanol dried leaf, flower, and seed extracts of Cassia auriculata L., Rhinacanthus nasutus KURZ., Solanum torvum Swartz, Terminalia chebula Retz., and Vitex negundo Linn. were tested against larvae of cattle tick Rhipicephalus (Boophilus) microplus Canestrini, 1887 (Acari: Ixodidae), adult of Haemaphysalis bispinosa Neumann, 1897 (Acarina: Ixodidae), hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae), nymph of goat-lice Damalinia caprae Gurlt (Trichodectidae), and adult sheep parasite Paramphistomum cervi Zeder, 1790 (Digenea: Paramphistomatidae). All plant extracts showed moderate parasitic effects after 24 h of exposure at 3,000 ppm; however, the highest parasite mortality was found in leaf ethyl acetate, flower methanol of C. auriculata, leaf and seed methanol of S. torvum, seed acetone of T. chebula, and leaf hexane extracts of V. negundo against the larvae of R. microplus (LC(50) = 335.48, 309.21, 297.43, 414.99, 167.20, and 611.67 ppm; LC(90) = 1571.58, 1111.82, 950.98, 1243.64, 595.31, and 1875.50 ppm), the leaf and flower methanol of R. nasutus, leaf and seed methanol of S. torvum, and seed methanol extracts of T. chebula against the nymph of D. caprae (LC(50) = 119.26,143.10,164.93,140.47, and 155.98 ppm; LC(90) = 356.77, 224.08, 546.20, 479.72, and 496.06 ppm), the leaf methanol of R. nasutus, leaf and seed methanol of S.torvum, and seed acetone of T. chebula against the adult of H. bispinosa (LC(50) = 333.15, 328.98, 312.28, and 186.46 ppm; LC(90) = 1056.07, 955.39, 946.63, and 590.76 ppm), the leaf methanol of C. auriculata, the leaf and flower methanol of R. nasutus, the leaf ethyl acetate of S. torvum against the H. maculata (LC(50) = 303.36, 177.21, 204.58, and 211.41 ppm; LC(90) = 939.90, 539.39, 599.43, and 651.90 ppm), and the leaf acetone of C. auriculata, the flower methanol

  9. [Growth inhibition of the four species of red tide microalgae by extracts from Enteromorpha prolifera extracted with the five solvents].

    PubMed

    Sun, Ying-Ying; Liu, Xiao-Xiao; Wang, Chang-Hai

    2010-06-01

    To study the effects of extracts of Enteromorpha prolifera on the growth of the four species of red tide microalgae (Amphidinium hoefleri, Karenia mikimitoi, Alexandrium tamarense and Skeletonema costatum), the extracts were extracted with five solvents (methanol, acetone, ethyl acetate, chloroform and petroleum ether), respectively. Based on the observation of algal morphology and the measurement of algal density, cell size and the contents of physiological indicators (chlorophyll, protein and polysaccharide), the results showed methanol extracts of E. prolifera had the strongest action. The inhibitory effects of A. hoefleri, K. mikimitoi, A. tamarense and S. costatum by the methanol extracts were 54.0%, 48.1%, 44.0% and 37.5% in day 10, respectively. The extracts of E. prolifera extracted with methanol, acetone and ethyl acetate caused cavities, pieces and pigment reduction in cells, and those with chloroform and petroleum ether caused goffers on cells. The extracts of E. prolifera extracted with all the five solvents decreased athletic ability of the cells, among which those extracted with ethyl acetate, chloroform and petroleum ether decreased cell size of test microalgae. The further investigation found that the methanol extracts significantly decreased contents of chlorophyll, protein and polysaccharide in the cells of those microalgae. The inhibitory effect of chlorophyll, protein and polysaccharide contents of four species of microalgae by the methanol extracts was about 51%. On the basis of the above experiments, dry powder of E. prolifera were extracts with methanol, and extracts were obtained. The methanol extracts were partitioned to petroleum ether phase, ethyl acetate phase, n-butanol phase and distilled water phase by liquid-liquid fractionation, and those with petroleum ether and ethyl acetate significantly inhibited the growth of all test microalgae, and the inhibitory effect of four species of microalgae by those two extracts was above 25% in day

  10. Covalent binding of acetone to aminophospholipids in vitro and in vivo.

    PubMed

    Kuksis, Arnis; Ravandi, Amir; Schneider, Michael

    2005-06-01

    We have determined the ions characteristic of acetone adducts of reference aminophospholipids and have used them as markers for identification of acetone adducts of aminophospholipids in commercial lecithin, acetone extracts of tissue lipids, and in plasma and red blood cells of diabetic subjects. The acetonation products were determined by normal-phase high-performance liquid chromatography (HPLC) with on-line electrospray-mass spectrometry, and electrospray/collision-induced dissociation in the negative ion mode. The major acetone complexes of PtdEtn and PtdSer were identified as the diacetone derivatives [PtdEtn+116-H2O]- and [PtdSer+116-H2O]-, respectively, although ions corresponding to monoacetone [PtdEtn+58-H2O]- and doubly dehydrated diacetone adducts [PtdSer+116-2 x 18]- were also observed. Upon increase of the capillary exit voltage (CapEx) from -160 to -300 V, new ions appeared with the original retention time but with 58 masses (one acetone molecule) lower than the mass of the parent compounds, along with fragment ions corresponding to lysoGPE+40 and free fatty acids. Scanning of chloroform/methanol extracts of red blood cell lipids of two of five diabetic subjects examined yielded elevated levels (in relation to nondiabetic subjects) for ions corresponding to the diacetone adducts [M+98]- of the major molecular species of PtdEtn and PtdSer. Because of possible overlap with major molecular species of PtdIns, the identification of the acetonated PtdSer in diabetic blood requires further confirmation.

  11. Acetone Chemistry on Oxidized and Reduced TiO 2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A

    2004-12-09

    The chemistry of acetone on the oxidized and reduced surfaces of TiO 2(110) was examined using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The reduced surface was prepared with about 7% oxygen vacancy sites by annealing in ultrahigh vacuum (UHV) at 850 K, and the oxidized surface was prepared by exposure of the reduced surface to molecular oxygen at 95 K followed by heating the surface to a variety of temperatures between 200 and 500 K. Acetone adsorbs molecularly on the reduced surface with no evidence for either decomposition or preferential binding at vacancy sites.more » Based on HREELS, the majority of acetone molecules adsorbed in an η¹ configuration at Ti⁴⁺ sites through interaction of lone pair electrons on the carbonyl oxygen atom. Repulsive acetone-acetone interactions shift the desorption peak from 345 K at low coverage to 175 K as the first layer saturates with a coverage of ~ 1 ML. In contrast, about 7% of the acetone adlayer decomposes when the surface is pretreated with molecular oxygen. Acetate is among the detected decomposition products, but only comprises about 1/3rd of the amount of acetone decomposed and its yield depends on the temperature at which the O₂ exposed surface was preheated to prior to acetone adsorption. Aside from the small level of irreversible decomposition, about 0.25 ML of acetone is stabilized to 375 K by coadsorbed oxygen. These acetone species exhibit an HREELS spectrum unlike that of η¹-acetone or of any other species proposed to exist from the interaction of acetone with TiO₂ powders. Based on the presence of extensive ¹⁶O/¹⁸O exchange between acetone and coadsorbed oxygen in the 375 K acetone TPD state, it is proposed that a polymeric form of acetone forms on the TiO₂(110) surface through nucleophilic attack of oxygen on the carbonyl carbon atom of acetone, and is propagated to neighboring η¹-acetone molecules. This process is initiated

  12. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    PubMed

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  13. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591.

    PubMed

    Basri, Dayang Fredalina; Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents.

  14. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  15. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  16. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  17. Phytochemical analysis, hepatoprotective and antioxidant activity of Alchornea cordifolia methanol leaf extract on carbon tetrachloride-induced hepatic damage in rats.

    PubMed

    Osadebe, Patience O; Okoye, Festus B C; Uzor, Philip F; Nnamani, Nneka R; Adiele, Ijeoma E; Obiano, Nkemakonam C

    2012-04-01

    To investigate the hepatoprotective and antioxidant activities of Alchornea cordifolia (A. cordifolia) leaf extract. Various solvent fractions of the methanol extract of the leaf of the plant A. cordifolia Mull. Arg (Fam: Euphorbiaceae) were evaluated for hepatoprotective activity by carbon tetrachloride-induced liver damage in rats. The degree of protection was measured by using biochemical parameters such as serum glutamate oxalate transaminase (SGOT/AST), serum glutamate pyruvate transaminase (SGPT/ALT), alkaline phosphatase (ALP) and total bilirubin. The in vitro antioxidant activity of the extract was also evaluated by the 1, 1-diphenyl- 2-picrylhydrazyl (DPPH) free radical scavenging assay. The extract was subjected to preliminary phytochemical screening. The ethyl acetate and chloroform fractions, at a dose of 300 mg/kg, produced significant (P<0.05) hepatoprotection by decreasing the activities of the serum enzymes and bilirubin while there were marked scavenging of the DPPH free radicals by the fractions. The effects were comparable to those of the standard drugs used for the respective experiments, silymarin and ascorbic acid. Alkaloids, flavonoids, saponins and tannins were detected in the phytochemical screening. From this study, it was concluded that the plant of A. cordifolia possesses hepatoprotective as well as antioxidant activities and these activities reside mainly in the ethyl acetate and acetone fractions of methanol leaf extract. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Reactivity and reaction intermediates for acetic acid adsorbed on CeO 2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO 2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO 2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone andmore » acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  19. Role of the Cu-ZrO 2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO 2 and H 2 [The Role of the Cu-ZrO 2 Interfacial Sites for Ethanol Conversion to Ethyl Acetate and Methanol Synthesis from CO 2 and H 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ro, Insoo; Liu, Yifei; Ball, Madelyn R.

    Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less

  20. Role of the Cu-ZrO 2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO 2 and H 2 [The Role of the Cu-ZrO 2 Interfacial Sites for Ethanol Conversion to Ethyl Acetate and Methanol Synthesis from CO 2 and H 2

    DOE PAGES

    Ro, Insoo; Liu, Yifei; Ball, Madelyn R.; ...

    2016-09-06

    Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less

  1. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591

    PubMed Central

    Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  2. EVALUATION OF THE CHELATING EFFECT OF METHANOLIC EXTRACT OF CORIANDRUM SATIVUM AND ITS FRACTIONS ON WISTAR RATS POISONED WITH LEAD ACETATE.

    PubMed

    Téllez-López, Miguel Ángel; Mora-Tovar, Gabriela; Ceniceros-Méndez, Iromi Marlen; García-Lujan, Concepción; Puente-Valenzuela, Cristo Omar; Vega-Menchaca, María Del Carmen; Serrano-Gallardo, Luis Benjamín; Garza, Rubén García; Morán-Martínez, Javier

    2017-01-01

    The rate of lead poisoning has decreased in recent years due to increased health control in industries that use this metal. However, it is still a public health problem worldwide. The use of various plants with chelating properties has been a topic of research today. In traditional medicine, it is said that Coriandrum sativum has chelating properties, but there is no scientific evidence to support this fact. The purpose of this research is to evaluate the chelating effect of methanol extract of coriander and its fractions on Wistar rats intoxicated with lead. In this research, male Wistar rats were poisoned with 50 mg/kg of lead acetate and treated with 50 mg/kg of methanol extract and its fractions. The extract and its fractions were administered to four treatment groups. Positive and negative controls were established. Hemoglobin, hematocrit and lead concentrations were analyzed; liver was evaluated histologically in control and treatment groups. The methanol extract of coriander presented a LD 50 >1000 mg/dL. The group administered with the methanol extract showed significant difference in the levels of hemoglobin and hematocrit compared to the negative control group. Lead concentration in treatment groups showed a decrease compared to the positive control. Histological evaluation of tissue showed less damage in groups administered with methanolic extract and its fractions compared to the positive control which presented structural alterations. Coriander extracts protect liver and lower lead concentration in rats intoxicated with lead in contrast to the positive control group.

  3. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.

    PubMed

    Choi, Soo Jung; Hong, Yong Deog; Lee, Bumjin; Park, Jun Seong; Jeong, Hyun Woo; Kim, Wan Gi; Shin, Song Seok; Yoon, Kee Dong

    2015-07-21

    Leaves from Camellia sienensis are a popular natural source of various beverage worldwide, and contain caffeine and polyphenols derived from catechin analogues. In the current study, caffeine (CAF, 1) and three tea polyphenols including (-)-epigallocatechin 3-O-gallate (EGCg, 2), (-)-gallocatechin 3-O-gallate (GCg, 3), and (-)-epicatechin 3-O-gallate (ECg, 4) were isolated and purified by flow-rate gradient high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:9:1:9, v/v). Two hundred milligrams of acetone-soluble extract from fermented C. sinensis leaves was separated by HPCCC to give 1 (25.4 mg), 2 (16.3 mg), 3 (11.1 mg) and 4 (4.4 mg) with purities over 98%. The structures of 1-4 were elucidated by QTOF-MS, as well as 1H- and 13C-NMR, and the obtained data were compared to the previously reported values.

  4. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  5. EVALUATION OF THE CHELATING EFFECT OF METHANOLIC EXTRACT OF CORIANDRUM SATIVUM AND ITS FRACTIONS ON WISTAR RATS POISONED WITH LEAD ACETATE

    PubMed Central

    Téllez-López, Miguel Ángel; Mora-Tovar, Gabriela; Ceniceros-Méndez, Iromi Marlen; García-Lujan, Concepción; Puente-Valenzuela, Cristo Omar; Vega-Menchaca, María del Carmen; Serrano-Gallardo, Luis Benjamín; Garza, Rubén García; Morán-Martínez, Javier

    2017-01-01

    Background: The rate of lead poisoning has decreased in recent years due to increased health control in industries that use this metal. However, it is still a public health problem worldwide. The use of various plants with chelating properties has been a topic of research today. In traditional medicine, it is said that Coriandrum sativum has chelating properties, but there is no scientific evidence to support this fact. The purpose of this research is to evaluate the chelating effect of methanol extract of coriander and its fractions on Wistar rats intoxicated with lead. Materials and Methods: In this research, male Wistar rats were poisoned with 50 mg/kg of lead acetate and treated with 50 mg/kg of methanol extract and its fractions. The extract and its fractions were administered to four treatment groups. Positive and negative controls were established. Hemoglobin, hematocrit and lead concentrations were analyzed; liver was evaluated histologically in control and treatment groups. Results: The methanol extract of coriander presented a LD50 >1000 mg/dL. The group administered with the methanol extract showed significant difference in the levels of hemoglobin and hematocrit compared to the negative control group. Lead concentration in treatment groups showed a decrease compared to the positive control. Histological evaluation of tissue showed less damage in groups administered with methanolic extract and its fractions compared to the positive control which presented structural alterations. Conclusion: Coriander extracts protect liver and lower lead concentration in rats intoxicated with lead in contrast to the positive control group. PMID:28573226

  6. Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, K; Murugan, K; Vincent, S; Barnard, Donald R

    2012-04-01

    To determine the mosquito larvicidal activities of hexane, chloroform, ethyl acetate, acetone and methanol leaf extract of Orthosiphon thymiflorus (O. thymiflorus) against Anopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus) and Aedes aegypti (Ae. aegypti). The larvicidal activity was assayed against three mosquito species at various concentrations ranging from (50-450 ppm) under the laboratory conditions. The LC(50) and LC(90) value of the O. thymiflorus leaf extract was determined by Probit analysis. The LC(50) values of hexane, chloroform, ethyl acetate, acetone and methanol extract of O. thymiflorus third instar larvae of An. stephensi were LC(50)= 201.39, 178.76, 158.06, 139.22 and 118.74 ppm; Cx. quinquefasciatus were LC(50)=228.13, 209.72, 183.35, 163.55 and 149.96 ppm and Ae. aegypti were LC(50)=215.65, 197.91, 175.05, 154.80 and 137.26 ppm, respectively. Maximum larvicidal activity was observed in the methanolic extract followed by acetone, ethyl acetate chloroform and hexane extract. The larval mortality was observed after 24 h exposure. No mortality was observed in control. The present results suggest that the effective plant crude extracts have potential to be used as an ideal eco-friendly approach for the control of mosquito vectors. This study provides the first report on the larvicidal activity of this plant crude solvent extract of against An. stephensi, Cx. quinquefasciatus and Ae. aegypti mosquitoes. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Vincent, Savariar

    2012-02-01

    The leaf extract of Acalypha alnifolia with different solvents - hexane, chloroform, ethyl acetate, acetone and methanol - were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC(50) = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC(90) = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC(50) = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC(90) = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC(50) = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC(90) = 458.73, 430

  8. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph

    DOE PAGES

    Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian; ...

    2017-12-05

    Synthetic methylotrophy aims to develop non-native methylotrophic microorganisms to utilize methane or methanol to produce chemicals and biofuels. We report two complimentary strategies to further engineer a previously engineered methylotrophic E. coli strain for improved methanol utilization. First, we demonstrate improved methanol assimilation in the presence of small amounts of yeast extract by expressing the non-oxidative pentose phosphate pathway (PPP) from Bacillus methanolicus. Second, we demonstrate improved co-utilization of methanol and glucose by deleting the phosphoglucose isomerase gene ( pgi), which rerouted glucose carbon flux through the oxidative PPP. Both strategies led to significant improvements in methanol assimilation as determinedmore » by 13C-labeling in intracellular metabolites. As a result, introduction of an acetone-formation pathway in the pgi-deficient methylotrophic E. coli strain led to improved methanol utilization and acetone titers during glucose fed-batch fermentation.« less

  9. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian

    Synthetic methylotrophy aims to develop non-native methylotrophic microorganisms to utilize methane or methanol to produce chemicals and biofuels. We report two complimentary strategies to further engineer a previously engineered methylotrophic E. coli strain for improved methanol utilization. First, we demonstrate improved methanol assimilation in the presence of small amounts of yeast extract by expressing the non-oxidative pentose phosphate pathway (PPP) from Bacillus methanolicus. Second, we demonstrate improved co-utilization of methanol and glucose by deleting the phosphoglucose isomerase gene ( pgi), which rerouted glucose carbon flux through the oxidative PPP. Both strategies led to significant improvements in methanol assimilation as determinedmore » by 13C-labeling in intracellular metabolites. As a result, introduction of an acetone-formation pathway in the pgi-deficient methylotrophic E. coli strain led to improved methanol utilization and acetone titers during glucose fed-batch fermentation.« less

  10. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents.

    PubMed

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent-independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and

  11. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents

    PubMed Central

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent–independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus

  12. Behavior of 11 Foodborne Bacteria on Whole and Cut Mangoes var. Ataulfo and Kent and Antibacterial Activities of Hibiscus sabdariffa Extracts and Chemical Sanitizers Directly onto Mangoes Contaminated with Foodborne Bacteria.

    PubMed

    Rangel-Vargas, Esmeralda; Luna-Rojo, Anais M; Cadena-Ramírez, Arturo; Torres-Vitela, Refugio; Gómez-Aldapa, Carlos A; Villarruel-López, Angélica; Téllez-Jurado, Alejandro; Villagómez-Ibarra, José R; Reynoso-Camacho, Rosalía; Castro-Rosas, Javier

    2018-05-01

    The behavior of foodborne bacteria on whole and cut mangoes and the antibacterial effect of Hibiscus sabdariffa calyx extracts and chemical sanitizers against foodborne bacteria on contaminated mangoes were investigated. Mangoes var. Ataulfo and Kent were used in the study. Mangoes were inoculated with Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Escherichia coli strains (O157:H7, non-O157:H7 Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative). The antibacterial effect of five roselle calyx extracts (water, ethanol, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria were evaluated on contaminated mangoes. The dry extracts obtained with ethanol, methanol, acetone, and ethyl acetate were analyzed by nuclear magnetic resonance spectroscopy to determine solvent residues. Separately, contaminated whole mangoes were immersed in five hibiscus extracts and in sanitizers for 5 min. All foodborne bacteria attached to mangoes. After 20 days at 25 ± 2°C, all foodborne bacterial strains on whole Ataulfo mangoes had decreased by approximately 2.5 log, and on Kent mangoes by approximately 2 log; at 3 ± 2°C, they had decreased to approximately 1.9 and 1.5 log, respectively, on Ataulfo and Kent. All foodborne bacterial strains grew on cut mangoes at 25 ± 2°C; however, at 3 ± 2°C, bacterial growth was inhibited. Residual solvents were not detected in any of the dry extracts by nuclear magnetic resonance. Acetonic, ethanolic, and methanolic roselle calyx extracts caused a greater reduction in concentration (2 to 2.6 log CFU/g) of all foodborne bacteria on contaminated whole mangoes than the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may be a potentially useful addition to disinfection procedures of mangoes.

  13. Kinetics of exchange between zero-, one-, and two-hydrogen-bonded states of methyl and ethyl acetate in methanol.

    PubMed

    Chuntonov, Lev; Pazos, Ileana M; Ma, Jianqiang; Gai, Feng

    2015-03-26

    It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.

  14. [Determination of residual solvents in 7-amino-3-chloro cephalosporanic acid by gas chromatography].

    PubMed

    Ma, Li; Yao, Tong-wei

    2011-01-01

    To develop a gas chromatography method for determination of residual solvents in 7-amino-3-chloro cephalosporanic acid (7-ACCA). The residual levels of acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine and toluene in 7-ACCA were measured by gas chromatography using Agilent INNOWAX capillary column (30 m × 0.32 mm,0.5 μm). The initial column temperature was 70° maintained for 6 min and then raised (10°C/min) to 160°C for 1 min. Nitrogen gas was used as carrier and FID as detector. The flow of carrier was 1.0 ml/min, the temperature of injection port and detector was 200°C and 250°C, respectively. The limits of detection for acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine, toluene in 7-ACCA were 2.5 μg/ml, 1.5 μg/ml, 15 μg/ml, 2.5 μg/ml, 2.5 μg/ml, 2.5 μg/ml and 11 μg/ml, respectively. Only acetone was detected in the sample, and was less than the limits of Ch.P. The method can effectively detect the residual solvents in 7-ACCA.

  15. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    NASA Astrophysics Data System (ADS)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  16. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    PubMed

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  17. Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats.

    PubMed

    Hocayen, Palloma de A S; Grassiolli, Sabrina; Leite, Nayara C; Pochapski, Márcia T; Pereira, Ricardo A; da Silva, Luiz A; Snack, Andre L; Michel, R Garcia; Kagimura, Francini Y; da Cunha, Mário A A; Malfatti, Carlos R M

    2016-07-01

    Obesity is the main risk factor for type 2 diabetes mellitus. Secondary metabolites with biological activities and pharmacological potential have been identified in species of the Baccharis genus that are specifically distributed in the Americas. This study evaluated the effects of methanol extracts from Baccharis dracunculifolia DC. Asteraceae on metabolic parameters, satiety, and growth in monosodium glutamate (MSG) induced-obesity model rats. MSG was administered to 32 newborn rats (4 mg/g of body weight) once daily for 5 consecutive days. Four experimental groups (control, control + extract, MSG, and MSG + extract) were treated for 30 consecutive days with 400 mg/kg of B. dracunculifolia extract by gavage. Biochemical parameters, antioxidant activity, total extract phenolic content (methanolic, ethanolic, and acetone extractions), and pancreatic islets were evaluated. High levels of phenolic compounds were identified in B. dracunculifolia extracts (methanol: 46.2 ± 0.4 mg GAE/L; acetate: 70.5 ± 0.5 mg GAE/L; and ethanol: 30.3 ± 0.21 mg GAE/L); high antioxidant activity was detected in B. dracunculifolia ethanol and methanol extracts. The concentration of serum insulin increased 30% in obese animals treated with extract solutions (1.4-2.0 µU/mL, p < 0.05). Insulin secretion in pancreatic islets was 8.3 mM glucose (58%, p < 0.05) and 16.7 mM (99.5%, p < 0.05) in rats in the MSG + extract and MSG groups, respectively. Treatment with B. dracunculifolia extracts protected pancreatic islets and prevented the irreversible cellular damage observed in animals in obesity and diabetes models.

  18. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.

    PubMed

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2017-06-01

    Some acetic acid bacteria produce large amounts of glyceric acid (GA) from glycerol in culture broth. However, methanol, which is a major contaminant of raw glycerol derived from the biodiesel fuel industry, sharply decreases cell growth and GA production [AMB Express, 3, 20, 2013]. Thus, we evaluated the methylotrophic acetic acid bacterium Acidomonas methanolica NBRC104435 for its ability to produce GA from glycerol containing methanol. This strain accumulated GA in its culture broth when 1-3 wt% glycerol was available as a carbon source. We observed improved cell growth and GA accumulation when 1 vol% methanol was added to the 3-5 wt% glycerol medium. The maximum concentration of GA was 12.8 g/L in medium containing 3 wt% glycerol plus 1 vol% methanol. In addition, the enantiomeric excess (ee) of the GA produced was revealed to be 44%, indicating that this strain converted glycerol to d-GA with a lower enantioselectivity than other acetic acid bacteria, which had 70-99% ee.

  19. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  20. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  1. Breath alcohol analyzer mistakes methanol poisoning for alcohol intoxication.

    PubMed

    Caravati, E Martin; Anderson, Kathleen T

    2010-02-01

    Breath alcohol analyzers are used to detect ethanol in motorists and others suspected of public intoxication. One concern is their ability to detect interfering substances that may falsely increase the ethanol reading. A 47-year-old-man was found in a public park, acting intoxicated. A breath analyzer test (Intoxilyzer 5000EN) measured 0.288 g/210 L breath ethanol, without an interferent noted. In the emergency department, the patient admitted to drinking HEET Gas-Line antifreeze, which contains 99% methanol. Two to three hours after ingestion, serum and urine toxicology screen results were negative for ethanol and multiple other substances. His serum methanol concentration was 589 mg/dL, serum osmolality 503 mOsm/kg, osmolar gap 193 mOsm/kg, and anion gap 17 mmol/L. The patient was treated with intravenous ethanol, fomepizole, and hemodialysis without complication. This is a unique clinical case of a breath alcohol analyzer reporting methanol as ethanol. Intoxilyzer devices have been shown to indicate some substances (acetone) as interferents in humans but not methanol. Increased serum concentrations of methanol can be reported as ethanol by a commonly used breath alcohol analyzer, which can result in a delayed diagnosis or misdiagnosis and subsequent methanol toxicity if antidotal treatment is not administered in a timely manner. Copyright (c) 2009 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  2. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  3. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi.

    PubMed

    Dhayanithi, N B; Kumar, T T Ajith; Kalaiselvam, M; Balasubramanian, T; Sivakumar, N

    2012-08-01

    To screen the anti-fungal effects and find out the active metabolites from sponge, Sigmadocia carnosa (S. carnosa) against four dermatophytic fungi. The methanol, ethyl acetate and acetone extract of marine sponge, S. carnosa was examined against Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Epidermophyton floccosum (E. floccosum) and Microsporum gypseum (M. gypseum) and qualitative analysed to find out the active molecules. The methanol extract of sponge was expressed significant activity than ethyl acetate and acetone. The minimum inhibitory concentration (MIC) of methanol extract of sponge that resulted in complete growth inhibition of T. mentagrophytes, T. rubrum, E. floccosum and M. gypseum were found to 125, 250, 250 and 250 µg/mL respectively. But, 100 % inhibition of fungal spore germination was observed in T. mentagrophytes at 500 µg/mL concentration followed by T. rubrum, E. floccosum and M. gypseum at 1 000 µg/mL concentration. Other two extracts showed weak anti spore germination activity against the tested dermatophytic fungi. Methanol extracts showed presence of terpenoids, steroids, alkaloids, saponins and glycosides. Based on the literature, this is the first study which has conducted to inhibit the growth and spore germination of dermatophytic fungi with S. carnosa. Further research also needs to purify and characterize the secondary metabolites from the sponge, S. carnosa for the valuable source of novel substances for future drug discovery.

  4. Performance of cellulose acetate membrane with different additives for palm oil mill effluent (POME) liquid waste treatment

    NASA Astrophysics Data System (ADS)

    Aprilia, N. A. S.; Fauzi; Azmi, N.; Najwan, N.; Amin, A.

    2018-03-01

    Performance of cellulose acetate membrane for treatment of POME liquid has studied with different additives. Cellulose acetate membranes were prepared with different additive ie formamide and polyethylene glycol and used acetone as solvent. The function of formamide and polyethylene glycol (PEG) is to increase the porosity of the membrane surface. Performance of the membrane were included SEM, FT-IR and coefficient permeability. Membrane performance has been performed for percent rejection of total suspended solid (TSS) and turbidity of POME liquid waste. Cellulose acetate with formamide shows an increased percentage of rejection in removing TSS and turbidity than cellulose acetate with PEG.

  5. OF MICE, MEN, MONKEYS AND METABOLISM: AN UPDATE ON THE DEVELOPMENTAL TOXICITY OF METHANOL

    EPA Science Inventory

    With a world production ca. 30 million tons per year, methanol is a solvent, is used to produce formaldehyde, MTBE, and acetic acid, is a component of aspartame, and has been proposed as an alternate vehicle fuel. Methanol occurs naturally in plants and animals. It is sequentiall...

  6. Acetone production by methylobacteria.

    PubMed

    Thomson, A W; O'Neill, J G; Wilkinson, J F

    1976-09-01

    An accumulation of acetone was observed during the metabolism of ethane and products of ethane oxidation by washed suspensions of Methylosinus trichosporium OB3B. This strain possessed an acetoacetate decarboxylase and 3-hydroxybutyrate dehydrogenase, and a decline in poly-beta-hydroxybutyric acid occurred under the same conditions as acetone formation. A pathway of acetone production from poly-beta-hydroxybutyric acid via 3-hydroxybutyrate and acetoacetate was suggested.

  7. Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Christian, T. J.; Bertschi, I. T.; Hao, W. M.

    2003-10-01

    We examined how adsorption and desorption of gases from inlets and a cell could affect the accuracy of closed-cell FTIR measurements of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide (NO2), methanol (CH3OH), acetic acid (CH3COOH), and ammonia (NH3). When standards were delivered to the cell through a stainless steel inlet, temporarily reduced transmission was observed for CH3OH and NH3. However, a halocarbon wax coated inlet (normally used on the system) had excellent transmission (comparable to room temperature Teflon) for both CH3OH and NH3, even at temperatures as low as 5°C. Thus the wax is valuable for coating sampling system components that cannot be fashioned from Teflon. The instrument had a delayed response (˜10-40 s) for NH3 only, which was attributed to passivation of the Pyrex multipass cell. To determine sampling artifacts that could arise from the complex sample matrix presented by smoke, the closed-cell FTIR system was intercompared with an open-path FTIR system (which is immune to sampling artifacts) in well-mixed smoke. A similar cell passivation delay for NH3 was the only artifact found in this test. Overall, the results suggest that ˜10 s is sufficient to detect >80% of an NH3/CO ratio sampled by our fast-flow, closed-cell system. Longer sampling times or consecutive samples return better results. In field campaigns the closed-cell system sampling times were normally 10 to >100 s so NH3 was probably underestimated by 5-15%.

  8. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    PubMed

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  9. Thermodynamic and Kinetic Requirements in Anaerobic Methane Oxidizing Consortia Exclude Hydrogen, Acetate, and Methanol as Possible Electron Shuttles.

    PubMed

    Sørensen, K.B.; Finster, K.; Ramsing, N.B.

    2001-07-01

    Anaerobic methane oxidation (AMO) has long remained an enigma in microbial ecology. In the process the net reaction appears to be an oxidation of methane with sulfate as electron acceptor. In order to explain experimental data such as effects of inhibitors and isotopic signals in biomarkers it has been suggested that the process is carried out by a consortium of bacteria using an unknown compound to shuttle electrons between the participants. The overall change in free energy during AMO with sulfate is very small (?22 kJ mol-1) at in situ concentrations of methane and sulfate. In order to share the available free energy between the members of the consortium, the concentration of the intermediate electron shuttle compound becomes crucial. Diffusive flux of a substrate (i.e, the electron shuttle) between bacteria requires a stable concentration gradient where the concentration is higher in the producing organism than in the consuming organism. Since changes in concentrations cause changes in reaction free energies, the diffusive flux of a catabolic product/substrate between bacteria is associated with a net loss of available energy. This restricts maximal inter-bacterial distances in consortia composed of stationary bacteria. A simple theoretical model was used to describe the relationship between inter-bacterial distances and the energy lost due to concentration differences in consortia. Key parameters turned out to be the permissible concentration range of the electron shuttle in the consortium (i.e., the concentration range that allows both participants to gain sufficient energy) and the stoichiometry of the partial reactions. The model was applied to two known consortia degrading ethanol and butyrate and to four hypothetical methane-oxidizing consortia (MOC) based on interspecies transfer of hydrogen, methanol, acetate, or formate, respectively. In the first three MOCs the permissible distances between producers and consumers of the transferred compounds were

  10. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E.

    PubMed

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-09-01

    The present contribution reports the use of mats of electrospun cellulose acetate (CA; acetyl content=39.8%; Mw=30,000 Da) nanofibers as carriers for delivery of the model vitamins, all-trans retinoic acid or vitamin A acid (Retin-A) and alpha-tocopherol or vitamin E (Vit-E). The amounts of Vit-E and Retin-A loaded in the base CA solution [17% w/v in 2:1 v/v acetone/N,N-dimethylacetamide (DMAc)] were 5 and 0.5 wt% (based on the weight of CA), respectively. Cross-sectionally round and smooth fibers were obtained. The average diameters of these fibers ranged between 247 and 265 nm. The total immersion of the vitamin-loaded as-spun CA fiber mats in the acetate buffer solutions containing either 0.5 vol % Tween 80 or 0.5 vol % Tween 80 and 10 vol % methanol was used to arrive at the cumulative release of the vitamins from the fiber mat samples. The same was also conducted on the vitamin-loaded solution-cast CA films for comparison. In most cases, the vitamin-loaded as-spun fiber mats exhibited a gradual and monotonous increase in the cumulative release of the vitamins over the test periods (i.e., 24 h for Vit-E-loaded samples and 6 h for Retin-A-loaded ones), while the corresponding as-cast films exhibited a burst release of the vitamins.

  11. Red Mexican grapefruit: a novel source for bioactive limonoids and their antioxidant activity.

    PubMed

    Mandadi, Kranthi K; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2007-01-01

    Citrus limonoids have shown to inhibit the growth of cancer in colon, lung, mouth, stomach and breast in animal and cell culture studies. For the first time in the present study, an attempt has been made to isolate antioxidant fractions and five limonoids from red Mexican grapefruit seeds. Defatted seed powder was successively extracted with hexane, ethyl acetate (EtOAc), acetone, methanol (MeOH) and MeOH/water and the extracts were concentrated under vacuum. Radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total phenolic content were also measured for comparison with the antioxidant capacity in the phosphomolybdenum method for the above extracts. Acetone and MeOH extracts, respectively, showed the highest (85.7%) and lowest (53.3%) radical scavenging activity, at 500 ppm. The total phenolic contents were found to be highest in the acetone extract (15.94%) followed by the MeOH extract (5.92%), ethyl acetate extract (5.54%) and water extract (5.26%). Antioxidant capacity of the extracts as equivalents to ascorbic acid (micromol/g of the extract) was in the order, EtOAc extract > acetone extract > water extract > methanol extract. Furthermore, the EtOAC and acetone extracts were loaded onto silica gel columns to obtain four limonoid aglycons. MeOH fraction was loaded onto a dowex-50 and sepabeads resin column to obtain a limonoid glucoside. The purity of the isolated five compounds was analyzed by HPLC using a C18 column and UV detection at 210 nm. Finally, the structures of the compounds were identified as obacunone, nomilin, limonin, deacetylnomilin (DAN) and limonin-17-beta-D-glucopyranoside (LG) using 1H and 13C NMR studies.

  12. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  13. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD... Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice...

  14. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  15. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    NASA Astrophysics Data System (ADS)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  16. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  17. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  18. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  19. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  20. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  1. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi

    PubMed Central

    Dhayanithi, NB; Kumar, TT Ajith; Kalaiselvam, M; Balasubramanian, T; Sivakumar, N

    2012-01-01

    Objective To screen the anti-fungal effects and find out the active metabolites from sponge, Sigmadocia carnosa (S. carnosa) against four dermatophytic fungi. Methods The methanol, ethyl acetate and acetone extract of marine sponge, S. carnosa was examined against Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Epidermophyton floccosum (E. floccosum) and Microsporum gypseum (M. gypseum) and qualitative analysed to find out the active molecules. Results The methanol extract of sponge was expressed significant activity than ethyl acetate and acetone. The minimum inhibitory concentration (MIC) of methanol extract of sponge that resulted in complete growth inhibition of T. mentagrophytes, T. rubrum, E. floccosum and M. gypseum were found to 125, 250, 250 and 250 µg/mL respectively. But, 100 % inhibition of fungal spore germination was observed in T. mentagrophytes at 500 µg/mL concentration followed by T. rubrum, E. floccosum and M. gypseum at 1 000 µg/mL concentration. Other two extracts showed weak anti spore germination activity against the tested dermatophytic fungi. Methanol extracts showed presence of terpenoids, steroids, alkaloids, saponins and glycosides. Conclusion Based on the literature, this is the first study which has conducted to inhibit the growth and spore germination of dermatophytic fungi with S. carnosa. Further research also needs to purify and characterize the secondary metabolites from the sponge, S. carnosa for the valuable source of novel substances for future drug discovery. PMID:23569985

  3. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species.

    PubMed Central

    Genthner, B R; Davis, C L; Bryant, M P

    1981-01-01

    Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains. PMID:6791591

  4. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves

    PubMed Central

    2013-01-01

    Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. Results The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC

  5. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    PubMed

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude

  6. Acetic Acid Ketonization over Fe3O4/SiO2 for Pyrolysis Bio-Oil Upgrading.

    PubMed

    Bennett, James A; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Olivi, Luca; Lee, Adam F; Wilson, Karen

    2017-05-10

    A family of silica-supported, magnetite nanoparticle catalysts was synthesised and investigated for continuous-flow acetic acid ketonisation as a model pyrolysis bio-oil upgrading reaction. The physico-chemical properties of Fe 3 O 4 /SiO 2 catalysts were characterised by using high-resolution transmission electron microscopy, X-ray absorption spectroscopy, X-ray photo-electron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and porosimetry. The acid site densities were inversely proportional to the Fe 3 O 4 particle size, although the acid strength and Lewis character were size-invariant, and correlated with the specific activity for the vapour-phase acetic ketonisation to acetone. A constant activation energy (∼110 kJ mol -1 ), turnover frequency (∼13 h -1 ) and selectivity to acetone of 60 % were observed for ketonisation across the catalyst series, which implies that Fe 3 O 4 is the principal active component of Red Mud waste.

  7. Ionic Attachment as a Feasible Approach to Heterogenizing Anionic Solution Catalysts. The Carbonylation of Methanol,

    DTIC Science & Technology

    1980-08-01

    carbonylation of methanol to acetic acid reaction is well suited for a demonstration of the feasibility and value of ionically binding a catalyst to a...approximate doubling of the reaction rate. This result suggests that a liquid flow system design in which there is a large catalyst to methanol ratio could...Heterogenizing Anionic Solution Catalysts . The Carbonylation of Methanol by Russell S. Drago, Eric D. Nyberg, Anton El A’mma and Alan Zombeck ABSTRACT -’Few

  8. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    PubMed

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    PubMed

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p < 0.05) impact on DPPH free radical scavenging and α-glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the

  11. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  12. Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC.

    PubMed

    Gao, Yuan; Li, Li; Zhang, Jianjun; Shu, Wenjuan; Gao, Liqiong

    2012-04-01

    A simple, rapid, specific and precise reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of triacetin, acetic ether, butyl acetate and amorolfine in marketed pharmaceutical liniment. Chromatographic separation was performed on a Shimadzu VP-ODS C(18) column using the mixture of citric acid-hydrochloric acid-sodium hydrate buffer (pH 3.0), acetonitrile and methanol (32:30:38) as the mobile phase at a flow rate of 1.0 mL/min with UV-detection at 215 nm. The method separated the four components simultaneously in less than 10 min. The validation of the method was performed with respect to specificity, linearity, accuracy, and precision. The calibration curves were linear in the range of 35.1-81.9 μ/mL for triacetin, 431.1-1005.9 μ/mL for acetic ether, 167.0-389.7 μ/mL for butyl acetate and 151.0-352.3 μ/mL for amorolfine. The mean 100% spiked recovery for triacetin, acetic ether, butyl acetate and amorolfine is 99.43 ± 0.42, 101.5 ± 1.09, 101.4 ± 1.02 and 100.8 ± 0.69, respectively. The intra-day and inter-day relative standard deviation values were <2.0%. The limits of detection of these compounds ranged from 0.08 to 5.88 ng. The utility of the procedure was verified by its application to the commercial liniment.

  13. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    NASA Astrophysics Data System (ADS)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  14. Antihyperlipidemic activity of Ichnocarpus frutescens in triton WR-1339-induced and high-fat diet animals.

    PubMed

    Saravanan, M; Pandikumar, P; Prakash Babu, N; Ignacimuthu, S

    2011-10-01

    Ichnocarpus frutescens (L.) R.Br. (Apocynaceae) is used to treat diabetes and hyperlipidemia in folk medicine. The crude methanol extract and fractions of I. frutescens were investigated for antihyperlipidemic effect. Fresh leaves of I. frutescens were extracted with methanol and fractionated with hexane, benzene, ethyl acetate, acetone, and methanol. The active acetone fraction was subfractionated, which resulted in active fraction 3. The antihyperlipidemic effects of the methanol extract and fractions of I. frutescens were studied in triton WR-1339-induced and high-fat diet (HFD) obese animals. Further, lipid absorption and excretion were studied. The methanol extract significantly reduced total cholesterol (TC) by 29.63% and triglyceride (Tg) by 51.10% at 400 mg/kg in triton WR-1339-induced animals and significantly reduced TC (27.81%) and Tg (37.03%) at 400 mg/kg in HFD animals. Fraction 3 showed significant reduction in TC (25.03%) and Tg (58.05%) at 200 mg/kg. Feeding of HFD consisting 3% of fraction 3 increased feces weight and Tg level in mice. Fraction 3, showed significant decrease in plasma Tg level at the second hour, after oral administration of the lipid emulsion to rats. The observed properties apparently validate the folk medicinal use of this plant in amelioration of hyperlipidemia.

  15. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  16. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  17. Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover.

    PubMed

    Bagavan, A; Kamaraj, C; Rahuman, A Abdul; Elango, G; Zahir, A Abduz; Pandiyan, G

    2009-04-01

    The acetone, chloroform, ethyl acetate, hexane and methanol extracts of peel and leaf extracts of Citrus sinensis, Ocimum canum, Ocimum sanctum and Rhinacanthus nasutus were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) and feeding deterrence to nymphs of cotton pest, Aphis gossypii Glover (Homoptera: Aphididae). The larval and nymph mortality were observed after 24 h of exposure. All extracts showed moderate larvicidal and nymphicidal effects; however, the highest mortality was found in peel chloroform extract of C. sinensis, leaf ethyl acetate extracts of O. canum and O. sanctum and leaf chloroform extract of R. nasutus against the larvae of A. subpictus (LC(50) = 58.25, 88.15, 21.67 and 40.46 ppm; LC(90) = 298.31, 528.70, 98.34 and 267.20 ppm), peel methanol extract of C. sinensis, leaf methanol extract of O. canum, ethyl acetate extracts of O. sanctum and R. nasutus against the larvae of C. tritaeniorhynchus (LC(50) = 38.15, 72.40, 109.12 and 39.32 ppm; LC(90) = 184.67, 268.93, 646.62 and 176.39 ppm), peel hexane extract of C. sinensis, leaf methanol extracts of O. canum and R. nasutus and leaf ethyl acetate extract of O. sanctum against the nymph of A. gossypii (LC(50) = 162.89, 80.99, 73.27 and 130.19 ppm; LC(90) = 595.40, 293.33, 338.74 and 450.90 ppm), respectively. These results suggest that the peel methanol extracts of C. sinensis and O. canum, ethyl acetate leaf extract of O. sanctum and leaf chloroform and ethyl acetate extract of R. nasutus have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus, C. tritaeniorhynchus and A. gossypii.

  18. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  19. Antifungal activity of n-tributyltin acetate against some common yam rot fungi.

    PubMed Central

    Olurinola, P F; Ehinmidu, J O; Bonire, J J

    1992-01-01

    The antifungal activity of n-tributyltin acetate (TBTA) was examined in relation to combating yam rot disease. TBTA exhibited a significant effect in vitro and in vivo on four yam rot fungal isolates tested. However, the in vitro toxicity of TBTA was drastically reduced when 2.5% Tween 80 was the solvent instead of 25% acetone, as indicated by the MICs of 156.0 and 5.0 micrograms/ml, respectively. PMID:1610202

  20. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors.

    PubMed

    Bagavan, A; Rahuman, A Abdul

    2011-01-01

    To evaluate the mosquito larvicidal activity of plant extracts. The hexane, chloroform, ethyl acetate, acetone, and methanol leaf, flower and seed extracts of Abrus precatorius (A. precatorius), Croton bonplandianum (C. bonplandianum), Cynodon dactylon (C. dactylon), Musa paradisiaca (M. paradisiaca) and Syzygium aromaticum (S. aromaticum) were tested against fourth instar larvae of Anopheles vagus (An. vagus), Armigeres subalbatus (Ar. subalbatus) and Culex vishnui (Cx. vishnui). The highest larval mortality was found in seed ethyl acetate extracts of A. precatorius and leaf extracts of C. bonplandianum, flower chloroform and methanol extracts of M. paradisiaca, and flower bud hexane extract of S. aromaticum against An. vagus with LC(50) values of 19.31, 39.96, 35.18, 79.90 and 85.90 μg/mL; leaf ethyl acetate and methanol extracts of C. dactylon, flower methanol extract of M. paradisiaca, flower bud methanol extract of S. aromaticum against Ar. subalbatus with LC(50) values of 21.67, 32.62, 48.90 and 78.28 μg/mL, and seed methanol of A. precatorius, flower methanol extract of M. paradisiaca, flower bud hexane extract of S. aromaticum against Cx. vishnui with LC(50) values of 136.84, 103.36 and 149.56 μg/mL, respectively. These results suggest that the effective plant crude extracts have the potential to be used as an ideal ecofriendly approach for the control of disease vectors. This study provides the first report on the larvicidal activity of crude solvent extracts of different mosquitoes. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    PubMed

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  2. Acetone poisoning

    MedlinePlus

    ... for acetone. www.atsdr.cdc.gov/toxprofiles/TP.asp?id=5&tid=1 . Updated January 21, 2015. ... to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein ...

  3. Portable method of measuring gaseous acetone concentrations.

    PubMed

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  5. Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús

    2001-01-01

    To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.

  6. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers.

    PubMed

    Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier

    2017-03-01

    Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.

  7. Fate of acetone in water

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  8. Selective methanol or formate production during continuous CO₂ fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool.

    PubMed

    Tyurin, Michael; Kiriukhin, Michael

    2013-09-01

    Methanol-resistant mutant acetogen Clostridium sp. MT1424 originally producing only 365 mM acetate from CO₂/CO was engineered to eliminate acetate production and spore formation using Cre-lox66/lox71-system to power subsequent methanol production via expressing synthetic methanol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, three copies of each, assembled in cluster and integrated to chromosome using Tn7-based approach. Production of 2.2 M methanol was steady (p < 0.005) in single step fermentations of 20 % CO₂ + 80 % H₂ blend (v/v) 25 day runs each in five independent repeats. If the integrated cluster comprised only three copies of formate dehydrogenase the respective recombinants produced 95 mM formate (p < 0.005) under the same conditions. For commercialization, the suggested source of inorganic carbon would be CO₂ waste of IGCC power plant. Hydrogen may be produced in situ via powered by solar panels electrolysis.

  9. Modeling of acetone biofiltration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiu-Mu Tang; Shyh-Jye Hwang; Wen-Chuan Wang

    1996-12-31

    The objective of this research was to investigate the kinetic behavior of the biofiltration process for the removal of acetone 41 which was used as a model compound for highly water soluble gas pollutants. A mathematical model was developed by taking into account diffusion and biodegradation of acetone and oxygen in the biofilm, mass transfer resistance in the gas film, and flow pattern of the bulk gas phase. The simulated results obtained by the proposed model indicated that mass transfer resistance in the gas phase was negligible for this biofiltration process. Analysis of the relative importance of various rate stepsmore » indicated that the overall acetone removal process was primarily limited by the oxygen diffusion rate. 11 refs., 6 figs., 1 tab.« less

  10. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis.

    PubMed

    Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio

    2014-01-01

    This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.

  11. A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers.

    PubMed

    Rong, Qian; Zhang, Yumin; Wang, Chao; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-09-21

    Ag-LaFeO 3 molecularly imprinted polymers (ALMIPs) were fabricated, which provided special recognition sites to methanol. Then ALMIPs fiber 1, fiber 2 and fiber 3 were prepared using filter paper, silk and carbon fibers template, respectively. Based on the observation of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Nitrogen adsorption surface area analyzer (BET), the structure, morphology and surface area of the fibers were characterized. The ALMIPs fibers (fiber 1, fiber 2 and fiber 3) show excellent selectivity and good response to methanol. The responses to 5 ppm methanol and the optimal operating temperature of ALMIPs fibers are 23.5 and 175 °C (fiber 1), 19.67 and 125 °C (fiber 2), 17.59 and 125 °C (fiber 3), and a lower response (≤10, 3, 2) to other test gases including formaldehyde, acetone, ethanol, ammonia, gasoline and benzene was measured, respectively.

  12. Evaluation of acute toxicity, sedative and analgesic effects of Taverniera glabra methanolic extract on mice.

    PubMed

    Marvi, -; Iqbal, Javeid; Muhammad, Shafi; Ahmad, Mansoor

    2016-11-01

    Present study was conducted on crude methanolic extract of stem and root of Taverniera glabra. In Pakistan T. glabra is found in the region of Balochistan only. T. glabra has numerous therapeutic uses in traditional medicine and it is also used for the pain relief. Current study was carried out to evaluate acute toxicity, analgesic and CNS depressant activity of the plant. Acute toxicity was carried out by oral administration of the T. glabra extract from 250 to 2000mg/kg oral dose. Analgesic activity was carried out by acetic acid induced writhing test and formalin test. Central Nervous System (CNS) depressant activity was carried out by exploratory activities (open field activity, cage crossing activity, rearing test) and forced swimming test. Oral administration of the methanolic extract of T. glabra was nontoxic at the dose of 1500mg/kg in the acute toxicity test. Exploratory behavior of mice treated with the methanolic extract of T. glabra showed sedative effects (P<0.05) in open field, cage crossing, traction and rearing test, particularly at the dose of 500mg as compared with standard drug Diazepam. In forced swimming test, mobility time was significantly (P<0.05) increased at 500mg/kg oral dose, and results were significant as compared with control. Methanolic extract of T. glabra produced significant (P<0.05) analgesic effects at the dose of 500mg/kg in the acetic acid induced writhing test and the formalin test. In conclusion, results show that the crude methanolic extract of T. glabra possess sedative as well as potent analgesic effects. Present pharmacological studies are the first ever studies conducted on the methanolic extract of T. glabra.

  13. Techniques of Celloidin Removal From Temporal Bone Sections

    PubMed Central

    O’Malley, Jennifer T.; Burgess, Barbara J.; Jones, Diane D.; Adams, Joe C.; Merchant, Saumil N.

    2009-01-01

    Objectives We sought to determine whether the technique of celloidin removal influences the results of immunostaining in celloidin-embedded cochleae. Methods We compared four protocols of celloidin removal, including those using clove oil, acetone, ether-alcohol, and methanol saturated with sodium hydroxide. By optimally fixing our tissue (perfused mice), and keeping constant the fixative type (formalin plus acetic acid), fixation time (25 hours), and decalcification time (ethylenediaminetetraacetic acid for 7 days), we determined whether the technique of celloidin removal influenced the immunostaining results. Six antibodies were used with each removal method: prostaglandin D synthase, sodium, potassium adenosine triphosphatase (Na+,K+-ATPase), aquaporin 1, connective tissue growth factor, tubulin, and 200 kd neurofilament. Results Clove oil, acetone, and ether-alcohol resulted in incomplete removal of the celloidin, thereby negatively affecting the results of immunostaining. The methanol–sodium hydroxide method was effective in completely removing the celloidin; it produced the cleanest and most reproducible immunostaining for all six antibodies. Conclusions Freshly prepared methanol saturated with sodium hydroxide and diluted 1:2 with methanol was the best solvent for removing celloidin from mouse temporal bone sections, resulting in consistent and reproducible immunostaining with the six antibodies tested. PMID:19663375

  14. Effects of extraction and high-performance liquid chromatographic conditions on the determination of lutein in spinach.

    PubMed

    Simonovska, Breda; Vovk, Irena; Glavnik, Vesna; Cernelič, Katarina

    2013-02-08

    A major factor in the direct determination of lutein in spinach extracts proved to be obtaining reproducible and stable chromatography of lutein. This was achieved on a C30 column with the mobile phase acetone-0.1M triethylammonium acetate (TEAA) buffer (pH 7) 9:1 (v/v). Extraction of 10mg of lyophilized spinach with 10 mL of extraction solvent (ethanol, acetone, ethanol-ethyl acetate 1:1 (v/v), methanol-THF 1:1 (v/v)) for 15 min with magnetic stirring under nitrogen resulted in equal yields of lutein. The yields were enhanced by addition of 15% of 1M TEAA buffer pH 7 to all four extraction solvents. As confirmed by recovery experiments, no loss of lutein occurred during the extraction. The relative standard deviation from triplicate extractions was less than 5%. The addition of 15% TEAA pH 7 to acetone enhanced the extraction yield of lutein also from unlyophilized spinach. The content of lutein in different spinach samples ranged from 5 to 15 mg/100g of fresh weight. The first separation is reported of all the carotenoids and chlorophylls on a C18 core-shell column and the addition of 15% of 1M TEAA buffer pH 7 to acetone also enhanced the extraction yield of β-carotene compared to the yield produced by pure acetone. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  16. Understanding Methanol Coupling on SrTiO 3 from First Principles

    DOE PAGES

    Huang, Runhong; Fung, Victor; Zhang, Yafen; ...

    2018-03-19

    Perovskites are interesting materials for catalysis due to their great tunability. However, the correlation of many reaction processes to the termination of a perovskite surface is still unclear. In this paper, we use the methanol coupling reaction on the SrTiO 3(100) surface as a probe reaction to investigate direct C–C coupling from a computational perspective. We use density functional theory to assess methanol adsorption, C–H activation, and direct C–C coupling reactions on the SrTiO 3(100) surface of different terminations. We find that, although methanol molecules dissociatively adsorb on both A and B terminations with similar strength, the dehydrogenation and C–Cmore » coupling reactions have significantly lower activation energies on the B termination than on the A termination. The predicted formation of methoxy and acetate on the SrTiO 3(100) B termination can well explain the ambient-pressure XPS data of methanol on the single-crystal SrTiO 3(100) surface at 250 °C. Finally, this work suggests that a choice of B termination of perovskites would be beneficial for the C–C coupling reaction of methanol.« less

  17. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. The likelihood of acetone interference in breath alcohol measurement

    DOT National Transportation Integrated Search

    1985-09-01

    This report discusses the significance of possible interference of acetone in breath alcohol testing. The following dimensions were considered: 1) what levels of acetone concentration may appear on the breath; 2) what levels of acetone concentration ...

  19. Solubility and dissolution thermodynamics of tetranitroglycoluril in organic solvents at 295-318 K

    NASA Astrophysics Data System (ADS)

    Zheng, Zhihua; Wang, Jianlong; Hu, Zhiyan; Du, Hongbin

    2017-08-01

    The solubility data of tetranitroglycoluril in acetone, methanol, ethanol, ethyl acetate, nitromethane and chloroform at temperatures ranging from 295-318 K were measured by gravimetric method. The solubility data of tetranitroglycoluril were fitted with Apelblat semiempirical equation. The dissolution enthalpy, entropy and Gibbs energy of tetranitroglycoluril were calculated using the Van't Hoff and Gibbs equations. The results showed that the Apelblat semiempirical equation was significantly correlated with solubility data. The dissolving process was endothermic, entropy-driven, and nonspontaneous.

  20. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  1. Measuring breath acetone for monitoring fat loss: Review.

    PubMed

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  2. The potential of papaya leaf extract in controlling Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  3. Does Uniformity of Topical Corticosteroid Ophthalmic Medications: Flourometholone Acetate 0.1 Suspension and Loteprednol Etabonate 0.5 gel

    DTIC Science & Technology

    2017-01-03

    chromatography ( HPLC ) with photodiode array detection at 240 nm. Results: Flarex® had a mean concentration of 93.7% of the declared concentration when shaken...59 60 Journal of Ocular Pharmacology and Therapeutics Charlton E Stevens Rockville, MD. Methanol, ( HPLC grade), was obtained from Sigma-Aldrich...ST. Louis, MO. HPLC analysis of fluorometholone acetate and loteprednol etabonate HPLC analysis of fluorometholone acetate and loteprednol

  4. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor.

    PubMed

    Roest, Kees; Altinbas, Mahmut; Paulo, Paula L; Heilig, H G H J; Akkermans, Antoon D L; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M

    2005-10-01

    To gain insight into the microorganisms involved in direct and indirect methane formation from methanol in a laboratory-scale thermophilic (55 degrees C) methanogenic bioreactor, reactor sludge was disrupted and serial dilutions were incubated in specific growth media containing methanol and possible intermediates of methanol degradation as substrates. With methanol, growth was observed up to a dilution of 10(8). However, when Methanothermobacter thermoautotrophicus strain Z245 was added for H2 removal, growth was observed up to a 10(10)-fold dilution. With H2/CO2 and acetate, growth was observed up to dilutions of 10(9) and 10(4), respectively. Dominant microorganisms in the different dilutions were identified by 16S rRNA-gene diversity and sequence analysis. Furthermore, dilution polymerase chain reaction (PCR) revealed a similar relative abundance of Archaea and Bacteria in all investigated samples, except in enrichment with acetate, which contained 100 times less archaeal DNA than bacterial DNA. The most abundant bacteria in the culture with methanol and strain Z245 were most closely related to Moorella glycerini. Thermodesulfovibrio relatives were found with high sequence similarity in the H2/CO2 enrichment, but also in the original laboratory-scale bioreactor sludge. Methanothermobacter thermoautotrophicus strains were the most abundant hydrogenotrophic archaea in the H2/CO2 enrichment. The dominant methanol-utilizing methanogen, which was present in the 10(8)-dilution, was most closely related to Methanomethylovorans hollandica. Compared to direct methanogenesis, results of this study indicate that syntrophic, interspecies hydrogen transfer-dependent methanol conversion is equally important in the thermophilic bioreactor, confirming previous findings with labeled substrates and specific inhibitors.

  5. In vitro Antioxidant Potentials of Cyperus rotundus L. Rhizome Extracts and Their Phytochemical Analysis.

    PubMed

    Kamala, Arunagiri; Middha, Sushil Kumar; Gopinath, Chitra; Sindhura, H S; Karigar, Chandrakant S

    2018-01-01

    Cyperus rotundus L. (family Cyperaceae), native to India, is a multivalent medicinal plant widely used in conventional medicine. The research reports on bioactive components from C. rotundus L. are scanty. The objective of the study was to optimize the best solvent system and bioprospect the possible phytochemicals in C. rotundus L. rhizome (CRR). The phytochemicals were extracted from the rhizomes of C. rotundus L. by successive Soxhlet technique with solvents of increasing polarity. The resultant extracts were analyzed for their total flavonoid content (TFC), total phenolic content (TPC), total proanthocyanidin content (TPAC), in vitro antioxidant potential, and inhibition of lipid peroxidation. The 70% acetone extract of CRR was analyzed using gas chromatography-mass spectrometry (GC-MS) for probable phytochemicals. The TPC, TFC, and TPAC estimates ranged from 0.036 ± 0.002 to 118.924 ± 5.946 μg/mg extract, 7.196 ± 0.359 to 200.654 ± 10.032 μg/mg extract, and 13.115 ± 0.656 to 45.901 ± 2.295 μg/mg extract, respectively. The quantities of TPC, TFC, and TPAC were found to be the highest in 70% acetone extract. The 70% acetone and 70% methanol extracts revealed best radical scavenging effect. GC-MS analysis of CRR extract revealed the presence of a novel compound 1 (2)-acetyl-3 (5)-styryl-5 (3)-methylthiopyrazole. The study indicated that 70% acetone and 70% methanol extracts of CRRs can be a potential source of antioxidants. The studies suggest 70% methanol and acetone as the suitable solvents for the extraction of phytochemicalsNovel compound 1(2)-Acetyl-3(5)-styryl-5(3)-methylthiopyrazole was detected in 70% acetone extract. Abbreviations used: ACRE: Acetone C. rotundus L. rhizome extract; AlCl 3 : Aluminum chloride; AQRE: Aqueous C. rotundus L. rhizome extract; CE: Catechin Equivalent; CHRE: Chloroform C. rotundus L. rhizome extract; CRR: C. rotundus L. rhizome; DPPH: 2,2 diphenyl-1-picrylhydrazyl; ETRE: Ethanolic C. rotundus L. rhizome extract; EARE

  6. In vitro Antioxidant Potentials of Cyperus rotundus L. Rhizome Extracts and Their Phytochemical Analysis

    PubMed Central

    Kamala, Arunagiri; Middha, Sushil Kumar; Gopinath, Chitra; Sindhura, H. S.; Karigar, Chandrakant S.

    2018-01-01

    Background: Cyperus rotundus L. (family Cyperaceae), native to India, is a multivalent medicinal plant widely used in conventional medicine. The research reports on bioactive components from C. rotundus L. are scanty. Objective: The objective of the study was to optimize the best solvent system and bioprospect the possible phytochemicals in C. rotundus L. rhizome (CRR). Materials and Methods: The phytochemicals were extracted from the rhizomes of C. rotundus L. by successive Soxhlet technique with solvents of increasing polarity. The resultant extracts were analyzed for their total flavonoid content (TFC), total phenolic content (TPC), total proanthocyanidin content (TPAC), in vitro antioxidant potential, and inhibition of lipid peroxidation. The 70% acetone extract of CRR was analyzed using gas chromatography–mass spectrometry (GC-MS) for probable phytochemicals. Results and Discussion: The TPC, TFC, and TPAC estimates ranged from 0.036 ± 0.002 to 118.924 ± 5.946 μg/mg extract, 7.196 ± 0.359 to 200.654 ± 10.032 μg/mg extract, and 13.115 ± 0.656 to 45.901 ± 2.295 μg/mg extract, respectively. The quantities of TPC, TFC, and TPAC were found to be the highest in 70% acetone extract. The 70% acetone and 70% methanol extracts revealed best radical scavenging effect. GC-MS analysis of CRR extract revealed the presence of a novel compound 1 (2)-acetyl-3 (5)-styryl-5 (3)-methylthiopyrazole. Conclusion: The study indicated that 70% acetone and 70% methanol extracts of CRRs can be a potential source of antioxidants. SUMMARY The studies suggest 70% methanol and acetone as the suitable solvents for the extraction of phytochemicalsNovel compound 1(2)-Acetyl-3(5)-styryl-5(3)-methylthiopyrazole was detected in 70% acetone extract. Abbreviations used: ACRE: Acetone C. rotundus L. rhizome extract; AlCl3: Aluminum chloride; AQRE: Aqueous C. rotundus L. rhizome extract; CE: Catechin Equivalent; CHRE: Chloroform C. rotundus L. rhizome extract; CRR: C. rotundus L. rhizome

  7. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  8. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  9. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  10. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  11. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  12. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  13. Effect of Cobalt Particle Size on Acetone Steam Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Zhang, He; Yu, Ning

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less

  14. Antinociceptive and Anti-Inflammatory Activities of Leaf Methanol Extract of Cotyledon orbiculata L. (Crassulaceae).

    PubMed

    Amabeoku, George J; Kabatende, Joseph

    2012-01-01

    Leaf methanol extract of C. orbiculata L. was investigated for antinociceptive and anti-inflammatory activities using acetic acid writhing and hot-plate tests and carrageenan-induced oedema test in mice and rats, respectively. C. orbiculata (100-400 mg/kg, i.p.) significantly inhibited acetic acid-induced writhing and significantly delayed the reaction time of mice to the hot-plate-induced thermal stimulation. Paracetamol (300 mg/kg, i.p.) significantly inhibited the acetic acid-induced writhing in mice. Morphine (10 mg/kg, i.p.) significantly delayed the reaction time of mice to the thermal stimulation produced with hot plate. Leaf methanol extract of C. orbiculata (50-400 mg/kg, i.p.) significantly attenuated the carrageenan-induced rat paw oedema. Indomethacin (10 mg/kg, p.o.) also significantly attenuated the carrageenan-induced rat paw oedema. The LD(50) value obtained for the plant species was greater than 4000 mg/kg (p.o.). The data obtained indicate that C. orbiculata has antinociceptive and anti-inflammatory activities, justifying the folklore use of the plant species by traditional medicine practitioners in the treatment of painful and inflammatory conditions. The relatively high LD(50) obtained shows that C. orbiculata may be safe in or nontoxic to mice.

  15. Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3.

    PubMed

    Rodrigues, Clarissa Perdomo; Zonetti, Priscila da Costa; Appel, Lucia Gorenstin

    2017-04-04

    Acetone is an important solvent and widely used in the synthesis of drugs and polymers. Currently, acetone is mainly generated by the Cumene Process, which employs benzene and propylene as fossil raw materials. Phenol is a co-product of this synthesis. However, this ketone can be generated from ethanol (a renewable feedstock) in one-step. The aim of this work is to describe the influence of physical-chemical properties of three different catalysts on each step of this reaction. Furthermore, contribute to improve the description of the mechanism of this synthesis. The acetone synthesis from ethanol was studied employing Cu/ZnO/Al 2 O 3 , Ce 0.75 Zr 0.25 O 2 and ZrO 2 . It was verified that the acidity of the catalysts needs fine-tuning in order to promote the oxygenate species adsorption and avoid the dehydration of ethanol. The higher the reducibility and the H 2 O dissociation activity of the catalysts are, the higher the selectivity to acetone is. In relation to the oxides, these properties are associated with the presence of O vacancies. The H 2 generation, which occurs during the TPSR, indicates the redox character of this synthesis. The main steps of the acetone synthesis from ethanol are the generation of acetaldehyde, the oxidation of this aldehyde to acetate species (which reduces the catalyst), the H 2 O dissociation, the oxidation of the catalyst producing H 2 , and, finally, the ketonization reaction. These pieces of information will support the development of active catalysts for not only the acetone synthesis from ethanol, but also the isobutene and propylene syntheses in which this ketone is an intermediate. Graphical abstract Acetone from ethanol.

  16. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  17. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  18. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  19. Quantity and quality of guinea pig (cavia porcellus) spermatozoa after administration of methanol extract of bitter melon (momordica charantia) seed and depot medroxy progesterone acetate (DMPA)

    NASA Astrophysics Data System (ADS)

    Ilyas, Syafruddin; Hutahaean, Salomo; Nursal

    2018-03-01

    The discovery of male contraceptive drugs continues to be pursued, due to the few participation of men associated with the lack of contraceptive options for men. The combination of bitter melon seed methanol extract and DMPA are the options that currently apply to men. Therefore, the use of guinea pigs as experimental animals conducted research using experimental methods with complete randomized design (CRD). There are 4 control groups and 4 treatment groups. The first group, control group of dimethyl sulphoxide (DMSO) for 0 week (K0), The second one, bitter melon seed extract of 50 mg/100g Body Weight/day for 0 week (P0), the third one, control group of dimethyl sulfoxide (DMSO) for 4 weeks (K1), the fourth one, bitter melon seed extract of 50 mg/100g BW/day for 4 weeks + Depot medroxy Progesterone Acetate (P1), the fifth one, control group of dimethyl sulfoxide (DMSO) for 8 weeks (K2), the sixth one, bitter melon seed extract of 50 mg/100g BW/day for 8 weeks + DMPA (P2), the seventh one, control group of dimethyl sulfoxide (DMSO) for 12 weeks (K3), the eighth one, bitter melon seed extract of 50 mg/100g BW/day for 12 weeks + DMPA (P3). Methanol extract of bitter melon seed to decrease the quantity and quality of guinea pig spermatozoa decreased significantly, i.e. viability and normal morphology of spermatozoa (p<0.05).

  20. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars.

    PubMed

    Bae, Haejin; Jayaprakasha, G K; Jifon, John; Patil, Bhimanagouda S

    2012-10-15

    Peppers (Capsicum spp.) are a rich source of diverse bioactive compounds with potential health-promoting properties. This study investigated the extraction efficiency of five solvents on antioxidant activities from cayenne (CA408 and Mesilla), jalapeño (Ixtapa) and serrano (Tuxtlas) pepper cultivars. Freeze-dried peppers were extracted using a Soxhlet extractor with five solvents: hexane, ethyl acetate, acetone, methanol, and methanol:water (80:20). The levels of specific bioactive compounds (phenolics, capsaicinoids, carotenoids and flavonoids) were determined by HPLC and antioxidant activities were assayed by three methods. For all pepper cultivars tested, hexane extracts had the highest levels of capsaicinoids and carotenoids, but methanol extracts had the maximum levels of flavonoids. Hexane extracts showed higher 2,2-diphenyl-1-pricrylhydrozyl (DPPH) radical-scavenging activity and higher reducing power, and acetone extracts (from Mesilla pepper) had a high reducing power. All pepper extracts, except hexane, were effective in preventing deoxyribose degradation, and the inhibition was increased by high concentrations of extracts. The results of the present study indicated that, among the different measures of antioxidant activity, DPPH radical-scavenging activity was strongly correlated with total bioactive compounds (capsaicinoids, carotenoids, flavonoids and total phenolics) in pepper cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  2. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  3. Evaluation of medicinal plant extracts and isolated compound epicatechin from Ricinus communis against Paramphistomum cervi.

    PubMed

    Zahir, Abdul Abduz; Rahuman, Abdul Abdul; Bagavan, Asokan; Geetha, Kannappan; Kamaraj, Chinnaperumal; Elango, Gandhi

    2012-10-01

    The purpose of this study is to determine the efficacies of hexane, chloroform, ethyl acetate, acetone, and methanol leaf extracts of Euphorbia hirta L., Psidium guajava L., Ricinus communis L., Solanum trilobatum L., and Tridax procumbens L. against sheep fluke Paramphistomum cervi (Digenea: Paramphistomatidae). All plant extracts showed moderate effects after 24 h of exposure; however, the highest parasite mortality was found in the methanol extract of R. communis. In the present study, bioassay-guided fractionation of methanol extract of R. communis led to the separation and identification of epicatechin as a potential new compound (LC(50) = 31.2; LC(90) = 105.0 ppm) against P. cervi. The structures were established from infrared, ultraviolet, (1)H-nuclear magnetic resonance (NMR), (13)C-NMR, and mass spectral data which confirmed the identification of the compound epicatechin from R. communis. Results of this study showed that the methanol extract of R. communis may be considered as a potent source and epicatechin as a new natural parasitic agent.

  4. Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yaobiao; Zhang, Bo; Ye, Jingyun

    2012-10-18

    We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which healsmore » the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.« less

  5. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    PubMed Central

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria. PMID:10217764

  6. Breath acetone as a potential marker in clinical practice.

    PubMed

    Ruzsányi, Veronika; Péter Kalapos, Miklós

    2017-06-01

    In recent decades, two facts have changed the opinion of researchers about the function of acetone in humans. Firstly, it has turned out that acetone cannot be regarded as simply a waste product of metabolism, because there are several pathways in which acetone is produced or broken down. Secondly, methods have emerged making possible its detection in exhaled breath, thereby offering an attractive alternative to investigation of blood and urine samples. From a clinical point of view the measurement of breath acetone levels is important, but there are limitations to its wide application. These limitations can be divided into two classes, technical and biological limits. The technical limits include the storage of samples, detection threshold, standardization of clinical settings, and the price of instruments. When considering the biological ranges of acetone, personal factors such as race, age, gender, weight, food consumption, medication, illicit drugs, and even profession/class have to be taken into account to use concentration information for disorders. In some diseases such as diabetes mellitus and lung cancer, as well as in nutrition-related behavior such as starvation and ketogenic diet, breath acetone has been extensively examined. At the same time, there is a lack of investigations in other cases in which ketosis is also evident, such as in alcoholism or an inborn error of metabolism. In summary, the detection of acetone in exhaled breath is a useful and promising tool for diagnosis and it can be used as a marker to follow the effectiveness of treatments in some disorders. However, further endeavors are needed for clarification of the exact distribution of acetone in different body compartments and evaluation of its complex role in humans, especially in those cases in which a ketotic state also occurs.

  7. Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty).

    PubMed

    Fayaz, Mohamed; Namitha, K K; Murthy, K N Chidambara; Swamy, M Mahadeva; Sarada, R; Khanam, Salma; Subbarao, P V; Ravishankar, G A

    2005-02-09

    Kappaphycus alvarezzi, an edible seaweed from the west coast of India, was analyzed for its chemical composition. It was found that K. alvarezzi is rich in protein (16.24% w/w) and contains a high amount of fiber (29.40% w/w) and carbohydrates (27.4% w/w). K. alvarezzi showed vitamin A activity of 865 mug retinal equivalents/100 g of sample. It contained a higher quantity of unsaturated fatty acids (44.50% of the total), in which relative percentage of oleic acid was 11%, cis-heptadecanoic acid 13.50%, and linoleic acid 2.3% and 37.0% of saturated fatty acids (mainly heptadecanoic acid). K. alvarezziwas also found to be good source of minerals, viz 0.16% of calcium, 0.033% of iron, and 0.016% of zinc, which are essential for various vital biological activities. Bioavailability of iron by in vitro methods showed a higher efficiency in intestinal conditions than in stomach conditions. Ascorbic acid influenced higher bioavailability of iron. Successive extracts of n-hexane, acetone, ethyl acetate, ethanol, and direct extractables of chloroform/methanol (1:1 and 2:1) were screened for antioxidant activity using a beta-carotene linoleic acid model system (B-CLAMS), DPPH (alpha,alpha-diphenyl-beta-picrylhydrazyl) model system and hydroxyl radical scavenging activity. The chloroform/methanol (2:1) extract has shown 82.5% scavenging activity at 1000 ppm. Acetone fraction extracts at the 1000 ppm level showed 63.31% antioxidant activity in beta-carotene linoleic acid system. The acetone extract showed 46.04% scavenging activity at 1000 ppm concentration. In the case of hydroxyl radical scavenging activity, all the extracts showed better activity at the concentrations of 25 and 50 ppm, where at the 50 ppm level ethyl acetate extract showed 76.0%, acetone 75.12%, and hexane 71.15% activity, respectively. Results of this study suggest the utility of K. alvarezzi (Eucheuma) for various nutritional products, including antioxidant for use as health food or nutraceutical

  8. Papanicolaou stain: Is it economical to switch to rapid, economical, acetic acid, papanicolaou stain?

    PubMed

    Dighe, Swati B; Ajit, Dulhan; Pathuthara, Saleem; Chinoy, Roshni

    2006-01-01

    To standardize an inexpensive and rapid Papanicolaou staining technique with limited ethanol usage. Smears from 200 patients were collected (2 per patient) and fixed in methanol. Half were subjected to conventional Papanicolaou and half to stain ing with rapid, economical, acetic acid Papanicolaou (REAP) stain. In REAP, pre-OG6 and post-OG6 and post-EA36 ethanol baths were replaced by 1% acetic acid and Scott's tap water with tap water. Hematoxylin was preheated to 60 degrees C. Final dehydration was with methanol. REAP smears were compared with Papanicolaou smears for optimal cytoplasmic and nuclear staining, stain preservation, cost and turnaround time. With the REAP method, cytoplasmic and nuclear staining was optimal in 181 and 192 cases, respectively. The staining time was considerably reduced, to 3 minutes, and the cost per smear was reduced to one fourth. The staining quality remained good in all the smears for > 2 years. REAP is a rapid, cost-effective alternative to Papanicolaou stain. Though low stain penetration in large cell clusters is a limitation, final interpretation was not compromised.

  9. Maximizing recovery of water-soluble proteins through acetone precipitation.

    PubMed

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Pharmacological evaluation for anti-asthmatic and anti-inflammatory potential of Woodfordia fruticosa flower extracts.

    PubMed

    Hiralal Ghante, Mahavir; Bhusari, Kishore P; Duragkar, Nandkishore J; Ghiware, Nitin B

    2014-07-01

    Woodfordia fruticosa Kurz. (Lythraceae) flowers are ethnopharmacologically acclaimed in the Indian medicinal system to treat asthma. To evaluate W. fruticosa flower extracts for anti-asthmatic effect. Ethyl acetate, acetone, methanol, and hydro-alcohol extracts of W. fruticosa flowers were obtained successively and standardized. Ability of extracts to stabilize free radicals and compound-48/80-induced mast cell degranulation was evaluated. In vitro anti-inflammatory potential of extracts at 100 and 200 µg/ml by membrane stabilization and in vivo inhibition of rat paw edema up to 5 h (100 and 200 mg/ml; p.o.) was evaluated. In vitro bronchorelaxant effect was examined against histamine- and acetylcholine (1 µg/ml; independently)-induced guinea pig tracheal contraction. Extracts were evaluated for bronchoprotection (in vivo) ability against 0.1% histamine- and 2% acetylcholine-induced bronchospasm in guinea pigs at 100 and 200 mg/ml; p.o. Standardization studies revealed that the methanol extract exhibited highest polyphenolic (62.66 GAE), and flavonoid (6.32 RE) content and HPLC fingerprinting confirmed the presence of gallic acid (Rt 1.383). IC50 values for DPPH scavenging and metal chelation by the methanol extract were 40.42 and 31.50 µg/ml. Methanol and ethyl acetate extracts at 100 µg/ml exhibited 06.52 and 07.12% of histamine release. Methanol, ethyl acetate, and hydro alcohol extracts at 200 mg/kg demonstrated 32.73, 29.83, 26.75% and 32.46, 9.38, 26.75% inhibition of egg albumin and carrageenan-induced inflammation, respectively. Methanol extract exhibited 100% bronchorelaxation and 48.83% bronchoprotection. Woodfordia fruticosa flower (WFF) extracts exhibited anti-asthmatic effect by demonstrating bronchoprotection, bronchorelaxation, anti-inflammatory, antioxidant, and mast cell stabilization ability.

  11. Semipurified Ethyl Acetate Partition of Methanolic Extract of Melastoma malabathricum Leaves Exerts Gastroprotective Activity Partly via Its Antioxidant-Antisecretory-Anti-Inflammatory Action and Synergistic Action of Several Flavonoid-Based Compounds

    PubMed Central

    Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Cheema, Manraj Singh

    2017-01-01

    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids. PMID:28168011

  12. Determination of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations by HPLC.

    PubMed

    Almeida, M M; Alves, J M P; Patto, D C S; Lima, C R R C; Quenca-Guillen, J S; Santoro, M I R M; Kedor-Hackmann, E R M

    2009-12-01

    A rapid HPLC method was developed for the assay of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations. The validated method was applied for quantitative determination of these vitamins in simulated emulsion formulation. Samples were analysed directly on a RP-18 reverse phase column with UV detection at 222 nm. A mixture of methanol and isopropanol (25 : 75 v/v) was used as mobile phase. The retention time of tocopheryl acetate and ascorbyl tetraisopalmitate were 3.0 min and 5.9 min, respectively. Recovery was between 95% and 104%. In addition, the excipients did not interfere in the analysis. The method is simple, reproducible, selective and is suitable for routine analyses of commercial products.

  13. IRIS Toxicological Review of Acetone (External Review Draft)

    EPA Science Inventory

    Acetone is produced endogenously in the human body, although usually under conditions of stress such as starvation or high levels of exertion. Acetone is also produced synthetically for a range of commercial processes, mostly as a solvent and intermediate in the synthesis of high...

  14. Method of making a cellulose acetate low density microcellular foam

    DOEpatents

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  15. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  16. The effects of inhaled acetone on place conditioning in adolescent rats

    PubMed Central

    Lee, Dianne E.; Pai, Jennifer; Mullapudui, Uma; Alexoff, David L.; Ferrieri, Richard; Dewey, Stephen L.

    2009-01-01

    Introduction Acetone is a ubiquitous ingredient in many household products (e.g., glue solvents, air fresheners, adhesives, nail polish, and paint) that is putatively abused; however, there is little empirical evidence to suggest that acetone alone has any abuse liability. Therefore, we systematically investigated the conditioned response to inhaled acetone in a place conditioning apparatus. Method Three groups of male, Sprague-Dawley rats were exposed to acetone concentrations of 5,000, 10,000 or 20,000 ppm for 1 hour in a conditioned place preference apparatus alternating with air for 6 pairing sessions. A place preference test ensued in an acetone-free environment. To test the preference of acetone as a function of pairings sessions, the 10,000 ppm group received an additional 6 pairings and an additional group received 3 pairings. The control group received air in both compartments. Locomotor activity was recorded by infrared photocells during each pairing session. Results We noted a dose response relationship to acetone at levels 5,000-20,000 ppm. However, there was no correlation of place preference as a function of pairing sessions at the 10,000 ppm level. Locomotor activity was markedly decreased in animals on acetone-paired days as compared to air-paired days. Conclusion The acetone concentrations we tested for these experiments produced a markedly decreased locomotor activity profile that resemble CNS depressants. Furthermore, a dose response relationship was observed at these pharmacologically active concentrations, however, animals did not exhibit a positive place preference. PMID:18096214

  17. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  18. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae)

    PubMed Central

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.

    2016-01-01

    Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146

  19. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae).

    PubMed

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J; Shivakumar, Muthugounder S

    2016-01-01

    The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.

  20. Metagenomic Analyses Reveal the Involvement of Syntrophic Consortia in Methanol/Electricity Conversion in Microbial Fuel Cells

    PubMed Central

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m−2 (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors. PMID:24852573

  1. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    PubMed

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  2. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  3. Enhanced biodegradation of hexachlorocyclohexane in upflow anaerobic sludge blanket reactor using methanol as an electron donor.

    PubMed

    Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan

    2008-05-01

    Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.

  4. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS

    PubMed Central

    Stocks, Peter K.; McCleskey, C. S.

    1964-01-01

    Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065–1070. 1964.—Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species. Images PMID:14219020

  5. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS.

    PubMed

    STOCKS, P K; MCCLESKEY, C S

    1964-10-01

    Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065-1070. 1964.-Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species.

  6. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  7. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts

    PubMed Central

    Abarca-Vargas, Rodolfo; Peña Malacara, Carlos F.; Petricevich, Vera L.

    2016-01-01

    Bougainvillea is widely used in traditional Mexican medicine to treat several diseases. This study was designed to characterize the chemical constituents of B. x buttiana extracts with antioxidant and cytotoxic activities using different solvents. The extraction solvents used were as follows: distilled water (dH2O), methanol (MeOH), acetone (DMK), ethanol (EtOH), ethyl acetate (EtOAc), dichloromethane (DCM), and hexane (Hex) (100%) at an extraction temperature of 26 °C. Analysis of bioactive compounds present in the B. x buttiana extracts included the application of common phytochemical screening assays, GC-MS analysis, and cytotoxicity and antioxidant assays. The results show that the highest extraction yield was observed with water and methanol. The maximum total phenolic content amount and highest antioxidant potential were obtained when extraction with methanol was used. With the exceptions of water and ethanol extractions, all other extracts showed cytotoxicity ranging between 31% and 50%. The prevailing compounds in water, methanol, ethanol, and acetone solvents were as follows: 4H-pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl (2), 2-propenoic acid, 3-(2-hydrophenyl)-(E)- (3), and 3-O-methyl-d-glucose (6). By contrast, the major components in the experiments using solvents such as EtOH, DMK, EtOAc, DCM, and Hex were n-hexadecanoic acid (8), 9,12-octadecadienoic acid (Z,Z) (12); 9-octadecenoic acid (E)- (13), and stigmasta-5,22-dien-3-ol (28). PMID:27918436

  8. Acetone and Water on TiO₂(110): H/D Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in themore » high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation

  9. The ethyl acetate fraction of a methanolic extract of unripe noni (Morinda citrifolia Linn.) fruit exhibits a biphasic effect on the dopaminergic system in mice

    PubMed Central

    Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin

    2017-01-01

    In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5–100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system. PMID:28450692

  10. The ethyl acetate fraction of a methanolic extract of unripe noni (Morinda citrifolia Linn.) fruit exhibits a biphasic effect on the dopaminergic system in mice.

    PubMed

    Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin

    2017-08-05

    In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5-100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D 2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system.

  11. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  12. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  13. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  14. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  15. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  16. Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO.

    PubMed

    Christodoulou, Xenia; Velasquez-Orta, Sharon B

    2016-10-18

    Microbial electrosynthesis (MES) and anaerobic fermentation (AF) are two biological processes capable of reducing CO 2 , CO, and water into acetic acid, an essential industrial reagent. In this study, we evaluated investment and production costs of acetic acid via MES and AF, and compared them to industrial chemical processes: methanol carbonylation and ethane direct oxidation. Production and investment costs were found high-priced for MES (1.44 £/kg, 1770 £/t) and AF (4.14 £/kg, 1598 £/t) because of variable and fixed costs and low production yields (100 t/y) compared to methanol carbonylation (0.26 £/kg, 261 £/t) and ethane direct oxidation (0.11 £/kg, 258 £/t). However, integrating AF with MES would reduce the release of CO 2 , double production rates (200 t/y), and decrease investment costs by 9% (1366 £/t). This resulted into setting the production costs at 0.24 £/kg which is currently market competitive (0.48 £/kg). This economically feasible bioprocess produced molar flow rates of 4550 mol per day from MES and AF independently. Our findings offer a bright opportunity toward the use and scale-up of MES and AF for an economically viable acetic acid production process.

  17. Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br.

    PubMed

    Chatterjee, Ipshita; Chakravarty, A K; Gomes, A

    2006-06-15

    The present study reports the isolation and purification of lupeol acetate from the methanolic root extract of Indian medicinal plant Hemidesmus indicus (L.) R.Br. (family: Asclepiadaceae) which could neutralize venom induced action of Daboia russellii and Naja kaouthia on experimental animals. Lupeol acetate could significantly neutralize lethality, haemorrhage, defibrinogenation, edema, PLA(2) activity induced by Daboia russellii venom. It also neutralized Naja kaouthia venom induced lethality, cardiotoxicity, neurotoxicity and respiratory changes in experimental animals. Lupeol acetate potentiated the protection by snake venom antiserum action against Daboia russellii venom induced lethality in male albino mice. Venom induced changes in lipid peroxidation and super oxide dismutase activity was antagonized by lupeol acetate. Snake venom neutralization by lupeol acetate and its possible mechanism of action has been discussed.

  18. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  19. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil

    PubMed Central

    Morawe, Mareen; Hoeke, Henrike; Wissenbach, Dirk K.; Lentendu, Guillaume; Wubet, Tesfaye; Kröber, Eileen; Kolb, Steffen

    2017-01-01

    Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove

  20. Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors

    NASA Astrophysics Data System (ADS)

    Guo, H.; Ling, Z. H.; Cheung, K.; Wang, D. W.; Simpson, I. J.; Blake, D. R.

    2013-02-01

    Intensive field measurements were carried out at a mountain site and an urban site at the foot of the mountain from September to November 2010 in Hong Kong. Acetone was monitored using both canister air samples and 2,4-dinitrophenylhydrazine cartridges. The spatiotemporal patterns of acetone showed no difference between the two sites (p > 0.05), and the mean acetone mixing ratios on O3 episode days were higher than those on non-O3 episode days at both sites (p < 0.05). The source contributions to ambient acetone at both sites were estimated using a receptor model i.e. Positive Matrix Factorization (PMF). The PMF results showed that vehicular emission and secondary formation made the most important contribution to ambient acetone, followed by the solvent use at both sites. However, the contribution of biogenic emission at the mountain site was significantly higher than that at the urban site, whereas biomass burning made more remarkable contribution at the urban site than that at the mountain site. The mechanism of oxidation formation of acetone was investigated using a photochemical box model. The results indicated that i-butene was the main precursor of secondary acetone at the mountain site, while the oxidation of i-butane was the major source of secondary acetone at the urban site.

  1. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  2. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds.

    PubMed

    Ganesan, P; Kumar, Chandini S; Bhaskar, N

    2008-05-01

    In vitro antioxidant activities of three selected Indian red seaweeds - viz., Euchema kappaphycus, Gracilaria edulis and Acanthophora spicifera were evaluated. Total phenolic content and reducing power of crude methanol extract were determined. The antioxidant activities of total methanol extract and five different solvent fractions (viz., petroleum ether (PE), ethyl acetate (EA), dichloromethane (DCM), butanol (BuOH) and aqueous) were also evaluated. EA fraction of A. spicifera exhibited higher total antioxidant activity (32.01 mg ascorbic acid equivalent/g extract) among all the fractions. Higher phenolic content (16.26 mg gallic acid equivalent/g extract) was noticed in PE fraction of G. edulis. Reducing power of crude methanol extract increased with increasing concentration of the extract. Reducing power and hydroxyl radical scavenging activity of E. kappaphycus were higher compared to standard antioxidant (alpha-tocopherol). The total phenol content of all the seaweeds was significantly different (P<0.05). In vitro antioxidant activities of methanol extracts of all the three seaweeds exhibited dose dependency; and increased with increasing concentration of the extract.

  3. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    PubMed

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Senanayake, Sanjaya D; Gordon, Wesley O

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450more » and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.« less

  5. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    PubMed

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  7. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  9. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  10. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    PubMed

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  11. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites

  12. Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.

    PubMed

    Yang, Ying; McElwee-White, Lisa

    2004-08-07

    The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.

  13. Epilepsy and the ketogenic diet: assessment of ketosis in children using breath acetone.

    PubMed

    Musa-Veloso, Kathy; Rarama, Exequiel; Comeau, Felix; Curtis, Rosalind; Cunnane, Stephen

    2002-09-01

    High-fat ketogenic diets increase ketones (acetoacetate, beta-hydroxybutyrate, and acetone) and are used to treat refractory seizures. Although ketosis is an integral aspect of these therapeutic regimens, the direct importance of ketosis to seizure control needs further investigation. An examination of this relationship requires a reliable, minimally invasive measure of ketosis that can be performed frequently. In the present study, we examined the use of breath acetone as a measure of ketosis in children with refractory seizures on a classic ketogenic diet. Results were compared with breath acetone levels in epilepsy and healthy controls. Children on the ketogenic diet had significantly higher fasting breath acetone compared with epilepsy or healthy controls (2530 +/- 600 nmol/L versus 19 +/- 9 nmol/L and 21 +/- 4 nmol/L, respectively; p < 0.05). One hour after consumption of a ketogenic breakfast meal, breath acetone increased significantly in epilepsy and healthy controls (p < 0.05), but not in children on a ketogenic diet. Children who were on the ketogenic diet for longer periods of time had a significantly lower fasting breath acetone (R(2) = 0.55, p = 0.014). In one child on the ketogenic diet, breath acetone was determined hourly over a 9-h period, both by gas chromatography and by a prototype hand-held breath acetone analyzer. Preliminary results using this hand-held breath acetone analyzer are encouraging. Breath acetone may be a useful tool in examining the relationship between ketosis and seizure control and enhancing our understanding of the mechanism of the ketogenic diet.

  14. Mid-Infrared Vibrational Spectra of Discrete Acetone-Ligated Cerium Hydroxide Cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenewold, G. S.; Gianotto, Anita K.; Cossel, Kevin C.

    2007-02-15

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1more » and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the

  15. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  16. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  17. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  18. A prototype portable breath acetone analyzer for monitoring fat loss.

    PubMed

    Toyooka, Tsuguyoshi; Hiyama, Satoshi; Yamada, Yuki

    2013-09-01

    Acetone contained in our exhaled breath is a metabolic product of the breakdown of body fat and is expected to be a good indicator of fat-burning. Typically, gas chromatography or mass spectrometry are used to measure low-concentration compounds in breath but such large instruments are not suitable for daily use by diet-conscious people. Here, we prototype a portable breath acetone analyzer that has two types of semiconductor-based gas sensors with different sensitivity characteristics, enabling the acetone concentration to be calculated while taking into account the presence of ethanol, hydrogen, and humidity. To investigate the accuracy of our prototype and its application in diet support, experiments were conducted on healthy adult volunteers. Breath acetone concentrations obtained from our prototype and from gas chromatography showed a strong correlation throughout the experiments. Moreover, body fat in subjects with a controlled caloric intake and taking exercise decreased significantly, whereas breath acetone concentrations in those subjects increased significantly. These results prove that our prototype is practical and useful for self-monitoring of fat-burning at home or outside. Our prototype will help to prevent and alleviate obesity and diabetes.

  19. IR spectra and properties of solid acetone, an interstellar and cometary molecule

    NASA Astrophysics Data System (ADS)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2018-03-01

    Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.

  20. Concentration dependences of the physicochemical properties of a water-acetone system

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.

    2017-01-01

    Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.

  1. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    NASA Astrophysics Data System (ADS)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  2. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures.

    PubMed

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-06

    Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  3. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  4. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  5. Acetone sensor based on zinc oxide hexagonal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  6. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  7. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.

    PubMed

    Güray, Melda Z; Zheng, Shi; Doucette, Alan A

    2017-02-03

    Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.

  8. Solvent (acetone-butanol: ab) production

    USDA-ARS?s Scientific Manuscript database

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  9. Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone.

    PubMed

    Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu

    2006-01-01

    Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented. Copyright 2006 John Wiley & Sons, Ltd.

  10. Human sensory response to acetone/air mixtures.

    PubMed

    Salthammer, T; Schulz, N; Stolte, R; Uhde, E

    2016-10-01

    The release of organic compounds from building products may influence the perceived air quality in the indoor environment. Consequently, building products are assessed for chemical emissions and for the acceptability of emitted odors. A procedure for odor evaluations in test chambers is described by the standard ISO 16000-28. A panel of eight or more trained subjects directly determines the perceived intensity Π (unit pi) of an air sample via diffusers. For the training of the panelists, a comparative Π-scale is applied. The panelists can use acetone/air mixtures in a concentration range between 20 mg/m(3) (0 pi) and 320 mg/m(3) (15 pi) as reference. However, the training and calibration procedure itself can substantially contribute to the method uncertainty. This concerns the assumed odor threshold of acetone, the variability of panelist responses, and the analytical determination of acetone concentrations in air with online methods as well as the influence of the diffuser geometry and the airflow profile. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  11. Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity.

    PubMed

    Liakos, Ioannis L; Holban, Alina Maria; Carzino, Riccardo; Lauciello, Simone; Grumezescu, Alexandru Mihai

    2017-04-12

    The method of electrospinning was used to create nanofibers made of cellulose acetate (CA) and essential oils (EOs). CA polymer at 15% w / v was dissolved in acetone and then 1% or 5% v / v of EOs was added to the polymer solution. The utilized essential oils were rosemary and oregano oils. Then, the CA/EOs in acetone solution were electrospun, creating micro/nanofibers, approximately 700-1500 nm in diameter. Raman spectroscopy was used to detect the attachment of the EOs in the CA electrospun fibers (ESFs). Scanning electron microscopy was used to study the morphology, topography and dimensions of the ESFs. The formed CA/EOs ESFs are found to have good antimicrobial properties against three common microbial species, frequently found in difficult to treat infections: Bacteria species Staphylococcus aureus , Escherichia coli and the yeast Candida albicans . ESFs with 5% v / v oregano oil with respect to the initial solution, showed the best antimicrobial and anti-biofilm effects due to the potency of this EO against bacteria and fungi, especially for Escherichia coli and Candida albicans . This work describes an effective and simple method to prepare CA/EOs ESFs and opens up many new applications of micro/nanofibers such as improved antimicrobial wound dressings, anti-biofilm surfaces, sensors and packaging alternatives.

  12. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    PubMed

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  13. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  14. Effect of solvents on the fluorescence spectra of bacterial luciferase

    NASA Astrophysics Data System (ADS)

    Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.

    2006-08-01

    Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.

  15. Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus

    PubMed Central

    Gutiérrez Acosta, Olga B.; Hardt, Norman

    2013-01-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg−1 protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria. PMID:23913429

  16. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  17. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of acetone vapors toxicity on Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) eggs.

    PubMed

    Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein

    2007-08-01

    The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.

  19. Antinociceptive properties of the aqueous and methanol extracts of the stem bark of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) in mice.

    PubMed

    Bomba, Francis Desire Tatsinkou; Wandji, Bibiane Aimee; Piegang, Basile Nganmegne; Awouafack, Maurice Ducret; Sriram, Dharmarajan; Yogeeswari, Perumal; Kamanyi, Albert; Nguelefack, Telesphore Benoit

    2015-11-04

    Aqueous maceration from the stem barks of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) is taken orally in the central Africa for the management of various ailments, including pain. This work was carried out to evaluate in mice, the antinociceptive effects of the aqueous and methanol extracts of the stem bark of P. macrocarpus. The chemical composition of the aqueous and methanol extracts prepared as cold macerations was determined by high performance liquid chromatography coupled with mass spectrometry (LCMS). The antinociceptive effects of these extracts administered orally at the doses of 100, 200 and 400 mg/kg were evaluated using behavioral pain model induced by acetic acid, formalin, hot-plate, capsaicin and glutamate. The rotarod test was also performed at the same doses. The oral acute toxicity of both extracts was studied at the doses of 800, 1600, 3200 and 6400 mg/kg in mice. The LCMS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts of P. macrocarpus significantly and dose dependently reduced the time and number of writhing induced by acetic acid. They also significantly inhibited the two phases of formalin-induced pain. These effects were significantly inhibited by a pretreatment with naloxone, except for the analgesic activity of the methanol extract at the earlier phase. In addition, nociception induced by hot plate, intraplantar injection of capsaicin or glutamate was significantly inhibited by both extracts. Acute toxicity test showed no sign of toxicity. These results demonstrate that aqueous and methanol extracts of P. macrocarpus are none toxic substances with good central and peripheral antinociceptive effects that are at least partially due to the presence of ellagic acid. These extracts may induce their antinociceptive effect by interfering with opioid, capsaicin and excitatory amino acid pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design.

    PubMed

    Blainski, Andressa; Gionco, Barbara; Oliveira, Admilton G; Andrade, Galdino; Scarminio, Ieda S; Silva, Denise B; Lopes, Norberto P; Mello, João C P

    2017-02-23

    Limonium brasiliense (Boiss.) Kuntze (Plumbaginaceae) is commonly known as "baicuru" or "guaicuru" and preparations of its dried rhizomes have been popularly used in the treatment of premenstrual syndrome and menstrual disorder, and as an antiseptic in genito-urinary infections. This study evaluated the potential antibacterial activity of rhizome extracts against multidrug-resistant bacterial strains using statistical mixture design. The statistical design of four components (water, methanol, acetone, and ethanol) produced 15 different extracts and also a confirmatory experiment, which was performed using water:acetone (3:7, v/v). The crude extracts and their ethyl-acetate fractions were tested against vancomycin-resistant Enterococcus faecium (VREfm), methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, all of which have been implicated in hospital and community-acquired infections. The dry residue, total polyphenol, gallocatechin and epigallocatechin contents of the extracts were also tested and statistical analysis was applied in order to define the fit models to predict the result of each parameter for any mixture of components. The principal component and hierarchical clustering analyses (PCA and HCA) of chromatographic data, as well as mass spectrometry (MS) analysis were performanced to determine the main compounds present in the extracts. The Gram-positive bacteria were susceptible to inhibition of bacterial growth, in special the ethyl-acetate fraction of ternary extracts from water:acetone:ethanol and methanol:acetone:ethanol against, respectively, VREfm (MIC=19µg/mL) and MRSA (MIC=39µg/mL). On the other hand, moderate activity of the ethyl-acetate fractions from primary (except water), secondary and ternary extracts (MIC=625µg/mL) was noted against KPC. The quadratic and special cubic models were significant for polyphenols and gallocatechin contents, respectively. Fit models to dry

  1. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  2. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.

    PubMed

    Ginige, Maneesha P; Bowyer, Jocelyn C; Foley, Leah; Keller, Jürg; Yuan, Zhiguo

    2009-04-01

    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.

  3. Antinociceptive and Anti-Inflammatory Activities of Bridelia retusa Methanolic Fruit Extract in Experimental Animals

    PubMed Central

    Kumar, Tekeshwar; Jain, Vishal

    2014-01-01

    Antinociceptive and anti-inflammatory potentials of methanolic extract of Bridelia retusa fruit (BRME) were evaluated against different animal models in rodents. Antinociceptive effects of BRME were assessed in mice using the acetic acid-induced writhing and formalin test. Anti-inflammatory effects of BRME in three different doses, namely, 100, 200, and 400 mg/kg, were evaluated by utilizing different animal models representing various changes associated with inflammation, namely, carrageenan-induced paw oedema, histamine and serotonin-induced paw oedema, arachidonic acid-induced paw oedema, formalin-induced paw oedema, TPA-induced ear oedema, acetic acid-induced vascular permeability, total WBC count in paw fluid, and myeloperoxidase assay. Also BRME was phytochemically evaluated using chromatographic method. The BRME did not exhibit any signs of toxicity up to a dose of 2000 mg/kg. The extract showed statistical significant inhibition of induced nociception and inflammation in dose dependent manner. The higher dose of extract significantly inhibited pain and inflammation against control (P < 0.001). HPLC results revealed the presence of gallic acid and ellagic acid as phytoconstituents in BRME and it was proven as anti-inflammatory agents. The present study scientifically demonstrated the antinociceptive and anti-inflammatory potential of fruit of B. retusa methanolic extract. These effects may be attributed to the presence of polyphenolic phytoconstituents in the extract. PMID:25506619

  4. Integrated Process for Production of Galangal Acetate, the "Wasabi-Like" Spicy Compound, and Analysis of Essential Oils of Rhizoma Alpinia officinarum (Hance) Farw.

    PubMed

    Lin, Li-Yun; Shen, Kun-Hung; Yeh, Xiang-Yü; Huang, Bou-Yü; Wang, Hui-Er; Chen, Kuan-Chou; Peng, Robert Y

    2016-06-01

    Rhizoma Alpinia officinarum (Hance) Farw, Zingiberaceae (AO), a ginger family herb exhibiting stimulant and a carminative bioactivity, is widely used in European and Asian countries as spicy condiment and medicinal uses. Allyl isothiocyanate (AITC) is the main pungent taste of native Wasabi (Wasabia japonica). The cytotoxicity of AITC has been implicated in thymus, adrenals, and white blood cells. Considering food safety, apparently a safer substitute for wasabi is worthy commercialized. Previously, we found AO crude paste to be rather feasible for use as a "Wasabi-substitute" in fresh meat and cold salads. A process linking cold ethyl acetate (EtAc) extraction with silica gel adsorption and reversed phase high-performance liquid chromatography (RP-HPLC) (mobile phase, 75% methanol) was used to isolate galangal acetate, the Wasabi-like taste constituent. AO contained abundant galangal acetate (3.84 ± 0.07%) compared to A. galangal (0.57 ± 0.16%), and as already confirmed by thin layer chromatography (TLC), gas chromatography (GC)/mass spectrometry (MS)/MS and Nuclear Magnetic Resonance Spectroscopy (NMR), galangal acetate was particularly thermally labile. The steam distilled essential oil (SDEO) of AO (0.14% on wet basis) contained 80 compounds (number of component, %): monoterpene hydrocarbon (21, 13.83%); oxygenated monoterpene (17, 27.08%); sesquiterpene hydrocarbon (20, 31.03%), and oxygenated sesquiterpene (20, 21.85%), respectively. However, no spicy wasabi-like constituent remained in SDEO. Alternatively, n-hexane, EtAc, and methanol extracts of AO all showed potent DPPH- and superoxide anion-scavenging activity. Conclusively, SDEO although contains 80 volatiles, galangal acetate is absent due to thermal instability. Galangal acetate exhibits pleasant "Wasabi-like taste" for which we have successively developed an integrated process for mass production. © 2016 Institute of Food Technologists®

  5. Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takahiro; Satoh, Kohki; Itoh, Hidenori

    Decomposition characteristics of acetone in a DC corona discharge generated between a multi-needle and a plane electrodes in nitrogen-oxygen mixtures at atmospheric pressure are investigated mainly by infrared absorption spectroscopy in this work. It is found that CO2, CO, CH4, HCHO, HCOOH and HCN are the by-products of acetone in the corona discharge, and that CO, CH4, HCHO, HCOOH and HCN are intermediate products, which tend to be decomposed in the corona discharge. CO2 is found to be the major and end-product. It is also found that acetone is chiefly inverted to CO2 via CO at high oxygen concentration (20%) and via CO and CH4 at relatively low oxygen concentration (0.2%), in addition to the direct conversion from acetone to CO2. As the oxygen concentration increases, the percentages of carbon atoms contained in deposit on the plane electrode and the wall of the discharge chamber increases. Further, the decomposition process of acetone is deduced from the examination of rate constants for the reactions in the gaseous phase.

  6. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  8. [Determination of residual acetone in soybean phospholipids by headspace gas chromatography].

    PubMed

    Shen, S C; Zhang, W B; Cui, L X

    2000-11-01

    Soybean phospholipids have many functions and alimentary actions. In our country, powder soybean phospholipids are generally got by extraction with acetone, followed by vacuum drying. There may be some residual acetone present in the soybean phospholipids, which is harmful to health. So, we must know residual acetone content in the soybean phospholipids. However we have not found a method to determine the residual acetone in the soybean phospholipids. In this paper, headspace GC was used to determine residual acetone in powder soybean phospholipids. The headspace bottle was glass with a volume of 15 milliliters. Certain amounts of water, ammonium sulfate, and sample were added into the bottle. The mixture was made into a brei as soon as possible. The bottle was put into a water bath at 40 degrees C for an hour. The GC column was a 2 m x 3 mm i.d. stainless steel tube packed with GDX-103 stationary phase. Temperatures of both injector and detector were kept at 120 degrees C. Column temperature was 160 degrees C. Injection volume was 1 mL. External standard method was used for quantitation. The RSD was 1.2%. The recoveries in the range of 25.0 micrograms/g-100 micrograms/g were 98.4%-104%.

  9. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  10. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination.

    PubMed

    Moran, James J; Ehrhardt, Christopher J; Wahl, Jon H; Kreuzer, Helen W; Wahl, Karen L

    2013-11-15

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 8 acetone samples, while the remaining 13 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  12. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  13. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  14. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong

    2011-01-01

    Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067

  15. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    NASA Astrophysics Data System (ADS)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  16. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  17. Validation of a thin-layer chromatography for the determination of hydrocortisone acetate and lidocaine in a pharmaceutical preparation.

    PubMed

    Dołowy, Małgorzata; Kulpińska-Kucia, Katarzyna; Pyka, Alina

    2014-01-01

    A new specific, precise, accurate, and robust TLC-densitometry has been developed for the simultaneous determination of hydrocortisone acetate and lidocaine hydrochloride in combined pharmaceutical formulation. The chromatographic analysis was carried out using a mobile phase consisting of chloroform+acetone+ammonia (25%) in volume composition 8:2:0.1 and silica gel 60F254 plates. Densitometric detection was performed in UV at wavelengths 200 nm and 250 nm, respectively, for lidocaine hydrochloride and hydrocortisone acetate. The validation of the proposed method was performed in terms of specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and robustness. The applied TLC procedure is linear in hydrocortisone acetate concentration range of 3.75÷12.50  μg·spot(-1), and from 1.00÷2.50  μg·spot(-1) for lidocaine hydrochloride. The developed method was found to be accurate (the value of the coefficient of variation CV [%] is less than 3%), precise (CV [%] is less than 2%), specific, and robust. LOQ of hydrocortisone acetate is 0.198  μg·spot(-1) and LOD is 0.066  μg·spot(-1). LOQ and LOD values for lidocaine hydrochloride are 0.270 and 0.090  μg·spot(-1), respectively. The assay value of both bioactive substances is consistent with the limits recommended by Pharmacopoeia.

  18. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effective compounds in the fruit of Muntingia calabura Linn. cultivated in Taiwan evaluated with scavenging free radicals and suppressing LDL oxidation.

    PubMed

    Lin, Jau-Tien; Chen, Yi-Chen; Chang, Yan-Zin; Chen, Ting-Yu; Yang, Deng-Jye

    2017-04-19

    Scavenging effect of 2,2-diphenyl -2-picrylhydrazyl hydrate (DPPH) radicals, inhibitory effect of low-density lipoprotein (LDL) oxidation, Trolox equivalent antioxidant capacity (TEAC), and phenolic contents were used for the activity-guided separation to identify the effective compounds of Muntingia calabura Linn. fruit. Its ethanol extract with higher phenolic content and antioxidant activities was subjected to silica gel column chromatographic separation, which was sequentially eluted with n-hexane, 10-90% ethyl acetate (EA) in n-hexane, EA, EA/acetone (50/50, v/v), acetone, acetone/methanol (MeOH) (50/50, v/v), and MeOH; fifteen fractions (Fr. 1-15) were obtained. Fractions 13 and 14 with better antioxidant effects were mixed followed by purification of the effective compounds using HPLC. Two major compounds were isolated and identified as gallic acid and 1,2-benzenedicarboxylic acid diisooctyl ester through high performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) measurements. Their amounts in the fruit were 3.76 and 4.62 mg g -1 . This study is the first report to clarify the effective antioxidant compounds of M. calabura Linn. fruit.

  20. Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  1. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    PubMed

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  2. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-09-05

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  3. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  4. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  5. Acetone-butanol fermentation of marine macroalgae.

    PubMed

    Huesemann, Michael H; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A; Roesijadi, Guri

    2012-03-01

    The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  7. Acetone in Orion BN/KL. High-resolution maps of a special oxygen-bearing molecule

    NASA Astrophysics Data System (ADS)

    Peng, T.-C.; Despois, D.; Brouillet, N.; Baudry, A.; Favre, C.; Remijan, A.; Wootten, A.; Wilson, T. L.; Combes, F.; Wlodarczak, G.

    2013-06-01

    Aims: As one of the prime targets of interstellar chemistry study, Orion BN/KL clearly shows different molecular distributions between large nitrogen- (e.g., C2H5CN) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex O-bearing molecule, has been shown to have a very different distribution from other typical O-bearing molecules in the BN/KL region. Therefore, it is worth investigating acetone in detail at high angular resolutions, which will help us understand the formation of this molecule and its chemical role in the complex BN/KL region. Methods: We searched for acetone within our IRAM Plateau de Bure Interferometer 3 mm and 1.3 mm data sets. Twenty-two acetone lines were searched within these data sets. The angular resolution ranged from 1farcs8×0farcs8 to 6farcs0×2farcs3, and the spectral resolution ranged from 0.4 to 1.9 km s-1. Results: Nine of the acetone lines appear free of contamination. Three main acetone peaks (Ace-1, 2, and 3) are identified in Orion BN/KL. The new acetone source Ace-3 and the extended emission in the north of the hot core region have been found for the first time. An excitation temperature of about 150 K is determined toward Ace-1 and Ace-2, and the acetone column density is estimated to be 2-4 × 1016 cm-2 with a relative abundance of 1-6 × 10-8 toward these two peaks. Acetone is a few times less abundant toward the hot core and Ace-3 compared with Ace-1 and Ace-2. Conclusions: We find that the overall distribution of acetone in BN/KL is similar to that of N-bearing molecules, e.g., NH3 and C2H5CN, and very different from those of large O-bearing molecules, e.g., HCOOCH3 and (CH3)2O. Our findings show the acetone distribution is more extended than in previous studies and does not originate only in those areas where both N-bearing and O-bearing species are present. Moreover, because the N-bearing molecules may be associated with shocked gas in Orion BN/KL, this suggests that the formation and

  8. Toxicity assessment and analgesic activity investigation of aqueous acetone extracts of Sida acuta Burn f . and Sida cordifolia L. (Malvaceae), medicinal plants of Burkina Faso

    PubMed Central

    2012-01-01

    Background Sida acuta Burn f. and Sida cordifolia L. (Malvaceae) are traditionally used in Burkina Faso to treat several ailments, mainly pains, including abdominal infections and associated diseases. Despite the extensive use of these plants in traditional health care, literature provides little information regarding their toxicity and the pharmacology. This work was therefore designed to investigate the toxicological effects of aqueous acetone extracts of Sida acuta Burn f. and Sida cordifolia L. Furthermore, their analgesic capacity was assessed, in order to assess the efficiency of the traditional use of these two medicinal plants from Burkina Faso. Method For acute toxicity test, mice were injected different doses of each extract by intraperitoneal route and the LD50 values were determined. For the subchronic toxicity evaluation, Wistar albinos rats were treated by gavage during 28 days at different doses of aqueous acetone extracts and then haematological and biochemical parameters were determined. The analgesic effect was evaluated in mice by the acetic-acid writhing test and by the formalin test. Results For the acute toxicity test, the LD50 values of 3.2 g/kg and 3.4 g/kg respectively for S. acuta Burn f. and S. cordifolia L. were obtained. Concerning the haematological and biochemical parameters, data varied widely (increase or decrease) according to dose of extracts and weight of rats and did not show clinical correlations. The extracts have produced significant analgesic effects by the acetic acid writhing test and by the hot plate method (p <0.05) and a dose-dependent inhibition was observed. Conclusion The overall results of this study may justify the traditional uses of S. acuta and S. cordifolia . PMID:22883637

  9. Toxicity assessment and analgesic activity investigation of aqueous acetone extracts of Sida acuta Burn f . and Sida cordifolia L. (Malvaceae), medicinal plants of Burkina Faso.

    PubMed

    Konaté, Kiessoun; Bassolé, Imaël Henri Nestor; Hilou, Adama; Aworet-Samseny, Raïssa R R; Souza, Alain; Barro, Nicolas; Dicko, Mamoudou H; Datté, Jacques Y; M'Batchi, Bertrand

    2012-08-11

    Sida acuta Burn f. and Sida cordifolia L. (Malvaceae) are traditionally used in Burkina Faso to treat several ailments, mainly pains, including abdominal infections and associated diseases. Despite the extensive use of these plants in traditional health care, literature provides little information regarding their toxicity and the pharmacology. This work was therefore designed to investigate the toxicological effects of aqueous acetone extracts of Sida acuta Burn f. and Sida cordifolia L. Furthermore, their analgesic capacity was assessed, in order to assess the efficiency of the traditional use of these two medicinal plants from Burkina Faso. For acute toxicity test, mice were injected different doses of each extract by intraperitoneal route and the LD50 values were determined. For the subchronic toxicity evaluation, Wistar albinos rats were treated by gavage during 28 days at different doses of aqueous acetone extracts and then haematological and biochemical parameters were determined. The analgesic effect was evaluated in mice by the acetic-acid writhing test and by the formalin test. For the acute toxicity test, the LD50 values of 3.2 g/kg and 3.4 g/kg respectively for S. acuta Burn f. and S. cordifolia L. were obtained. Concerning the haematological and biochemical parameters, data varied widely (increase or decrease) according to dose of extracts and weight of rats and did not show clinical correlations. The extracts have produced significant analgesic effects by the acetic acid writhing test and by the hot plate method (p <0.05) and a dose-dependent inhibition was observed. The overall results of this study may justify the traditional uses of S. acuta and S. cordifolia .

  10. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    PubMed

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  11. Antinociceptive and anti-inflammatory effects of the methanolic stem bark extract of Antrocaryon klaineanum Pierre (Anacardiaceae) in mice and rat.

    PubMed

    Fongang, Annie Laure Magne; Laure Nguemfo, Edwige; Djouatsa Nangue, Yolande; Bogning Zangueu, Calvin; Fouokeng, Yannick; Azebaze, Anatole Guy Blaise; José Llorent-Martínez, Eulogio; Córdova, Maria Luisa Fernández-de; Bertrand Dongmo, Alain; Vierling, Wolfgang

    2017-05-05

    Antrocaryon klaineanum is used by traditional healers to treat many disorders including pain and inflammatory diseases. This study aimed to evaluate the analgesic and antiinflammatory activities of methanol extract of A. klaineanum in mice and rats. Reverse phase high-performance liquid chromatography (RP-HPLC) was performed to establish the chromatographic fingerprint and to identify various chemical components of the plant extract. The anti-nociceptive activity of methanol extract of A. klaineanum was assessed using the acetic acid-induced abdominal constriction model, formalin test, capsaicin and cinnamaldehyde induced-neurogenic pain and hot plate test. Anti-inflammatory activity was assessed on carrageenan-induced inflammation. Extract was administrated orally at 200, 400 and 600mg/kg. Phytochemical analysis indicated the presence of proanthocyanidins, phenolic acids and flavonoids. The results of anti-nociceptive and anti-inflammatory activities showed that methanol extract significantly (p<0.01) reduced the pain induced by acetic acid with an inhibition percentage of 45.49% (600mg/kg). In the formalin test, the extract also significantly (p<0.01) reduced linking time in both phase (neurogenic and inflammatory) of the test with inhibition percentage of 56.28% and 60.73% respectively at the dose of 600mg/kg. The methanol extract of A. klaineanum significantly (P<0.001) reduced neurogenic pain linking time induced by capsaicin and cinnamaldehyde by 82.54% and 75.94% at the highest dose (600mg/kg) respectively. More over the extract significantly increase the reaction time in hot plate test. In the inflammatory test, the plant extract significantly reduced the carrageen induced rat paw oedema from 30min to 6h with a maximum percentage inhibition of 89.88% (6h) at the dose of 600mg/kg. These results demonstrate that the methanol extract of A. klaineanum may possess analgesic and anti-inflammatory effects and provide support of the traditional use of this plant in

  12. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  13. Measurement of breath acetone in patients referred for an oral glucose tolerance test.

    PubMed

    Andrews, Brian Terence; Denzer, Wolfgang; Hancock, Gus; Lunn, Dan; Peverall, Robert; Ritchie, Grant; Williams, Karen

    2018-04-12

    Breath acetone concentrations were measured in 141 subjects (aged 19-91 yrs, mean=59.11yrs standard deviation=12.99yrs), male and female, undergoing an oral glucose tolerance test (OGTT), having been referred to clinic on suspicion of type 2 diabetes. Breath samples were measured using an ion-molecule-reaction mass spectrometer, at the commencement of the OGTT, and after 1 and 2hrs. Subjects were asked to observe the normal routine before and during the OGTT, which includes an overnight fast and ingestion of 75g glucose at the beginning of the routine. Several groups of diagnosis were identified: type 2 Diabetes Mellitus positive (T2DM), n=22; impaired glucose intolerance (IGT), n=33; impaired fasting glucose (IFG), n=14; and reactive hypoglycaemia (RHG), n=5. The subjects with no diagnosis (i.e. normoglycaemia) were used as a control group, n=67. Distributions of breath acetone are presented for the different groups. There was no evidence of a direct relationship between blood glucose and acetone measurements at any time during the study (0hr: p=0.4482; 1hr: p=0.6854; and 2hr: p=0.1858). Nor were there significant differences between the measurements of breath acetone for the control group and the T2DM group (0hr: p=0.1759; 1hr: p=0.4521; and 2hr: p=0.7343). However, the ratio of breath acetone at 1hr to the initial breath acetone was found to be significantly different for the T2DM group compared to both the control and IGT groups (p=0.0189 and 0.011, respectively). The T2DM group was also found to be different in terms of ratio of breath acetone after 1hr to that at 2hrs during the OGTT. And was distinctive in that it showed a significant dependence upon the level of blood glucose at 2hrs (p=0.0146). We conclude that single measurements of the concentrations of breath acetone cannot be used as a potential screening diagnostic for T2DM diabetes in this cohort, but monitoring the evolution of breath acetone could open a non-invasive window to aid in the diagnosis

  14. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Anderson, Bruce E.; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Eichler, Philipp; Fried, Alan; Keutsch, Frank N.; Mikoviny, Tomas; Thornhill, Kenneth L.; Walega, James G.; Weinheimer, Andrew J.; Yang, Melissa; Yokelson, Robert J.; Wisthaler, Armin

    2016-03-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ˜ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV-1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the

  15. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, M.; Anderson, B.; Beyersdorf, A.; Crawford, J. H.; Diskin, G.; Eichler, P.; Fried, A.; Keutsch, F. N.; Mikoviny, T.; Thornhill, K. L.; Walega, J. G.; Weinheimer, A. J.; Yang, M.; Yokelson, R.; Wisthaler, A.

    2015-11-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone

  16. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  17. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  18. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  19. Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism

    NASA Astrophysics Data System (ADS)

    Mitsubayashi, Kohji; Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro

    2016-11-01

    A fluorometric acetone biosniffer (biochemical gas sensor) for assessment of lipid metabolism utilizing reverse reaction of secondary alcohol dehydrogenase was constructed and evaluated. The biosniffer showed highly sensitivity and selectivity for continuous monitoring of gaseous acetone. The measurement of breath acetone concentration during fasting and aerobic exercise were also investigated. The acetone biosniffer provides a novel analytical tool for noninvasive evaluation of human lipid metabolism and it is also expected to use for the clinical and physiological applications such as monitoring the progression of diabetes.

  20. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  1. Change of Exhaled Acetone Concentration in a Diabetic Patient with Acute Decompensated Heart Failure.

    PubMed

    Yokokawa, Tetsuro; Ichijo, Yasuhiro; Houtsuki, Yu; Matsumoto, Yoshiyuki; Oikawa, Masayoshi; Yoshihisa, Akiomi; Sugimoto, Koichi; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Shimouchi, Akito; Takeishi, Yasuchika

    2017-10-21

    In heart failure patients, exhaled acetone concentration, a noninvasive biomarker, is increased according to heart failure severity. Moreover, exhaled acetone concentration is also known to be affected by diabetes mellitus. However, there have been no reports on exhaled acetone concentration in heart failure patients with diabetes mellitus. A 77-year old man was admitted to our hospital with acute decompensated heart failure and atrioventricular block. He had controlled diabetes mellitus under insulin treatment with hemoglobin A1c of 6.5%. He underwent treatment of diuretics and permanent pacemaker implantation. His condition improved and he was discharged at Day 12. Due to the heart failure improvement, his levels of exhaled acetone concentration decreased from 1.623 ppm at admission to 0.664 ppm at discharge. This is the first report to reveal a change of exhaled acetone concentration in a diabetic patient with acute decompensated heart failure.

  2. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols.

    PubMed

    Dettmer, Katja; Nürnberger, Nadine; Kaspar, Hannelore; Gruber, Michael A; Almstetter, Martin F; Oefner, Peter J

    2011-01-01

    Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid-base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid-base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.

  3. Acetone-butanol Fermentation of Marine Macroalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, andmore » bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.« less

  4. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    NASA Astrophysics Data System (ADS)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  5. Solid-phase extraction clean-up of ciguatoxin-contaminated coral fish extracts for use in the mouse bioassay.

    PubMed

    Wong, Chun Kwan; Hung, Patricia; Lee, Kellie L H; Kam, Kai Man

    2009-02-01

    Florisil solid-phase extraction (SPE) cartridges were used for purifying ciguatoxin (CTX)-contaminated coral fish extracts, with the aim of removing extracted lipid but retaining optimal level of CTXs in the purified fractions. The CTX-containing fraction (target fraction) in fish ether extract was isolated and purified by eluting through a commercially available Florisil cartridge with hexane-acetone-methanol solvent mixtures of increasing polarity (hexane-acetone (4:1, v/v) < acetone-methanol (7:3, v/v) < 100% methanol). Application of Florisil SPE using acetone-methanol (7:3, v/v) condition facilitated the separation of 4.2 +/- 0.4 mg (mean +/- standard error of the mean (SEM)) of purified target fraction from 20 mg ether extract with good retention of CTXs. The mouse bioassay was used to demonstrate that the average CTX recovery of the target fraction from CTX-spiked samples was 75.8% +/- 3.3%, which was significantly increased by 96.7% +/- 15% when compared with CTX recovery from ether extracts (44.8% +/- 5.2%) without performing SPE purification. Over 70% of non-target lipids were removed in which no CTX toxicity was found. Moreover, the target fractions of both CTX-spiked and naturally CTX-contaminated samples gave more prominent toxic responses of hypothermia and/or induced more rapid death of the mice. The use of acetone-methanol (7:3, v/v) condition in the elution could significantly improve overall recovery of CTXs, while minimizing the possible interferences of lipid matrix from co-extractants on mice.

  6. Antibacterial and Antimetastatic Potential of Diospyros lycioides Extract on Cervical Cancer Cells and Associated Pathogens

    PubMed Central

    Bagla, V. P.; Lubisi, V. Z.; Ndiitwani, T.; Mokgotho, M. P.; Mampuru, L.; Mbazima, V.

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer in women worldwide. Diospyros lycioides was extracted using hexane, ethyl acetate, acetone, and methanol and finger print profiles were determined. The leaf material was tested for the presence of flavonoids, tannins, saponins, terpenoids, and cardiac glycosides using standard chemical methods and the presence of flavonoids and phenolics using thin layer chromatography. The total phenolic content was determined using Folin-Ciocalteu procedure. The four extracts were tested for antibacterial activity using bioautography against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. The acetone extract with the highest number of antibacterial and antioxidant compounds was assessed for its cytotoxicity on BUD-8 cells using the real-time xCELLigence system and its potential effects on metastatic cervical cancer (HeLa) cell migration and invasion were assessed using wound healing migration and invasion assays. The leaf extract tested positive for flavonoids, tannins, and terpenoids while the four different extracts tested in the antimicrobial assay contained constituents active against one or more of the organisms tested, except E. coli. The cytotoxicity of the acetone extract in real-time was concentration-dependent with potent ability to suppress the migration and invasion of HeLa cells. The finding demonstrates the acetone extract to contain constituents with antibacterial and antimetastatic effects on cervical cancer cells. PMID:27239210

  7. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  8. Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography.

    PubMed

    Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke

    2014-10-15

    Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Temporal variations in rainwater methanol

    NASA Astrophysics Data System (ADS)

    Felix, J. D.; Jones, S. B.; Avery, G. B.; Willey, J. D.; Mead, R. N.; Kieber, R. J.

    2014-10-01

    This work reports the first comprehensive analysis of methanol concentrations in rainwater. Methanol concentrations measured in 49 rain events collected between 28 August 2007 and 10 July 2008 in Wilmington, NC, USA, ranged from below the detection limit of 6 nM to 9.3 μM with a volume-weighted average concentration of 1 ± 0.2 μM. Methanol concentrations in rainwater were up to ~200 times greater than concentrations reported previously in marine waters, indicating wet deposition as a potentially significant source of methanol to marine waters. Assuming that these methanol concentrations are an appropriate proxy for global methanol rainwater concentrations, the global methanol wet deposition sink is estimated as 20 Tg yr-1, which implies that previous methanol budgets underestimate removal by precipitation. Methanol concentrations in rainwater did not correlate significantly with H+, NO3-, and NSS, which suggests that the dominant source of the alcohol to rainwater is not anthropogenic. However, methanol concentrations were strongly correlated with acetaldehyde, which has a primarily biogenic input. The methanol volume-weighted concentration during the summer (2.7 ± 0.9 μM) was ~3 times that of the winter (0.9 ± 0.2 μM), further promoting biogenic emissions as the primary cause of temporal variations of methanol concentrations. Methanol concentrations peaked in rainwater collected during the time period 12 p.m.-6 p.m. Peaking during this period of optimal sunlight implies a possible relationship with photochemical methanol production, but there are also increases in biogenic activity during this time period. Rain events with terrestrial origin had greater concentrations than those of marine origin, demonstrating the significance of the continental source of methanol in rainwater.

  10. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, J.C.; Dewey, S.L.; Schiffer, W.

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals weremore » exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake

  11. Development of a compound-specific isotope analysis method for acetone via 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Wen, Sheng; Feng, Yanli; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Bi, Xinhui

    2004-01-01

    A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone. Copyright (c) 2004 John Wiley & Sons, Ltd.

  12. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    PubMed

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  13. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1987-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  14. Validation of a Thin-Layer Chromatography for the Determination of Hydrocortisone Acetate and Lidocaine in a Pharmaceutical Preparation

    PubMed Central

    Dołowy, Małgorzata; Kulpińska-Kucia, Katarzyna; Pyka, Alina

    2014-01-01

    A new specific, precise, accurate, and robust TLC-densitometry has been developed for the simultaneous determination of hydrocortisone acetate and lidocaine hydrochloride in combined pharmaceutical formulation. The chromatographic analysis was carried out using a mobile phase consisting of chloroform + acetone + ammonia (25%) in volume composition 8 : 2 : 0.1 and silica gel 60F254 plates. Densitometric detection was performed in UV at wavelengths 200 nm and 250 nm, respectively, for lidocaine hydrochloride and hydrocortisone acetate. The validation of the proposed method was performed in terms of specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and robustness. The applied TLC procedure is linear in hydrocortisone acetate concentration range of 3.75 ÷ 12.50 μg·spot−1, and from 1.00 ÷ 2.50 μg·spot−1 for lidocaine hydrochloride. The developed method was found to be accurate (the value of the coefficient of variation CV [%] is less than 3%), precise (CV [%] is less than 2%), specific, and robust. LOQ of hydrocortisone acetate is 0.198 μg·spot−1 and LOD is 0.066 μg·spot−1. LOQ and LOD values for lidocaine hydrochloride are 0.270 and 0.090 μg·spot−1, respectively. The assay value of both bioactive substances is consistent with the limits recommended by Pharmacopoeia. PMID:24526880

  15. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-05

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA. Copyright

  16. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    PubMed

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  17. UV Light Illumination Can Improve the Sensing Properties of LaFeO₃ to Acetone Vapor.

    PubMed

    Zhang, Heng; Qin, Hongwei; Gao, Chengyong; Zhou, Guangjun; Chen, Yanping; Hu, Jifan

    2018-06-21

    The synthesized LaFeO₃ nanocrystalline sensor powders show positive response to sensing acetone vapor at 200 °C. The responses to acetone vapor (at 0.5, 1, 2, 5, 10 ppm) are 1.18, 1.22, 1.89, 3.2 and 7.83. To make the sensor operate at a lower optimum temperature, UV light illumination 365 nm is performed. Response of the sensor has a larger improvement under 365 nm UV light illumination than without it. The responses to acetone vapor (at 0.5, 1, 2, 5, 10 ppm) are 1.37, 1.85, 3.16, 8.32 and 14.1. Furthermore, the optimum operating temperature is reduced to 170 °C. As the relative humidity increases, the resistance and sensitivity of sensor are reduced. The sensor shows good selectivity toward acetone when compared with other gases. Since the detection of ultralow concentrations of acetone vapor is possible, the sensor can be used to preliminarily judge diabetes in the general public, as a high concentration of acetone is exhaled in breath of diabetic patients. The sensor shows a good stability, which is further enhanced under UV light illumination. The sensor shows better stability when under 365 nm UV light illumination. Whether under light illumination or not. The LaFeO₃ material shows good performance as a sensor when exposed to acetone vapor.

  18. Anti-diarrhoea and analgesic activities of the methanol extract and its fractions of Jasminum amplexicaule Buch.-Ham. (Oleaceae).

    PubMed

    Jia, Qiang; Su, Weiwei; Peng, Wei; Li, Peibo; Wang, Yonggang

    2008-09-26

    Jasminum amplexicaule Buch.-Ham. (Oleaceae) has been commonly used in the traditional medicine in dysentery, diarrhoea and bellyache in China. In the present work, the methanol extract of Jasminum amplexicaule and different fractions of this extract were studied for anti-diarrhoea and analgesic activities. The anti-diarrhoea activities were investigated using castor oil-induced, magnesium sulphate-induced diarrhoea models, antienteropooling assay and gastrointestinal motility models in mice. The analgesic activities were studied using hot-plate, writhing and formalin models in mice. At the doses of 100, 200 and 400mg/kg, the methanol extract (ME) showed significant and dose-dependent anti-diarrhoea and analgesic activity in these models. The chloroform fraction (CHF), ethyl acetate fraction (EAF) and the residual methanol fraction (RMF) exhibited similar activity using a dose of 200mg/kg in these models. The pharmacological activities of the n-butanol fraction (BUF) were lesser than the ME extract and other fractions. These results may support the fact that this plant is traditionally used to cure diarrhoea and pain.

  19. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    PubMed

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-11-04

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.

  20. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    PubMed Central

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  1. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    PubMed Central

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  2. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    PubMed

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  5. Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol.

    PubMed

    Sato, Shun; Morita, Naoki; Kitamoto, Dai; Habe, Hiroshi

    2013-01-01

    Some acetic acid bacteria have been shown to produce large amounts of glyceric acid (GA) from glycerol, which is a by-product of biodiesel fuel (BDF) production. Previously, a Gluconobacter strain was found that produced decreased amounts of GA from glycerol in the presence of methanol, a major ingredient of raw glycerol derived from the BDF industry. Thus, a comparative transcriptome analysis of Gluconobacter frateurii NBRC103465 was performed to investigate changes in gene expression during GA production from glycerol in the presence of methanol. Cells grown with methanol showed upregulated expression of a class III alcohol dehydrogenase homolog (adhC(Gf)) and decreased GA production. adhC(Gf) was cloned and expressed heterologously in Escherichia coli, and the presence of an additional protein with an approximate molecular mass of 39 kDa in the cytosol of the recombinant E. coli cells was identified by SDS-PAGE. Activity measurements of the cytosol revealed that the translational product of adhC(Gf) exhibited formaldehyde dehydrogenase activity in the presence of nicotinamide adenine dinucleotide and glutathione. Gluconobacter frateurii cells grown in 1% methanol-containing glycerol were found to have fivefold higher formaldehyde dehydrogenase activity than cells grown without methanol, suggesting that adhC(Gf) in G. frateurii cells functions in the dissimilation of methanol-derived formaldehyde.

  6. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radtke, Corey William; Smith, D.; Owen, S.

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount ofmore » acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.« less

  7. Supporting technology for the development of Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Yaws, Carl L.; Simon, William E.; Mei, Harry T.

    1995-01-01

    measured in ppmv (parts per million by volume). At higher temperatures, greater amounts of these products are produced, as expected. In all cases, methanol was the predominant concentration detected, followed by methyl formate. At temperatures lower than 320 C for the P-type monolithic catalyst, methanol, acetic acid, and acetone were detected, whereas, for the E-type monolithic catalyst, only methanol was detected at 160 C. Both P and E types of the monolithic catalyst were specified with the same substrates (ceramic), washcoat (Al2O3), and promoter (Pt). However, the manufacturing and treatment procedures were quite different. It was therefore concluded that the performance of the E-type monolithic catalyst is superior to that of the P-type for oxidation of methyl acetate. At higher reaction temperatures, e.g., above 420 C, all reactants and byproducts were completely oxidized using these two types of monolithic catalyst to produce carbon dioxide and water vapor. A complex heterogenous catalytic reaction mechanism was proposed to explain the formation of the byproducts (methanol, acetic acid, and methyl formate) as the methyl acetate traveled through the preheater packed with glass beads. The by-product, 1-propanol, may be formed only through a homogeneous reaction, since it is difficult to develop a reasonable sequence of heterogeneous reaction steps to explain its formation. The homogeneous thermal decomposition of methyl acetate to form free radicals was proposed to explain the formation of 1-propanol, and also methanol, in the preheater. A dual-site catalytic reaction mechanism was proposed for the oxidation of methyl acetate over Pt/Al2O3 monolithic catalyst. The dual-site mechanism describes the chemisorption of oxygen molecules as well as a physical adsorption of methyl acetate on the active sites. On the active sites, methyl acetate is oxidized rapidly to form carbon dioxide and water vapor. A rate equation derived from this mechanism gives the Langmuir

  8. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  9. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  10. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  11. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    PubMed

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enolization of acetone in superheated water detected via radical formation.

    PubMed

    Ghandi, Khashayar; Addison-Jones, Brenda; Brodovitch, Jean-Claude; McCollum, Brett M; McKenzie, Iain; Percival, Paul W

    2003-08-13

    Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.

  13. Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism.

    PubMed

    Yamada, Yuki; Hiyama, Satoshi; Toyooka, Tsuguyoshi; Takeuchi, Shoji; Itabashi, Keiji; Okubo, Tatsuya; Tabata, Hitoshi

    2015-08-04

    Analysis of gases emitted from human skin and contained in human breath has received increasing attention in recent years for noninvasive clinical diagnoses and health checkups. Acetone emitted from human skin (skin acetone) should be a good indicator of fat metabolism, which is associated with diet and exercise. However, skin acetone is an analytically challenging target because it is emitted in very low concentrations. In the present study, zeolite was investigated for concentrating skin acetone for subsequent semiconductor-based analysis. The adsorption and desorption characteristics of five zeolites with different structures and those hydrophobicities were compared. A hydrophobic zeolite with relatively large pores (approximately 1.6 times larger than the acetone molecule diameter) was the best concentrator of skin acetone among the zeolites tested. The concentrator developed using zeolite was applied in a semiconductor-based gas sensor in a simulated mobile environment where the closed space was frequently collapsed to reflect the twisting and elastic movement of skin that would be encountered in a wearable device. These results could be used to develop a wearable analyzer for skin acetone, which would be a powerful tool for preventing and alleviating lifestyle-related diseases.

  14. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    PubMed

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  15. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    PubMed

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  16. Antibacterial, antifungal and antioxidant activity of Olea africana against pathogenic yeast and nosocomial pathogens.

    PubMed

    Masoko, Peter; Makgapeetja, David M

    2015-11-17

    Olea africana leaves are used by Bapedi people to treat different ailments. The use of these leaves is not validated, therefore the aim of this study is to validate antimicrobial properties of this plant. The ground leaves were extracted using solvents of varying polarity (hexane, chloroform, dichloromethane (DCM), ethyl acetate, acetone, ethanol, methanol, butanol and water). Thin layer chromatography (TLC) was used to analyse the chemical constituents of the extracts. The TLC plates were developed in three different solvent systems, namely, benzene/ethanol/ammonium solution (BEA), chloroform/ethyl acetate/formic acid (CEF) and ethyl acetate/methanol/water (EMW). The micro-dilution assay and bioautography method were used to evaluate the antibacterial activity of the extracts against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus and the antifungal activity against Candida albicans and Cryptococcus neoformans. Methanol was the best extractant, yielding a larger amount of plant material whereas hexane yielded the least amount. In phytochemical analyses, more compounds were observed in BEA, followed by EMW and CEF. Qualitative 2, 2- diphenylpacryl-1-hydrazyl (DPPH) assay displayed that all the extracts had antioxidant activity. Antioxidant compounds could not be separated using BEA solvent system while with CEF and EMW enabled antioxidant compounds separation. The minimum inhibitory concentrations (MIC) values against test bacteria ranged between 0.16 and 2.50 mg/mL whereas against fungi, MIC ranged from 0.16 to 0.63 mg/mL. Bioautography results demonstrated that more than one compound was responsible for antimicrobial activity in the microdilution assay as the compounds were located at different Rf values. The results indicate that leaf extracts of Olea africana contain compounds with antioxidant, antibacterial and antifungal activities. Therefore, further studies are required to isolate the active compounds and perform

  17. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    PubMed

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  18. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone

    NASA Astrophysics Data System (ADS)

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.

    2007-09-01

    Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  19. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  20. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Methanol Economy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO 2 capture using supported amines, co-electrolysis of CO 2 and water to formate and syngas, decomposition of formate to CO 2 and H 2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  2. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determinemore » whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.« less

  3. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biofiltration of methanol vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shareefdeen, Z.; Baltzis, B.C.; Oh, Youngsook

    1993-03-05

    Biofiltration of solvent and fuel vapors may offer a cost-effective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles. Twomore » series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h[sup [minus]1] m[sup [minus]3] packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics.« less

  5. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties.

    PubMed

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Andrade, María-Jesús; Kylli, Petri; Estévez, Mario

    2011-05-25

    The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.

  6. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts.

    PubMed

    Złotek, Urszula; Mikulska, Sylwia; Nagajek, Małgorzata; Świeca, Michał

    2016-09-01

    The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves - unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.

  7. Liquid phase methanol reactor staging process for the production of methanol

    DOEpatents

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  8. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  9. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    PubMed

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  11. Aerobic methanol-oxidizing bacteria in soil.

    PubMed

    Kolb, Steffen

    2009-11-01

    Methanol is an atmospheric compound that is primarily released from plant polymers and impacts ozone formation. The global methanol emission rate from terrestrial ecosystems is of the same order of magnitude (4.9 x 10(12) mol year(-1)) as that of methane (10 x 10(12) mol year(-1)). The major proportion of the annual plant-released methanol does not enter the atmosphere, but may be reoxidized by biological methanol oxidation, which is catalyzed by methanol-oxidizing prokaryotes. Fifty-six aerobic methanol-oxidizing species have been isolated from soils. These methylotrophs belong to the Alpha-, Beta-, and Gammaproteobacteria, Verrucomicrobia, Firmicutes, and Actinobacteria. Their ecological niches are determined by oxygen and methanol concentration, temperature, pH, the capability to utilize nitrate as an electron acceptor, and the spectrum of nitrogen sources and utilizable multicarbon substrates. Recently discovered interactions with eukaryotes indicate that their ecological niches may not solely be defined by physicochemical parameters. Nonetheless, there are still gaps in knowledge; based on global methanol budgets, methanol oxidation in soil is important, but has not been addressed adequately by biogeochemical studies. Ratios of above-ground and soil-internal methanol oxidation are not known. The contribution to methanol-oxidation by aerobic and anaerobic methylotrophs in situ also needs further research.

  12. Bacopa monnieri: An evaluation of antihyperglycemic and antinociceptive potential of methanolic extract of whole plants.

    PubMed

    Taznin, Inin; Mukti, Mohsina; Rahmatullah, Mohammed

    2015-11-01

    Antihyperglycemic and antinociceptive activity studies were carried out with methanolic extract of whole plants of Bacopa monnieri, respectively, through oral glucose tolerance test and gastric pain model induced by acetic acid in Swiss albino mice. In OGTT (oral glucose tolerance tests) conducted with glucose-challenged mice, the extract, administered at four doses of 50, 100, 200 and 400mg per kg body weight, dose-dependently and significantly inhibited the increase in serum glucose concentrations, respectively, by 33.3, 34.2, 42.1 and 44.2%. A standard antihyperglycemic drug, glibenclamide, when administered at a dose of 10mg per kg body weight, inhibited increase in serum glucose concentration by 50.7%. From the results, it can be concluded that the methanolic extract of the plant possess significant antihyperglycemic potential. In antinociceptive activity tests, administration of the extract at the aforementioned four doses also significantly and dose-dependently reduced the number of acetic acid-induced gastric constrictions in mice. The percent inhibitions in gastric constrictions were, respectively, 43.4, 46.6, 50.0, and 53.4 at the above four doses. A reference antinociceptive drug, aspirin, when administered at a dose of 200 mg per kg body weight, reduced the number of gastric constrictions by 40.0%. Thus the extract at even the lowest dose of 50 mg, demonstrated antinociceptive activity better than that of aspirin, and which activity was much more than aspirin at the other three higher doses tested. The results demonstrate that the plant can be an excellent candidate for further studies towards isolation of antihyperglycemic and pain-killing compounds.

  13. The Marangoni convection induced by acetone desorption from the falling soap film

    NASA Astrophysics Data System (ADS)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  14. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus.

    PubMed

    Rene, Eldon R; Spačková, Radka; Veiga, María C; Kennes, Christian

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4m(3)h(-1)), leading to empty bed residence times as low as 17.1s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m(-3)) and acetone (0.01-8.9 g m(-3)). The total elimination capacities were as high as 360 g m(-3)h(-1), with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m(-3)h(-1), resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Decryptification of Acid Phosphatase in Arthrospores of Geotrichum Species Treated with Dimethyl Sulfoxide and Acetone

    PubMed Central

    Cotter, David A.; Martel, Anita J.; MacDonald, Paul

    1975-01-01

    Decryptification of acid phosphatase in Geotrichum sp. arthrospores was accomplished using acetone or dimethyl sulfoxide treatment. Both dimethyl sulfoxide and acetone irreversibly destroyed the integrity of the spore membranes without solubilizing acid phosphatase. PMID:1167386

  16. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  17. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-Qu; Lv, Xin; Dong, Xu-Yan; Han, Xianlin; Quek, Siew-Young; Huang, Feng-Hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw.

    PubMed

    Raita, Marisa; Denchokepraguy, Naphatsaya; Champreda, Verawat; Laosiripojana, Navadol

    2017-10-01

    Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation. The optimal alkaline-catalyzed pretreatment reaction contained 5% (w/v) NaOH in an aqueous-acetone mixture (1:4) at 80 °C for 5 min. A glucose yield of 913 mg/g of pretreated biomass was achieved, equivalent to a maximal glucose recovery of 93.0% from glucan in the native biomass. Scanning electron microscope revealed efficient removal of non-cellulosic components, resulting in exposed cellulose microfibers with a reduced crystallite size as determined by X-ray diffraction. With potential on obtaining high-quality lignin, the work demonstrated potential of the novel low-temperature alkaline-catalyzed acetone-based organosolv process for pretreatment of lignocellulosic materials in biorefineries.

  19. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  20. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Jae Seong; Cho, Hae Jin; Lee, Tae Soo

    2011-01-01

    This study was initiated to screen the antioxidant activities, tyrosinase inhibitory effects on the fruiting bodies of Pleurotus ferulae extracted with acetone, methanol and hot water. The antioxidant activities were performed on β-carotene–linoleic acid, reducing power, DPPH, ferrous ions chelating abilities, and xanthine oxidase. In addition to this, phenolic compounds were also analyzed. The methanolic extract showed the strongest β-carotene–linoleic acid inhibition and high reducing power as compared to other extracts. The scavenging effects on DPPH radicals, the acetonic and methanolic extracts were more effective than hot water extracts. The strongest chelating effect was obtained from the methanolic extract as compared to the tested synthetic antioxidant. Gallic acid, protocatechuic acid, caffeic acid, vanillin, ferulic acid, naringin, resveratrol, naringenin, hesperetin, formononetin and biochanin-A were detected from acetonitrile and hydrochloric acid (5:1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of acetonic, methanolic, and hot water extracts of P. ferulae increased with increasing concentration. The results suggested that consumption of P. ferulae might be beneficial to the antioxidant, xanthine oxidase, and tyrosinase protection system of the human body against oxidative damage and others complications. PMID:23961169

  1. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system

    NASA Astrophysics Data System (ADS)

    Puiu, A.; Fiorani, L.; Rosa, O.; Borelli, R.; Pistilli, M.; Palucci, A.

    2014-08-01

    In this paper we report, for the first time to our knowledge, on lidar/DIAL detection of acetone vapors at 3.3 μm by means of an optical parametric tunable laser system. After a preliminary spectroscopic study in an absorption cell, the feasibility of a differential absorption (DIAL) lidar for the detection of acetone vapors has been investigated in the laboratory, simulating the experimental conditions of a field campaign. Having in mind measurements in a real scenario, a study of possible atmospheric intereferents has been performed, looking for all known compounds that share acetone IR absorption in the spectral band selected for its detection. Possible interfering species from urban and industrial atmospheres were investigated and limits of acetone detection in both environments were identified. This study confirmed that a lidar system can detect a low concentration of acetone at considerable distances.

  2. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structuremore » with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3

  3. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  4. Optical Sensor based Chemical Modification as a Porous Cellulose Acetate Film and Its Application for Ethanol Sensor

    NASA Astrophysics Data System (ADS)

    Mulijani, S.; Iswantini, D.; Wicaksono, R.; Notriawan, D.

    2018-03-01

    A new approach to design and construction of an optical ethanol sensor has been developed by immobilizing a direct dye at a porous cellulosic polymer fllm. This sensor was fabricated by binding Nile Red to a cellulose acetate membrane that had previously been subjected to an exhaustive base hydrolysis. The prepared optical ethanol sensor was enhanced by adding pluronic as a porogen in the membrane. The addition of pluronic surfactant into cellulose acetate membrane increased the hydrophilic and porous properties of membrane. Advantageous features of the design include simple and easy of fabrication. Variable affecting sensor performance of dye concentration have been fully evaluated and optimized. The rapid response results from the porous structure of the polymeric support, which minimizes barriers to mass transport. Signal of optical sensor based on reaction of dye nile red over the membrane with ethanol and will produce the purple colored product. Result was obtained that maximum intensity of dye nile red reacted with alcohol is at 630-640 nm. Linear regression equation (r2), limit of detection, and limit of quantitation of membrane with 2% dye was 0.9625, 0.29%, and 0.97%. Performance of optical sensor was also evaluated through methanol, ethanol and propanol. This study was purposed to measure the polarity and selectivity of optic sensor toward the alcohol derivatives. Fluorescence intensity of optic sensor membrane for methanol 5%, ethanol 5% and propanol 5% was 15113.56, 16573.75 and 18495.97 respectively.

  5. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  6. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    PubMed

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  7. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  8. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/ I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  9. Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava.

    PubMed

    de Araújo, Aurigena Antunes; Soares, Luiz Alberto Lira; Assunção Ferreira, Magda Rhayanny; de Souza Neto, Manoel André; da Silva, Giselle Ribeiro; de Araújo, Raimundo Fernandes; Guerra, Gerlane Coelho Bernardo; de Melo, Maria Celeste Nunes

    2014-10-28

    Vast numbers of plant species from northeastern Brazil have not yet been phytochemically or biologically evaluated. The goal of this work was to obtain, characterize and show the antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. The plant material (100g) was dried, and the crude extracts were obtained by using turbo-extraction (10%; w/v) with water or acetone:water (7:3, v/v) as the extraction solvent. High-performance liquid chromatography (HPLC) methods were used to screen the crude extracts for hydrolysable tannins (gallic acid) and condensed tannins (catechins). The antibacterial activity was evaluated by agar-diffusion and microdilution methods against Gram-positive strains (Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis INCQS 00016, Enterococcus faecalis ATCC 29212 and a clinical isolate of methicillin-resistant Staphylococcus aureus) as well as Gram-negative strains (Escherichia coli ATCC 25922, Salmonella enteritidis INCQS 00258, Shigella flexneri and Klebsiella pneumoniae). To evaluate the anti-inflammatory activity, a leukocyte migration model was used. Analgesic activity was determined by the hot plate test and the acetic acid-induced abdominal writhing test. Data were analyzed by analysis of variance (ANOVA) at a significance level of 5%. Parapiptadenia rigida presented the highest amount of total polyphenols (35.82 ± 0.20%), while the greatest catechin content was found in the acetone-water extract of Psidium guajava (EAWPg; 1.04 μg/g). The largest amounts of catechins were found in the aqueous extract of Libidibia ferrea (EALf; 1.07 μg/g) and the acetone-water extract of Parapiptadenia rigida (EAWPr; 1.0 μg/g). All extracts showed activity against Gram-positive bacteria. The aqueous and acetone-water extracts of Psidium guajava showed the greatest inhibition zones in the agar diffusion tests. In the evaluation of the minimum

  10. Biodegradation of airborne acetone/styrene mixtures in a bubble column reactor.

    PubMed

    Vanek, T; Silva, A; Halecky, M; Paca, J; Ruzickova, I; Kozliak, E; Jones, K

    2017-07-29

    The ability of a bubble column reactor (BCR) to biodegrade a mixture of styrene and acetone vapors was evaluated to determine the factors limiting the process efficiency, with a particular emphasis on the presence of degradation intermediates and oxygen levels. The results obtained under varied loadings and ratios were matched with the dissolved oxygen levels and kinetics of oxygen mass transfer, which was assessed by determination of k L a coefficients. A 1.5-L laboratory-scale BCR was operated under a constant air flow of 1.0 L.min -1 , using a defined mixed microbial population as a biocatalyst. Maximum values of elimination capacities/maximum overall specific degradation rates of 75.5 gC.m -3 .h -1 /0.197 gC.gdw -1 .h -1 , 66.0 gC.m -3 .h -1 /0.059 gC.gdw -1 .h -1 , and 45.8 gC.m -3 .h -1 /0.027 gC.gdw -1 .h -1 were observed for styrene/acetone 2:1, styrene-rich and acetone-rich mixtures, respectively, indicating significant substrate interactions and rate limitation by biological factors. The BCR removed both acetone and styrene near-quantitatively up to a relatively high organic load of 50 g.m -3 .h -1 . From this point, the removal efficiencies declined under increasing loading rates, accompanied by a significant drop in the dissolved oxygen concentration, showing a process transition to oxygen-limited conditions. However, the relatively efficient pollutant removal from air continued, due to significant oxygen mass transfer, up to a threshold loading rate when the accumulation of acetone and degradation intermediates in the aqueous medium became significant. These observations demonstrate that oxygen availability is the limiting factor for efficient pollutant degradation and that accumulation of intermediates may serve as an indicator of oxygen limitation. Microbial (activated sludge) analyses revealed the presence of amoebae and active nematodes that were not affected by variations in operational conditions.

  11. Acute methanol toxicity in minipigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- andmore » formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.« less

  12. Antibacterial properties of traditionally used Indian medicinal plants.

    PubMed

    Aqil, F; Ahmad, I

    2007-03-01

    In search of broad-spectrum antibacterial activity from traditionally used Indian medicinal plants, 66 ethanolic plant extracts were screened against nine different bacteria. Of these, 39 extracts demonstrated activity against six or more test bacteria. Twelve extracts showing broad-spectrum activity were tested against specific multidrug-resistant (MDR) bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and extended spectrum beta-lactamases (ESbetaL)-producing enteric bacteria. In vitro efficacy was expressed in terms of minimum inhibitory concentration (MIC) values of plant extracts. MIC values ranged from 0.32-7.5 mg/ml against MRSA and 0.31-6.25 mg/ml against ESbetaL-producing enteric bacteria. The overall activity against all groups of bacteria was found in order of Plumbago zeylanica > Hemidesmus indicus > Acorus calamus > Camellia sinensis > Terminalia chebula > Terminalia bellerica > Holarrhena antidysenterica > Lawsonia inermis > Mangifera indica > Punica granatum > Cichorium intybus and Delonix regia. In addition, these extracts showed synergistic interaction with tetracycline, chloramphenicol and ciprofloxacin against S. aureus and/or Escherichia coli. The ethanolic extracts of more than 12 plants were found nontoxic to sheep erythrocytes and nonmutagenic, determined by Ames test using Salmonella typhimurium test strains (TA 97a, TA 100, TA 102 and TA 104). Based on above properties, six plants-Plumbago zeylanica, Hemidesmus indicus, Acorus calamus, Punica granatum, Holarrhena antidysenterica and Delonix regia-were further subjected to fractionation-based study. Ethyl acetate, acetone and methanol fractions of more than six plants indicated that the active phytocompounds were distributed mainly into acetone and ethyl acetate fractions, whereas they were least prevalent in methanol fractions as evident from their antibacterial activity against MDR bacteria. Gram-positive and Gram-negative MDR bacteria are almost equally sensitive to these

  13. Optimization of technological conditions for one-pot synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate in organic media.

    PubMed

    Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang

    2005-03-01

    Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.

  14. Corticosteroid microparticles produced by supercritical-assisted atomization: process optimization, product characterization, and "in vitro" performance.

    PubMed

    Della Porta, G; Ercolino, S F; Parente, L; Reverchon, E

    2006-09-01

    In this work, the production of dexametasone and dexametasone acetate microparticles is proposed using supercritical-assisted atomization (SAA). This process is based on the solubilization of supercritical carbon dioxide in a liquid solution containing the drug; then, the ternary mixture is sprayed through a nozzle and submicroparticles are formed as a consequence of the enhanced atomization. Several process parameters such as different organic solvent (methanol and acetone), solute concentration and flow rate ratio between the liquid solution and carbon dioxide are investigated; their influence is evaluated on the morphology and size of precipitated particles. Spherical corticosteroid particles with mean diameters ranging from 0.5 to 1.2 microm are produced at the optimum operating conditions and narrow particle size distributions (PSDs) have also been obtained. No drug degradation was observed after SAA processing and solvent residues of 300 and 500 ppm for acetone and methanol, respectively, were measured. Drug microparticles produced by SAA can be semi-crystalline or amorphous depending on the process condition; a micronized drug surface area ranging from about 4 to 5 m2/g was also observed. The "in vitro" activity of both untreated and SAA processed glucocorticoids was tested on the release of pro-inflammatory cytokines from stimulated cells. The results shown that SAA-glucocorticoids have retained the activity of the parent untreated compounds and, in the case of dexamethasone, SAA processing improves drug performance. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  15. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  16. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    PubMed

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously

  17. Effect of eight solvents on ethanol analysis by Dräger 7110 Evidential breath analyzer.

    PubMed

    Laakso, Olli; Pennanen, Teemu; Himberg, Kimmo; Kuitunen, Tapio; Himberg, Jaakko-Juhani

    2004-09-01

    The Dräger 7110 MK III FIN Evidential breath analyzer is classified as a quantitative analyzer capable to provide sufficient evidence for establishing legal intoxication. The purpose of this study was to evaluate ethanol specificity of this instrument in the presence of other solvents. Effects of eight possible interfering compounds on ethanol analysis were determined in a procedure simulating a human breathing. Most of the compounds studied had either a negligible effect on ethanol analysis (acetone, methyl ethyl ketone, and methyl isobutyl ketone) or were detected in very low concentrations before influencing ethanol readings (methanol, ethyl acetate, and diethyl ether). However, 1-propanol and 2-propanol increased the ethanol readings significantly. Thus, Dräger ethanol readings should be interpreted carefully in the presence of propanol.

  18. Nonideality in diffusion of ionic and hydrophobic solutes and pair dynamics in water-acetone mixtures of varying composition.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2007-07-14

    We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a

  19. The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test.

    PubMed

    Mansoori, B; Rogiewicz, A; Slominski, B A

    2015-12-01

    In three D-xylose absorption experiments, the effect of 1% HCl/methanol, 70% methanol or 70% acetone extracts of canola meal (CM) or 70% acetone extract of soybean meal (SBM) containing polyphenols, phenolic acids, tannins and phytic acid on intestinal absorption capacity of broilers was determined. In Exp. 1, the experimental groups received orally D-xylose solution alone or with methanol/HCl, methanol or acetone extracts of CM. In Exp. 2, the experimental groups received D-xylose alone or with acetone extracts of CM or SBM. In Exp. 3, the experimental groups received D-xylose plus sucrose solution or D-xylose plus acetone extracts of CM or SBM. In Exps. 2 and 3, the CM extracts contained 2.7 and 2.6, 2.4 and 2.3, 3.2 and 3.2, and 2.4 and 2.2 times higher polyphenols, phenolic acids, tannins and condensed tannins than the corresponding SBM extracts respectively. Blood samples were collected in 40-min intervals, and plasma D-xylose was measured. Compared to the Control, plasma D-xylose in Exp. 1 was lower (p < 0.001) by 81, 69 and 73% at 40-min, by 41, 44 and 37% at 80-min and by 22, 31, and 23% at 120-min post-ingestion of the HCl/methanol, methanol and acetone extracts respectively. In both Exps. 2 and 3, plasma D-xylose level was lower (p < 0.001) in groups dosed with CM extract or SBM extract at each time of blood collection, when compared to the respective Control group. However, in Exp. 3, birds dosed with SBM extract had higher plasma D-xylose than CM extract-dosed birds by 28, 8 and 21% at 40, 80 and 120 min respectively (p < 0.01). In conclusion, although CM extract caused a lower absorption of D-xylose, based on 5 to 10% of CM inclusion levels in practical broiler rations, the soluble bioactive components of CM will likely have minor impact on the absorption capacity of the chicken intestine. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  20. Contribution of hippocampal area CA1 to acetone cyanohydrin-induced loss of motor coordination in rats.

    PubMed

    Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Díaz-Sobac, R; Briones-Céspedes, E E; Rodríguez-Landa, J F

    2017-05-01

    Some vegetable foodstuffs contain toxic compounds that, when consumed, favour the development of certain diseases. Cassava (Manihot esculenta Crantz) is an important food source, but it contains cyanogenic glucosides (linamarin and lotaustralin) that have been associated with the development of tropical ataxic neuropathy and konzo. In rats, intraperitoneal administration of acetone cyanohydrin (a metabolite of linamarin) produces neurological disorders and neuronal damage in the hippocampus. However, it is unknown whether hippocampal area CA1 plays a role in neurological disorders associated with acetone cyanohydrin. A total of 32 male Wistar rats 3 months old were assigned to 4 groups (n=8 per group) as follows: vehicle (1μl physiological saline), and 3 groups with acetone cyanohydrin (1μl of 10, 15, and 20mM solution, respectively). The substances were microinjected intrahippocampally every 24hours for 7 consecutive days, and their effects on locomotor activity, rota-rod and swim tests were assessed daily. On the fifth day post-treatment, rats underwent further assessment with behavioural tests to identify or rule out permanent damage induced by acetone cyanohydrin. Microinjection of acetone cyanohydrin 20mM resulted in hyperactivity, motor impairment, and reduced exploration from the third day of treatment. All concentrations of acetone cyanohydrin produced rotational behaviour in the swim test from the first day of microinjection. The hippocampal area CA1 is involved in motor alterations induced by microinjection of acetone cyanohydrin, as has been reported for other cassava compounds. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.

    PubMed

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios

    2014-01-07

    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  2. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator.

    PubMed

    Liu, Hao; Zhou, Pandeng; Wu, Xing; Sun, Jianliang; Chen, Shicheng

    2015-11-04

    The biosynthetic utilization of laccase/mediator system is problematic because the use of organic cosolvent causes significant inhibition of laccase activity. This work explored how the organic cosolvent impacts on the laccase catalytic capacity towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in aqueous solution. Effects of acetone on the kinetic constants of laccase were determined and the results showed Km and Vmax varied exponentially with increasing acetone content. Acetone as well as some other cosolvents could transform ABTS radicals into its reductive form. The content of acetone in media significantly affected the radical scavenging rates. Up to 95% of the oxidized ABTS was successfully recovered in 80% (v/v) acetone in 60 min. This allows ABTS recycles at least six times with 70%-75% of active radicals recovered after each cycle. This solvent-based recovery strategy may help improve the economic feasibility of laccase/ABTS system in biosynthesis.

  3. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  4. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with acetone... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10237 Formaldehyde, polymers with... subject to reporting. (1) The chemical substance identified as formaldehyde, polymers with acetone-phenol...

  5. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.

  6. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  7. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  8. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  9. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  10. The acetate switch.

    PubMed

    Wolfe, Alan J

    2005-03-01

    To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.

  11. Chemical Composition, Anticonvulsant Activity, and Toxicity of Essential Oil and Methanolic Extract of Elettaria cardamomum.

    PubMed

    Masoumi-Ardakani, Yaser; Mandegary, Ali; Esmaeilpour, Khadijeh; Najafipour, Hamid; Sharififar, Fariba; Pakravanan, Mahboobeh; Ghazvini, Hamed

    2016-11-01

    Elettaria cardamomum is an aromatic spice (cardamom) native to the humid Asian areas, which contains some compounds with a potential anticonvulsant activity. Various pharmacological properties such as anti-inflammatory, analgesic, antioxidant, and antimicrobial effects have been related to this plant. This research was conducted to examine the probable protective impact of the essential oil and methanolic extract of E. cardamomum against chemically (pentylentetrazole)- and electrically (maximal electroshock)-induced seizures in mice. In addition, neurotoxicity, acute lethality, and phytochemistry of the essential oil and methanolic extract were estimated. The TLC method showed the presence of kaempferol, rutin, and quercetin in the extract, and the concentration of quercetin in the extract was 0.5 µg/mL. The major compounds in the essential oil were 1,8-cineole (45.6 %), α -terpinyl acetate (33.7 %), sabinene (3.8 %), 4-terpinen-4-ol (2.4 %), and myrcene (2.2 %), respectively. The extract and essential oil showed significant neurotoxicity in the rotarod test at the doses of 1.5 g/kg and 0.75 mL/kg, respectively. No mortalities were observed up to the doses of 2 g/kg and 0.75 mL/kg for the extract and essential oil. The essential oil was effective in both the pentylentetrazole and maximal electroshock models; however, the extract was only effective in the pentylentetrazole model. The study suggested that E. cardamomum methanolic extract had no significant lethality in mice. Both the essential oil and methanolic extract showed movement toxicity. Anticonvulsant effects of E. cardamomum were negligible against the seizures induced by pentylentetrazole and maximal electroshock. Georg Thieme Verlag KG Stuttgart · New York.

  12. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  13. Temporal and spatial variations in rainwater methanol

    NASA Astrophysics Data System (ADS)

    Felix, J. D.; Jones, S. B.; Avery, G. B.; Willey, J. D.; Mead, R. N.; Kieber, R. J.

    2014-01-01

    This work reports the first detailed analysis of methanol concentrations in rainwater. Methanol concentrations measured in 49 rain events collected between 28 August 2007 to 10 July 2008 in Wilmington, NC, USA, ranged from below the detection limit of 6 nM to 9.3 μM with a volume weighted average concentration of 1.2 ± 0.2 μM. Methanol concentrations in rainwater were up to ~200× greater than concentrations observed in marine waters indicating wet deposition as a potential significant source to marine waters. Assuming these methanol concentrations are an appropriate proxy for global methanol rainwater concentrations the global methanol wet deposition sink is estimated as 20 Tg yr-1 which implies previous methanol budgets underestimate removal by precipitation. Methanol concentrations did not correlate with H+, NO3-, and NSS, which suggest that the dominant source of the alcohol to rainwater is not anthropogenic. However, methanol concentrations were strongly correlated with acetaldehyde which has a primarily biogenic input. Methanol volume weighted concentration during the growing season (1.5 + 0.3 μM) was more than double that of the non-growing season (0.7 + 0.1 μM), further promoting biogenic emissions as the primary cause of fluctuating methanol concentrations. Methanol concentrations peaked in rainwater collected between the time period 12:00-06:00 p.m. Peaking during this period of optimal sunlight implies a direct relationship to photochemical methanol production but there are also increases in biogenic activity during this time period. Rain events with terrestrial origins had higher concentrations than those of marine origin demonstrating the significance of the continental source of methanol in rainwater.

  14. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    PubMed

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.

  15. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.

    PubMed

    Kazachkin, Dmitry; Nishimura, Yoshifumi; Irle, Stephan; Morokuma, Keiji; Vidic, Radisav D; Borguet, Eric

    2008-08-05

    The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge

  16. Acetic acid and aromatics units planned in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acidmore » unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.« less

  17. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Surampudi, Anand B.

    2008-10-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring.

  18. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase

    PubMed Central

    Van Hellemond, Jaap J.; Opperdoes, Fred R.; Tielens, Aloysius G. M.

    1998-01-01

    Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same α-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles. PMID:9501211

  19. Hydrogen and methanol exchange processes for (TMP)Rh-OCH3(CH3OH) in binary solutions of methanol and benzene.

    PubMed

    Sarkar, Sounak; Li, Shan; Wayland, Bradford B

    2011-04-18

    Tetramesityl porphinato rhodium(III) methoxide ((TMP)Rh-OCH(3)) binds with methanol in benzene to form a 1:1 methanol complex ((TMP)Rh-OCH(3)(CH(3)OH)) (1). Dynamic processes are observed to occur for the rhodium(III) methoxide methanol complex (1) that involve both hydrogen and methanol exchange. Hydrogen exchange between coordinated methanol and methoxide through methanol in solution results in an interchange of the environments for the non-equivalent porphyrin faces that contain methoxide and methanol ligands. Interchange of the environments of the coordinated methanol and methoxide sites in 1 produces interchange of the inequivalent mesityl o-CH(3) groups, but methanol ligand exchange occurs on one face of the porphyrin and the mesityl o-CH(3) groups remain inequivalent. Rate constants for dynamic processes are evaluated by full line shape analysis for the (1)H NMR of the mesityl o-CH(3) and high field methyl resonances of coordinated methanol and methoxide groups in 1. The rate constant for interchange of the inequivalent porphyrin faces is associated with hydrogen exchange between 1 and methanol in solution and is observed to increase regularly with the increase in the mole fraction of methanol. The rate constant for methanol ligand exchange between 1 and the solution varies with the solution composition and fluctuates in a manner that parallels the change in the activation energy for methanol diffusion which is a consequence of solution non-ideality from hydrogen bonded clusters.

  20. Indonesia to build methanol plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    1992-08-05

    P.T. Kaltim Methanol Industri (Jakarta), a company set up to build a new methanol plant in Indonesia, expects to award contracts for the construction of a new plant, Indonesia's second methanol unit, by the end of this year. P.T. Kaltim Methanol is a private company owned by P.T. Humpuss, an industrial group active in transport, airlines, and shipping of LNG and methanol. The 2,000-m.t./day plant will be built at Bontang, Kalimantan Island, close to the fertilizer producer P.T. Pupuk Kaltim and near the country's largest natural gas reserves. The site is also a deepsea port, handy for transportation of readymore » product. Three groups are in discussions with the investor on plant supply as well as methanol offtake deals. They are H G/Kockner; John Brown/Davy/Lucky Goldstar, offering the ICI process independently; and Lurgi/Metallgesellschaft (MG), proposing the Lurgi process. At least 60% of the output is expected to be exported, and both ICI and MG are understood to be interested in selling product from the future plant. Japan, Southeast Asia, and the US are targeted.« less

  1. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  2. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  3. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  4. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    PubMed

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  5. Immortelle (Xeranthemum annuum L.) as a natural source of biologically active substances

    PubMed Central

    Stankovic, Milan S.; Radojevic, Ivana D.; Stefanovic, Olgica D.; Topuzovic, Marina D.; Comic, Ljiljana R.; Brankovic, Snežana R.

    2011-01-01

    Antioxidant and antimicrobial effects, total phenolic content and flavonoid concentrations of methanolic, acetone and ethyl acetate extracts from Xeranthemum annuum L. were investigated in this study. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 101.33 to 159.48 mg GA/g. The concentration of flavonoids in various X. annuum extracts was determined using spectrophotometric method with aluminum chloride and the results varied from 22.25 to 62.42 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent and expressed in terms of IC50 (µg/ml), and it ranged from 59.25 to 956.81 µg/ml. The highest phenolic content and capacity to neutralize DPPH radicals were found in the acetone extract. In vitro antimicrobial activity was determined by microdilution method. Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) have been determined. Testing was conducted against 24 microorganisms, including 15 strains of bacteria (standard and clinical strains) and 9 species of fungi. Statistically significant difference in activity between the extracts of X. annuum L. was observed and the acetone extract was found most active. The activity of acetone extract was in accordance with total phenol content and flavonoid concentration measured in this extract. The tested extracts showed significant antibacterial activity against G+ bacteria and weak to moderate activity against other microorganisms. Based on the obtained results, X. annuum can be considered as a rich natural source of polyphenolic compounds with very good antioxidant and antimicrobial activity. PMID:27857677

  6. [Modification of the pattern of fatty acids of erythrocytes’ membranes due to the acetone intoxication].

    PubMed

    Momot, T V; Kushnerova, N F; Rakhmanin, Yu A

    Results of the study of the impact of acetone intoxication on the fatty acids pattern of the general lipids of erythrocytes’ membranes in rats are presented. The inhalation exposure of acetone was carried out in the inoculation chamber with the volume of 100 liters. The chamber was designed for the type of B.A. Kurlyandsky with self-contained system of purification and air regeneration and specified parameters of temperature (20-22С) and air humidity. The flow rate of the air and aerosolized acetone passed through the chamber accounted of 10 liters/min. Concentration of acetone in the chamber was sustained at the level of 206 ± 3,9 mg/m that corresponds to maximum permissible concentration for acetone vapor in the air of a working area. The time of exposure was 6 hours per day for 3 weeks in a monotonous mode, excluding weekend, and was based upon specific parameters of environment simulation in industry. The acetone impact was shown to be accompanied by the gain in the quantity of all kinds of saturated fatty acids and the fall of unsaturated fatty acids in general lipids of erythrocytes ’ membranes in rats and in the structure ofphospholipid fractions. In the content of phosphatydilcholine and phosphatydilethanolamine, as a basic structural phospholipids of biological membranes, there was noted the increase in palmitic and stearic acids. In the range offatty acids of the n-6 family the amount of linoleic and arachidonic acids decreased. In the array of fatty acids of the n-3 family the content of linolenic, eicosapentaenoic and docosahexaenoic acids (n-3 family) declined. Redistribution of fatty acids in the erythrocytes membrane towards to such alteration in quantity as the increasing of saturation and decreasing of the unsaturated fatty acids supposes the change of its physical and chemical properties, permeability, lability and complexity of passing erythrocyte via microcircular channels.

  7. Crystal morphology optimization of thiamine hydrochloride in solvent system: Experimental and molecular dynamics simulation studies

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Han, Dandan; Du, Shichao; Wu, Songgu; Gong, Junbo

    2018-01-01

    Thiamine hydrochloride (THCL) was produced in methanol accompanied with agglomeration in industry, the plate like morphology of THCL in methanol was not deserve to have a good quality. Selecting a suitable solvent should be considered because solvent could be one of the essential factors to impact morphology. Methanol and methanol/ethyl acetate solvent (0.2 vol fraction of methanol) was selected as the solvent system in reactive crystallization of THCL. The experiment results show the THCL crystal morphology in methanol/ethyl acetate solvent system was granular and more regular than that in methanol. In order to explicate the different crystal morphology in different solvents, molecular dynamics (MD) simulation was introduced to simulate crystal morphology in different solvents. The attachment energy (AE) model was employed to investigate the morphology of THCL under vacuum conditions, methanol and methanol/ethyl acetate solvent conditions, respectively. The simulation crystal morphology was in a good agreement with that of experimented. The particle of THCL in methanol/ethyl acetate solvent has less tendency to agglomeration, and then it is favorable to the downstream process, such as filtration, storage and transportation.

  8. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  9. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  10. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  11. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation

    PubMed Central

    2013-01-01

    In this study, the influence of the morphology on the electrocatalytic activity of nickel oxide nanostructures toward methanol oxidation is investigated. Two nanostructures were utilized: nanoparticles and nanofibers. NiO nanofibers have been synthesized by using the electrospinning technique. Briefly, electrospun nanofiber mats composed of polyvinylpyrolidine and nickel acetate were calcined at 700°C for 1 h. Interestingly, compared to nanoparticles, the nanofibrous morphology strongly enhanced the electrocatalytic performance. The corresponding current densities for the NiO nanofibers and nanoparticles were 25 and 6 mA/cm2, respectively. Moreover, the optimum methanol concentration increased to 1 M in case of the nanofibrous morphology while it was 0.1 M for the NiO nanoparticles. Actually, the one-dimensional feature of the nanofibrous morphology facilitates electrons' motion which enhances the electrocatalytic activity. Overall, this study emphasizes the distinct positive impact of the nanofibrous morphology on the electrocatalytic activity which will open a new avenue for modification of the electrocatalysts. PMID:24074313

  12. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fractionation of Gallotannins from mango (Mangifera indica L.) kernels by high-speed counter-current chromatography and determination of their antibacterial activity.

    PubMed

    Engels, Christina; Gänzle, Michael G; Schieber, Andreas

    2010-01-27

    High-speed counter-current chromatography was applied to the separation of gallotannins from mango (Mangifera indica L.) kernels. The kernels were defatted and subsequently extracted with aqueous acetone [80% (v/v)]. The crude extract was purified by being partitioned against ethyl acetate. A hexane/ethyl acetate/methanol/water solvent system [0.5:5:1:5 (v/v/v/v)] was used in the head-to-tail mode to elute tannins according to their degree of galloylation (tetra-O-galloylglucose to deca-O-galloylglucose). The compounds were characterized using liquid chromatography and mass spectrometry in the negative ionization mode. Purities ranged from 72% (tetra-O-galloylglucose) to 100% (octa-O-galloylglucose). The iron binding capacity of gallotannins was dependent on the number of galloyl groups in the molecule, with a larger capacity at lower degrees of galloylation. The minimum inhibitory concentration against Bacillus subtilis did not change among the different gallotannins tested and was in the range of 0.05-0.1 g/L in Luria-Bertani broth but up to 20 times higher in media containing more iron and divalent cations.

  14. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    PubMed

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  16. Inert Reassessment Document for Acetone - CAS No. 67-64-1

    EPA Pesticide Factsheets

    Acetone is a highly volatile chemical that is used as an inert ingredient, a solvent/co-solvent, in a variety of pesticide products (including outdoor yard, garden and turf products, and agricultural crop products).

  17. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  18. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  19. Evaluation of COSHH essentials: methylene chloride, isopropanol, and acetone exposures in a small printing plant.

    PubMed

    Lee, Eun Gyung; Harper, Martin; Bowen, Russell B; Slaven, James

    2009-07-01

    The current study evaluated the Control of Substances Hazardous to Health (COSHH) Essentials model for short-term task-based exposures and full-shift exposures using measured concentrations of three volatile organic chemicals at a small printing plant. A total of 188 exposure measurements of isopropanol and 187 measurements of acetone were collected and each measurement took approximately 60 min. Historically, collected time-weighted average concentrations (seven results) were evaluated for methylene chloride. The COSHH Essentials model recommended general ventilation control for both isopropanol and acetone. There was good agreement between the task-based exposure measurements and the COSHH Essentials predicted exposure range (PER) for cleaning and print preparation with isopropanol and for cleaning with acetone. For the other tasks and for full-shift exposures, agreement between the exposure measurements and the PER was either moderate or poor. However, for both isopropanol and acetone, our findings suggested that the COSHH Essentials model worked reasonably well because the probabilities of short-term exposure measurements exceeding short-term occupational exposure limits (OELs) or full-shift exposures exceeding the corresponding full-shift OELs were <0.05 under the recommended control strategy. For methylene chloride, the COSHH Essentials recommended containment control but a follow-up study was not able to be performed because it had already been replaced with a less hazardous substance (acetone). This was considered a more acceptable alternative to increasing the level of control.

  20. Acetone and Butanone Metabolism of the Denitrifying Bacterium “Aromatoleum aromaticum” Demonstrates Novel Biochemical Properties of an ATP-Dependent Aliphatic Ketone Carboxylase

    PubMed Central

    Schühle, Karola

    2012-01-01

    The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium “Aromatoleum aromaticum” is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)2 composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 Pi. The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content. PMID:22020645

  1. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    PubMed

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  3. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    NASA Astrophysics Data System (ADS)

    Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan

    2017-08-01

    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical

  4. Chemical tapering of polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Rashid, Affa Rozana Abdul; Afiqah Nasution, Amna; Hanim Suranin, Aisyah; Athirah Taib, Nur; Maisarah Mukhtar, Wan; Dasuki, Karsono Ahmad; Annuar Ehsan, Abang

    2017-11-01

    Polymer optical fibers (POFs) have significant advantages over numerous sensing applications. The key element in developing sensor is by removing the cladding of the fiber. The use of organic solvent is one of the methods to create tapered POF in order to expose the core region. In this study, the etching chemicals involved is acetone, methyl isobutyl ketone (MIBK), and acetone-methanol mixture. The POF is immersed in 100%, 80%, and 50% of acetone and MIBK dilution. In addition, the mixture of acetone and methanol is also used for POF etching by the ratio 2:1 of the volume. Acetone has shown to be the most reactive solvent towards POF due to its fastest etching rate compared to MIBK and acetone-methanol mixture. The POF is immersed and lifted from the solution for a specific time, depending on the power loss properties for the purpose of producing unclad POF. In comparison to silica fiber optic, the advantages of POF in terms of its simple technique and easy handling enable it to produce unclad POF without damaging the core region. The surface roughness of the POF is investigated under the microscope after being immersed into different solvent. This method of chemical tapering of POF can be used as the fundamental technique for sensor development. Next, the unclad fiber is immersed into ethanol solutions in order to determine the reaction of unclad POF towards its surrounding. The findings show that this particular sensor is sensitive towards concentration changes ranging between 10 wt% to 50 wt%.

  5. Methanol May Function as a Cross-Kingdom Signal

    PubMed Central

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  6. Pervaporative stripping of acetone, butanol and ethanol to improve ABE fermentation.

    PubMed

    Jitesh, K; Pangarkar, V G; Niranjan, K

    2000-01-01

    Acetone-butanol-ethanol fermentation by anaerobic bacterium C. acetobutylicum is a potential source for feedstock chemicals. The problem of product induced inhibition makes this fermentation economically infeasible. Pervaporation is studied as an effective separation technique to remove the toxic inhibitory products. Various membranes like Styrene Butadiene Rubber (SBR), Ethylene Propylene Diene Rubber (EPDM), plain Poly Dimethyl Siloxane (PDMS) and silicalite filled PDMS were studied for the removal of acetone, butanol and ethanol, from binary aqueous mixtures and from a quaternary mixture. It was found that the overall performance of PDMS filled with 15% w/w of silicalite was the best for removal of butanol in binary mixture study. SBR performance was best for the quaternary mixture studied.

  7. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.

    PubMed

    Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica

    2012-01-01

    Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds

  8. Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the Thraustochytrid strain ONC-T18.

    PubMed

    Armenta, Roberto E; Burja, Adam; Radianingtyas, Helia; Barrow, Colin J

    2006-12-27

    A variety of techniques for extracting carotenoids from the marine Thraustochytrium sp. ONC-T18 was compared. Specifically, the organic solvents acetone, ethyl acetate, and petroleum ether were tested, along with direct and indirect ultrasonic assisted extraction (probe vs bath) methods. Techniques that used petroleum ether/acetone/water (15:75:10, v/v/v) with 3 h of agitation, or 5 min in an ultrasonic bath, produced the highest extraction yields of total carotenoids (29-30.5 microg g-1). Concentrations up to 11.5 microg g-1 of canthaxanthin and 17.5 microg g-1 of beta;-carotene were detected in extracts stored for 6 weeks. Astaxanthin and echinenone were also detected as minor compounds. Extracts with and without antioxidants showed similar carotenoid concentration profiles. However, total carotenoid concentrations were approximately 8% higher when antioxidants were used. Finally, an easy-to-perform and inexpensive method to detect co-enzymes in ONC-T18 was also developed using silica gel TLC plates. Five percent methanol in toluene as a mobile phase consistently eluted co-enzyme Q10 standards and could separate the co-enzyme fractions present in ONC-T18.

  9. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography.

    PubMed

    González, Alba; Avivar, Jessica; Cerdà, Víctor

    2015-09-25

    A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Determination of trimethoprim in tissues using liquid chromatography-thermospray mass spectrometry.

    PubMed

    Cannavan, A; Hewitt, S A; Floyd, S D; Kennedy, D G

    1997-11-01

    A method is described for the determination of the antibacterial drug trimethoprim in tissues. Minced tissue is homogenised with chloroform-acetone (1 + 1 v/v), filtered, and the filtrate evaporated to an oily residue using a rotary evaporator. The residue is redissolved in methanol-water-acetic acid (50 + 48.7 + 1.3 v/v) and any fats present are partitioned into hexane. The aqueous phase is analysed by liquid chromatography-thermospray mass spectrometry in positive mode with the protonated molecular ion at m/z 291 being monitored. Recoveries ranged between 60% in liver and 79% in muscle. The limit of determination was 25 micrograms kg-1 and the limit of detection was approximately 4 micrograms kg-1. The method is suitable for monitoring tissues taken under national surveillance schemes for veterinary drug residues.

  11. [Study on solubility of Chinese herbal compound by solubility parameter].

    PubMed

    Wu, Dezhi; Chen, Lihua; Wang, Sen; Zhu, Weifeng; Guan, Yongmei

    2010-02-01

    To demonstrate the solubility of Chinese herbal compound with solubility parameters. The solubility parameters of Liangfu effective components and Liangfu compound were determined by inverse gas chromatograph (IGC) and group contribution. Hansen ball was plotting by HSPiP, which could be used to investigate the solubility of Liangfu effective components and Liangfu compound in different solvents. And the results were verified by approximate solubility. Liangfu effective components and Liangfu compound could be dissolved in chloroform, ethyl acetate, acetone, octanol and ether, and were slightly soluble in glycerol, methanol, ethanol and propanediol, but could not be dissolved in water. They were all liposoluble, and the results were the same as the test results of the approximate solubility. The solubility of Chinese herbal compound can be expressed by solubility parameters, and it is accurate, convenient and visual.

  12. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  13. [Acetate-free biofiltration].

    PubMed

    Martello, Mauro; Di Luca, Marina

    2012-01-01

    Acetate-free biofiltration is a dialysis method with high biocompatibility. The lack of acetate results in decreased stimulation of the production of inflammatory mediators. Other favorable features have been added over the years, such as the possibility to modulate the concentration of potassium in the dialysate, thereby reducing the risk of arrhythmias; the possibility to constantly monitor the blood volume during treatment to reduce the risk of intradialytic hypotension; and a reduced need for heparin thanks to a membrane with a specially treated surface. In this review we discuss the specifics of acetate-free biofiltration.

  14. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran

    PubMed Central

    Devi, P. Suganya; Kumar, M. Saravana; Das, S. Mohan

    2012-01-01

    There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran. PMID:22400119

  15. Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells.

    PubMed

    Buckley, Alysia G; Looi, Kevin; Iosifidis, Thomas; Ling, Kak-Ming; Sutanto, Erika N; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Lannigan, Francis J; Larcombe, Alexander N; Zosky, Graeme; Knight, Darryl A; Rigby, Paul J; Kicic, Anthony; Stick, Stephen M

    2018-01-01

    Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. Here, we assessed four fixation methods including; (i) 4% ( v /v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the

  16. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  17. Influence of Solvent on Liquid Phase Hydrodeoxygenation of Furfural-Acetone Condensation Adduct using Ni/Al2O3-ZrO2 Catalysts

    NASA Astrophysics Data System (ADS)

    Ulfa, S. M.; Mahfud, A.; Nabilah, S.; Rahman, M. F.

    2017-02-01

    Influence of water and acidic protic solvent on hydrodeoxygenation (HDO) of the furfural-acetone adduct (FAA) over Ni/Al2O3-ZrO2 (NiAZ) catalysts were investigated. The HDO of FAA was carried out in a batch reactor at 150°C for 8 hours. The NiAZ catalysts were home-made catalysts which were prepared by wet impregnation method with 10 and 20% nickel loading. The HDO reaction of FAA using 10NiAZ in water at 150°C gave alkane and oxygenated hydrocarbons at 31.41% with selectivity over tridecane (C13) in 6.67%. On the other hand, a reaction using acetic acid:water (1:19 v/v) in similar reaction condition gave only oxygenated compounds and hydrocracking product (C8-C10). The formation of tridecane (C13) was proposed by hydrogenation of C=O and C=C followed by decarboxylation without hydrocracking process. The presence of water facilitated decarboxylation mechanism by stabilized dehydrogenated derivatives of FAA.

  18. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  19. Methanol Metabolism in Pseudomonad C

    PubMed Central

    Stieglitz, B.; Mateles, R. I.

    1973-01-01

    Cell suspensions of pseudomonad C, a bacterium capable of growth on methanol as sole carbon source, were able to oxidize methanol, formaldehyde, and formate, although the rates of oxidation for the latter two compounds were much slower. The latter compounds also could not serve as sole carbon sources. Through the use of labeled compounds, it was shown that in the presence of methanol, formaldehyde, formate, and bicarbonate were incorporated into trichloroacetic acid-precipitable material. Hexose phosphate synthetase activity was found, indicating the assimilation of methanol via an allulose pathway. No hydroxypyruvate reductase activity was found, nor was any complex membrane structure observed. Such a combination of characteristics has been observed in an obligate methylotroph (Pseudomonas W1), but pseudomonad C can utilize a variety of non-methyl substrates. Images PMID:4349032

  20. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  1. A reassessment of the budget of formic and acetic acids in the boundary layer at Dumont d'Urville (coastal Antarctica): The role of penguin emissions on the budget of several oxygenated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Gros, ValéRie; Preunkert, Susanne; Sarda-EstèVe, Roland; Thierry, Anne-Mathilde; PéPy, Guillaume; Jourdain, B.

    2012-03-01

    Initiated in 1997, the year-round study of formic and acetic acids was maintained until 2011 at the coastal Antarctic site of Dumont d'Urville. The records show that formic and acetic acids are rather abundant in summer with typical mixing ratios of 200 pptv and 700 pptv, respectively. With the aim to constrain their budget, investigations of their potential marine precursors like short-chain alkenes and acetaldehyde were initiated in 2011. Acetic acid levels in December 2010 were four times higher than those observed over summers back to 1997. These unusually high levels were accompanied by unusually high levels of ammonia, and by an enrichment of oxalate in aerosols. These observations suggest that the guano decomposition in the large penguin colonies present at the site was particularly strong under weather conditions encountered in spring 2010 (important snow storms followed by sunny days with mild temperatures). Although being dependent on environmental conditions, this process greatly impacts the local atmospheric budget of acetic acid, acetaldehyde, and acetone during the entire summer season. Present at levels as high as 500 pptv, acetaldehyde may represent the major precursor of acetic acid, alkene-ozone reactions remaining insignificant sources. Far less influenced by penguin emissions, the budget of formic acid remains not fully understood even if alkene-ozone reactions contribute significantly.

  2. In vitro antioxidant activity of extracts from the leaves of Abies pindrow Royle.

    PubMed

    Gupta, D; Bhardwaj, R; Gupta, R K

    2011-01-01

    Traditionally, the leaves of Abies pindrow Royle are employed as an ayurvedic remedy for fever, hypoglycaemic, respiratory and inflammatory conditions. In this study, dichloromethane, methanol and acetone extracts of A. pindrow leaves were analysed for their phytochemical content and in vitro antioxidant activities. The methanol extract exhibited highest antioxidant activity while acetone extract showed presence of relatively high total phenol and flavonoids contents. The present study provides evidence that extracts of Abies pindrow leaves are a potential source of natural antioxidants and could serve as a base for future drugs.

  3. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  4. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  5. IMMUNOSUPPRESIVE EFFECTS OF THE METHANOLIC EXTRACT OF CHRYSOPHYLLUM CAINITO LEAVES ON MACROPHAGE FUNCTIONS.

    PubMed

    Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto

    2017-01-01

    The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H 2 O 2 ) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H 2 O 2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds.

  6. IMMUNOSUPPRESIVE EFFECTS OF THE METHANOLIC EXTRACT OF CHRYSOPHYLLUM CAINITO LEAVES ON MACROPHAGE FUNCTIONS

    PubMed Central

    Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto

    2017-01-01

    Background: The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Material and Methods: Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H2O2) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. Results: The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H2O2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. Conclusion: These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds. PMID:28480396

  7. An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Ching; Lin, David T. W.; Huang, Hsin-Jung; Yang, Tzu-Wei

    2014-04-01

    This study investigates the compatibility of aluminum flat-plate heat pipes (FPHPs) used for filling acetone as a working fluid after long-term operation of and the non-condensable gas (NCG) exhausting process. The rate of NCG generation substantially decreased after conducting the NCG exhausting process, proving the compatibility of acetone with the aluminum FPHPs. However, the thermal resistance was not enhanced because hydroxide bayerite (Al(OH)3) was generated as a product of the reaction.

  8. Methanol

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 11 / 001Fa www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHANOL ( NONCANCER ) ( CAS No . 67 - 56 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2013 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document

  9. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    PubMed

    Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos

    2017-01-01

    Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold

  10. Lignite-to-methanol: an engineering evaluation of Winkler gasification and ICI methanol synthesis route. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyen, S.; Baily, E.; Mawer, J.

    1980-10-01

    The objective of the work reported herein was to develop a preliminary conceptual design, capital requirements, and product cost for a lignite-to-methanol plant incorporating Winkler Gasification Technology and ICI Methanol synthesis. The lignite-to-methanol complex described herein is designed to produce 15,000 TPD of fuel grade methanol. The complex is designed to be self-sufficient with respect to all utility services, offsites, and other support facilities, including power generation. Following is a summary of the results of the study: (1) Tons per day (TPD) of Lignite Feedstock and Fuel (as received) was 47,770; (2) TPD of Fuel Grade Methanol Product was 15,000;more » (3) Thermal efficiency, % (HHV) was 47.4; (4) Plant investment expressed in terms of first quarter of 1980 was ($ Million) 1545; and (5) Applying the economic premises used by EPRI for fuel conversion plant utility type financing, the calculated levelized and first year product costs are included.« less

  11. Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection.

    PubMed

    Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-03-21

    Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.

  12. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing.

    PubMed

    Hu, Li-Xin; Tian, Fei; Martin, Francis L; Ying, Guang-Guo

    2017-10-01

    Carrier solvents are often used in aquatic toxicity testing for test chemicals with hydrophobic properties. However, the knowledge of solvent effects on test organisms remains limited. The present study aimed to determine the biochemical effects of the 4 common solvents methanol, ethanol, acetone, and dimethyl sulfoxide (DMSO) on 2 test species, Lemna minor and Raphidocelis subcapitata, by applying Fourier transform infrared spectroscopy (FTIR) coupled with multivariate analysis to select appropriate solvents for toxicity testing. The results showed biochemical variations associated with solvent treatments at different doses on test species. From the infrared spectra obtained, the structures of lipid membrane and protein phosphorylation in the test species were found to be sensitive to the solvents. Methanol and ethanol mainly affected the protein secondary structure, whereas acetone and DMSO primarily induced alterations in carbohydrates and proteins in the test species. The FTIR results demonstrated that methanol and ethanol showed higher biochemical alterations in the test species than acetone and DMSO, especially at the high doses (0.1 and 1% v/v). Based on the growth inhibition displayed and FTIR spectroscopy, acetone, and DMSO can be used as carrier solvents in toxicity testing when their doses are lower than 0.1% v/v. Environ Toxicol Chem 2017;36:2631-2639. © 2017 SETAC. © 2017 SETAC.

  13. Towards an Understanding of Atmospheric Methanol

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Jacob, D. J.; de Gouw, J.; Warneke, C.; Holloway, J. S.; Blake, D. R.; Karl, T.; Campos, T.; Singh, H. B.; Diskin, G. S.

    2007-12-01

    Methanol, the most abundant non-methane organic gas in the atmosphere, is an important global source of tropospheric CO and formaldehyde, and plays a significant role in the tropical HOx and ozone budgets. The atmospheric methanol budget is highly uncertain, with estimates of the global source ranging from 75 to 490 Tg/yr. New measurements from recent field experiments (INTEX-B, MILAGRO, TEXAQS-II, INTEX-A, and ICARTT) provide quantitative constraints on methanol sources and sinks. Here we use a 3D model of atmospheric chemistry (GEOS-Chem) to interpret these datasets and their implications for the global methanol budget. We find that emissions from terrestrial plants (thought to be the main source) are overestimated by 40-50%; the discrepancy appears specific to certain plant functional types (broadleaf trees and crops). Recent measurements in the surface ocean imply a large in situ biotic source, so that methanol emissions from the ocean biosphere are comparable in magnitude to those from terrestrial ecosystems. The oceans are also a large gross sink for atmospheric methanol (similar to oxidation by OH). Even with the plant growth source decreased by 40-50% according to these new constraints, we find that methanol emissions from the terrestrial biosphere still dominate over those from urban and industrial sources, in contrast to other recent studies.

  14. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis.

    PubMed

    Fujii, Shinya; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-03-20

    In diabetes mellitus (DM) patients with ketoacidosis, ketone bodies, i.e., acetone, acetoacetic acid (AA) and β-hydroxybutyric acid (HA), are increased in the blood and urine. Acetone is also excreted by breathing due to the spontaneous decomposition of AA. Thus, the increase in acetone has been considered as one of the biomarkers for the diagnosis of DM. However, the determination of acetone in one's breath is not recommended because of the sample handling difficulty. We measured acetone in saliva by reversed-phase liquid chromatography (LC) with fluorescence (FL) detection. The proposed method was applied to the determination of acetone in the saliva of healthy volunteers and DM patients with and without ketoacidosis. 3-Pentanone (I.S.) and DBD-H in acetonitrile were added to freshly collected saliva and reacted at room temperature for 20 min in the presence of trifluoroacetic acid. After the reaction, the solution was centrifuged at 10,000 × g and 4 °C for 5 min. The supernatant was separated by reversed-phase LC and the FL detected at 550 nm (excitation at 460 nm). The concentrations of acetone in the DM patients with ketoacidosis were significantly higher than those of the normal subjects and DM patients without ketoacidosis. Furthermore, the total contents of the ketone bodies in the blood correlated with acetone in the saliva of the DM patients. The concentrations of acetone in the saliva of an emergency patient also correlated with the ketone bodies in the blood at each sampling time. The proposed method using LC-FL seems to be useful for the determination of acetone in the saliva of DM patients with ketoacidosis. The method offers a new option for the diagnosis and monitoring of DM patients with ketoacidosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  16. A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs

    PubMed Central

    Kao, Kun-Wei; Hsu, Ming-Che; Chang, Yuh-Hwa; Gwo, Shangjr; Yeh, J. Andrew

    2012-01-01

    An indium nitride (InN) gas sensor of 10 nm in thickness has achieved detection limit of 0.4 ppm acetone. The sensor has a size of 1 mm by 2.5 mm, while its sensing area is 0.25 mm by 2 mm. Detection of such a low acetone concentration in exhaled breath could enable early diagnosis of diabetes for portable physiological applications. The ultrathin InN epilayer extensively enhances sensing sensitivity due to its strong electron accumulation on roughly 5–10 nm deep layers from the surface. Platinum as catalyst can increase output current signals by 2.5-fold (94 vs. 37.5 μA) as well as reduce response time by 8.4-fold (150 vs. 1,260 s) in comparison with bare InN. More, the effect of 3% oxygen consumption due to breath inhalation and exhalation on 2.4 ppm acetone gas detection was investigated, indicating that such an acetone concentration can be analyzed in air. PMID:22969342

  17. A Negative Correlation Between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath.

    PubMed

    Rydosz, Artur

    2015-07-01

    Exhaled acetone analysis has long been recognized as a supplementary tool for diagnosis and monitoring diabetes, especially type 1 diabetes. It is essential, therefore to determine the relationship between exhaled acetone concentration and glucose in blood. Usually, a direct linear correlation between this both compounds has been expected. However, in some cases we can observe a reverse correlation. When blood glucose was increasing, breath acetone declined. The breath analysis as a supplementary tool for diagnosing and monitoring diabetes makes sense only in case of utilization of portable analyzers. This need has created a market for gas sensors. However, commercially available acetone gas sensors are developed for measuring samples at several tens part per million. The exhaled acetone concentration was measured using commercial acetone gas sensor (TGS 822, 823 Figaro, Arlington Heights, IL, USA Inc) with micropreconcentrator in low temperature cofired ceramics. The reference analyzer-mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) was used. Twenty-two healthy volunteers with no history of any respiratory disease participated in the research, as did 31 patients diagnosed with type 1 diabetes. Respectively, 3 healthy volunteer and 5 type 1 diabetes mellitus subjects with reverse trend were selected. The linear fitting coefficient various from 0.1139 to 0.9573. Therefore, it is necessary to determine the correlation between blood glucose concentrations and under different conditions, for example, insulin levels, as well as correlate the results with clinical tests, for example, Hb1Ac. It is well known that the concentration of acetone is strongly influenced by diet, insulin treatment, and so on. Therefore, much more complex analysis with long-term measurements are required. Thus, presented results should be regarded as tentative, and validation studies with the analysis of clinical test and in a large number of patients, including control groups

  18. A Negative Correlation Between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath

    PubMed Central

    Rydosz, Artur

    2015-01-01

    Background: Exhaled acetone analysis has long been recognized as a supplementary tool for diagnosis and monitoring diabetes, especially type 1 diabetes. It is essential, therefore to determine the relationship between exhaled acetone concentration and glucose in blood. Usually, a direct linear correlation between this both compounds has been expected. However, in some cases we can observe a reverse correlation. When blood glucose was increasing, breath acetone declined. Methods: The breath analysis as a supplementary tool for diagnosing and monitoring diabetes makes sense only in case of utilization of portable analyzers. This need has created a market for gas sensors. However, commercially available acetone gas sensors are developed for measuring samples at several tens part per million. The exhaled acetone concentration was measured using commercial acetone gas sensor (TGS 822, 823 Figaro, Arlington Heights, IL, USA Inc) with micropreconcentrator in low temperature cofired ceramics. The reference analyzer–mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) was used. Results: Twenty-two healthy volunteers with no history of any respiratory disease participated in the research, as did 31 patients diagnosed with type 1 diabetes. Respectively, 3 healthy volunteer and 5 type 1 diabetes mellitus subjects with reverse trend were selected. The linear fitting coefficient various from 0.1139 to 0.9573. Therefore, it is necessary to determine the correlation between blood glucose concentrations and under different conditions, for example, insulin levels, as well as correlate the results with clinical tests, for example, Hb1Ac. Conclusions: It is well known that the concentration of acetone is strongly influenced by diet, insulin treatment, and so on. Therefore, much more complex analysis with long-term measurements are required. Thus, presented results should be regarded as tentative, and validation studies with the analysis of clinical test and in a large

  19. Microbial methanol uptake in northeast Atlantic waters

    PubMed Central

    Dixon, Joanna L; Beale, Rachael; Nightingale, Philip D

    2011-01-01

    Methanol is the predominant oxygenated volatile organic compound in the troposphere, where it can significantly influence the oxidising capacity of the atmosphere. However, we do not understand which processes control oceanic concentrations, and hence, whether the oceans are a source or a sink to the atmosphere. We report the first methanol loss rates in seawater by demonstrating that 14C-labelled methanol can be used to determine microbial uptake into particulate biomass, and oxidation to 14CO2. We have found that methanol is used predominantly as a microbial energy source, but also demonstrated its use as a carbon source. We report biological methanol oxidation rates between 2.1 and 8.4 nmol l−1 day−1 in surface seawater of the northeast Atlantic. Kinetic experiments predict a Vmax of up to 29 nmol l−1 day−1, with a high affinity Km constant of 9.3 n in more productive coastal waters. We report surface concentrations of methanol in the western English channel of 97±8 n (n=4) between May and June 2010, and for the wider temperate North Atlantic waters of 70±13 n (n=6). The biological turnover time of methanol has been estimated between 7 and 33 days, although kinetic experiments suggest a 7-day turnover in more productive shelf waters. Methanol uptake rates into microbial particles significantly correlated with bacterial and phytoplankton parameters, suggesting that it could be used as a carbon source by some bacteria and possibly some mixotrophic eukaryotes. Our results provide the first methanol loss rates from seawater, which will improve the understanding of the global methanol budget. PMID:21068775

  20. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  1. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  5. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  6. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    PubMed

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Methanol poisoning among travellers to Indonesia.

    PubMed

    Giovanetti, Franco

    2013-01-01

    Common Travel Medicine sources generally do not provide information on the risk of methanol poisoning among travellers who visit Indonesia. The aim of this analysis was to increase knowledge on this topic through reports from bibliographic databases and Internet sources. Case reports and studies on methanol poisoning in Indonesia were retrieved through PubMed, Embase and Google Scholar database searching. The Google search was used to retrieve the Web Media articles reporting fatal and non-fatal methanol poisoning in Indonesia, in a timeframe from 01.01.2009 to 03.03.2013. Three case reports of methanol poisoning involving four travellers to Indonesia were found in bibliographic databases. The media sources searching identified 14 articles published online, reporting 22 cases of methanol poisoning among travellers after consumption of local alcohol beverages. The total number of death cases was 18. Some sources report also a large number of cases among the local population. Methanol poisoning is likely to be an emerging public health problem in Indonesia, with an associated morbidity and mortality among travellers and local people. Some strategies can be implemented to prevent or reduce harm among travellers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  9. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  10. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  11. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the...

  12. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  13. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  14. Stress degradation studies and development of stability-indicating TLC-densitometry method for determination of prednisolone acetate and chloramphenicol in their individual and combined pharmaceutical formulations

    PubMed Central

    2012-01-01

    A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v). Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol), simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D.) of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations. PMID:22264235

  15. Ozone decomposition in aqueous acetate solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehested, K.; Holcman, J.; Bjergbakke, E.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozonemore » decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.« less

  16. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  17. Graphene oxide foams and their excellent adsorption ability for acetone gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less

  18. Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis).

    PubMed

    Adel Pilerood, Shirin; Prakash, Jamuna

    2014-05-01

    The nutritional composition and antioxidant activity (in aqueose and solvent extracts) of two medicinal plants of Iranian origin Borage (Echium amoenum) and Valerian (Valerian officinalis) used as tea were determined. Samples were analyzed for antioxidant components viz. polyphenols, vitamin C, β carotene, flavonoids, anthocyanins and tannins. Antioxidant assays such as free radical scavenging activity, reducing power and total antioxidant activity were carried out for ethanol, methanol, acetone, 80% methanol and 80% ethanolic extracts. In borage highest and least activity was observed in water and acetone extract respectively in all assays. In Valerian, 80% methanolic extract showed highest activity in reducing power and free radical scavenging activity assay. Total polyphenols in borage and valerian were 1,220 and 500 mg in ethanolic extracts and 25 and 130 mg in acetonic extracts respectively. Total carotenoids and vitamin C contents were 31.6 and 133.69 mg and 51.2 and 44.87 mg for borage and valerian respectively. Highest amount of tannins were extracted in 80% methanolic extract. It can be concluded that borage and valerian exhibited antioxidant activity in all extracts. The antioxidant activity could be attributed to their polyphenol and tannin and flavonoids contents. In all assays borage showed higher activity than valerian.

  19. Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets.

    PubMed

    Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A

    2002-06-01

    The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined

  20. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  1. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    PubMed

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  2. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  3. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  4. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  5. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  6. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    PubMed

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates.

    PubMed

    Adenekan, Monilola K; Fadimu, Gbemisola J; Odunmbaku, Lukumon A; Oke, Emmanuel K

    2018-01-01

    In this study, the effect of different isolation techniques on the isolated proteins from pigeon pea was investigated. Water, methanol, ammonium sulfate, and acetone were used for the precipitation of proteins from pigeon pea. Proximate composition, and antinutritional and functional properties of the pigeon pea flour and the isolated proteins were measured. Data generated were statistically analyzed. The proximate composition of the water-extracted protein isolate was moisture 8.30%, protein 91.83%, fat 0.25%, ash 0.05%, and crude fiber 0.05%. The methanol-extracted protein isolate composition was moisture 7.87%, protein 91.83%, fat 0.17%, and ash 0.13%, while crude fiber and carbohydrates were not detected. The composition of the ammonium sulfate-extracted protein isolate was moisture 7.73%, protein 91.73%, fat 0.36, ash 0.13%, and crude fiber 0.67%. The acetone-extracted protein isolate composition was moisture 8.03%, protein 91.50%, ash 0.67%, and fat 0.30%, but crude fiber and carbohydrates were not detected. The isolate precipitated with ammonium sulfate displayed the highest foaming capacity (37.63%) and foaming stability (55.75%). Isolates precipitated with methanol and acetone had the highest water absorption capacity (160%). Pigeon pea protein isolates extracted with methanol and ammonium sulfate had the highest oil absorption capacity of 145%. Protein isolates recovered through acetone and methanol had the highest emulsifying capacity of 2.23% and emulsifying stability of 91.47%, respectively. The proximate composition of the recovered protein isolates were of high purity. This shows the efficiency of the extraction techniques. The isolates had desirable solubility index. All the isolation techniques brought significant impact on the characteristics of the isolated pigeon pea protein.

  8. Microwave Spectrum of the Ethanol-Methanol Dimer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Carroll, Brandon; Mead, Griffin; Blake, Geoffrey

    2016-06-01

    The hydrogen bond donor/acceptor competition in mixed alcohol clusters remains a fundamental question in physical chemistry. Previous theoretical work on the prototype ethanol-methanol dimer has been inconclusive in predicting the energetically preferred structure. Here, we report the microwave spectrum of the ethanol-methanol dimer between 8-18 GHz, using a chirped pulse Fourier transform microwave spectrometer. With the aid of ab initio calculations, 36 transitions have been fit and assigned to a t-ethanol-acceptor, methanol-donor structure in an argon-backed expansion. In a helium-backed expansion, a second excited conformer has been observed, and tentatively assigned to a g-ethanol-acceptor, methanol-donor structure. No ethanol-donor, methanol-acceptor structures have been found, suggesting such structures are energetically disfavored.

  9. Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes.

    PubMed

    Gomez Perez, Juan; Konya, Zoltan; Kukovecz, Akos

    2018-06-12

    Liquid phase exfoliation of 2D materials has issues related to the sorption of the solvent, the oxidation of the sample during storage, and the topographical inhomogeneity of the exfoliated material. N-methyl-2-pyrrolidone (NMP), a common solvent for black phosphorus (BP) exfoliation, has additional drawbacks like the formation of by-products during sonication and poor solvent volatility. Here we demonstrate an improvement in the topographical homogeneity (i.e. thickness and lateral dimensions) of NMP-exfoliated BP flakes after resuspension in acetone. The typical size of monolayers and bilayers stabilised in acetone was 99.8±27.4 nm and 159.1±57 nm, respectively. These standard deviations represent a threefold improvement over those of the NMP-exfoliated originals. Phosphorene can also be exfoliated directly in acetone by very long ultrasonication. The product suspension enjoys the same dimensional homogeneity benefits, which confirms that this effect is an intrinsic property of the acetone-BP system. The quality and stability of the exfoliated flakes was checked by XRD, TEM, electron diffraction and Raman spectroscopy. Thermal expansion coefficients of the A1g, B2g and A2g Raman modes were calculated for drop-casted samples as -0.01828 cm-1/K, -0.03056 cm-1/K and -0.03219 cm-1/K, respectively. The flakes withstand 20 minutes in O2 flow at 373 K without lattice distortion. . © 2018 IOP Publishing Ltd.

  10. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    PubMed Central

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  11. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei

    2005-06-01

    We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.

  12. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    PubMed

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  13. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum.

    PubMed

    Tummala, Seshu B; Welker, Neil E; Papoutsakis, Eleftherios T

    2003-03-01

    We investigated the effect of antisense RNA (asRNA) structural properties on the downregulation efficacy of enzymes in the acetone-formation pathway (acetoacetate decarboxylase [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824. First, we generated three strains, C. acetobutylicum ATCC 824 (pADC38AS), 824(pADC68AS), and 824(pADC100AS), which contain plasmids that produce asRNAs of various lengths against the AADC (adc) transcript. Western analysis showed that all three strains exhibit low levels of AADC compared to the plasmid control [ATCC 824(pSOS95del)]. By using computational algorithms, the three different asRNAs directed toward AADC, along with previously reported clostridial asRNAs, were examined for structural features (free nucleotides and components). When the normalized metrics of these structural features were plotted against percent downregulation, only the component/nucleotide ratio correlated well with in vivo asRNA effectiveness. Despite the significant downregulation of AADC in these strains, there were no concomitant effects on acetone formation. These findings suggest that AADC does not limit acetone formation and, thus, we targeted next the CoAT. Using the component/nucleotide ratio as a selection parameter, we developed three strains [ATCC 824 (pCTFA2AS), 824(pCTFB1AS), and 824(pCOAT11AS)] which express asRNAs to downregulate either or both of the CoAT subunits. Compared to the plasmid control strain, these strains produced substantially low levels of acetone and butanol and Western blot analyses showed significantly low levels of both CoAT subunits. These results show that CoAT is the rate-limiting enzyme in acetone formation and strengthen the hypothesis that the component/nucleotide ratio is a predictive indicator of asRNA effectiveness.

  14. Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum

    PubMed Central

    Tummala, Seshu B.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    2003-01-01

    We investigated the effect of antisense RNA (asRNA) structural properties on the downregulation efficacy of enzymes in the acetone-formation pathway (acetoacetate decarboxylase [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824. First, we generated three strains, C. acetobutylicum ATCC 824 (pADC38AS), 824(pADC68AS), and 824(pADC100AS), which contain plasmids that produce asRNAs of various lengths against the AADC (adc) transcript. Western analysis showed that all three strains exhibit low levels of AADC compared to the plasmid control [ATCC 824(pSOS95del)]. By using computational algorithms, the three different asRNAs directed toward AADC, along with previously reported clostridial asRNAs, were examined for structural features (free nucleotides and components). When the normalized metrics of these structural features were plotted against percent downregulation, only the component/nucleotide ratio correlated well with in vivo asRNA effectiveness. Despite the significant downregulation of AADC in these strains, there were no concomitant effects on acetone formation. These findings suggest that AADC does not limit acetone formation and, thus, we targeted next the CoAT. Using the component/nucleotide ratio as a selection parameter, we developed three strains [ATCC 824 (pCTFA2AS), 824(pCTFB1AS), and 824(pCOAT11AS)] which express asRNAs to downregulate either or both of the CoAT subunits. Compared to the plasmid control strain, these strains produced substantially low levels of acetone and butanol and Western blot analyses showed significantly low levels of both CoAT subunits. These results show that CoAT is the rate-limiting enzyme in acetone formation and strengthen the hypothesis that the component/nucleotide ratio is a predictive indicator of asRNA effectiveness. PMID:12618456

  15. Annual variability of acetone in the UTLS region based on ICON-ART simulations

    NASA Astrophysics Data System (ADS)

    Weimer, Michael; Schröter, Jennifer; Eckstein, Johannes; Deetz, Konrad; Neumaier, Marco; Fischbeck, Garlich; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard; Reddmann, Thomas; Kirner, Oliver; Ruhnke, Roland; Braesicke, Peter

    2017-04-01

    We present results of an extension to the ICOsahedral Non-hydrostatic modelling framework (ICON) [1]. ICON is a joint project of the German Weather Service and the Max-Planck-Institute for Meteorology. We use the Aerosols and Reactive Trace gases (ART) extension for ICON which currently is under development [2]. Here, the module for including emissions from external data sources has been implemented and exploited [3]. Our test cases are the emissions of volatile organic compounds (VOCs). We test the sensitivity of the VOC concentrations in the upper troposphere and lower stratosphere (UTLS) driven by prescribed emission inventories and online calculated emissions. Because VOCs are influencing the HOx equilibrium the annual cycle of VOCs matter for UTLS ozone concentrations. In the UTLS region, the HOx production due to photooxidation of the VOC acetone gets in the same order as that due to photolysis of ozone. Therefore, acetone is one of the main regulators of HOx and ozone in this region. We compare our simulations of acetone concentrations with ground-based and CARIBIC airborne measurements for different emission scenarios and different parametrisations of the acetone lifetime. [1] Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Quart. J. Roy. Meteor. Soc., 141, 563-579, doi:10.1002/qj.2378, 2015. [2] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 - a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659-1676, doi:10.5194/gmd-8-1659-2015, 2015. [3] Weimer, M., Schröter, J., Eckstein, J., Deetz, K., Neumaier, M., Fischbeck, G., Rieger, D., Vogel, H., Vogel, B., Reddmann, T., Kirner, O., Ruhnke, R., and Braesicke, P.: A new module for trace gas emissions in ICON-ART 2.0: A

  16. Atmospheric deposition of methanol over the Atlantic Ocean

    PubMed Central

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  17. Atmospheric deposition of methanol over the Atlantic Ocean.

    PubMed

    Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher

    2013-12-10

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

  18. Methanol test

    MedlinePlus

    ... Safety and Health. Emergency Response Safety and Health Database. Methanol: systemic agent. Updated May 28, 2015. www. ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  19. Measurements of VOC fluxes by dynamic plant and soil chambers in wheat and maize crop near Paris with a PTR-Qi-TOF-MS: Quantification and response to environmental and physiological drivers.

    NASA Astrophysics Data System (ADS)

    Gonzaga-Gomez, Lais; Boissard, Christophe; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Buysse, Pauline; Decuq, Céline; Fanucci, Olivier; Gueudet, Jean-Christophe; Gros, Valérie; Sarda, Roland; Zannoni, Nora; Loubet, Benjamin

    2017-04-01

    Volatile organic compounds (VOC) play an important role in the chemistry of the atmosphere as precursors of secondary pollutants such as ozone and organic aerosols. A large variety of VOC are exchanged between plants (BVOC) and the atmosphere. Their fluxes are strongly dependent on environmental factors (temperature, light, biotic and abiotic stress) and vary greatly among plant species. Only few studies focused on BVOC emissions by agricultural plants and were mostly carried in North America. However, agricultural lands occupy 51% of the total country area in France, with wheat being one of the most important crop. We used a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) and dynamic chambers to measure BVOC emissions from plant and soil compartments of a wheat and a maize crop near Paris (FR-GRI ICOS site). More than 700 masses were detected thanks to the resolution and sensitivity of this new instrument. We analyze the emission response to light, temperature and stomatal aperture in order to explain the mechanisms of BVOC exchanges by wheat plants. We investigate the emission differences between soil and plant compartment, and between wheat and maize crops. Acetone (m/z 59.049) was the predominant volatile compound in the emissions from wheat. Both methanol (m/z 33.033) and acetaldehyde (m/z 45.033) were also quite abundantly emitted but were less than half the acetone emissions. Other masses detected in relative importance in this study were m/z 63.026 (possible DMS), m/z 93.033 (not identified), m/z 69.069 (isoprene), m/z 57.069 (not identified), m/z 83.085 (possible green leaf volatiles), m/z 73.064 (methyl ethyl ketone). Their emissions were around 7 times smaller than the emissions of acetone. On the other hand we observed a deposition for, mainly, m/z 75.044 (hydroxyacetone) and m/z 61.028 (acetic acid). Methanol presented both positive and negative fluxes witch could indicate either emission or absorption of this compound by the

  20. Some Strychnos spinosa (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities.

    PubMed

    Isa, Adamu Imam; Awouafack, Maurice Ducret; Dzoyem, Jean Paul; Aliyu, Mohammed; Magaji, Rabiu AbduSsalam; Ayo, Joseph Olusegun; Eloff, Jacobus Nicolaas

    2014-11-27

    Strychnos spinosa Lam. is a deciduous tree used in traditional medicine to treat infectious diseases. This study is designed to determine the antimicrobial, antioxidant and cytotoxic activities of extracts and fractions from leaves of S. spinosa. Extracts were obtained by maceration with acetone, methanol and dichloromethane/methanol (1/1) while fractions were prepared by liquid-liquid fractionation of the acetone extract. A broth serial microdilution method with tetrazolium violet as growth indicator was used to determine the minimum inhibitory concentration (MIC) against fungi, Gram-positive and Gram-negative bacteria. The antioxidant activity was determined using free-radical-scavenging assays, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to determine cytotoxicity. Four extracts and five fractions had good to weak antimicrobial activity with MICs ranging from 0.04 to >1.25 mg/ml against both fungi and bacteria. The chloroform and ethyl acetate fractions had an MIC of 0.08 mg/ml against Aspergillus fumigatus. The n-butanol fraction had an MIC of 0.04 mg/ml against Cryptococcus neoformans. The hexane and chloroform fractions had an MIC of 0.08 mg/ml against Staphylococcus aureus. The antioxidant activities were much lower than that of the positive controls. Except for the alkaloid extract, all the extracts and fractions had free-radical-scavenging activity (IC50 ranging from 33.66 to 314.30 μg/ml). The cytotoxicity on Vero cells was reasonable to low with LC50 values ranging between 30.56 and 689.39 μg/ml. The acetone extract and the chloroform fraction had the highest antibacterial activity. By solvent-solvent fractionation it was possible to increase the activity against A. fumigatus and to decrease the cytotoxicity leading to a potentially useful product to protect animals against aspergillosis. Our results therefore support the use of S. spinosa leaves in traditional medicine to treat infectious diseases.

  1. Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions

    DOE PAGES

    Sadeghifar, Hasan; Wells, Tyrone; Le, Rosemary Khuu; ...

    2016-11-07

    In this study, lignin fractions with different molecular weight were prepared using a simple and almost green method from switchgrass and pine organosolv lignin. Different proportions of acetone in water, ranging from 30 to 60%, were used for lignin fractionation. A higher concentration of acetone dissolved higher molecular weight fractions of the lignin. Fractionated organosolv lignin showed different molecular weight and functional groups. Higher molecular weight fractions exhibited more aliphatic and less phenolic OH than lower molecular weight fractions. Lower molecular weight fractions lead to more homogeneous structure compared to samples with a higher molecular weight. In conclusion, all fractionsmore » showed strong antioxidant activity.« less

  2. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  3. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    PubMed Central

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  4. Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishkind, H.H.

    1982-06-01

    A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the projectmore » are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.« less

  5. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... skim milk usually fortified with about 0.1 percent citric acid: Streptococcus lactis, S. cremoris, S... acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient must be of a...

  6. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  7. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    PubMed

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  8. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  9. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  10. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficialmore » in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.« less

  11. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plugmore » or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.« less

  12. Crystal structure and habit of dirithromycin acetone solvate: A combined experimental and simulative study

    NASA Astrophysics Data System (ADS)

    Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong

    2013-06-01

    Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.

  13. Antibacterial Activity of Indian Borage (Plectranthus amboinicus Benth) Leaf Extracts in Food Systems and
Against Natural Microflora in Chicken Meat

    PubMed Central

    Gupta, Sandeep Kumar

    2016-01-01

    Summary The ability of acetone and ethyl acetate extracts of the leaves of a traditional Indian medicinal plant, Indian borage (Plectranthus amboinicus Benth) to prevent spoilage of artificially inoculated model food systems (cabbage and papaya) and natural microflora of chicken meat was evaluated. These extracts were able to reduce the bacterial counts in all food systems; however, the effective concentration varied with the complexity of the system (cabbageacetone and ethyl acetate extracts at their respective minimum inhibitory concentrations resulted in leakage of cell constituents to an extent of 40 to 80 and 60 to 95%, respectively, compared to the control, and finally leading to disintegration of cell walls. These findings indicate the potential use of ethyl acetate and acetone extracts of Indian borage leaves in food preservation. PMID:27904397

  14. Screening of antibacterial potentials of some medicinal plants from Melghat forest in India.

    PubMed

    Tambekar, D H; Khante, B S; Chandak, B R; Titare, A S; Boralkar, S S; Aghadte, S N

    2009-05-07

    Cyperus rotundus, Caesalpinia bonducella, Tinospora cordifolia, Gardenia gummifera, Ailanthus excelsa, Acacia arabica, Embelia ribes and Ventilago maderspatana from Melghat forest were screened for their antibacterial potential against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogenes by disc diffusion method. Out of these medicinal plants Caesalpinia bonducella, Gardenia gummifera and Acacia arabica showed remarkable antibacterial potential. The phytochemical analysis had showed the presence of Cardiac glycosides in all extracts (aqueous, acetone, ethanol and methanol) of Acacia arabica, Gardenia gummifera and ethanol, methanol extracts of Caesalpinia bonducella. Flavonoids were present in Gardenia gummifera, Ailanthus excelsa and acetone, methanol extracts of Acacia Arabica. Tannins and phenolic were present in Cyperus rotundus, Embelia ribes, and organic extracts of Ventilago maderspatana.

  15. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    PubMed

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  16. Photochemical behavior of fenpropathrin and λ-cyhalothrin in solution.

    PubMed

    Liu, P Y; Li, B; Liu, H D; Tian, L

    2014-02-01

    The photodegradation processes of fenpropathrin and λ-cyhalothrin were studied in hexane, methanol/water (1:1, v/v), and acetone in both ultraviolet light and simulated sunlight. Intermediates in the photodegradation process were identified using gas chromatography/mass spectrometry (GC/MS), and the analysis of intermediates was used to speculate on possible photodegradation pathways. The photodegradation processes of fenpropathrin and λ-cyhalothrin followed pseudo first-order kinetics. The photodegradation rates varied according to the solvent in decreasing order: hexane>methanol/water (1:1, v/v)>acetone. The effects of substances coexisting in the environment on the photodegradation of pyrethroids were also investigated in the research. Acetone, humic acid, and riboflavin increased photodegradation rates while L-ascorbic acid slowed the process. This study provides a theoretical basis for the removal of pyrethroid pollution from the natural environment.

  17. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  18. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  19. Inert Reassessment Document for Amyl Acetate

    EPA Pesticide Factsheets

    Both acetates have a number of industrial uses such as solvents for lacquers, paints, and inks. Pharmaceutically, ethyl acetate is a flavoring aid and amyl acetate is used in extraction of penicillin.

  20. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder.

    PubMed

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-11-11

    Iron oxide (Fe₂O₃) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe₂O₃ gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability.